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The scanning acoustic microscope in the reflection mode has proved to be a rather simple and direct
means for monitoring the elastic properties of a solid surface. When smooth surfaces of crystalline
material are examined in a liquid with a highly convergent sound beam they exhibit a distinct response.
This characteristic response, which can be treated as a “signature”, is obtained by recording the output of
the microscope as the spacing between the acoustic lens and the object is varied. An angular-spectrum
approach is used to derive an expression for this output in terms of the reflectance function. This function
has an angular dependence determined by the bulk constants of the material itself. The expression
resulting from this treatment can be used to explain the source of contrast in acoustic images.

PACS numbers: 43.20.Fn, 43.20.Bi, 68.25.+j, 62.20.Dc

I. INTRODUCTION

The scanning acoustic microscope'™ has been used to
study the contour, texture, and structures of surfaces with a
resolving power that continues to improve.* The changing
contrast that appears in these micrographs has been det
scribed in a previous report® where we argued that the acous-
tic images give us detailed information on the surface elastic
parameters for a scale of lateral dimensions that is deter-
mined by the diameter of the acoustic beam. It is our purpose
in this paper to extend that original report and develop ex-
plicit expressions that will allow us to gain insight into the
contrast variation that we have observed experimentally.
This is accomplished here by using the angular-spectrum
approach along with the paraxial approximation to calculate
the variations in the signal that occur in reflection imaging
when the object is moved through the focal plane. More gen-
eral properties for these beams and their relation to image
quality have been worked out by Wickramasinghe.® He com-
putes the propagation parameters through angular-spec-
trum decomposition and calculates the beam profile for the
case where the waves are strongly focused.

Our goal is the use of reflection imaging in the study of
microscopic structures of increasing complexity, but we will
first study the reflection from polished surfaces without
structure. We have found that smooth surfaces of crystalline
material exhibit a characteristic response that can be used to
distinguish between different materials, to characterize the
elastic properties of a given material, and to display vari-
ations in these properties on a microscopic scale that is limit-
ed only by the resolving power of the instrument.

In this instrument, the surface is immersed in liquid,
and the liquid-solid interface is illuminated with a highly
converging acoustic beam. The large difference in velocity
between the liquid and the solid produces a critical angle for
total internal reflection that is small compared to the critical
angles that are usual in optical problems. Because of this
factor, most of the illuminating beam is incident to the inter-
face with angles which exceed the critical angle. We have
found in this situation that the beam reflectance at the inter-
face is a strong function of the nature of the surface being
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studied. We will show that the reflectance of single crystals
of Si, AL,O,, and GaAs are quite different. These materials
can be easily distinguished from each other if we observe the
strength of the reflected signal while the distance between
the acoustic lens and the reflector is varied.

We will follow the established procedure for problems
of this type”* and use Fourier transformations to decompose
the entire beam into an angular spectrum of plane waves. In
our model, the angular spectrum is symmetrically distribut-
ed about the normal to the interface since this direction cor-
responds to the axis of the beam in the actual experiment. In
previous work relating to beams that undergo total internal
reflection,’! the beam is assumed to be obliquely incident to
the interface. That work contains a clear description of the
phase relation between the reflected and incident waves
when the incident angle exceeds the critical angle for total
internal reflection. It, therefore, has direct bearing on our
work since these phase shifts dominate the reflection process
in our model. For well-collimated beams obliquely incident
to the interface, the phase shifts encountered upon reflection
result in a reflected beam whose position is translated lateral-
ly along the reflecting surface. The lateral shift for optical
beams is known as the “Goos-Hénchen shift”.!? For acoustic
beams, the shift is known as the “Schoch displacement,”"’
and it is most pronounced when the acoustic beam is inci-
dent at the critical angle for Rayleigh-surface-wave
excitation.’

In our problem, where the incident beam is normally
incident to the interface there can be no lateral displacement
for the entire beam. However, the phase shift experienced by
each component does alter the wave front of the reflected
beam in a manner that is unique for each reflecting surface.
Our instrument is sensitive to the shape of this reflected wave
front, and we have, therefore, in principle, a method for
monitoring the elastic properties of this surface, obtained
from the reflected wave when the spacing between the acous-
tic lens and the liquid-solid interface is varied. The electrical
output of the transducer plotted as a function of this spacing
produces a curve which differs from material to material.
The curve for a given material is dramatically altered when
metallic or dielectric layers are deposited on this material.
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We have long known that the acoustic microscope
could be used to image surface features—features similar to
those found in optical micrographs—but, with the insight
that we have gained here, we now know that we can record
information on the nature of the subsurface layers. In time,
this characteristic—unique to acoustic microscopy—could
prove to be most valuable in the study of materials and mi-
croscopic structures.

Il. ACOUSTIC REFLECTION MICROSCOPE

In this section, we will briefly describe the acoustic re-
flection microscope with the essential parts of this acoustic
imaging system as shown in Fig. 1.

Element A is a piezoelectric transducer which gener-
ates the acoustic wave. It serves to convert the rf voltage
across the piezoelectric film into a plane acoustic wave prop-
agating normal to the surface. Element B is the acoustic lens
which is merely a spherical cavity on the opposing side of the
crystal. It serves to focus the plane wave into a narrow waist
at the focal point. Element C is the reflecting object to be
imaged. A liquid, such as water, fills the gap between the
object and the lens in order to provide a path for sound prop-
agation. The reflected sound wave returns through the lens
to the transducer which is now acting to convert the acoustic
signal into the electrical signal. It is important to note that
the transducer is sensitive to the phase of the returning wave
and that the rf voltage at the output is obtained by integrat-
ing the acoustic field over the area of the transducer. A mi-
crowave circulator separates the reflected and incident sig-
nals. Normally, the object is near the focus point, and it is
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FIG. 1. Geometry of the acoustic transducer and lens as used for the acous-
tic microscope.
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mechanically scanned in a raster pattern normal to the axis
of the beam. The amplitude of the returning signal is used to
control the intensity of a synchronously scanned electron
beam in a cathode-ray tube (CRT). In this way, the image is
displayed on the CRT, and it is recorded by photographing
the face.

The acoustic lens has a radius R, and the focal distance
[fis given approximately by the relation

f=R/(1—¢) forc«l.

Here, C is the ratio of the sound velocity in the liquid to that
in the solid,

C=Vyq/ Usor-

If ¢ is small enough, the beam at the focus will be free
from spherical aberration and the diameter of the waist
will be limited only by diffraction. Therefore, the reso-
lution of the system is determined by the wavelength in
the liquid.

Finally, we note that a short pulse is used at the
input, and time gating separates the reflected signal
from other spurious reflections.

Hl. DESCRIPTION OF THEORY

The imaging system described in Sec. II will be ana-
lyzed using basic results reviewed in the Appendix. In Fig. 2,
we show the coordinate system used for analysis. In the dis-
cussion that follows, the superscripts + and — refer to fields
propagating in the +z and —z directions, respectively. Sub-
scripts determine the z plane of the fields under consider-
ation as defined below. We will assume monochromatic exci-
tation throughout the discussion.

In Fig. 2, the planes labeled 1 and 2 represent the back
and front focal planes of the lens, respectively. They are not

Fig. 2. Geometry and coordinate system used for analysis. Typical values:
R,=105 um, R=75um, R,=104 um, f=120 ym, =0.135, 4=1230 um.
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at the same distance from the lens because of the different
media involved. Plane 3 is the plane of the reflector, and it is
a distance Z from the front focal plane (plane 2). R is the
radius of the pupil function of the lens. If it is small enough
compared to R, the thin-lens model can be used. As a result,
the lens can be represented as a multiplicative phase trans-
formation of the form

t;=exp[—j(ko/ 2 )x* +y7)],

where a constant phase factor is neglected. With the assump-
tion of the thin-lens model, the following result can be
established.’

Suppose an acoustical field represented by u ;" (x,p) is
incident at the back focal plane of the lens (plane 1). The field

u 3 (x,p) at the front focal plane (plane 2) can be found from
the relation

exp[ ko f(1+8) |
JAof

u(xy) =

XJ Ju ?—(xnyl)Pl(xl'sz,,Vx +y2)

<o

T

2
Aof

xx:+yy2) )] dx, dy,.

1
Here, P,(x,p) stands for the pupil function of the lens, and it
is given by
Py(x,p)=circ[(x*+y*)"*/R],
where
circ(r)=1, r<1,
=0, r>1
for a circular lens with no apodization. Since we have a fo-

cused beam in the front focal plane, we are interested only in
small values of x, and y,, i.e., x,€x,, y,<y,. Hence,

Pl(xl + X201 +y2) :Pl(xh}h)-

With this assumption, the well-known Fourier transforma-
tion property of a lens can be stated as

ug(xp)
— exp[jkof(1+¢n)]9— +( Pl( ) ] .
JAof by P
93]

Propagation of this wave beyond the focal plane is easily
calculated if the angular-spectrum representation is utilized.
From Eq. (A1), we have

Uk k,)=F[uxy)l,
and combining this with Eq. (2), we arrive at the result

Ui (kk,)
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=5‘_(e!(})[]'/ff)f(l-ﬁz) ]
JAof
X F [u i xp)Pxp) ] kx=kax/f>
k,=ky/f

or
U3 (kyky) =—jhofexpliko f(1+2))

xu i [—(f7ko) k., —(fTk) k,]
XP [—=(fTko) k,—(fTko) k]
&)

In Eq. (3), we relate the field on the back focal plane to the
angular spectrum on the front focal plane with a simple
relation.

After traversing the region of the lens, the acoustic field
will propagate to plane 3 in Fig. 2 (z=Z at this plane). This
can be taken into account by using Eq. (A5) in the form

Uik ok,)=UF(kk,) exp(jkZ)
xexp{ —j[(k2+k2)/2k)Z}.  (4)

Plane 3 is the interface between the liquid and the refiecting
surface. At this plane, reflection takes place, and Eq. (A7)
can be used to find the reflected field,

Us(k ok )=Ui(k k) Rk Jhkok /), (5)

where Z is the reflectance function of the interface. The
reflected field traveling in the —z direction has an angular
spectrum at z=0 given by the expression

Uz (kok,) =Us(k,k,) exp(jkZ)
xexp{ (k2 +k2)/2K1Z}.  (©)

Here we have again made use of Eq. (A5). We can now com-
bine Eqgs. (3)—(6) to arrive at the result

Uj (k. k,)=—~jlf expljkof(1+¢)]
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k§+k§Z)

X exp(2koZ ) X exp( —j k

><9?(—" , —y) )

The acoustic field at this plane is found by inverse trans-
forming U; (k .,k ),

u; (xy) =F"U; (ko k)] @®

The reflected field in the back focal plane (plane 1) is evaluat-
ed with an expression which corresponds to Eq. (1),
exp[ jko f(14¢°) ]

JAoSf

u r(xnyx) =
Xf f u {(x;,yz)Pz(xl+x29yl+y2)

.2
Xexp( -] Iﬂ.?(xlxz +yw2) ) dx, dy,,
0

where P,(x,y) is the pupil function of the acoustic lens for
waves traveling from the liquid side to the solid side. In the
preceeding equation, u ; (x,,y,) takes on significant values
only when x, and y, are very small. Hence, we can again use
the approximation P,(x, +X,,y, + V) =P.(x,,y,). With this
assumption, we have

uy(x.p)
expl jko f(1+&2 P
= p[j ;f;_ C) ] Pz(X,,V) 7 [u 2 (x,y)} k= (ko/f)x
Jho k,=(ko/f)y
)
Equations (8) and (9) are combined to give
ui(xy)
_ explikof(14+8) ]

Py(x,y) Uz_(k—ox, ks y).

JAof £ r
(10)

FIG. 3. Illustration of similarity between the phase of the reflected wave at
the back focal plane and the phase of the reflectance function.

Equation (10) gives the field on one focal plane in terms of
the angular spectrum on the other in a simple manner. Equa-
tions (3) and (10) are important results in the discussion, and
they are rewritten in Table I, neglecting constant factors.

Finally, we can combine Egs. (7) and (10) in the form
u(xy) = —exp{2k[Z+f(1+)]}

X u  (—x,—y)P(—x,—y)Px,y)

X expl —j(koZ/f *)* +yNZ (x/fy/f).
(11)
This is our primary result, and it expresses the reflected field
at the back focal plane in terms of the incident field at the

same plane, the pupil functions of the lens, the reflectance
function of the reflector object, and the position of the object.

The factor —exp{ j2kJ[Z+f(1+*)]} is a constant
phase factor, and from now on it will be neglected.

Some simple cases will be stated to give the reader some
physical insight into the meaning of Eq. (11). Suppose there
is a perfectly reflecting surface

TABLE I. Relations between the field and angular spectrum at the back and front focal planes.

Field at back focal plane Propagation Angular spectrum at front focal plane
(plane 1) direction (plane 2)
u i (xy) — Ui (kok,)
—u l+(_ Lk - ka) p,(_ L L k,)
ko ko ko ko
ui ) =Py Us(Eex Ko y) - Us(kok,)
S f
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Rk /kok,/k)=1
at focal plane (Z=0). Then Eq. (11) becomes

u (p)=u i (—x,—pP(—x,—p)P:x.p).
u 7 (x,p) is equal to the inverted form of u ;" (x,p) after pass-
ing through the pupil functions. This is exactly what one
would expect from the ray approach.

Suppose now that

Rk kosk S ks)
has unit amplitude but nonzero phase. That is, let

R (k/kok,/ko)=expl jé (k,/kok /ko)].
In this case, Eq. (11) gives

u l_(x’y) =u fL(—x’—J’)Px(*x, -J’)Pz(x,}’)

x expljé (x/fy/Pl.

This is demonstrated in Fig 3 for a two-dimensional
case with an arbitrary function ¢. u ;7 (x) is assumed to be a
plane wave, but u [ (x) does not have a uniform phase be-
cause of the nonzero phase shift at the reflecting surface. The
phase shift of ¥ | (x) at x, is equal to the phase shift created
upon reflection at the incidence angle 8=sin"'(x,/f). Hence
the reflected wave fronts at plane 1 take the shape of the
function ¢.

As another example, assume that the reflecting surface
is not at the focal plane (i.e., Z5~0). For this situation, there
is an additional phase curvature given by
exp[ —j(ko/fHZ (x*+7)].

After these simple examples, we can complete our anal-
ysis by transferring our input and output wave fronts to the
transducer at the plane marked 0. We assume that the trans-
ducer excites a uniform field shown by  § (x,y) , when a unit
voltage is applied at its terminals, and that plane O is a dis-
tance d from plane 1. We want to find the transducer output
voltage as a function of reflector parameters and Z, the dis-
tance between the reflector and front focal plane.

The field at plane 1 can be found from Eq. (A4),

utGey)y=ug (xp) *F " [exp(jk .d)]. (12)
similarly, the reflected field at plane O can be found in terms
of u i (x.y),

uo ep)=u (xp)*F lexp(jk d)]. (13)

In the receiving mode, the transducer will integrate the en-
tire field to generate the output voltage. That means a plane
wave with the wave fronts parallel to the film surface will
yield a maximum electrical signal. The transducer output
voltage, represented as a function of Z, is

v@r=[" [ugesusepdrdy. a9
We can substitute Eq. (13) into Eq. (14) and write

V(Z)= f_: [useew lurewn
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X F U [exp( jk,d))] x:x'} dxdy'.

Y=y

With the definition of convolution, this can be expressed as

V(Z)=fJ ug (x'y’) UZ uy (&m)

X5 [exp(jk . d)] e dé dn ]dx' dy'.

y=y -

If we now change the order of integration, we find

vae)=[" [urem UZ Jusww

e dx dy’] dédn .

y=y'—mn

X 51 [exp(jk.d)]

X=X

Sincek , =(k {—k ; —k 2)"*isanevenfunction of k, and k,
we can write

S [exp(jk .d)] =5 "[exp(jk.d)]

x=x"—§&
y=y'—n

x=&—x""
y=n—y

With this in mind, we can recognize the integral inside
the brackets as a convolution,

v@)=[" [uren

x[ws@n T emjrD|, | an
y="1
This can be simplified with Eq. (12) to read
v@)=| J wrEm uiEmdedy , (15

and substituting Eq. (11) into Eq. (15), we have

va=[ [urx-puie

XPI(_X: —}’)Pz(x,,V)
X RX/FY/f) expl—j(koZ/f ) +y)] dx dy.
(16)

Even though we have worked this out in rectangular coordi-
nates, our problems are symmetric about the z axis, and we,
therefore, prefer to write these results in cylindrical coordi-
nates. With circular symmetry, we have

%(kx/ko,k/ko)z -@(kr/ko);

u 1+(x,.V)=u f'(r),
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and

P(xy)=P(r),
where k , =(k 2 +k2)"* and r=(x?+y*)""*. Therefore, the
final result takes on the following form:

V(2)=L°° rlu () PPOPY RS

X exp[—j(koZ/f )] dr, an
where a factor of 27 is neglected.

IV. APPLICATIONS

Using the final result in Sec. 111, several cases that give
answers in closed form can be worked through.

Case 1

Letu f(r)=1, #(k,/ko)=1, and P (r)=Pxr)
=circ(r/R ) (perfect reflector). From Eq. (17), we can write
immediately

V(Z)=J;R r exp(—j }k% Zrz) dr

2 2

2 Ao f?
sin(mR * /A f)Z
X( (TRY/A D2 )

Equation (17) predicts that if a perfect reflector is translated
along the z-axis the transducer output voltage will change in
accordance with a sinc function. When the object is at focus
(Z =0), the output voltage is maximum, since the returning
wave fronts are parallel to the transducer film. However, for
positive Z (object-lens spacing increasing) or negative Z (ob-
ject-lens spacing decreasing), the transducer response is re-
duced. The reflected wave reaching the transducer is in the
form of either a spherically converging or diverging wave,
and the transducer is excited with alternate regions of posi-
tive and negative phase.

Case 2

Let

u i ()=1P(r)=P(r)= circ(r/R)
and

R (k,/ko)=exp[—j2m(fk,/Rko)].

Here the reflectance function has a unit amplitude and a
nonzero phase shift. For this case, Eq. (17) gives

v ol S (o1 4L

2 Aof?
sin(@R*/ Ao f%) [Z+(A.f*/R? ]
(TRYAf?) [Z+(AofY/R) ]~
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This is merely a sinc function shifted along the Z axis. The
maximum output voltage is not reached when the object is at
focus, but rather when itis at Z= — (4, f 2/R?). The wave-
front distortion produced by this form of a reflector is com-
pensated by moving the reflector out of focus and thereby
creating a plane wave front at the transducer.

Case 3

Let

u i (H=1, P(r)=Pyr)=circ(r/R)
and

Rk, /ky) =0, Kk, /ke<R /A,

=1, k,/ko>R./f.

Here an object is assumed which reftects only when the inci-
dence angle is greater than some critical angle
[6.=sin*(R,/f) in this case]. Equation (17) gives

2 2

R 1 T
T exp(—f R2+R22)
- exp( el )

0

V(Z)=

sin(m/A of 2 R*=RHZ
(/A of NR*—RHZ

We still obtain a sinc function, but the width of the main lobe
is increased as a result of the given reflectance function.

Note in the examples above that the transducer output
voltage not only depends on the object position but also on the
reflectance function. This gives rise to a mechanism to differ-
entiatetheobjects with different acoustical properties because
thereflectancefunction willdepend ontheelastic properties of
the object.

To gain a deeper understanding, we will select examples
from real life. Single crystals of silicon, saphire, and gallium
arsenide will be taken as reflector objects, and the correspond-
ing reflectance functions will be calculated. Equation (17)
will be used to determine the output voltage in terms of reflec-
tor position for these crystals.

The amplitude and phase of the reflectance function will
first be evaluated at a liquid-solid interface. Figure 4(a) is a
plot of these two parameters for a water-silicon interface.
The variable sind=(k,/k,) is used rather than the angle of
incidence. Here k, is the projection of wave vector k, onto
the x-y plane. In these terms, the angle of incidence is given
by 6=sin"'(k,/k,). The amplitude of the reflectance func-
tion is slightly less than unity when the incident angle is less
than the “critical angle for shear waves”. The first narrow
peak corresponds to the “critical angle for longitudinal
waves”. The phase, on the other hand, is zero up to the longi-
tudinal critical angle and has a transition at the Rayleigh
critical angle (slightly greater than the shear critical angle).
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‘ angle of incidence for plane waves. The re-
CuiNt/mBY | CaaiN/mB) | plkg/md) flectance function is given by | # | exp( jé )
The table shows the acoustic parameters
used in calculation.
HpO 2.277 x10? 0 1.0 x 103
Si 166 x 10" 796x10'0 | 2.33x103
Al,05 4.97x10" 1a7x10" | 3.98x10°
o5 > R r o 27 | Gaas t19x 10" 5.95x10'0 | 5.31x107
siné

For angles greater than this, the phase shift approaches
—2m. The corresponding curves for AL,O, and GaAs are
shown in Figs. 4(a) and 4(c). These curves are calculated
with an isotropic-solid assumption.

The solid curves in Figs. 5(b)-5(d) show the calculated
output voltage magnitude versus object position for those
materials. Calculations are based on Eq. (17). The incident
field u ;" (r) is calculated once assuming an isotropic propa-
gation medium," and then Eq. (17) is used to give the output
voltage for each of the different materials. P,(r) and Py(7) in
Eq. (17) are the effective pupil functions of the acoustic lens
for waves traveling from solid to liquid and from liquid to
solid, respectively. If u 5 () was equal to u 5" (), the prob-

lem would be perfectly symmetrical, and P, should be equal
to P, from a reciprocity argument.'® In general, this condi-
tion 1s not satisfied, but we will assume that P, and P, are
approximately equal. They include the effect of the match-
ing layer on the lens surface as well as the finite aperture of
the lens.'® Figure 5(a) shows the result of the calculations for
the amplitude and the phase of [u ;" (#) 1?P.(r)P,(r) whichis
used in the computation of ¥ (Z) curves. The nonzero phase
of {u {(r) 1°P(r)P(r) isthereasonwhy ¥ (Z )curvesdonot
have a maximum at Z=0. This phase curvature creates a
focal shift of about 2 um. In Figs. 5(b)-5(d), our experimen-
tal results are also indicated. The experimental and theoreti-
cal curves for Si and Al,O; are in good agreement, support-
ing the validity of our approach. The discrepancy in fit for
GaAs s attributed to the relatively high anisotropy of GaAs.

FIG. 5. (a) shows the magnitude (solid line) and
the phase (dashed line) of u F (r)2P(r)P(r) . (b)-

(d) are the calculated output voltage magnitude
versus object position for various crystals at

f=1100 MHz. The dotted points are the mea-
sured response.
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Al ON Si
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Al ON Si

FIG. 6. Long-exposure oscilloscope photos of the returning pulses from the
sample as they appear on the scope face while the sample is moving through
the axis. Upper envelopes correspond to V' (Z) curves at f=1100 MHz.
Horizontal scale: 3.75 um/div.

Recall that the reflectance functions are calculated assuming
an isotropic solid (C,; is neglected).

The informational content of the ¥ (Z) curves can be
further amplified by a presentation of the form shown in Fig.
6. These are long-exposure oscilloscope photos of the return-
ing pulses from the sample as they appear on the scope face
while the sample is moving through the axis. The triggering
of the trace is such that the horizontal scale on the scope is a
direct measure of the lens-to-sample spacing. It is only the
upper envelope of these traces that is significant, and the
structure beneath the envelope should be ignored. Figure 6
shows the ¥ (Z ) photos for pure Si, 1.0um of Al on Siand 2.0
pm of Alon Si, with an acoustic excitation frequency of 1100
MHz.

The V' (Z) curves are unique to the materials’ acoustic
properties and, therefore, can be treated as a “signature” of
the material. As an obvious application, this signature can be
used to determine the thickness of a layer on a substrate by
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(b) ACOUSTIC (c)

FIG. 7. Optical and acoustical pictures of two H-MOS transistors. Source
(8): ALO; 4+ 0.9 um Si+1.2 um Al +0.4 um SiO,. Gate (G): ALO,+0.9um
8i+0.1 um SiO, + 1.2 um Al+ 0.4 ym SiO,. Metal connection (MC):
ALO;+ 1.2 um Al+0.4 um SiO,. Substrate (Sub): A1,0,+0.4 um SiO,.

comparing the resulting curve to the curves of similar sam-
ples with known layer thicknesses. It should be noted that
the curves for layered media will depend on the frequency of
acoustic excitation, so the comparison must be done at the
same frequency.

A sample such as an integrated circuit contains various
layers made up of different materials. If an acoustic image of
that sample is recorded, the z position remains constant
while the x-p scanning is carried out. Each particular region
on the sample gives rise to a response determined by its own
V (Z) curve at that z position. This response may differ con-
siderably from region to region (as much as 20 dB). That is a
primary source of contrast for acoustic imaging.

In Fig. 7(a), we show an optical picture of two H-MOS
transistors on an SOS chip."” The acoustic images in Figs.
7(b) and 7(c) were recorded at a frequency of 1100 MHz
where the wavelength in water is about 1.4 ym. There we
estimate the resolution to be near 1 um. The only difference
between Figs. 7(b) and 7(c) is the Z position of the object. An
almost complete contrast reversal is obtained only by chang-
ing the axial position of the object. Note that the gate regions
are brighter than the source or drain in both acoustical pic-
tures, whereas they have the same brightness in the optical
case. Acoustic images, therefore, include the response of lay-
ers beneath the surface. In this particular case, the presence
of a 1000-A oxide layer underneath a 1-um-thick gate metal
is responsible for the recorded difference.

In Fig. 8, we show the calculated V' (Z ) curves for the
various regions on the transistor geometry.'* The position of
the object with respect to the focal point (parameter Z) de-
termines the relative brightness in various regions. The
acoustic image shown in Fig. 7(b) is taken at a position indi-
cated as (b) on Fig. 8. At this position, the output voltage is
larger for the gate than it is for the source. The response for
other regions is much lower, and this accounts for the dark
background in the acoustic image. On the other hand, the
acoustic micrograph shown in Fig. 7(c) is taken with the
position shown as (¢) in Fig. 8. The gate region should still be
brighter than the source or drain, but the background gives
rise to a much higher output voltage or brightness. It should
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FIG. 8. Calculated V' (Z ) curves for various regions on the SOS structure.

be noted that, if the oxide under the gate metal was missing,
the gate in the acoustic picture would correspond in bright-
ness to that of the source or drain rather than the brightness
shown here.

V. CONCLUSIONS AND SUMMARY

Using an angular-spectrum approach, it was possible to
arrive at a relatively simple expression which formulates the
microscope response in terms of the position and elastic pa-
rameters of the reflector. This approach also made it possible
to gain a physical insight into the underlying mechanism.
From this work, we have learned that the reflectance func-
tion as transferred to the reflected wave front can be revealed
to the outside world by translating the object through the
focused beam and recording the transducer output voltage.
This signature can be used to explain the source of high con-
trast in many acoustic images.

In principle, the theory given applies to optical waves as
well. However, the physical realization of an analog optical
scanning system is not obvious, since an optical detector
which integrates field rather than intensity is needed. Fur-
thermore, critical angles for optical waves are often much
larger than those encountered here.

Reflection acoustic microscopy can find applications in
monitoring layer thicknesses and nondestructive fault analy-
sis of integrated circuits. One example of an acoustic image is
given in this paper, and this displays information that is not
found in the optical picture.
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APPENDIX: ANGULAR-SPECTRUM
REPRESENTATION

This appendix summarizes the primary results that are
used to decompose a complicated wave front into an angular
spectrum of plane waves by means of the Fourier trans-
form.”® This method is a powerful technique for treating
wave propagation in a homogeneous isotropic half-space
that is free from sources.

Now suppose that a monochromatic wave is incident at
the z=z, plane and that it is traveling in the z direction. The
complex field of this wave is given by u,(x,y) with exp(—jwt )
time dependence suppressed. The angular spectrum in this
plane is then given by the relation

Uk ok ) =F [u(xp)]

=J‘f~wu1(x,y) exp[ —j(k x+k, y)] dxdy.
(A1)

In this representation, we decompose the field u,(x,y) into
plane wave components of the form

exp{j [k . x+k ,y+k ,(z—z) ]} having an amplitude
Uik .,k ,)). Here exp[ j(k ,x+k ,y) ] represents a unit
amplitude plane wave incident on the z=z, plane with an
angle

6=sin" [(k2+k})"*/ko ],
where k,= (w/v,).

The angular spectrum at another plane, z=z,, can be
found by multiplying U,( k .,k ) by exp[jk ,(z.—z) ],
where k , =(k§—k2Z—k2)" to give

Uk k))=U( k. k,)exp[jk, (z2—2)) ]

Notethatfork 2 +k& 2 > k 3, k , is purely imaginary, and cor-
responding plane waves are evanescent.

(A2)

With the spectrum in this form, the complex field at
z=2, can be determined by inverse transforming

uz(x,y)=57“[U2( kx’ky) ]

=[1/ (2”)2]ff_: U k,.k,)

xexp| j(k x+k,y)]dk, dk,. (A3)
In the space domain, Eq. (A2) can be written as
u(x)=uxp)* 7 " {explik(z.—2)]}, (A4)

where * signifies the convolution operation. If the so-called
paraxial approximation is used, the expressions can be sim-
plified, since we have

(k3—k? —kﬁ)"’:ko—g [(k2 +k§)/ko ]
for (k2 +k2)<ko,
and with this we can write

exp[jk ,(z.—2) ] zexp[jko(zz —2z))]
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(A5)
The first exponential factor in Eq. (AS) is an overall phase
retardation suffered by any component of the angular spec-
trum as it propagates from z=2z, to z=z,. The second fac-
tor, however, is a phase dispersion with a quadratic frequen-
cy dependence on the spatial angle.

With this approximation, Eq. (A2) can be written as

Uz( kxyky) zUl( kx’ky) exp[jko(zl_zl) ]

k2+k:
X eXp( - —-27—1 (z:—2z) ) (A6)

Now let a second region be introduced separated from
the first region by a plane boundary at z=2z,. If a plane wave
of the form Us(k,.,k,) exp{j [k . x+k ,y+k (z—2) ]} is
incident on this boundary, there will be a reflected plane
wave of the form Uy(k .,k )
exp{j [k . x+k ,y—k ,(z—2z;) | }. Suppose that the reflec-
tance function

Bk S ko Ko)

of the boundary is known. This function relates U 3(k , ,k ,)
to Us( k .,k ,) as follows:'

Uik ok )=R(k ko k /UL k k). (AT)

5139 J. Appl. Phys., Vol. 49, No. 10, October 1978

This reflectance function
Ak, ko)

is, in general, a complex function, and it therefore includes
phase changes as well as amplitude changes upon reflection.
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