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We will derive a constitutive relationship for the stress tensor of an anisotropic rod-like

assembly of granular particles where not only the transverse isotropy (denoted by a unit

vector n, also called the fiber direction) is included, but also the dependence of the stress

tensor T on the density gradient, a measure of particle distribution, is studied. The gran-

ular media is assumed to behave as a continuum, and the effects of the interstitial fluid

are ignored. No thermodynamical considerations are included, and using representation

theorems, it is shown that in certain limiting cases, constitutive relations similar to those

of the Leslie-Ericksen liquid crystal type can be obtained. It is also shown that in this

granular model, one can observe the normal stress effects as well as the yield condition,

if proper structures are imposed on the material coefficients.

1. Introduction

The primary approach for describing and analyzing coal furnaces and combustors has

generally been accomplished through experimental studies where empirical correlations

are used to describe the complex flows and chemical reactions that occur. In the last

few decades, advanced combustion technologies have been developed with the intent of

achieving higher overall system efficiencies and reduced environmental loading of air,

water, and solid pollutants. Traditionally designers have relied on experiments to produce

empirical formulas and correlations. One obvious difficulty with this approach is that,

in general, changing the experiment or some of the conditions such as geometry, inlet

conditions, particle loading, and so forth, may change the outcome and hence produce

different correlations. The traditional approach is now being augmented with theoretical

and computational modeling techniques, which provide the design engineers with the

predictive capability and the freedom to choose and change conditions leading to a better

design of combustors with higher efficiency, optimum geometry, less pollution, and so

forth.

With additional need for fossil fuels, the amount of waste materials and the environ-

mental issues dealing with their disposal also increase. One of the promising approaches
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is the development of coal/waste cofiring technology. For cofiring, biomass has been con-

sidered as one of the fuels. It is estimated that biomass constitutes 14% of the world en-

ergy use, which makes it the fourth largest energy source (Ekmann et al. [26]). Biomass

can be considered any or a combination of wood residues, agricultural residues (crops,

foods, animals), municipal solid waste, and so forth (Easterly and Burnham [24]). In ad-

dition to these, energy crops including short-rotation woody crops and herbaceous crops

such as tall switchgrass, are thought to become the largest source of biomass in future. In

general, biomass fuels are converted to energy via thermal, biological, and physical pro-

cesses. Bridgwater [11] indicates that the three primary thermal processes for converting

biomass to useful energy are combustion, gasification, and pyrolysis. Ekmann et al. [26]

mention that from a technological point of view, for the biomass cofiring to become a vi-

able source of energy “. . . both upstream and downstream impacts are important. Upstream

impacts include handling, preparation (if any), and storage. Downstream ones include ash

deposition (slagging and fouling), corrosion, and pollutants (reliable prediction of NOx and

SOx reductions in particular).”

The major difficulties in modeling and using the cofiring of coal and biomass are (1)

The biomass fuels, especially the switchgrass and wood-residue, are neither spherical nor

disk-like in shape; most modeling approaches treat particles either as spherical or as disk-

like, with a shape factor to account for other shapes. (2) Since most of the biomass par-

ticles are slender and rod-like, the directionality or anisotropy associated with the axis

of the body, that is, the orientation of the body, becomes an important controlling pa-

rameter. (3) For cofiring applications, the density of the biomass fuels is, in certain cases,

significantly different from that of coal. These issues, in many ways, determine the effi-

ciency of the mixing process. Most computational fluid dynamics (CFD) codes treat the

particles as a homogenous continuous medium with correlations which depend on the

diameter and density of these spherical particles.

In most fossil fuel combustion processes, there are several phases involved, whether the

phases are of the same material or of different materials. It is therefore more accurate to

refer to these studies as “multicomponent” problems; historically, two distinct approaches

have been used to study these problems. In the first case, the amount of the dispersed

(particulate or bubbly) phase is so small that the motion of this phase does not greatly

affect or influence the motion of the continuous (or host) phase. This view is generally

known as the “dilute phase approach,” sometimes also called the Lagrangean approach,

and is used extensively in applications such as atomization, sprays, and in flows where

bubbles, droplets, and particles are treated as the dispersed phase (Sirignano [75], Crowe

et al. [17], Sadhal et al. [72]). In the second approach, the two phases are interacting

with each other to such an extent that each phase (or component) directly influences

the motion and the behaviour of the other phase. This is known as the “dense phase

approach,” sometimes also called the Eulerian (or the two-fluid) approach. This method

is used extensively in fluidization (Davidson et al. [18], Gidaspow [32]), gas-solid flows

(Fan and Zhu [30]), pneumatic conveying (cf. Marcus et al. [48]), suspensions (Ungarish

[88]), and is described for a variety of applications in general textbooks such as Soo [77],

Rajagopal and Tao [63]. In most of the existing computer codes, the different phases are

generally modeled as “fluids” and in certain cases the solid phase consisting of particles
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Figure 1.1. Mixture of coal-biomass gas.

of various shapes and sizes is modeled as granular materials, based either on continuum

mechanics theories, or statistical theories such as the extension of the kinetic theory of

gases or numerical simulation techniques. Therefore, in a combustor using the cofiring

mechanism, where the primary fuel is coal and the secondary fuel is the biomass phase,

we need to use a three-phase flow modeling approach (see Figure 1.1), with the gas (air)

as the third phase. The coal and biomass particles have different chemical and thermo-

mechanical properties. Since their densities, shapes, and sizes are so different, much of

the biomass fuel is not properly mixed with the main fuel. In order to better understand

the process of mixing and handling of these solid fuels, constitutive modeling of the stress

tensors and the interaction mechanisms (see Massoudi [49, 50]) are needed, especially in

the fluid dynamics aspect of the process.

In recent years there has been a surge of interest in studies related to granular ma-

terials. Physicists, engineers, and mathematicians have begun to systematically look at

the behaviour of particles in flowing and yielding conditions from different perspectives.

These different approaches include experimental studies, statistical and continuum me-

chanics theories along with numerical simulations studies; with these, much light has

been shed on the peculiar characteristics of powders. However, to this date there is not a

single unified theory which can describe the response of granular materials to different

flow conditions, concentrations, shapes and sizes, moisture content, and so forth. This,

notwithstanding, is understandable, since granular materials behave similar to a fluid at

times, and at other times similar to a solid. In addition to these, certain anisotropic char-

acteristics, such as directionality of slender and thin fibrous-type granular materials and

certain complex phenomena such as yield condition have made constitutive modeling

truly a challenging task.

In an insightful essay, Behringer and Baxter (Mehta [55, page 107]) based on their

experimental observations said, “In short, there is a need for a new kind of theory that

includes both the unusual properties of dense granular flows and includes the given direc-

tion as a relevant variable.” Two of the unusual properties of dense granular materials are

(i) normal stress differences, and (ii) yield criterion. The first was observed by Reynolds

and is normally called “dilatancy” [69, 70]; this is a manifestation of nonequal normal

stresses, similar to the rod-climbing and die-swell phenomena in rheology. The second
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Figure 1.2. Biomass particles.

peculiarity is that for a granular solid to flow, there is often a yield stress below which

the particles do not flow. This yield condition is often related to the angle of repose,

friction, and cohesion, among other things. These two issues have made the constitutive

modeling of granular materials very interesting. Among the most popular yield criteria is

the Mohr-Coulomb criterion (Massoudi and Mehrabadi [52]), though by no means the

only one. The model proposed and derived by them, based on the earlier work of Ra-

jagopal and Massoudi [59] includes the effects of dilatancy and the Mohr-Coulomb yield

condition. Earlier, Cowin [15, 16] had shown that by including the gradient of the bulk

density as one of the important parameters in proposing a constitutive equation for the

stress tensor, a theory for the flow of granular materials can be devised where not only a

Mohr-Coulomb condition for limiting equilibrium is emerged in a natural way (because

of the terms that could be identified with interparticle friction) but, additionally, the the-

ory contains viscous terms corresponding to the “collisional” regime. One approach in

the modeling of granular materials is to treat it as a continuum, which assumes that the

material properties of the ensemble may be represented by continuous functions (Mas-

soudi [51]). Another method is based on the techniques used in the kinetic theory of gases

(Goldhirsch [33]). Another approach is computer or numerical modeling (Herrmann and

Luding [39]). Recent comprehensive review articles by Savage [74], Hutter and Rajagopal

[40], and de Gennes [19], and books by Nedderman [56], Mehta [55], Duran [23], and

Antony et al. [5] address many of the interesting issues in the field of granular materials.

In this paper, we will derive a constitutive relationship for the stress tensor for an

anisotropic rod-like assembly of granular particles (see Figure 1.2) where not only the

transverse isotropy (denoted by a unit vector n, also called the fiber direction) is included,

but also the dependence of the stress tensor T on the density gradient, a measure of parti-

cle distribution, is considered. The granular media is assumed to behave as a continuum,

and the effects of the interstitial fluid are ignored. No thermodynamical considerations

are included, and using representation theorems, it is shown that in certain limiting cases,

constitutive relations similar to those of the Leslie-Ericksen liquid crystal type can be ob-

tained. It is also shown that in this granular model, one can observe the normal stress

effects as well as the yield condition, if proper structures are imposed on the material

coefficients.
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In Section 2, for the sake of brevity and conciseness, a brief review of constitutive mod-

eling of the stress tensor T for three different classes of anisotropic materials, namely liq-

uid crystals, fiber-reinforced composites, and granular materials are presented. In Section

3, a general derivation for the constitutive relation is given for an anisotropic granular

media where the effects of density gradients are included in the theory. In Section 4, three

special cases of this general constitutive relation are discussed.

2. A review of constitutive relations for anisotropic materials

In this section, after discussing some general concepts in modeling anisotropic materials,

we will focus on three specific classes of materials: (a) liquid crystals, (b) fiber-reinforced

composites, and (c) granular materials. The objective is not to provide a comprehensive

review of the subject, but rather to show certain similarities in the constitutive represen-

tation of the stress tensor.

The classical theories of continuum mechanics deal with the deformations and mo-

tions of materials that possess continuous mass densities. The general underlying as-

sumption is the premise that any volume element, ∆v, in a body can be taken to its limit,

dv, without affecting the distribution of mass. According to this hypothesis, then, the

identity of a material point in a volume element is lost, and its motion coincides with

the motion of the center of mass of the body. For materials such as colloidal fluids, liquid

crystals, granular, or composite materials, a theory that incorporates the micromotions of

the particles contained in a material volume element, ∆v, is needed. Materials possessing

certain microstructures, for example, with the internal couples or couple stresses were

first studied in the early twentieth century by D. Cosserat and F. Cosserat (Truesdell and

Toupin [87]).

One of the basic challenges facing the researchers in the mathematical modeling of

dense suspensions is the “slippery” procedure that is often required to go from the ana-

lytical and well-known classical results, usually valid for a single particle, or at the most

for a few particles, to the not-so-well-known phenomena of interaction among parti-

cles and interaction between the particles and the host fluid. In the case of nonspherical

particles, the classical study is that of Jeffery [42] who considered the motion of ellip-

soidal particles in a viscous fluid. Generalizing this case to a suspension or an assembly

of these particles is more difficult than generalizing the case of spherical particles, with

the basic problem being that of the Stokes flow. The main reason for this difficulty is the

orientation or the alignment of these nonspherical particles. To study this effect, there

are at least two distinct yet related methods based on continuum mechanics. The first

method is to use an orientation distribution function, whereby one derives orientation

tensors to characterize the behaviour of these fibers. The idea of using orientation tensors

to account, in an averaged sense, for the distribution of fibers in a fluid was suggested by

Hand [37, 38]. The details of these techniques are given in Advani and Tucker [2], Ad-

vani [1], and Petrie [57]. The second method is to use the continuum mechanics theories

whereby the microstructure is in some sense included in the theory, for example, as is

done in the micropolar or director theories (Truesdell and Noll [85]). A very powerful

use of this method is the theory of liquid crystals developed by Ericksen and later gen-

eralized by Hand, Leslie, and others. In this approach, a unit vector n is used as one of
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the independent constitutive variables, and as a result the stress tensor would depend on

n and its derivatives, as well as other important constitutive parameters such as velocity,

velocity gradient, temperature, and so forth, in an appropriate frame-invariant form.

In a seminal paper, Jeffrey [42] extends Einstein’s results to the case of particles of el-

lipsoidal shape and showed that the particles increase the viscosity of the host fluid. Hand

[37] later shows that the stress on the surface of a sphere referred to the axes coinciding

with the principal axes of the ellipsoid, with some restrictions, is given by

Ti j =−p0δi j + 2µDi j + 10µ

(

5φ

R6
δi j +

4xix jφ

R7
−
xiφ, j

R5
−
x jφ,i

R5

)

, (2.1)

where

φ= Apqxpxq, (2.2)

where Di j is the symmetric part of the velocity gradient, Apq is a matrix whose compo-

nents depend on the material properties and the values of Di j as R→∞, where R is the

radius of a sphere centered at the suspended particle, and xi = (x, y,z) are given by the

ellipsoid of revolution

x2

a2
+
y2 + z2

b2
= 1. (2.3)

Hand [37] derives a theory for dilute suspensions of ellipsoidal particles and shows that

if the flow is incompressible and laminar, by neglecting particle inertia, the stress tensor

can be shown to be (Hand [37] shows that this equation is a special case of Ericksen’s

theory of anisotropic fluids)

Ti j =−p0δi j + 2µDi j +
32πµ

3V
Ai j , (2.4)

where

V =
4πR3

3
. (2.5)

Later, Hand [38] derives a more general theory for anisotropic fluids where he assumes

that

T= T(B,D), (2.6)

where B is a second-order tensor describing the microscopic structure of the fluid. A

general expansion of this equation was given as

T= β01 +β1B +β2D +β3B2 +β4D2 +β5(BD + DB)

+β6

(

B2D + DB2
)

+β7

(

BD2 + D2B
)

+β8

(

B2D2 + D2B2
)

,
(2.7)
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where the β’s are functions of the invariants of B and D. By assuming that the fluid is

incompressible and neglecting the D2 terms, Hand obtains a simplified form of T:

T=
[

σ0 + σ1tr(BD) + σ2 tr
(

B2D
)]

1 +
[

σ3 + σ4 tr(BD) + σ5 tr
(

B2D
)]

B

+ σ6D + σ7(BD + DB) + σ8

(

B2D + DB2
)

,
(2.8)

where the σ ’s are functions of the invariants of B only. He further assumes that

Ḃi j = Fi j
(

Bkl, ẋp·q
)

(2.9)

and based on the results of Noll (Truesdell and Noll [85]) who had shown that the correct

form of this equation in an invariant form under time-dependent orthogonal transfor-

mation is

B̂i j = Ḃi j −WikBk j +BikWk j , (2.10)

where

Wi j =
1

2

(

∂ẋi
∂x j

−
∂ẋ j

∂xi

)

(2.11)

Hand [38] then presents a general representation for (2.9) as

Ḃ=WB−BW +α01 +α1B +α2D +α3B2 +α4D2 +α5(BD + DB)

+α6

(

B2D + DB2
)

+α7

(

BD2 + D2B
)

+α8

(

B2D2 + D2B2
)

.
(2.12)

This constitutive relation along with that given by the stress tensor when substituted into

the equations of conservation of mass and momentum provide ten equations to deter-

mine the ten unknowns Bi j , ui, p. He shows that in a simple shear flow, this model of

anisotropic fluid can predict normal stress differences.

2.1. Liquid crystals. Liquid crystals is the general name given to certain organic sub-

stances that have an independent thermodynamic state called a liquid crystalline state.

For these substances, when the solid is melted, an anisotropic phase is produced which

turns into an isotropic fluid at higher temperatures. The unusual phenomenon of interest

here is that the physical properties of the fluid can be changed by various forces, such as

electrical or magnetic fields, surface forces, and shear forces, that orient the molecules.

In general, liquid crystals consist of large, relatively rigid molecules with one dimension

larger than the others. For example, this can be visualized as a suspension of nonspherical

particles. The boundaries of these particles are surfaces of revolutions and their preferred

direction is the axis of revolution. Three types of liquid crystals are of significance: smec-

tic, nematic, and cholesteric. (Leslie [46] defines these as “the smectic type is thought to

have a stratified structure, the molecules lying in layers wit their long axes roughly nor-

mal to the planes of the layers. Their fluidity arises apparently though the layers slipping

over each other. In the nematic and cholesteric liquid crystals, however, the long, rod-like

molecules appear to be free to move randomly, except that they retain an orientation ap-

proximately parallel to that of their neighbors. The nematic and cholesteric seem to differ
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in that properties of the former are invariant with respect to certain reflections, whereas

properties of the latter are not.”)

Modern continuum theories of liquid crystals are due to Ericksen [27, 28, 29] who

derived perhaps the simplest properly invariant theory of anisotropic fluids. He consid-

ered an incompressible fluid in which each particle has a single preferred direction, de-

noted by a unit vector n also called the director. His work was later generalized by Leslie

[44, 45, 46, 47] and this formulation is known as Ericksen-Leslie theory of liquid crystals.

In general n has its own motion, and the conservation equation for the flow of such a

fluid are as follows.

(i) Mass:

vi,i = 0 (for incompressible fluids). (2.13)

(ii) Momentum:

ρv̇i = fi +T ji, j . (2.14)

(iii) Angular momentum:

ρ1n̈i =Gi + gi +Πi j, j , (2.15)

where ρ1 is a material constant (with the dimensions of moment of inertia per unit vol-

ume), Gi the external director body force, gi the intrinsic body force, and Π ji the director

surface stress.

The basic constitutive relations for the Ericksen-Leslie theory augment the above set of

governing equations to provide a well-posed system. The constitutive relations are given

(Chandrasekhar [14, page 97]):

T ji = T0
ji +T′ji, (2.16)

where

T0
ji =−pδi j −

∂F

∂nk, j
nk,i,

T′ji = µ1nknmDkmnin j +µ2n jNi +µ3niN j +µ4D ji +µ5n jnkDki +µ6ninkDk j ,

(2.17)

where F is the free energy per unit volume:

F =
1

2

(

k11− k22

)

ni,in j, j +
1

2
k22ni, jni, j +

1

2

(

k33− k22

)

nin jnl,inl, j ,

Ni = ṅi−Wiknk, Di j =
1

2

(

vi, j + v j,i
)

, Wi j =
1

2

(

vi, j − v j,i
)

,
(2.18)

where µ1, . . . ,µ6 are the coefficients of viscosity (also known as Leslie coefficients), and

k11, k22, k33 are Frank’s (Frank [31]) elastic constants.

Similarly,

gi = g0
i + g′i , (2.19)
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where

g0
i = γni−β jni, j −

∂F

∂ni
, g′i = λ1Ni + λ2n jD ji, (2.20)

where γ, β j (which arise due to the constraints of incompressibility and the director hav-

ing fixed magnitude) are arbitrary constants, and

λ1 = µ2−µ3, λ2 = µ5−µ6. (2.21)

And the director surface stress is given as

Π ji = β jni +
∂F

∂ni, j
. (2.22)

2.2. Fiber-reinforced materials. Sheet forming with continuous fiber-reinforced com-

posites (McGuinness and Ó Brádaigh [54]) and fiber-reinforced thermoelastic materi-

als (Johnson [43]) are but two of the most challenging problems in the manufacturing

of composite materials. The rheological characteristics of a composite consisting of an

isotropic matrix reinforced in one or two directions has been shown to behave as a highly

anisotropic materials (Rogers [71]). Spencer [79] gave one of the earliest and most com-

prehensive (kinematic) theories for composite materials (Spencer [80] and Advani ([1]

for more recent formulation and studies). Spencer [81] derives the basic set of equa-

tions for a composite material consisting of a matrix which is reinforced by two families

of fibers, in two different directions defined by unit vectors a(x, t), and b(x, t), where the

fibers are assumed to be continuously distributed. He furthermore makes the assumption

that the fibers are convected with the material, that is,

Dai
Dt

=
∂ai
∂t

+ v j
∂ai
∂x j

=
(

δi j − aia j

)

ak
∂v j

∂xk
. (2.23)

A similar relationship also holds for b. In most problems in classical fluid dynamics, the

fluid is assumed to be incompressible, that is,

trD=Dii =
∂vi
∂xi

= 0. (2.24)

If the condition of fiber inextensibility is also imposed, then

aia jDi j = aia j
∂vi
∂x j

= 0, bib jDi j = bib j
∂vi
∂x j

= 0. (2.25)

Spencer [81] then shows that the stress for an anisotropic reinforced composite material

which is incompressible and inextensible in the two fiber directions is given by

σ =−p1 +Taa⊗ a +Tbb⊗b + τ, (2.26)

where p is due to the incompressibility constraint, Ta and Tb are arbitrary tensions in the

directions of a and b, and ⊗ denotes the outer product. A constitutive relation for τ is
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then required. He assumes that

τ = τ(D,a,b) (2.27)

and shows that, using representation theorems, and considering (2.24) and (2.25), the

most general form for τ that is linear in D is

τ = 2ηD + 2η1(AD + DA) + 2η2(BD + DB) + 2η3

(

CD + DCT)+ 2η4

(

CTD + DC
)

,

(2.28)

where η’s are viscosities (which can be functions of a ·b), and

A= a⊗ a, B= b⊗b, C= a⊗b, CT = b⊗ a, (2.29)

where the constraints (2.24) and (2.25) now become

trD= 0, trAD= 0, trBD= 0. (2.30)

An interesting and a special case of (2.27) is when there is material symmetry with respect

to reflections in planes normal to the fiber direction, then (2.27) can be replaced by

τ = τ(D,A,B). (2.31)

Spencer [83] derives constitutive relations for a much more general class of anisotropic

fluids (with only one fiber direction a, although the same methodology can be extended

to more than one fiber) which are also viscoelastic; specifically he generalizes the Reiner-

Rivlin and the Rivlin-Ericksen second-order fluids. For example, the generalized second-

order transversely isotropic fluid has the following structure:

σ =−p1 + νoa⊗ a + νTA1 +
(

νL− νT

)(

a⊗ a ·A1 + A1 · a⊗ a
)

+η1A2

+η2A1
2 +η3

(

a⊗ a ·A2 + A2 · a⊗ a
)

+η4

(

a⊗ a ·A1
2 + A1

2 · a⊗ a
)

,
(2.32)

where

A1 = L + LT , A2 =
dA1

dt
+ A1L + (L)TA1, L= gradu, (2.33)

and ν’s and η’s are functions of the invariants

trA1
2, a ·A1 · a, a ·A1

2 · a, a ·A2 · a. (2.34)

Further restrictions can be obtained if the fibers are also inextensible (Spencer [83, (40)]).

It is known that the composite material is stiffer and stronger in the direction of “great-

est orientation.” In order to devise a rational way to describe fiber orientation, Advani

and Tucker [2] advocate using the probability distribution function ψ which is shown to

depend on a unit vector n (along the fiber):

ψ(n)=
1

4π
+

15

8π
bi j fi j(n) +

315

32π
bi jkl fi jkl(n) + ··· , (2.35)
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where

bi j = ai j −
1

3
δi j , fi j(n)= nin j −

1

3
δi j , ai j = nin j , (2.36)

where a rate equation for n is given as (Advani and Tucker [2, (30)])

ṅi =−
1

2

(

ωi jn j

)

+
1

2
λ
(

γ̇i jn j − γ̇klnknlni
)

−Dr
1

ψ

∂ψ

∂ni
, (2.37)

where Dr is the rotary diffusivity, λ is a parameter which is related to the shape of the

particle, and

γ̇i j = 2Di j =
(

vi, j + v j,i
)

, ωi j = 2Wi j =
(

vi, j − v j,i
)

. (2.38)

It is noted that when Dr = 0, the equation reduces to Jeffrey’s equation for a single fiber.

By using (2.37) and the conservation of mass, Advani and Tucker [3] obtain the following

equation for ai j :

Dai j

Dt
=−

1

2

(

ωikak j − aikωk j

)

+
1

2
λ
(

γ̇ikaik + ak j γ̇k j − 2γ̇kla jkli

)

+ 2CI γ̇
(

δi j − 3ai j
)

,

(2.39)

where now another equation is needed for

ai jkl = nin jnknl. (2.40)

To model the stress tensor, they note that for most suspensions of fibers in a Newtonian

fluid, it is reasonable to assume

Ti j = Ci jklγ̇kl, (2.41)

where

Ci jkl = B1ai jkl +B2

(

ai jδkl + aklδi j
)

+B3

(

aikδ jl + ailδ jk + a jlδik + a jkδil
)

+B4δi jδkl +B5

(

δikδ jl + δilδ jk
)

,
(2.42)

where the B’s are material constants. Tucker and Advani (see [1, page 171]) show that the

rate of change of the orientation matrix ai j , in general, can be expressed as

Dai j

Dt
= f
(

akl,Dkl

)

. (2.43)

They also give a general representation for predicting the viscosity of suspensions of fibers

in a Newtonian fluid (see [1, equation (6.2.61), page 177]):

Ti j = ηsDi j +ηsφ
{

ADklai jkl +B
[

Dikak j + aikDk j

]

+CDi j + 2Fai jBr

}

, (2.44)

where Di j is the rate of deformation tensor, ηs is the solvent viscosity, φ is the particle

volume fraction, A, B, C, and F are material constants, and Br is the rotary diffusivity due

to Brownian motion.
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2.3. Granular materials. Any theory attempting to describe the behavior of flowing

granular materials should embody several features. For example, a bulk solid is not ex-

actly a solid continuum since it takes the shape of the vessel containing it; it cannot be

considered a liquid for it can be piled into heaps; and it is not a gas for it will not expand

to fill the vessel containing it. The flow of granular materials strongly depends upon the

distribution of the void space. From the observation/experimental point of view, the pi-

oneering work of Bagnold [9] has led to many formulations of non-Newtonian models

(Reiner [67], Astarita and Ocone [6]). Goodman and Cowin [34, 35] developed a con-

tinuum theory for representing the stresses that occur during the flow of granular ma-

terials. The pneumatic effects are neglected; that is, the theory assumes that the material

contained in the voids is a gas that does not interact with the granules. The basic idea un-

derlying their theory is that the concept of mass distribution must be extended to admit

granular materials; that is, the mass distribution must be related to the volume distri-

bution of granules. This is achieved by introducing an independent kinematical variable

called the volume distribution function. They assumed that the material properties of the

ensemble are continuous functions of position. This is equivalent to assuming that the

material may be divided indefinitely without losing any of its defining properties. That is,

a distributed volume,

Vt =

∫

νdV , (2.45)

and a distributed mass,

M =

∫

ρsνdV , (2.46)

can be defined, where the function ν is an independent kinematical variable called the

volume distribution function and has the property

0≤ ν(x, t) < 1. (2.47)

The function ν is represented as a continuous function of position and time; in reality,

ν in a granular system is either one or zero at any position and time, depending upon

whether there is a granule or a void at that position. That is, the real volume distribution

content has been averaged, in some sense, over the neighborhood of any given position.

The classical mass density, ρs, is called the distribution mass density, or simply the dis-

tributed density. The classical mass density. The bulk density, ρ, is related to ρs and ν

through

ρ = ρsν. (2.48)

After postulating the existence of new concepts, such as the “balance of equilibrated force”

or the “balance of equilibrated inertia,” Goodman and Cowin [34, 35] proposed new bal-

ance relations in addition to the regular balance laws of continuum mechanics. Many of

these ideas had already been proposed in other areas of mechanics, such as liquid crystals

and micropolar materials. They also introduced a new form of the entropy inequality.
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They derived a constitutive equation for the Cauchy stress tensor based on the ideas of

continuum mechanics, the restrictions imposed by the Clausius-Duhem inequality, the

principle of frame-indifference, and incompressibility of the grains. They also assumed

that the constitutive representations for the free energy, heat flux, dissipative parts of the

stress, and intrinsic equilibrated body force depend linearly on temperature gradient, ve-

locity gradients, and gradient of the volume distribution function. Thus, the equation

defining a Coulomb granular material becomes

T=
(

β0−βν
2 +α∇ν ·∇ν + 2αν∆ν

)

1− 2α∇ν⊗∇ν + λ(trD)1 + 2µD (2.49)

or

Ti j =
(

β0−βν
2 +αν,kν,k + 2ανν,kk

)

δi j − 2αν,iν, j + λDkkδi j + 2µDi j , (2.50)

where ∆ is the Laplacian operator,⊗ represents the outer (dyadic) product of two vectors.

The coefficients β0, β, and α are material constants; λ and µ are, in general, functions of

ρs and ν; and a comma denotes differentiation with respect to x. Goodman and Cowin

assumed that the stress tensor is obtained by the linear superposition of two parts: T0, a

rate-independent (also referred to as equilibrium or nondissipative) part, which depends

on the solids fraction ν and its gradients, and T∗, a rate-dependent (viscous) part. Thus,

T= T0 + T∗. (2.51)

Ehrentraut (Straughan et al. [84]) also points to the similarities between granular mate-

rials and anisotropic liquids. Experimental results of Villarruel et al. [89] point to many

fascinating observations, for example, as they mention, “The most crucial difference be-

tween sphere and cylinder packings comes from the tendency of cylinders to align along their

long axis, both with each other and with the container walls.” Based on these and earlier ob-

servations, it is postulated here that the main reason for the poor mixing of coal-biomass

is due to the fact that the “anisotropic” nature of the biomass rod-like particles is ignored.

We therefore propose to derive a constitutive relation for this case. (In certain applica-

tions with a significant slip velocity between the particles and the host fluid, or when the

velocity, temperature, and concentration of particles are of interest, one has to resort to

multiphase theories. We will not consider this approach here, and refer the reader to the

early works of Allen and Kline [4] who developed a modified form of the mixture theory

with microstructure. Other works of interest are those of Sarkar and Lumley [73] and

DeSilva [21, 22].)

3. A constitutive relation for the stress tensor of (dense-phase) flowing rod-like

granular materials

We envision a body composed of voids and thin rod-like materials. The granules are long

enough that they cannot be approximated as spherical or disk-like particles, and there-

fore a shape factor or an equivalent diameter cannot be used. The individual fiber has a

principal direction, denoted with a unit normal vector n. The bulk material is assumed

to be dense enough that we can use continuum mechanics to formulate a stress tensor.
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As the bulk material is flowing, the individual fibers may have a tendency to distribute

themselves, and therefore we think a measure of density variation should be included in

our formulation. For the time being, we neglect the effects of the interstitial fluid, and

therefore we will not use a multicomponent, that is, a mixture theory approach. Also, we

assume that all fibers have the same temperature and therefore the effects of temperature

are not included. We assume that the fibers are rigid, and the effects of moisture and elec-

tromagnetic fields are also ignored. The small scale forces such as Brownian diffusion,

and so forth, are also ignored.

Let us assume that the stress tensor T can be expressed as

T= T(ρ,gradρ,u,gradu,n). (3.1)

Then frame-indifference (Truesdell and Noll [85]) implies

T= T(ρ,gradρ,D,n), (3.2)

where

D=
1

2

[

gradu + (gradu)T
]

. (3.3)

For simplicity, let us define

m= gradρ. (3.4)

Then we can write

T= T(ρ,m,n,D). (3.5)

Let us define two second-order symmetric tensors associated with m and n, as

M=m⊗m= gradρ⊗ gradρ,

Mi j = ρ,iρ, j , N= n⊗n, Ni j = nin j .
(3.6)

For an isotropic representation of T, the generators for (3.5) are (Spencer [78], Zheng

[93])

D,D2,m⊗m,n⊗n,

m⊗Dm + Dm⊗m,m⊗D2m + D2m⊗m,

n⊗Dn + Dn⊗n,n⊗D2n + D2n⊗n,

m⊗n + n⊗m,

(m⊗Dn + Dn⊗m)− (n⊗Dm + Dm⊗n).

(3.7)
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The invariants associated with (3.7) are

D−→ trD, trD2, trD3,

m−→m ·m,

n−→ n ·n,

m,n−→m ·n,

m,D−→m ·Dm,m ·D2m,

n,D−→ n ·Dn,n ·D2n,

D,m,n−→m ·Dn,m ·D2n.

(3.8)

Using (3.7) and (3.8), the general representation for stress tensor given by (3.5) becomes

(similar constitutive relations have been obtained, e.g., by Rajagopal and Wineman [65]

and Rajagopal and Ruzicka [60] within the context of continuum mechanics of electrorh-

elogical materials)

T= a11 + a2m⊗m + a3n⊗n + a4

(

m⊗n + n⊗m
)

+ a5D + a6D2

+ a7(m⊗Dm + Dm⊗m) + a8

(

m⊗D2m + D2m⊗m
)

+ a9(n⊗Dn + Dn⊗n) + a10

(

n⊗D2n + D2n⊗n
)

+ a11

[

(m⊗Dn + Dn⊗m)− (n⊗Dm + Dm⊗n)
]

(3.9)

or

Ti j = a1δi j + a2mim j + a3nin j + a4

(

min j +nim j

)

+ a5Di j + a6D
2
i j

+ a7

(

miD jkmk +Dikmkm j

)

+ a8

(

miD
2
jkmk +D2

ikmkm j

)

+ a9

(

niD jknk +Diknkn j

)

+ a10

(

niD
2
jknk +D2

iknkn j

)

+ a11

[(

miD jknk +Diknkm j

)

−
(

niD jkmk +Dikmkn j

)]

,

(3.10)

where a1–a11 are scalar functions of the set of invariants

I1 = trD, I2 = trD2, I3 = trD3, (3.11)

I4 = tr[m⊗m], I5 = tr[n⊗n], I6 = tr[m⊗n + n⊗m], (3.12)

I7 = tr[m⊗Dm], I8 = tr
[

m⊗D2m
]

, I9 = tr[n⊗Dn], (3.13)

I10 = tr
[

n⊗D2n
]

, I11 = tr[m⊗Dn], I12 = tr
[

m⊗D2n
]

. (3.14)

4. Special cases

Case 4.1. Let us assume

a3 = a4 = a7 = a8 = a9 = a10 = a11 = 0. (4.1)

This case corresponds to a granular media, such as spherical particles, where there is
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a degree of symmetry and anisotropy does not play a role. However, density (or volume

fraction) gradient is still important. For such a granular media, (3.8) becomes

T= b11 + b2m⊗m + b3D + b4D2, (4.2)

where b1–b4 are scalar functions of the appropriate invariants. Let us furthermore assume

b1 = b1

(

ρ, trD, tr(m⊗m)
)

, b2 = b2(ρ), b3 = b3(ρ), b4 = b4(ρ). (4.3)

Now, if we assume b1 is given by

b1 = β0(ρ) +β1 gradρ · gradρ+β2(ρ)trD, (4.4)

then, (4.2) can be written as

T=
[

β0(ρ) +β1(ρ)gradρ · gradρ+β2(ρ)trD]1 + b2 gradρ⊗ gradρ+ b3D + b4D2.

(4.5)

This equation was derived by Rajagopal and Massoudi [59]. A special case of this model,

when b4 = 0, has been used extensively by Massoudi and Rajagopal in a variety of appli-

cations (Massoudi et al. [53]).

For a simple shear flow, the velocity field u and the volume function ν are assumed to

be of the form

u= u(y)i, ν= ν(y). (4.6)

It then follows that

D=
1

2







0 u′ 0

u′ 0 0

0 0 0





 , D2 =
1

4







(u′)2 0 0

0 (u′)2 0

0 0 0





 . (4.7)

Also, notice that

∇ν·∇ν=

(

dν

dy

)2

, trD= 0, (4.8)

∇ν⊗∇ν=

(

dν

dy

)2

j⊗ j. (4.9)

Now, using (4.6)–(4.9) in (4.5), we find that

Txy =
1

2

[

β3(ν)
du

dy

]

, Txx −Tyy =−
[

β4(ν)
]

(

dν

dy

)2

,

Tyy −Tzz =
[

β4(ν)
]

(

dν

dy

)2

+
[

β5(ν)
]

(

du

dy

)2

.

(4.10)
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Therefore, we can see that the material exhibits both normal stress differences. If either

the term β5(ν)D2 or β4(ν)∇ν⊗∇ν were absent from the constitutive expression in (4.5),

the model would be capable of exhibiting only one of the normal stress differences. For

example, in an idealized shear flow, it is possible to have constant solid volume fraction.

In such a case the term corresponding to β4(ν)∇ν⊗∇ν vanishes and only one of the

normal stress differences remains.

This equation can be decomposed in the following manner:

T= Te + Td, (4.11)

where

Te =
[

β0(ρ) +β1(ρ)gradρ · gradρ
]

1 + b2 gradρ⊗ gradρ,

Td =
[

β2(ρ)trD
]

1 + b3D + b4D2,
(4.12)

where Te and Td can be thought of as the equilibrium (quasistatic) and dynamic parts of

the stress tensor such that as D→ 0, T→ Te. This approach is used quite often in granular

materials, and if we furthermore impose (Massoudi and Mehrabadi [52])

β0 = ccotφ, (4.13)

β1 =
β4

2

(

1

sinφ
− 1

)

, (4.14)

where φ is the internal angle of friction, c is a coefficient measuring cohesion, and β4 is

related to b2, then the yield condition, in the limiting equilibrium states, is the Mohr-

Coulomb criterion. This indicates that

|S| = b0T + c, (4.15)

where S and T are the shear stress and normal stress, respectively, acting on a plane at a

point; and b0 is the coefficient of static friction related to the internal angle of friction φ

through

b0 = tanφ. (4.16)

When cohesion is absent (c = 0), it is usual to call a granular medium an ideal one. One

in which internal friction is absent (φ = 0) is called an ideally cohesive medium.

Another interesting case is to see what happens to the equation of motion when u= 0,

which may correspond to a pile of particles stored in an infinite (long) container. In this

case (4.5) reduces to

Te =
[

β0(ν) +β1(ν)gradν · gradν

]

1 +β4 gradν⊗ gradν. (4.17)

Assuming that

ν= ν(y), (4.18)
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where y is the positive upward direction, then the y-component of the equation of mo-

tion when u= 0 becomes

d

dy

[

β0(ν) +β1(ν)

(

dν

dy

)2
]

+
d

dy

[

β4(ν)

(

dν

dy

)2
]

− ρsνg = 0, (4.19)

where g is the acceleration due to gravity. Now if we further assume that

β1 = β3 = 0, (4.20)

then (4.19) becomes

d

dy

[

β0(ν)
]

= ρsνg. (4.21)

Now if we assume a Taylor series expansion for β0,

β0(ν)= β01 +β′0(0)ν +O
∣

∣

ν
2
∣

∣, (4.22)

where O|ν2| indicates terms of higher order than ν. Now, if there are no particles, the

stress tensor T should be zero. This indicates that (see Rajagopal and Massoudi [59])

β01 = 0, (4.23)

and therefore,

β0(ν)= β′0(0)ν= kν, (4.24)

where k is a constant. Substituting (4.24) into (4.21) gives

k
dν

dy
= ρsνg (4.25)

which can be integrated and its solution is given by

ν= Ae(ρsg/k)y . (4.26)

Evaluating this equation at two different heights y1 and y2, where y2 > y1, we have

ν

(

y2

)

= ν

(

y1

)

e(ρsg/k)(y2−y1). (4.27)
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Physically we expect that under normal conditions, there would be more particles at the

bottom of the container than at the top, and therefore,

ν

(

y1

)

≻ ν

(

y2

)

(4.28)

which implies that

ρsg

k
≺ 0, (4.29)

and since both ρs and g are positive, it follows that k < 0.

Case 4.2. If in (4.5) we let

β1 = β2 = b2 = 0, (4.30)

we will recover the constitutive relation for a Reiner-Rivlin-type fluid, if we also set

β0 =−p. (4.31)

Case 4.3. If in (3.9) we set

a2 = a4 = a7 = a8 = a11 = 0 (4.32)

which means a flowing anisotropic material where density gradient does not have an

impact on the stress, then we have

T= α11 +α3n⊗n +α5D +α6D2 +α9(n⊗Dn + Dn⊗n) +α10

(

n⊗D2n + D2n⊗n
)

(4.33)

or

Ti j = α1δi j +α3nin j +α5Di j +α6D
2
i j +α9

(

niD jknk +Diknkn j

)

+α10

(

niD
2
jknk +D2

iknkn j

)

(4.34)

which is the same as Leslie-Ericksen equation (Leslie [44, (1)]), provided that

α1 =−p, (4.35)

and the α’s are functions of

nini, Di jnin j , DikDk jnin j , Di jDi j , DikDk jD ji. (4.36)

Case 4.4. Let us define

B= n⊗n. (4.37)
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Let

a2 = a4 = a7 = a8 = a11 = 0,

a1 = σ0 + σ1 tr(BD) + σ2 tr
(

B2D
)

,

a3 = σ3 + σ4 tr(BD) + σ5 tr
(

B2D
)

,

a6 = σ6, a9 = σ7, a10 = σ8.

(4.38)

Then, (3.9) becomes the equation proposed by Hand [38] (see (2.8) earlier).

Thus we can see that (3.9), in theory, includes a class of models developed for trans-

versely isotropic fluids, fiber-reinforced fluids, and granular materials, if special structure

and meaning are given to the various material coefficients.

5. Summary and comments

We have derived, using representation theorems, a frame-invariant anisotropic consti-

tutive relation for the Cauchy stress tensor of a granular media consisting of rod-like

particles (see (3.9)). This general equation not only depends on D (the symmetric part of

the velocity gradient) and its higher-order powers, but also on the density gradient and

the fiber direction. A few special cases of this model whereby certain coefficients are set

to zero are also studied. It is shown that the normal stress effects can be observed in a

simple shear flow. It is important to mention the basic assumptions and limitations of

this derivation.

(1) Interstitial effects due to the presence of the fluid in the voids are completely ig-

nored.

(2) Thermal effects are ignored and no thermodynamical issues (such as restrictions

due to the second law) are considered.

(3) Although we have shown that under certain conditions, (3.9) can comply with the

Mohr-Coulomb criterion (see (4.11)–(4.16)), other and more general yield conditions

have been proposed, for example, by Rogers [71], and Spencer [82] for fiber-reinforced

viscoplastic composites. These approaches are perhaps more suited for an anisotropic

granular materials with a fiber direction n than the standard Mohr-Coulomb criterion.

(4) There are at least 11 material coefficients in (3.9) which in some ways have to

be specified before a meaningful study can be done. Again, for certain cases, without per-

forming any stability (Rajagopal et al. [64]) or thermodynamic analysis, we can gain some

information about the sign of these parameters (see (4.17)–(4.29)). Some of the rheolog-

ical properties can be measured, for example, using orthogonal rheometers (Rajagopal et

al. [58]).

A general shortcoming of all higher-order or higher-gradient theories is the neces-

sity of assigning boundary conditions for certain terms, which appear in the governing

equations. Quite often these boundary conditions are not derived from first principles;

instead they are given as ad hoc assumptions, or they are simply specified as mathemat-

ical conveniences. Sometimes experiments have been used successfully to specify these

necessary additional boundary conditions. A second shortcoming of these higher theo-

ries, whether multipolar or director theories of liquid crystals, or turbulence theory, is

the need for additional balance equations. Both of these shortcomings can be overcome
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through the application of multiple natural configurations theory developed by Rajagopal

and coworkers. This theory has been successfully used for modeling non-Newtonian flu-

ids (Rajagopal and Srinivasa [61]), anisotropic fluids (Rajagopal and Srinivasa [62]), to

name only two applications.
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