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Abstract — This paper shows a generalization of the classic isotropic plasticity
theory to be applied to orthotropic or anisotropic materials. This approach assumes
the existence of a real anisotropic space, and other fictitious isotropic space where
a mapped fictitious problem is solved. Both spaces are related by means of a
linear transformation using a fourth order transformation tensor that contains all
the information concerning the real anisotropic material. The paper describes the
basis of the spaces transformation proposed and the expressions of the resulting
secant and tangent conmstitutive equations. Also details of the numerical integration
of the constitutive equation are provided. Examples of application showing the good
performance of the model for analysis of orthotropic materials and fiber reinforced
composites are given.

I.- INTRODUCTION.

The formulation of adequate constitutive laws for orthotropic or
anisotropic solids is a problem of big complexity.

One of the more popular attempts to formulate yield functions
adequate for orthotropic materials is due to Hill who succeed to
extend the Von Mises isotropic model to the orthotropic case .
The main drawback of Hill’s theory is its limitation to simulate
the mechanical behaviour of geomaterials, wood and composite
materials. Different modifications of Hill’s orthotropic model, for
the analysis of fiber reinforced components have been reported by

different authors 29242223,

The idea to formulate the behaviour of an anisotropic material by
means of an equivalent isotropic solid was first introduced by Betten

using the concept of mapped stress tensor '-*>. This concept offers



the possibility of using all the advantages of the well known isotropic

models; consequently it has many computational advantages.

The authors have developed a generalization of standard 1sotropic
plasticity theory for the analysis of anisotropic solids in previous
works %2%2_ The basic 1dea was to model the behaviour of
an the anisotropic solid by means of a fictitious isotropic solid.
A basic assumption of the model was that the elastic strain is
unique for both the real and fictitious spaces. This situation
introduces a limitation in the anisotropic mapped theory, because
it involves a proportionality concept between the yield strength
and the elasticity‘modulus for each matenal direction (f5/En =
I3/ B2 =--- = f£/E2). In the present work a generalization of

such basic theory is introduced.

The anisotropic behaviour 1s formulated by means of the fictitious
isotropic stress and strain tensors which result from the tensor
transformations of the real stresses and strains. This allows to
use the same yield and potential functions derived for standard
isotropic materials, whereas all the relevant information on the
material anisotropy properties is embedded in the two fourth order
transformations tensors only. The material parameters involved in
these tensors can be defined from adequate experimental tests. This
model 1s here termed “i1sotropic mapped model for non-proportional

materials”.

The formulation presented is completely general and it allows
to model different class of orthotropic and anisotropic materials
typical in composites. The model seems to be particularly suited
to be applied for analysis of multiphase materials such as fiber

reinforced composites and concrete.

The layout of the paper is the following. In next section the
properties of the constitutive law for a general anisotropic material

are described together with the basic ingredients of the stress and



strain transformations and the derivation of the secant and tangent

constitutive relationships.

Details of the integration of the constitutive equation are given -
next. The implementation aspects into a finite element code are

detailed in a next section.

Finally, the model is applied to three particular problems: 1.-
The study of the fibers orientation in a fiber reinforced composite.
2.- The comparison of the results in the analysis of an orthotropic
material with those provided by standard Von-Mises-Hill 7 theory,
and 3.- The analysis of a fiber reinforced composite material.

Il - GENERAL CONSTITUTIVE LAW FOR AN ANISOTROPIC
PLASTIC MATERIAL.

A general anisotropic plastic model based on a consistent
thermodynamic approach is presented in this section. The model
is formulated in a material configuration using a Total Lagrangian
Kinematics 2. The model, as presented here, can deal with non
linear problems involving large plastic strains and small elastic
strains 21217, Obviously, simpler orthotropic and isotropic plasticity
models are readily obtained as particular cases of the model
proposed.

II.1 .- Yield and potential functions. Space transformation tensor.

It will be assumed that both yield and plastic potential
functions are defined in the Piola-Kirchoff stress space (material
configuration), as:

Yield function: 7> (Si;;a¢) =0
Potential function: G°(S;;a2)=K

where S;; = Si;j(Cr;a) is the second Piola-Kirchoff stress
tensor, C;; = FTF,; 1s the right Cauchy-Green tensor, F;; 1s the

if



deformation gradient, o% is a set of m internal plastic variables,

and K is a constant parameter.

The yield and plastic potential functions are isotropic if the

invariance condition>1*

T (@ip@jq Spyi @5 ) = F* (Siy505) = 0 2
G* (aipaiqqu; ag )= G* (Si;a5) =K

is satisfied for any orthogonal transformation ( a;ta;x = é,; , where
a;; is a unit diagonal tensor, and §;; is the Kronecker tensor).
Obviously, isotropic materials satisfy the invariance condition. This
can be simply checked by writing eqs.(2) in terms of the firsc three

stress invariant, I;, I» and Iy (see ref. ), L.e:

= (S"J';atsl‘l) =~ (Il(sij);IQ(Sij);I;(S.‘j);a's”) =0
(3)
G* (Siy; a%') =6° (L(S,-,-); 1,(555); 13(5',-_,-);02') =K

For materials satisfying plastic incompressibility eq.(3) can be

written in terms of the invariant of the deviatoric stress tensor as:
FS (S.‘j; CI?) = F5 (JZ(S,J), J3(S.'j);a'5") = FS (IZ(S:J), Ij(S:J)._, oz‘_,}‘) =0

g% (Sij;09) =6° (J:(Sfi); J3(S5:5); C‘?) = 95(f2(521)§ 13(553'%03") =K

(4)

Traditional procedures for deriving the constitutive equations for
anisotropic elasto-plastic materials are based on the description

of appropriate yield and potential functions in terms of the

2122

characteristic material properties Satisfaction of the



invariance condition in these cases is difficult and not always
possible. A procedure to guarantee this condition proposed in
this work is to define the properties of the real anisotropic solid
in terms of those for a fictitious isotropic solid 2. This 1s achieved
by relating the stresses in the real and fictitious spaces using the

following linear transformation (see Figure 1):
§ij = Ag';;:sﬂ (5)

where S;; and S,; are the stress tensor in the real anisotropic solid
and the fictitious isotropic solid, respectively and A7, is a fourth
order material tensor, termed stress space transformation tensor

defined as a ratio of the material strength, i.e.:
== il
Afjk! = & f;sf (6)

where f7 and f%w are the yield strength tensors corresponding to

the real and fictitious solids, respectively.

To ensure no-proportionality between the strength and the elastic
modulus the following relation between the real elastic strains Eg

and the fictitious ones _Efj 1s defined

—

E; = f}tuEﬁz (7)
This assumption 1mplies non-uniqueness of elastic strains when the
change of space is produced. In eq.(7) AZ,, is a fourth order

material tensor, termed strain space transformation tensor. This



can be derived from equation (5) as follows:
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Eq. (8b) allows to derive the relationship between the constitutive
tensors in the real ¢5;;;; and fictitious €5;jy; spaces. This is:

-1
5 S e -1
AUHC jhlm.A

T tu

__ AE B T sE
Ifatl’( — Ar.unuAvn.nr.u - Cr“lk

(s P
(9)

or the inverse relation:

s _ AS ~1.5 E
& jlmn — Akh‘j c l'ktuAr_unuL

Note that both ¢%;;; and fJ, are expressed in a global reference
system. This mean that prior to the derivation of AJ,, and
AE,, the following transformations to the global reference system

are required:

5 — 5
c ikl — Rirj.‘(c rqu)local'RJ';pIq

f,—i = Rzl o howaa

where ( - )icar denotes description in a local coordinate system.



The rotation tensor* =R, takes into account the angles between
the local principal directions of the anisotropic material and those
of the global coordinate system . Superindexes S and S denote
hereafter variables in the real (anisotropic) and fictitious (isotropic)

spaces, respectively.

- "
Sij = Aiju S

S >—)

a) anisotropic space b) fictikious isotropic space

Figure 1: Relationship between the real (anisotropic) space(a) and the fictitious

(isotropic) space(b).

The mapping expressed by means of eq. (5), induces a change in
the yield function shape as can be seen in Figure 1. Figure 2, shows
this effect for different strength ratios (S:;/Si) on four classical
yield functions *%1¢: A) Tresca, B) Von-Mises, C) Mohr-Coulomb,
D) Drucker-Prager, and also on that proposed by Lubliner and
Oller 316 This space mapping allows the representation of the
onedirectional fiber yield function when the ratio 5./ S tends to
infinity. Figure 2 and 3, show for associated plasticity, the loss of

* NOTE: The rotation tensor definition is: 'R;ju = Tik T, where Ti; =

cos((é})qinbc“ (é}-)i”ml], and (é})r”"ww is the unit vector corresponding to the

“1" component of a certain re ference coordinate system.



the strength in a given direction while in the normal one there is a
plastic flow growth in the same proportion. '

Assuming that all the information concerning material anisotropy
1s contained in the tensor A7, the yield and plastic potential

functions for the anisotropic solid are defined as:

F* (S 08) = fg(S.';';Afju:&%) = 7% (Sij;02) =0
(10)

6% (S %) = G° (Sus Afuioy) =6 (Sia) =K
It 1s therefore concluded that the yield and plastic potential
functions for any anisotropic solid can be simple defined in terms
of an irreducible basis of the invariants of tensor S;;. Usually, a
finite number of stress invariants are involved in the definition of
the yield and potential functions (i.e.: I;, J» and sometimes J; ).
These invariants are elements of the system of invariants which are
only considered. Therefore the formulation presented is a simplified

theory but very useful to solve practical problems !.

In the following sections the main relationships characterizing
an anisotropic elasto-plastic solid formulated as an ideal isotropic
solid using the spaces transformation expressed by eqs.(5) and (7)

are derived.
I1.2 .- Secant constitutive equation.

The constitutive equation for an anisotropic material is obtained
by writing the dissipation occurring in an isothermic elastoplastic
process in the real anisotropic space. From the first Classius-Plank
condition 101112141718 the following expression for the mechanical

dissipation power is obtained:

- S,; 0%°\ SijE!" ow* .
s _— il - e ot 1
“rec. T (mg aE:_.J ) Er} ' mo Z aag‘ O‘S 2 D (1 1)

fi
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Applying Colleman’s method ' to guarantee the condition of
positive dissipation in eq. (11), the secant constitutive equation
1s obtained as:

€]}

0Eg

o _ o 08 (Bgian)

(12)

where W is the free energy of material formulated in the material
configuration under real stress state and m9 the density in the
material configuration. The free energy is assumed to be of the

form:

U° (Eg;ap) =0 (E5) + ¥ (a¥) =

(13)

( . EijS.-jHE;!) + " o)

2m,

where ¥°° and ®°" denote the elastic and plastic free energy
contributions, and the free variable Ef; is the fictitious elastic strain
in the material configuration as proposed by Green-Naghdi ¢11.12
and defined as:
1 te
Ef;=E;—Et. = §(C‘,-J- - 1) —fo EY dt (14)

]

where EY, is the Lagrangian plastic strain, C;; is the right Cauchy-
Green tensor and EY; the plastic strain rate defined in the material

configuration as explained in a next section.

Substitution of eq.(9) into eq.(13) allows to rewrite the free
energy in terms of the constitutive tensor €5, for the ideal

1sotropic material as:

lﬂ!s(Eel.Q;J): ( 1 Fe [AS _IC-S_;";MAEH,] Ef) 4 ‘H’SP({IE') (15)

1 0
13 2?-';3’” 12 ry



Substituting eq.(15) into eq.(12) leads to the secant constitutive

equation in the real anisotropic space defined in terms of the stress

field in the 1deal isotropic fictitious space as:

ow> Bt o S
i -
(16)
- s - E - - o -1~
—A.'jw ¢ wtuEm - A?jw SW
where 3;,- = cfjmfi_}. are the stresses 1n the fictitious 1sotropic

space. Eq. (16) confirms the assumptions made in eqs. (5) and (7).

I1.3 .- Flow rule. Evolution of the int =rnal variables.

From the transformation rules expressed by eqs.(5) and (7) and the

definition of the plastic potential function in the fictitious isotropic
space (eq.(10)), the flow rule and the evolution of the internal

plastic variables o% are obtained in the form

1200 -
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400}
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Ficure 3: Difierences in the plastic flow oz the real (?' = 1) and fictitious
£ 1

(7= 4,5).
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Due to the additivity strain concept eq. (14), the elastic strains

tranformation rule is extended to the plastic strains, i.e..

5
Ry,

——

v 5

Ef.\ r :JEP - /\ ArEt} 89 Afh_‘lr
3SL1 (18)
N ——

5
R,
where (h7}), and (h@})s are tensorial functions to be determined
1316 for each of the “m” internal variables involved, R7, is the
plastic flow in the fictitious stress space, as shown in Figure 3, RZ;
1s the plastic flow in the real stress space, R _ is the plastic flow

in the fictitious stress space, R3, is the plastic flow in the fictitious

I
1sotropic space and F__ 1s the fictitious plastic strain.



I1.4 .- Free energy in the fictitious isotropic space. Uniqueness of

the dissipation.

Note that the dissipated mechanical power =;,,. can be written in
the fictitious isotropic space =5, by substituting the flow rule,

the evolution law for the internal variables (eqs.(17)) and the
transformation spaces rules (egs. (5) and (7)) into eq. (10), i.e.*

- Si; 0% Sl E!
=5 — (2] e b lJ _
e T (m(] 8Ec ) E Z 805"'

~

=0 (Collernan)
(19)
it e ol
5. (E’) _
= Rtk 54 38 -y &t =25 >0
- MmO BOIE: g = “mec.

It is deduced from eq.(19) that the dissipation 1s an invariant of
the thermodynamic process and, therefore, its value is independent

¥ REMARK: The plastic potential transformation is derived in the following
manner:

S5 EL; ._(Ai”‘lgﬂ) (Agﬂ EH) -

ags

_ 3 a8 Yo 4B “1,E s —
A A;;r« Sr:AijJ';I ALII:( 35"1, Au]ru -
= aGs
'-A Afrt STFI‘J’-“ E Aﬂ A
7 asﬂ.p !
A —i— 8 5 ._ 8 5
=) A5, 5,,_i_q;fp,-3- =) 5—5-—1, =
; 35“1, 35111:
8 e B ) —
=A -Supi' = S-n;n (EI;)



of the space where it is computed. Also, the free energy can be

obtained in the fictitious isotropic space 1n the form:

1l —

0 (Fiaz) = (g BuCoiBu) + ¥ (a2) o)

Eq. (20) is equivalent to expression (13) defined in the real
anisotropic space, and therefore the constitutive equation given by

eq.(16) still holds. This 1s.

o

g — ikt Ly

~ Eg—;,a) _ELE
1]

(Azsjrn rs tuAIuLI )(A“WE;q) — (21)

_AS C Tstu Itupg

1T

=A% 5. B -—As Fes

1T tjrs

where the stress transformation rule is recovered.

I1.5 .- Tangent constitutive equation.

The rate form of the constitutive equation 1s obtained by

performing the temporal derivative of the secant expression (16)



as:

Sr.-
3.5',-,' Ec o 35,‘3' 85',-, 8E

S‘il — 3 — i, TH T =
7T 0By Y 85, 0OF.. %,
— —
ASJ:.‘_ =X _"S_ Avﬁuki
e AU}— C;—S nannlnLI = AIJ'.\I'H CfnuuAmuU (E-H - Erl) == (22)
§f~‘ -~
it 7
= At_jl:: Cfuun (E“"‘ - Efuu)
31’
Eq. (22) can be interpreted as a linear transformation of

the following rate constitutive equation defined in the fictitious

isotropic space:

Eﬂ:’ = g%‘cj .Ekl = CEJ.-:EH = CEH (EH - Ekl) (23)
Kl

The plastic consistency condition leads to the standard rate form
of the constitutive equation in the fictitious isotropic space as:

s 5.3
s ==, ( tjfaR ) (g c f"k!) i
S =4{C%u— 8 5 Eu
_Zm B_ﬂf( m) Rﬁf. + ag;,.;quthhl-

(24 a)



or in compact form:

-2} P [

5
Si=¢C ijuEki (24 b)

Combining now (22) and (23) leads to the final expression of the

rate constitutive equation in the real anisotropic solid as:

O A-1T  _ ASs —1,5% 3= _ as L5 4p g
Sij = A.‘jmskl =AZn ClurBre = At Criea Aftu Era
N — (25)
5!‘:;;
13T

Therefore, the constitutive model requires only the following

definitions in each of the two spaces used:

initial constitutive tensor (CS"J'“){M“;

e real anisotropic space

X 5
yield strength ( i.f)toca!

initial fictictitious constitutive tensor C,-SJ-H

yield function FS (?{J‘, ng) =3 ¢

e fictitious isotropic space : 4

potential function gs (Si}-,a%) =K

yield strength (f‘?)
\

Above definitions allow to derive all the basic constitutive
relationships, including the evolution of the inner variables,
necessary to formulate in a precise manner the constitutive
behaviour of an anisotropic elasto-plastic solid by means of an

associated fictitious isotropic solid.



IIl.- INTEGRATION OF THE CONSTITUTIVE EQUATION.

n(f*Ji
(elastic
predictor)

ELASTIC
/ DOMAIN o

//

Figure 4: Plastic flow definition in the cutting plane algorithm 5.

tangent (limiting) cut

The constitutive equation is integrated by means of a tangent

cutting plane algorithm as presented by Ortiz and Simo 8.

kind of Euler-backward algorithm is used for integration of rate

constitutive equations in orthotropic solids ®. Nevertheless, in our

case, note that the integration of the constitutive equation is done

on the isotropic fictitious space. The integration methodology

1s based in the “mapping return” concept, r.e.: the return path

towards the converged yield function follows the direction of the

normal flow computed at each iterative solution (see Fig.
Further details of this technique can be found in #%:1°

IV.- NUMERICAL IMPLEMENTATION OF THE ANISOTROPIC

ELASTO-PLASTIC MODEL PROPOSED.

The basic steps for implementing the anisotropic model proposed

into standard elasto-plastic finite element programs ** are given

next.



. LOOP OVER SOLUTION INCREMENT: n=1,NINCR
ITERATION LOOP: i=1,NITER
IF (n.GT.1 .OR. i.GT.1) GOTO 4

1.— Define stiffness and rotation tensors:
5 5 . )
f 3 (f )‘I § c 1 (C ]I(u‘.d! ) r
acu

2.— Obtain the spaces transformation tensors:

A3:f§®fs
=R (C* N IR

1

A2 =c5 :A°:c°

3.— Initialice the isotropic constitutive tensor:
@)= @
4.— Compute tangent stiffness:
" (CSCP)i_l AT (C??‘v)‘l_1 2

.t(Ku))“‘ =f B (CSCJ=)"1 B 4V
v ;

() = s, (EW)



9.— Compute displacements and strains:

“(a8) =1 (a0

(5] = (8)  ~(a5)

6.— Evaluate predicted stresses:

7.— Transform predicted stresses to the fictitious isotropic space:

(F) = A (5)

8.— Integrate isotropic constitutive law: ITERATION LOOP:
i=1 JITER :



281 #(5)7 = (8)" () (6F)T

o and j=1 = GOTO 10
If : FS(S;Q%‘) _....<0
and 1 >1 = GOTO 9

WG

7=7+1 Gobackto8.1

g.— Compute tangent constitutive tensor in the isotropic space:

(c5 b: e )@
o 95 (k2) R

(e

STECS_RS
as T ).w

10.— Back transformation of stresses to the real anisotropic space:
1 -1 1
“(5) = 477 = (5)

11.— Compute residual forces:
f B (5) dV - f..,



"(F fm&).- = AL (F (Z}d)
Is ||Freaidl| >0 7 = 1=1+1 .Go back to 4

else :

Converged solution for the nth increment.
n=n+1

Compute new incremental solution
V.- EXAMPLES.
- V-1. Orientation effect of fibers in a composite.

Let us consider the case where continuous glass fibers are placed
onedirectionally within an epoxy matrix material and form an angle
# with the applied tension load as shown in Figure 5. The tension
failure limit strength (S,) of the composite depends on the fiber
orientation which angle will be varied between 0° and 90°. In order
to establish strength and failure characteristics of the material, it is
necessary to consider a number of fundamental properties related
to the composite behaviour such as: Young modulus along principal
directions: in-plane directions, Eron,, = 591998.8 kg/em?,
and Erp,e.. = 140617.3 kg/ecm?®. Poisson ratio: vpr = 0.293.
Elastic strength limits, in-plane directions: for the longitudinal
fiber behaviour fyom* = 19686.4 kg/cm?®, fi5ls = 9561.9 kg/em?,

Lon Leong
fShear. — 421.8 kg/cm?; and for the transverse fiber behaviour
Comp. _ 1406.2 kg/em?, ffens, = 2812 kg/em?.

Additional data required defining the fictitious isotropic model
are: equivalent Young modulus: ES = 591998.8 kg/cm?, equivalent
elastic compression strength limit: ft* = 19686.4 kg/cm?, Mohr-
Coulomb yield function, fiber plastic flow (it only has components
on the fiber direction) and perfect plasticity. Figure 5 shows the
tension strength limit (S,/fr where fr is the tension failure limit
strength of the fibers) of the composite as the fiber orientations



angle ¢ varies. Note that the maximum strength takes place for
¢ = 0° and the minimum for ¢ = 45°. The material strength
is greater for ¢ = 90° than for ¢ = 45° due to the transversal

deformation restricted by the compression fiber strength of the
fibers.

T 1 T T T T T T
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Figure D: Strength ratio Vs. fiber slope angle, for an epoxy matrix with glass fiber.

The particular form of the curve in Figure 5, depends on the yield
and potential plastic functions adopted in the fictitious isotropic

solid. Here the Mohr-Coulomb yield function was arbitrary chosen.
- V-2. A comparison with Mises-Hill orthotropic model.

The anisotropic model proposed has been applied to the analysis
of a rectangular specimen under axial loading acting along three
different directions (Fig. 6). Plane stress conditions have been
assumed. The geometry has been discretized using a simple mesh
of sixteen standard 4 nodes quadrilatere'il elements as shown in
Figure 6. Numerical results obtained have been compared with

those provided by the well known orthotropic Mises-Hill model 7.
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Figure T: Strain-stress curves at center of the sample for perfect plasticity using the
anisotropic model proposed and the Mises-Hill model. Loading (a) : a-1 Present
model, a-2 Mises-Hill model; Loading (b) : b-1 Present model, b-2 Mises-Hill model;
Loading (c) : c-1 Present model, ¢-2 Mises-Hill model.

The material properties are the following:

Young modulus along principal directions: In-plane directions,

E, = 25 E% kg/cm? and E, = 2.0 E° kg/cm®.
Transverse direction E; = 2.0 E® kg/ecm?®. Shear modulus:
G = 045 E° kg/cm?. Poisson ratio: v = 03. Elastic

strength limits: In-plane directions: f, = 8000.0 kg/cm?® and
f>= 6000.0 kg/cm?, transverse direction f; = 6000.0 kg/cm?.

Additional data defining the fictitious isotropic model are:
Equivalent Young modulus: ES = 25 ES kg/cm?, Equivalent
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Figure 8: Strain-stress curves at center of the sample for hardening plasticity case using
the anisotropic model proposed and the Mises-Hill model. Loading (a) : a-1 Present
model, a-2 Mises-Hill model; Loading (b) : b-1 Present model, b-2 Mises-Hill model;

Loading (c) : c-1 Present model, c-2 Mises-Hill model.

elastic strength limit: f** = 8000.0 kg/cm?, and Von-Mises yield

function.

Figure 6 shows the three loading types applied: (a) axial loading
parallel to the maximum strength direction: (b) transverse loading
orthogonal to the maximum strength direction, and (c) diagonal

loading.

Figures 7 and 8 show the comparison between the strain-stress
curves obtained at the center of the sample, assuming perfect
plasticity and hardening plasticity with a hardening modulus H =
250000.0kg/cm?, respectively.

Note that results obtained with both models coincide for loading
cases (a) and (b). However, considerable differences arise for the
diagonal loading case (c). This is due to the excessive influence of
shear in Mises-Hill theory leading to over-stiff results. The values
obtained with the proposed model are within reasonable limits and

bounded by those of loading cases (a) and (b) as expected.



- V-3. Analysis of a fiber reinforced composite.

The third example is the analysis of a plane rectangular specimen
of a fiber reinforced composite material. Figure 9 shows the
specimen geometry, the boundary conditions and the finite element
mesh of sixteen 4 node quadrilateral elements used. A prescribed
longitudinal displacement has been imposed to both ends of the

specimen as shown in Figure 9.

The specimen is composed of an isotropic matrix and a 20% of
long fibers. Initially the fibers are considered aligned along the
longitudinal direction and then along the transverse direction. The
combined effect of fiber and matrix material has been modelled
using a multiphase model based an mixing theory developed by the

authors 2%

Material properties:
Matrix isotropic material: E = 7.24 tn/mm? v = 0.33, limit
elastic strength f = 0.036 tn/mm? and 80% of fraction volume
participation. Isotropic associated Von-Mises plasticity has been

assumed in this case.

Fibers. The anisotropic model proposed has been used with
E = 84.4 tn/mm? and limit elastic strength f = 0.2283 tn/mm?,
20% of fraction volume participation. Von-Mises yield function
and plastic flow along the fiber direction has been assumed in the

fictitious 1sotropic space.
Perfect plastic behaviour for both materials has been assumed.

Figure 10-1 displays the stress-strain behaviour for the composite
with longitudinal fibers, showing the behaviour of the composite
(curve b), the matrix (curve c¢) and the fibers (curve a). Also, the
same figure shows that the stiffness of the composite remain equal

to that of the matrix after plastification of the fibers.

Figure 10-2 shows the stress-strain behaviour for the composite
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Figure 9: Fiber reinforced specimen. Geometry, boundary condition, loading and finite

element mesh.

with transversal fibers. Curve (a) shows the evolution of the
longitudinal stress in the composite, curve (b) shows that the
strength of the matrix 1s greater than that of the composite. This
can be explained by the small contribution of the transverse fibers
to the global longitudinal stiffness. Therefore, the resisting material
has 20% less transverse cross area with the corresponding reduction
in stiffness. Curve (c) in the same figure shows the transversal
tension stress in the matrix and the corresponding compression
stress in the fibers (curve d). Finally curve (e) shows the null
“global” resistence of the composite in the transverse direction as

espected.

Figure 11 shows the load-displacement curves for the two fiber

orientations studied.

Figures 12 and 13 show, in qualitative form, the principal stress
field in the composite material, as well as in the matrix and the
fiber components, for each of two fiber orientation cases analyzed,

respectively.
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Figure 10 Fiber reinforced COIIlpOSitCS: Stress-strain curves in the center of the

d)

specimen. Case (1) : Longitudinal fibers. Behaviour on the longitudinal direction
of the: fibers (curve a), composite (curve b) and matrix (curve c). Case (2) :
Transverse fibers. Behaviour on the longitudinal direction of the: composite (curve
a) and matrix (curve b). Behaviour on the transverse direction of the: matrix (curve

c), fibers (curve d) and composite (curve e).

The numerical results obtained are in good agreement with the
expected values, thus showing the ability of the model proposed to

analyze fiber reinforced composites.
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Figure 11: Load-displacement curves in point “A” of the specimen. Curve (a):

Longitudinal fibers. Curve (b): Transverse fibers.
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Fjgure 12: Principal stresses for the longitudinal fiber case. 1- Finite element mesh; 2-

Principal stresses in the composite; 3- Principal stresses in the matrix; 4- Principal

stresses in the fibers.

VI.- CONCLUDING REMARKS.

It has been shown that the elasto-plastic anisotropic behaviour
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Figure 13: Principal stresses for the transverse fiber case. 1- Finite element mesh; 2-
Principal stresses in the composite; 3- Principal stresses in the matrix; 4- Principal

stresses in the fibers.

of solids can be effectively modeled by means of an equivalent
1sotropic model based on standard Green-Naghdi large strain elasto-
plasticity theory. The model proposed 1s particularly suited for
finite element computations of composite structures with different
material properties. Initial applications of the model to standard
1sotropic materials and more complex fiber reinforced composites
using a multiphase material model ** show promising results which
will be more extensively validated in the near future. Extensions
of the anisotropic formulation presented to non linear damage
mechanics are straightforward and are currently investigated by

the authors.
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