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Abstract

Smartphones are steadily gaining popularity, creating
new application areas as their capabilities increase in
terms of computational power, sensors and communication.
Emerging new features of mobile devices give opportunity
to new threats. Android is one of the newer operating sys-
tems targeting smartphones. While being based on a Linux
kernel, Android has unique properties and specific limita-
tions due to its mobile nature. This makes it harder to de-
tect and react upon malware attacks if using conventional
techniques.

In this paper, we propose an Android Application Sand-
box (AASandbox) which is able to perform both static and
dynamic analysis on Android programs to automatically de-
tect suspicious applications. Static analysis scans the soft-
ware for malicious patterns without installing it. Dynamic
analysis executes the application in a fully isolated envi-
ronment, i.e. sandbox, which intervenes and logs low-level
interactions with the system for further analysis. Both the
sandbox and the detection algorithms can be deployed in
the cloud, providing a fast and distributed detection of sus-
picious software in a mobile software store akin to Google’s
Android Market. Additionally, AASandbox might be used to
improve the efficiency of classical anti-virus applications
available for the Android operating system.

1 Introduction

Anti-virus research is an ongoing process of identify-
ing and analysing new and unknown malware for extract-
ing possible detection schemes that can be used within anti-
virus software. A virus scanner [33] can block viruses,
worms, and Trojan horses from infecting the often real
time monitored system. Although behavioural detection is
mostly included in anti-virus software, most malware is de-
tected by scanning for and finding a certain patterns, also
called signatures. Therefore, the malware has to be known

by the scanner through a signature database, otherwise it
is not able to detect and remove it. For generating these
signatures, malware needs to be analysed for identifying
significant and meaningful patterns that should be unique
to the malware and its relatives1. But not only signature-
generation requires analysis; in order to disinfect a system,
the behaviour of the malware needs to be understood for be-
ing able to undo critical changes. For doing so, sandboxes
can be used, which guarantees an almost realistic execu-
tion of suspicious binaries in an isolated environment. Such
sandboxes are known in the domain of stationary comput-
ers, e.g. CWSandbox [34] or Java sandboxes [12], but es-
pecially smartphone platforms lack such kind of analysing
software2. This raises concerns since smartphones have al-
ready faced a wave of malware [31, 28] and it can be ex-
pected that new malware will emerge for popular platforms,
like iPhone3 or Android4. In this case, analyzing capabili-
ties are left to a few people within anti-virus companies.
This would not be that concerning but Oberheide et al. [23]
showed that the average time for receiving a signature for a
new malware is about 48 days. This in turn means that users
with infected system need to wait 48 days until they have a
chance to disinfect it, leaving the window of opportunity
very wide open for new malware.

Therefore, we present an approach how to realize a sand-
box for Android-based applications. We preferred Android
over iPhone since its source code is set open source allow-
ing us to implement modifications even on system level of
the operating system. Our sandbox is capable of perform-
ing static and dynamic analysis. In the static part, the sand-
box decompresses installation files and disassembles corre-
sponding executables. This can be used for cheap and fast
pre-checks that might already indicate malicious code frag-
ments and characteristics. In the dynamic part, we make use

1malware families contain malware that share similar malicious code
fragments

2anti-virus vendor internal tools are not published
3http://www.apple.com/iphone
4http://www.android.com
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of the Android emulator which is normally used for testing
and debugging ordinary Android applications. Investigated
Applications are installed to the emulated and isolated en-
vironment. After that, applications are executed and can be
used within the sandbox for performing behavioural analy-
sis. For improving the dynamic analysis process, the possi-
bility of automated generation of user inputs is investigated.
Since these analyses requires extensive resource capabili-
ties, our system is intended to be run as a cloud service.
Software distributors, like the Android Market or the App-
Store, can run this analyses on each submitted application
or users, in turn, can upload suspicious applications to their
convenience.

This work is structured as follows. Section 2 gives
more insights into the field of Smartphone Security. In
Section 2.2, we describe common analysis methodologies
used to investigate malicious software. In Section 3, our
approach in creating such a sandbox is presented. Sec-
tion 4 presents possible analysing procedures that can be
performed in our sandbox. In Section 6, we conclude.

2 Related Work

In the following section, we give a short introduction to
the field of mobile malware research, and an overview on
static and dynamic malware detection techniques, including
sandboxing.

2.1 Smartphone Security

In developed countries, mobile phones often outnumber
potential subscribers. For example, in Germany over 80
million handsets are spread over a total of approximately
82 million residents [27]. According to [11], the figures in
other countries are similar, and the share of smartphones is
increasing. While many phones are being primarily used for
making calls and sending text messages, browsing the inter-
net and using third-party applications gained a significant
share in mobile device usage. This trend clearly requires
a deeper look at the security aspects of mobile platforms,
especially those which allow internet usage along with in-
stalling third-party applications. These are commonly re-
ferred to as smartphones.

In order to provide most versatility and flexibility to the
user, smartphones run sophisticated operating systems com-
parable to those of desktop PCs. Manufacturers provide de-
velopers with tools to create and distribute custom applica-
tions. Due to high complexity of mobile device software,
security threats emerge [14], comparable to the those which
a conventional PC is exposed to. Nevertheless, smartphone
security has its own specifics [31]. A smartphone is tied
to a mobile network infrastructure, including its billing sys-
tem, providing an attacker with a means of immediate com-

mercial exploitation, making identity theft possible, and al-
lowing for Denial-of-Service attacks against the (potentially
fragile) wireless network [4]. Additionally, privacy issues
arise since a smartphone can deliver a lot of delicate in-
formation about its user straight out of its sensors, such as
location, microphone, camera, etc.

Since smartphones are a viable target to attackers, suf-
ficient defence mechanisms must be introduced. However,
this is a hard task, partly due to limitations of mobile hard-
ware which is not capable of running a full blown mal-
ware detection suite in the background. Another reason
is, according to [31], that this research field gained insuf-
ficient attention, especially when compared to conventional
desktop- and server-based malware detection.

Only a few good works cover security issues of mobile
platforms. Most authors focus on the attack mechanisms.
Collin Mulliner et. al. [19, 18, 20, 21] developed several
smartphone exploits, both on Windows Mobile and Sym-
bianOS. Racic et al. [24] discovered an MMS vulnerability
which allows an attacker to drain the battery of the victim’s
phone. Becher et. al. [1] created a worm running on a
version of Windows Mobile.

However, despite the fact that Android is a young mobile
OS if compared to Apple’s iOS or Nokia’s Symbian, sev-
eral publications discuss Android-specific security mech-
anisms, involving overall security assessment of the plat-
form [5, 31], malware detection [29], application permis-
sion analysis [8], and kernel hardening [32]. This amount
of attention to one particular mobile platform clearly indi-
cates the emerging need in solid mechanisms for security
analysis on Android.

2.2 Static Software Analysis vs. Sandbox-
ing Techniques

For malware detection, a detailed knowledge of applica-
tion’s characteristics is essential, which may be obtained by
various means. According to [2], two common practices ex-
ist - static and dynamic analysis of software. Both have ad-
vantages and disadvantages [17], and numerous approaches
to both static and dynamic analysis paradigms exist.

Static analysis involves various binary forensic tech-
niques, including decompilation, decryption, pattern match-
ing [33] and static system call analysis [30]. All of these
techniques have in common that the (potentially malicious)
software is not being executed. Here, a common approach
is filtering binaries by malicious patterns, called signatures.
Even nowadays, many anti-virus software suites base on
this approach. Due to its nature, static analysis has an ad-
vantage of being fast and relatively simple [17]. Its pri-
mary disadvantage is that malicious code patterns have to
be known in advance, making it impossible to automatically
detect new malware or malicious polymorphic code without
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an intervention of a human expert.
A set of techniques, which involve running an appli-

cation in a controlled environment and monitoring its be-
haviour, are known as dynamic analysis. Various heuris-
tics have been used to best capture and analyse dynamic
behaviour of applications, such as monitoring file changes,
network activity, processes and threads [33] and system call
tracing [9], on which we focus in our work. Since soft-
ware is being executed and kept alive for a longer time to
obtain its runtime characteristics, it is obvious that dynamic
analysis techniques are computationally more complex than
static analysis.

A common approach to dynamic software analysis is
sandboxing. A sandbox can be defined as “an environment
in which the actions of a process are restricted according to
a security policy” [3]. In practice, this means that a sandbox
is an instance of the target OS, which is isolated in a way
that prevents malware from performing harmful actions.

A sandbox’ security policy may vary, depending on the
actual use case. The policy may be defined in a defensive
way, causing the process to be stopped at a particular point
in order to be examined - or even aborted to prevent po-
tential damage to the system. Another option is monitor-
ing and recording all system activity while the application
is running, and processing the gathered information after-
wards. This approach is especially useful for monitoring
of unknown software and classifying it, e.g. by identifying
abnormal system states and analysing their cause [22, 13].

Several designs and implementations of application
sandboxes exist, such as the widely used CWSandbox [34].
Existing sandboxes differ in the targeted platform, and the
way policy enforcement is performed. User space sandbox
systems rather inject code into system libraries in order to
gain control over the APIs which are used by most appli-
cations, or run software samples through a debugger, e.g.
ADSandbox [6]. User space sandboxes can be detected by
malware, which, in turn, would simulate normal behaviour
in order to remain undetected [25]. Kernel space sand-
boxes try to overcome this problem by taking a low-level
approach of monitoring raw system calls inside the kernel.
This minimizes the chance of the sandbox being recognized
by malware, but is harder to implement and produces large
amounts of highly complex data. However, even kernel-
level root-kit-based sandboxes can possibly be detected, as
shown in [15, 7, 10].

Unfortunately, the majority of existing sandbox imple-
mentations target desktop and server operating systems, due
to their heterogeneity and wide deployment. There has been
very little to no research on sandboxes targeting mobile en-
vironments such as iOS or Android. Our main contribution
tries to fill this gap and provide a robust set of tools for mal-
ware analysis on Android, including polymorphic viruses
and new threats.

3 Android Application Sandbox

Sandboxes are often located within kernel space since
access to critical parts of the OS can be realized. The kernel
is a very essential part of a system because it acts as bridge
between hardware and software.

One approach of sandbox systems is to monitor system
and library calls including their arguments. This is often
done trough system call redirecting, also known as system
call hijacking [35]. System calls, short system calls, are
function invocations made from user space into the kernel
in order to request some services or resources from the op-
erating system [16]. For understanding how system calls
can be hijacked, we will first explain how they are invoked
in general. Figure 2 shows an example for the read() sys-
tem call on a Linux based system. In turn, Figure 1 shows
the same example from Figure 2 but here the system call is
finally redirected.

For being capable to analyze potential harmful applica-
tions for the Android platform our system realizes system
and library call monitoring. Android uses a modified Linux
basis to host a Java-based middleware running the user ap-
plications. This implies that calls should not be monitored
on Java level since other calls being made by native Linux
application might get lost. One might argue that only Java
user application space is relevant for malware detection but
Schmidt et al. [31] showed that it is possible to place piggy-
bag Linux malware into Android systems. Due to this na-
ture, calls are monitored on the lowest level possible. For
accomplishing this task, we have implemented a loadable
kernel module (LKM) being placed in the Android emulator
environment. This action needs special attention since the
emulator tends to get very unstable from low-level changes,
like we realized. Especially resource limitations and modi-
fications of the Linux System by Google need to be treated
carefully, which e.g. also had results on the amount of data
being traced. Currently, the system is not able to store argu-
ments of calls since this takes too long causing the system to
crash. Additionally, Android bases on an ARM architecture
leading to the problem that the ID of the calls are different
to the ones, e.g. from an Intel system.

The LKM is intended to hijack all available system calls
targeting for the ARM architecture since this is used for
the Android operating system. The following pseudo code
shows how the system calls are redirected:

asmlinkage long
new_syscall
(type1 param1, type2 param2, ...)
{

retval = orig_syscall(type1 param1, type2 param2, ...);
PRINT_TO_LOG( "syscall()", retval);
return retval;

}

In the pseudo code you can see that each system call
which is redirected firstly behaved like the original system
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call to get the real return value. This is achieved since be-
cause we have a policy that enforces only logging of the
reactions of the system call. Then the ”PRINT TO LOG”
prints out the gathered informations to the kernel log. After
this, the original return value is returned to the kernel envi-
ronment so that the context of the application can proceed.
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EAX = __NR_read

int 0x80
check error

return

SAVE_ALL

check limit of EAX

syscall_table[EAX]()

handle signals

RESTORE_ALL

iret

file=fget(fd)

check file ops

and locks

(file->f_op->read())

fputs(file)

return

check destination

retrieve data

copy data

return

...

...

... pop_arguments

...

...

...push_arguments

_libc_read()

Figure 2. Steps involved in performing a
read() system call from user space (derived
from [26]). Each arrow in the figure repre-
sents a jump in the instruction flow.

4 Static and Dynamic Analysis of Android
Applications

We propose a novel two-step analysis of Android appli-
cations, consisting a full-fledged kernel-space sandbox, and
a fast static pre-check. AASandbox executes automatically,
without any need for human interaction, and saves the logs
of system calls and static analysis for further inspection.

As an input, the AASandbox takes an Android applica-
tion archive, which is packaged in a *.apk file and is there-
fore referred to as APK. Applications are written in Java
and run in a custom Java virtual machine called Dalvik.
Application source code is first compiled to standard Java
bytecode, and then optimized and converted to Dalvik exe-
cutable format for being interpreted Dalvik VM. Bytecode
is then packaged together with other application resources,

including UI layouts, localization and a manifest file which
defines the structure of the application. The structure of an
APK package is depicted in Figure 3.

The AASandbox first performs a static pre-check, fol-
lowed by a full-blown dynamic analysis.

Android Emulator

- install APK

- execute APK

- generate

input on APK
Logfile

Dynamic Analysis

APK

AndroidManifest.xml

classes.dex

Ressources

pictures

layout.xml

libraries (.so)

...

Static Analysis

Logfile

- uncompress APK

- disassemble APK

- search for

patterns

Figure 3. Design of the Android Applica-
tion Sandbox (AASandbox). AASandbox con-
sists of three main parts: the APK, static
and dynamic analysis methods, and resulting
dataset for further analysis.

4.1 Static Analysis of Android Applica-
tions

An Android application package (APK) is scanned for
special patterns (e.g. Runtime.Exec() ), which may be used
to classify the application. Our implementation of static
analysis is lightweight enough to run on-device. However,
since the dynamic analysis clearly requires emulation on a
more powerful machine, we decided to run the static analy-
sis off-line, too.

Decompression: An Android application is a com-
pressed (ZIP) bundle of files. When uncompressed, its
content is split into three main parts in a directory named
APK-NAME/unzipped/:

• AndroidManifest.xml - an XML file holding
meta information about the application, e.g. descrip-
tions, security permissions, etc.

• classes.dex - a single file which holds the com-
plete bytecode to be interpreted by Dalvik VM.

• res/ - a folder consisting of files defining the layout,
language, etc.

Getting the Starter Name: In this step, the main
“launchable activity” is extracted from the manifest file. It
is used for identifying the application, but is also important

58 2010 5th International Conference on Malicious and Unwanted Software



user space kernel space

system_call()

SAVE_ALL
check limit of EAX

syscall_table[EAX]()

handle signals

RESTORE_ALL

iret

main() __libc_read()

...

...

...

push_arguments

_libc_read()

pop_arguments

...

...

...

hijacked

sys_read()

P
o
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y

sys_read()

filesystem

or network

or device node

file=fget(fd)

check file ops

and locks
(file->f_op->read())

fputs(file)

return

check destination

retrieve data

copy data

return

Figure 1. Steps involved in performing a hijacked read() system call. The procedure on the first steps
is similar to Figure 2 up to the step when the hijacked read() system call routine arrives. There, the
further processing is described by the policy and depends on the implementation of the system call
itself.

later for the dynamic analysis, since it needs an entry point
to the application UI.

Decompilation: The file classes.dex holds the actual
bytecode of the application. It is converted into a human-
readable format using Baksmali 5, which produces a Java-
typical folder hierarchy containing files with easily-parsable
pseudo-code.

Pattern Search: Finally, disassembled code can be be
scanned for suspicious patterns. Due to the absence of
sandboxes for Android, we needed to find out which pat-
tern might indicate presence of potentially harmful applica-
tion. Therefore, we started a trial-and-error approach using
as much as possible indicators that were available. In a first
attempt, we tried to cluster extracted patterns in order to
find a relevant set of indicators. In our case relevant means
that applications are assigned to clusters corresponding to
their activity which was known due to a labeled set of ap-
plications. The results of our approach led to the following
patterns we currently scan for:

• usage of the Java Native Interface, which can be used
to dynamically load native libraries.

• usage of Sytem.getRuntime().exec(..),
which can be used to spawn native children processes

5A disassembler for the DEX format as used by the Dalvik VM,
http://code.google.com/p/smali/

and surpass the normal application life-cycle

• usage of reflection (2 patterns total), which may be
used to circumvent API restrictions

• usage of services and IPC provision, which may drain
the battery or overload the device’s CPU

• usage of Android Permissions to determine which per-
missions will be granted at install time

4.2 Dynamic Analysis of Android Appli-
cations

Dynamic analysis is usually more complex than the static
analysis. In this work, the application is installed in the
standard Android Emulator from the Google Android SDK
bundle. After installation it will be executed for a specific
time and penetrated with random user inputs from the ”An-
droid Monkey” tool. The Monkey is a program that runs
on the emulator or device and generates pseudo-random
streams of user events such as clicks, touches, or gestures,
as well as a number of system-level events. The Monkey
was primarily invented to stress-test applications. Our An-
droid Application Sandbox (AASandbox) is placed in ker-
nel space and hijacks system calls for logging. AASandbox
helps us to log the behaviour of the application at the sys-
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tem level. The resulting log file will be then summarized
and reduced to a mathematical vector for better analysis.

The kernel module makes sure that each occurrence of a
system call is logged, including those which are performed
by processes other than the currently analysed application.
This makes sure that a complete system state is recorded
and no malicious activity can be hidden. The log of system
calls for an application is stored in a separated file.

Dynamic analysis includes following steps:
Prepare and Start Emulator: The Android SDK in-

cludes a mobile device emulator which runs on a normal
desktop computer. It emulates all of the hardware and
software features of a typical mobile device, except doing
phone calls. For testing and modelling an application, the
emulator supports Android Virtual Device (AVD) configu-
rations. AVDs specify the Android platform that the em-
ulator shall run, as well as the hardware options and em-
ulator skin files which shall being used. Once an appli-
cation is running on the emulator, it can use the services
of the Android platform to invoke other applications, ac-
cess the network, play audio and video, store and retrieve
data, notify the user, and render graphical transitions and
themes. The emulator also includes a variety of debug capa-
bilities, such as a console from which the kernel output can
be logged, simulate application interrupts (such as receiving
SMS messages or phone calls), and simulate latency effects
and packet drops on the data channel.

Install AASandbox: Goal of the dynamic analysis is to
examine the system state changes which happens when a
given application is executed. To reach this the AASandbox
have a log-only policy which does not actively intercept any
system state change. Therefore, we developed a loadable
kernel module (LKM) which assures the policy given by
the sandbox environment. The insertion of the LKM into
the running kernel of the Android device emulator is done
with the help of Android Debugging Bridge (ADB) which
comes along with the SDK from Android. Once the LKM
is loaded the produced output is sent to a logfile.

Install APK and start Monkey: The installation of the
given APK is also done with the help of ADB. Here the
ADB copies the APK into the image of the emulator and
then runs the PackageManager which is an essential part of
Android and installs it onto the system. This means that
the APK will be unzipped and copied to the specified di-
rectories. After installation the application is imported into
the Android system and can be manually started through the
main applications menu. To automate this for AASandbox
the application will be launched with the help of the An-
droid Monkey. On AASandbox the Monkey has the role of
a simulator of human interaction on the to examined appli-
cation. During the runtime of the Monkey, there are exactly
500 generated events with 1000 ms silence in between.

Obtain system call logs: When the Monkey is finished

the mobile device emulator process is killed and the used
AVD configuration which was created on step 1 is removed.

5 Experiments

To proof the correct working of the whole system we
will now describe an example run of the AASandbox. The
example application we are using here is a self-written fork
bomb which uses Runtime.Exec() to start an external binary
program. The application creates subprocesses of itself in
an infinite loop. The intended behaviour is that the oper-
ating system is not responding after a while. This kind of
attack is typically known as Denial of Service (DoS) and is
an typical example of an attack.

Starting the whole process is as simple as starting the
shell script aas.sh with the desired application package
name as parameter. The script will then start the first and
second analysis step of the AASandbox automatically.

During the first static analysis step an directory
REPORTS/ForkBomb.apk/ is created. There are also
two subdirectories, unzipped/ and disasm/, created
which contains the unzipped application package and the
disassembled bytecode:

REPORTS/ForkBomb.apk/
|-- disasm
| |-- AndroidManifest.readable
| ‘-- de
| ‘-- dailab
| ‘-- ccsec
| ‘-- forkbomb
| |-- ForkBombActivity.smali
| |-- R$attr.smali
| |-- R$drawable.smali
| |-- R$layout.smali
| |-- R$raw.smali
| |-- R$string.smali
| ‘-- R.smali
‘-- unzipped

|-- AndroidManifest.xml
|-- META-INF
| |-- CERT.RSA
| |-- CERT.SF
| ‘-- MANIFEST.MF
|-- classes.dex
|-- res
| |-- drawable
| | ‘-- icon.png
| |-- layout
| | ‘-- main.xml
| ‘-- raw
| ‘-- forkbomb
‘-- resources.arsc

After unpacking and disassembling is done the desired
files are scanned for static patterns like an signature-based
anti-virus application will do. One of the main features we
will scan for are security related, like use of reflection or
executing external programs, and which permissions will
be used by the application itself. The permission scanning
is very important because without a granted permission on
Android it is not possible to do the intended action.

The logfile output for the first step is in the following
format:
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$ cat LOGS/ForkBomb.apk-s1.log
00010000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
00000000

The output shows that the fork bomb application is de-
tected for using Runtime.Exec() to start an external
program. The next interesting point is that the program do
not use any possible Android permission.

After this first step is completed the dynamic analy-
sis of the application starts. There, the prepared Android
emulator will start as described in Section 4.2. Once
the emulator is up and running the application will be
installed via adb install ForkBomb.apk. After
the installation is completed the Android Monkey will
be started via adb shell monkey -p $ACTIVITY
-vv --throttle 1000 500. This tells the Monkey
to start the activity associated with the fork bomb appli-
cation and generate 500 random user events which will be
used to simulate normal user behaviour.

All the produced output of the emulator run will be
logged into LOGS/ForkBomb.apk-s2.log in the fol-
lowing format:

found sct at 0xc0022f04
RK loaded
[1272980618.635790][recvfrom()-83][1;0]
[1272980618.636043][recvfrom()--11][1;0]
[1272980618.638795][munmap()-0][193;0]
[1272980618.640029][sigprocmask()-0][192;0]
[1272980618.641172][wait4()-192][39;0]
[1272980618.641429][read()--5][39;0]
[1272980618.641622][write()-4][39;0]
[1272980618.642570][close()-0][39;0]
[1272980618.643198][write()-24][81;0]
[1272980618.645523][write()-4][82;0]
[1272980618.712968][read()-61][37;0]
...

The first value is a timestamp, the next is the used sys-
tem call followed by the original return value. The last two
numbers are the IDs of the process and its parent. Along
with this, information it is now possible to create a system
call histogram which looks like this:

1499, 0, 4, 0, 0, 3, 79, 6, 0, 37, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 1, 0, 1, 0,
0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 1488, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 12, 29, 3, 0, 0, 0, 1, 0, 13, 0, 0, 596,
0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 373,
1, 1, 0, 0, 1, 34, 0, 372, 34, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 225, 1420, 0, 0, 2, 90, 0, 0, 0, 0, 50,
0, 0, 0, 0, 13, 0, 8, 6, 7, 2, 112, 112, 13, 9, 0, 452, 48,
0, 0, 0, 0, 0, 0, 0, 3, 4, 438, 359, 50, 0, 0, 0, 0, 3, 3,
1157, 6411, 0, 0, 670, 47, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, 6,
0, 0, 2, 3, 3, 0, 0, 13, 3, 10, 21, 9, 12, 5, 1, 0, 1, 334,
0, 0, 0, 134, 200, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3

Here the counting of all syscalls are shown. For exam-
ple the first syscall (time) is used 1499 times where the
second syscall (stime) is not used at any time throughout
application runtime.

We used about 150 applications in order to test and
evaluate our system. These 150 programs were collected
through the official Android Market representing the top
150 popular applications in October 2009. These applica-
tions were used to test the system showing positive results
in the clustering. For testing malware, we used our self-
written fork bomb. As soon as more malware is available
to us, more tests will be performed. For the current status
of the system, malware characteristics and behavior known
from other smartphone platforms, e.g. Symbian OS, are
considered to be analyzed in our sand box. Comprehen-
sive malware techniques, like polymorphy and code frag-
ment encryption, are not regarded due the early stage of the
system.

The fork bomb malware clearly appears to be an outlier
among the investigated applications. In general, our first
impression of the data obtained by the AASandbox is that
the measurements are very diverse, delivering a very high
entropy dataset. We believe that, after further investiga-
tion, the data can be sufficient for detecting new malware.
Our aim is to achieve this in future by employing various
machine-learning techniques.

6 Conclusion

In this work we presented a sandbox created for
analysing Android applications applicable as cloud service.
Therefore, we showed how the Android emulator can be
used to run Android applications in an isolated environ-
ment. Unlike other sandboxes, we added a pre-check func-
tionality that can analyse Android executables in a static
manner. This can indicate usage of malicious patterns
within source code. In the dynamic analysis, system calls
can be traced and corresponding reports are logged. These
can be used for further investigations, either performed
manually or automatically.
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