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Abstract 

The influence of plastic anisotropy on the plastic behavior of porous ductile 

materials is investigated by a three-dimensional finite element analysis.  A unit cell of 

cube containing a spherical void is modeled.  The Hill quadratic anisotropic yield 

criterion is used to describe the matrix anisotropy including planar anisotropy.  The 

matrix material is first assumed to be elastic perfectly plastic.  Macroscopically uniform 

displacements are applied to the faces of the cube.  The finite element computational 

results are compared with those based on the closed-form anisotropic Gurson yield 

criterion (Liao et al., Mech. Mater. 1997, pp. 213-226) in terms of an average anisotropy 

parameter.  Three fitting parameters are used in the closed-form anisotropic Gurson yield 

criterion to fit the results of finite element computations.  When the strain hardening of 

the matrix is considered, the computational results of the macroscopic stress-strain 

behavior are in agreement with those based on the closed-form anisotropic Gurson yield 

criterion under selected monotonically increasing loading conditions. 
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1.  Introduction 

Accurate description of the plastic behavior and ductile failure processes of sheet 

metals under biaxial loading conditions is necessary for accurate prediction of the failure 

in sheet metal forming processes.  Ductile failure processes in metals usually involve 

nucleation, growth and coalescence of microvoids.  Microvoids may nucleate due to the 

existence of second phase particles.  These particles may separate from the surrounding 

matrix material or these particles may break and create microvoids.  Microvoids then 

grow by plastic deformation and finally coalesce to form microcracks.  In order to model 

the plastic flow and failure of these ductile materials, Gurson (1977) conducted an upper 

bound analysis of simplified models containing voids and proposed an approximate yield 

criterion for porous materials where the matrices obey the von Mises yield criterion.  

Tvergaard (1981, 1982) introduced three additional fitting parameters in Gurson’s yield 

criterion by comparing the results of shear band instability in square arrays of cylindrical 

holes and axisymmetric spherical voids based on finite element models with those based 

on Gurson’s yield criterion. 

The matrix material in the original Gurson model was assumed to be isotropic in 

general in many research works on plastic localization and fracture analysis.  However, 

sheet metals for stamping applications usually display certain extent of plastic anisotropy 

due to cold or hot rolling processes.  In general, an average value of the anisotropy 

parameter R  is used to characterize the sheet anisotropic plastic behavior.  Here, R  is 

defined as the ratio of the transverse plastic strain rate to the through-thickness plastic 

strain rate under in-plane uniaxial loading conditions.  Numerous anisotropic yield 

criteria have been proposed over years (for example, see Hill, 1948, 1979; Gotoh, 1977; 

Budianski, 1984; Logan and Hosford, 1980; Bassani, 1977; Barlat et al., 1991, 1997). 
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Liao et al. (1997) first investigated the effects of the matrix normal anisotropy on 

the macroscopic plastic behavior of porous materials.  In the work of Liao et al. (1997), a 

simplified sheet model containing a through-thickness hole under plane stress conditions 

was considered.  The matrix material normal anisotropy was characterized by Hill’s 

quadratic anisotropic yield criterion (Hill, 1948) and Hill’s non-quadratic anisotropic 

yield criterion (Hill, 1979).  An upper bound analysis was carried out and the numerical 

results can be fitted by a closed-form macroscopic yield criterion.  An anisotropic Gurson 

yield criterion for sheet metals with spherical voids based on Hill’s quadratic anisotropic 

yield criterion (Hill, 1948) was also proposed.  Note that Chen et al. (2001) also proposed 

an anisotropic Gurson yield criterion based on the higher-order yield criterion of Barlat et 

al. (1991) for aluminum sheet metals. 

In this paper, a three-dimensional finite element analysis of a cube containing a 

spherical void is carried out to test the applicability of the anisotropic Gurson yield 

criterion proposed by Liao et al. (1997) for voided solids with planar anisotropy.  Since 

sheet metals under forming operations are usually under plane stress conditions, the unit 

cell of a cube is assumed to be mainly subjected to plane stress conditions.  The analysis 

is performed for various void volume fractions as well as different average R  values.  As 

in Tvergaard (1981, 1982), the anisotropic Gurson yield criterion is modified by adding 

three fitting parameters to fit the results based on the modified yield criterion with the 

finite element computational results when the matrix is assumed to be perfectly plastic.  

Finite element computations with consideration of the matrix strain hardening under 

proportional straining conditions are also performed.  The results of finite element 
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simulations are compared with those based on the unmodified and modified anisotropic 

Gurson yield criterion.  Finally, discussions and conclusions are given. 

 

2.  Hill Quadratic Anisotropic Yield Criterion 

Sheet metals usually have plastic anisotropy including planar anisotropy after 

rolling processes.  Many anisotropic yield criteria have been proposed to characterize the 

plastic anisotropy.  In this investigation, we adopt Hill’s quadratic anisotropic yield 

criterion (Hill, 1948).  The Yld96 yield criterion (Barlat et al., 1997) is another candidate 

yield criterion to characterize plastic anisotropy for full stress states.  However, numerical 

difficulties have been encountered in finite element applications for implementation of 

the yield criterion (Yoon et al., 2000).  Figure 1 shows an element of sheet metal and a 

Cartesian coordinate system.  The Cartesian coordinates coincide with the orthotropy 

symmetry axes of the sheet metal.  Here, 1X  represents the rolling direction, 2X  

represents the transverse direction, and 3X  represents the thickness direction.  Hill’s 

quadratic anisotropic yield criterion φ  (Hill, 1948) can be written as 
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where ijσ  are the stresses, 0σ  represents a reference yield stress, F, G, H, L, M, and N are 

material constants.  We can use tensile and shear tests with respect to different 

orientations to determine the material constants.  In this investigation, the values of R  

obtained from tensile tests at different in-plane orientations with respect to the rolling 

direction are used to characterize the plastic anisotropy.  The values of R  usually vary 

with the orientation of the tensile axis.  Here, 0σ  is taken as the yield stress in the rolling 
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direction.  We can express the material constants F, G, H, L, M, and N in terms of the 

anisotropy parameters 0R , 45R , and 90R  which represent the values of R  when the 

tensile axis is at o0 , o45 , and o90  from the rolling ( 1X ) direction, respectively.  In this 

investigation, the material constants L, M, and N related to the shear responses of 23σ , 

31σ  and 12σ  in the yield criterion are taken to be identical according to the computational 

results of the anisotropic plastic behavior of sheet metals after plane strain compression 

using a polycrystal model for b.c.c. metals as reported in Liao et al. (1998).  Other values 

of material constants associated with 31σ  and 23σ  can be assigned when experimental 

data are available.  Then the yield criterion in Equation (1) can be rewritten as 
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The detailed derivation of Equation (2) can be found in Appendix A.  When the planar 

isotropy is considered, RRRR === 90450 .  Here, R  can be considered as the normal 

anisotropy parameter.  Then the yield criterion becomes 
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3.  Anisotropic Gurson Yield Criterion 

Liao et al. (1997) derived an anisotropic Gurson yield criterion for a circular thin 

disk with a through thickness hole using an upper bound analysis.  The matrix 
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surrounding the hole was assumed to be rigid perfectly plastic, incompressible and rate 

insensitive.  Hill’s quadratic anisotropic yield criterion (Hill, 1948) and Hill’s non-

quadratic anisotropic yield criterion (Hill, 1979) were used to describe the matrix normal 

anisotropy and planar isotropy.  Liao et al. (1997) obtained a closed-form macroscopic 

yield criterion based on Hill’s quadratic anisotropic yield criterion under axisymmetric 

loading conditions for the thin disk with a through thickness hole.  A modified Gurson 

yield criterion RΦ  was proposed in Liao et al. (1997) for normal anisotropic sheet metals 

with spherical voids as 
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where eΣ  represents the macroscopic effective stress, oσ  is the matrix yield stress under 

in-plane uniaxial loading conditions, f is the void volume fraction, R  is the anisotropic 

parameter to characterize the normal anisotropy, mΣ  is the macroscopic mean stress, and 

q1, q2, and q3 are the fitting parameters which are determined by a finite element analysis 

of a unit cell with a spherical void by Chien et al. (2001).  The macroscopic effective 

stress eΣ  is expressed in terms of the macroscopic stresses ijΣ  based on Hill’s quadratic 

anisotropic yield criterion in Equation (3) as 
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The macroscopic mean stress mΣ  is 
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For sheet metals, R  is usually used to characterize the average planar anisotropy.  Here, 

R  is defined as 
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In order to have a Gurson-type yield criterion for porous materials with 

consideration of planar plastic anisotropy, we propose to modify Equation (4) by 

replacing R  by R  as 
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where the macroscopic effective stress eΣ  is defined as in Equation (2) as 
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In this paper, we conduct finite element computations of a unit cell with a spherical void 

under various combined loading conditions to investigate whether the anisotropic Gurson 

yield criterion proposed in Equation (8) can be used to describe the plastic flow of the 

porous materials, where the matrix plastic flow is based on Hill’s quadratic anisotropic 

yield criterion (Hill, 1948) with in-plane plastic anisotropy as specified by ,0R  45R  and 

90R . 

 

4.  Finite Element Model 

A porous ductile material containing a triply periodic array of spherical voids is 

considered here to investigate the plastic behavior of porous ductile materials.  Because 
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of the regular arrangement of the voids, the porous ductile material containing a triply 

periodic array of spherical voids can be modeled by considering a unit cell of the cube 

with a spherical void at its center, as shown in Figure 2(a).  The Cartesian coordinates 

1X , 2X , and 3X  perpendicular to the cube faces are also shown in the figure.  The 

Cartesian coordinates coincide with the material orthotropic symmetry axes.  Note that 

the relative dimensions of a unit cell in the three directions can affect the plastic behavior 

of the unit cell (Pardeon and Hutchinson, 2000).  In this paper, we concentrate on the 

effects of plastic anisotropy of the matrix and therefore a unit cell of a cube is taken for 

consideration.  For demonstration of the finite element mesh, only one eighth of a finite 

element mesh used for computations is shown in Figure 2(b).  Note that unlike the one-

sixteenth cube model used in Hom and McMeeking (1989) and Jeong and Pan (1995), we 

adopt the entire cell model to properly take account for the planar plastic anisotropy.  The 

void surface is specified to have zero traction.  Macroscopically uniform displacements 

are applied on the faces so that the outer faces of the unit cell remain planes during the 

deformation. 

To take the planar anisotropy into account, we consider three different loading 

scenarios with the principal loading direction at o0 , o45 , and o90  from the rolling 

direction of the sheet metals.  Uniform normal displacements 1X∆ , 2X∆ , and 3X∆  in the 

1X , 2X , and 3X  directions are applied on the cell faces perpendicular to the 1X , 2X , 

and 3X  directions, respectively.  For the principal loading direction at o0  from the rolling 

direction of the sheet metal, the relative uniform normal displacements applied to the 

faces of the unit cell are listed in Table 1.  Five straining conditions with different 

displacement ratios are considered: equal-triaxial, equal-biaxial, plane strain, nearly 
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uniaxial ( 2/1/ 12 −=∆∆ XX ), and nearly pure shear ( 1/ 12 −=∆∆ XX ).  The displacement 

ratios are assigned according to the small-strain rigid isotropic plasticity convention.  In 

this table, “not prescribed” means that the surface remains planar without any specified 

nodal force or displacement.  For the principal loading direction at o90  from the rolling 

direction of the sheet metal, the relative uniform normal displacements applied to the 

faces of the unit cell are listed in Table 2.  For the principal loading direction at o45  from 

the rolling direction of the sheet metal, the mesh of the unit cell is rotated o45  with 

respect to the 3X  direction while the plastic orthotropic symmetry planes remain 

unchanged.  For this loading direction, the relative uniform normal displacements applied 

to the faces of the unit cell are the same as those of the cases with the principal loading 

direction at o0  from the rolling direction.  In all loading cases at different principal 

loading directions, the symmetry planes of plastic orthotropy remain unchanged. 

The matrix material is assumed to be elastic perfectly plastic.  We consider a high 

strength steel and an aluminum used as benchmark materials in the Numisheet’93 

conference.  The material properties of the steel and the aluminum are listed in Table 3.  

Several initial void volume fractions (f = 0.01, 0.04, 0.09 and 0.12) are considered here to 

examine the applicability of the proposed yield criterion in Equation (8).  Hill’s quadratic 

anisotropic yield criterion φ  in Equation (2) is used to describe the matrix material with 

planar anisotropy. 

The commercial finite element program ABAQUS (Hibbitt et al., 2001) is used to 

perform the computations.  Under different loading conditions, the macroscopic stresses 

are calculated by averaging the surface tractions acting on the faces of the unit cell.  The 

macroscopic yield point is defined as the limited stress state where massive plastic 
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deformation occurs.  The corresponding macroscopic effective stress eΣ  in Equation (9) 

and macroscopic mean stress mΣ  in Equation (6) are then calculated and compared with 

those based on the anisotropic Gurson yield criterion in Equation (8). 

In addition to the elastic perfectly plastic material model employed to calculate 

the fully plastic limits, the macroscopic plastic flow characteristics due to the matrix 

strain hardening are investigated under proportional nearly uniaxial and equal-biaxial 

tensile loading conditions.  The relative uniform normal displacements applied to the 

faces of the unit cell are based on the normality flow rule and the yield criterion for the 

matrix as in Equation (2) under uniaxial and equal-biaxial conditions.  The ratios of the 

normal displacement applied to the faces of the unit cell are listed in Table 4.  The matrix 

effective tensile stress Mσ  as a function of the effective tensile strain p

Mε  can be 

expressed as 

3)( 21

Cp

MM CC εσ +=  (10) 

where 16.6771 =C  MPa, 01129.02 =C , and 2186.03 =C  for the high strength steel, and 

40.5701 =C  MPa, 01502.02 =C , and 3469.03 =C  for the aluminum.  These material 

constants are base on the tensile stress-strain relation in the rolling direction as specified 

by the Numisheet’93 conference. 

 

5.  Numerical Results 

Finite element computational results are used to evaluate the applicability of the 

use of the anisotropic Gurson yield criterion in Equation (8) to model the macroscopic 

anisotropic plastic behavior of porous materials.  We examine the computational results 

for porous materials with elastic perfectly plastic matrices.  For several different void 
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volume fractions (f = 0.01, 0.04, 0.09 and 0.12), Figures 3(a-f) show the computational 

results, represented by symbols, for the steel and the aluminum with principal loading 

directions at o0 , o45 , and o90  from the rolling direction, respectively.  In these figures, 

both the macroscopic mean stresses and the macroscopic effective stresses are 

normalized by the matrix yield stress oσ  in the rolling direction.  For comparison, 

various forms of curves based on the unmodified anisotropic Gurson yield criterion 

( 1321 === qqq ) in Equation (8) are also shown for different void volume fractions.  As 

shown in the figures, when the void volume fraction is small, the finite element 

computational results are in agreement with those based on the unmodified anisotropic 

Gurson yield criterion.  However, when the void volume fraction is large, the yield 

contours based on the unmodified anisotropic Gurson yield criterion are much larger than 

those of the finite element computations when the normalized mean stress 0σmΣ  is low.  

When the normalized mean stress 0σmΣ  is high under equal-triaxial loading conditions, 

the unmodified anisotropic Gurson yield criterion underestimate the yield behavior of the 

steel whereas the unmodified anisotropic Gurson yield criterion overestimate the yield 

behavior of the aluminum.  Therefore, three fitting parameters q1, q2 and q3 are needed in 

the anisotropic Gurson yield criterion as suggested by Liao et al. (1997). 

Figures 4(a-f) show the computational results, represented by symbols, and the 

results, represented by various forms of curves, based on the modified anisotropic Gurson 

yield criterion with the selections of the fitting parameters q1 = 1.45, q2 = 0.81 and q3 = 

1.6 for the steel and q1 = 1.45, q2 = 0.95 and q3 = 1.6 for the aluminum, respectively.  For 

the steel, the value of q2 is different from that suggested by Chien et al. (2001) for steels, 

but the values of q1 and q3 are the same as those in Chien et al. (2001) for steels.  The 
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values of q1, q2, and q3 for the aluminum are the same as those suggested by Chien et al. 

(2001) for aluminums.  Note that an increase of q1 can lower the predicted macroscopic 

yield stresses of the anisotropic Gurson yield criterion.  The parameter q2 has the effect 

on the weighting of the macroscopic mean stresses.  In general, q2 can be taken at a value 

of about 1 for a wide range of circumstances.  An increase of q3 will move up the yield 

contour in the oeom σΣσΣ −  plot, and the influence of q3 will become more significant 

when the void volume fraction is large.  With the fitting parameters, the curves based on 

the modified anisotropic Gurson yield criterion agree much better with the finite element 

computational results.  As shown in Figure 4, the modified anisotropic Gurson yield 

criterion with the average R  can be used to predict the yielding of porous ductile 

materials under the major principal loading conditions at o0 , o45 , and o90  from the 

rolling direction of the sheet metals.  It should be noted that when the unit cell is 

subjected to in-plane nearly pure shear and plane strain tension, the macroscopic effective 

stresses from our finite element computations are slightly lower than those predicted by 

the modified anisotropic Gurson yield criterion.  The reason for the earlier yielding can 

be attributed to the shear localization in the matrix material. 

In order to explore further the accuracy of the use of the modified anisotropic 

Gurson yield criterion to predict the macroscopic plastic hardening behavior of porous 

materials, the macroscopic plastic hardening relations from finite element computations 

are compared with those based on the unmodified ( 1321 === qqq ) and modified 

anisotropic Gurson yield criterion.  Note that the values of the material constants are 

listed in Table 3 and the matrix strain hardening relation is expressed in Equation (10) for 

the steel and the aluminum.  Figures 5 and 6 show the normalized macroscopic stress as a 
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function of the macroscopic tensile strain under nearly uniaxial tensile conditions for the 

steel and the aluminum, respectively.  Figures 7 and 8 show the normalized macroscopic 

effective stress as a function of the macroscopic tensile strain under nearly equal-biaxial 

tensile conditions for the steel and the aluminum, respectively.  Note that we use the 

normality flow rule and the yield criterion for the matrix to determine the relative 

displacement ratios of the faces of the unit cell.  From the computational results, the 

macroscopic transverse normal stresses remain nearly zero under nearly uniaxial tension 

cases, whereas the in-plane macroscopic stresses are nearly equal to each other under 

nearly equal biaxial loading conditions.  In Figures 5-8, 11E , 11E′ , and 22E  represent the 

macroscopic tensile strain in the o0 , o45 , and o90  directions, respectively.  Also 11Σ , 

11Σ ′ , and 22Σ  represent the macroscopic tensile stress in the o0 , o45 , and o90  directions, 

respectively.  The macroscopic stresses 11Σ , 11Σ ′ , and 22Σ  are normalized by the yield 

stress 0σ , 45σ , and 90σ  which represent the matrix yield stresses in the o0 , o45 , and o90  

directions, respectively.  The value of 0σ  is determined by setting p

Mε  = 0 in Equation 

(10).  The values of 45σ  and 90σ  are then obtained by substituting the values of 0σ , ,0R  

45R  and 90R  into the yield criterion in Equation (2) for the loading in the o45  and o90  

directions, respectively. 

For f = 0.01, Figures 5(a-c) and 6(a-c) show the macroscopic stress-strain 

relations based on the finite element computational results and those based on the 

modified and unmodified anisotropic Gurson yield criterion for the steel and the 

aluminum under nearly uniaxial tensile conditions, respectively.  The governing 

equations based on the anisotropic Gurson yield criterion for the macroscopic plastic 
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behavior of porous materials with consideration of the matrix strain hardening are 

summarized in Appendix B.  For the steel as shown in Figures 5(a-c), the finite element 

computational results agree well with those based on the modified anisotropic Gurson 

yield criterion for the loading in the o0  and o90  directions but slightly less than those 

based on the modified anisotropic Gurson yield criterion for the loading in the o45  

direction.  For the aluminum shown in Figures 6(a-c), the finite element computational 

results in general agree well with those based on the modified anisotropic Gurson yield 

criterion. 

For f = 0.09, Figures 5(d-f) and 6(d-f) show the computational results and 

macroscopic stress-strain relations based on the anisotropic Gurson yield criterion for the 

steel and the aluminum, respectively.  These figures show that for both the steel and 

aluminum the finite element computational results agree well with those based on the 

modified anisotropic Gurson yield criterion at small strains for the loading in the o0  and 

o90  directions.  As the strain becomes large, the computational results agree well with 

those based on the unmodified anisotropic Gurson yield criterion.  For the steel, when the 

loading is in the o45  direction, the finite element computational results are slightly lower 

than those based on the modified anisotropic Gurson yield criterion at small strains.  

When the strain becomes large, the computational results agree with those based on the 

modified anisotropic yield criterion.  For the aluminum, when the loading is in the o45  

direction, the computational results agree well with those based on the modified 

anisotropic Gurson yield criterion.  When the strain becomes large, the computational 

results fall between those based on the modified and unmodified anisotropic Gurson yield 

criterion. 
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Figures 7 and 8 show the macroscopic stress-strain relations in the 1X  and 2X  

directions based on the finite element computational results and those based on the 

modified and unmodified anisotropic Gurson yield criterion under nearly equal-biaxial 

tensile loading conditions.  The macroscopic stresses 11Σ  and 22Σ  are normalized by bσ  

which is determined by substituting the values of 0σ , ,0R  45R  and 90R  into the yield 

criterion in equation (2) under equal biaxial stress conditions.  For a small void volume 

fraction (f = 0.01), the computational results agree with those based on the unmodified 

anisotropic Gurson yield criterion as shown in Figures 7(a-b) and 8(a-b).  For a large void 

volume fraction (f = 0.09), the computational results agree with those based on the 

unmodified anisotropic Gurson yield criterion as shown in Figures 7(c-d) and 8(c-d). 

 

6.  Conclusions and Discussions 

A unit cell of a cube containing a spherical void is modeled by a finite element 

analysis to validate the anisotropic Gurson yield criterion proposed by Liao et al. (1997) 

to characterize the plastic behavior of porous material with planar anisotropic matrices.  

The plastic anisotropic behavior of the matrices is described by Hill’s quadratic 

anisotropic yield criterion.  The matrix material is assumed to be elastic perfectly plastic.  

The results of the finite element computations indicate that the finite element results for 

the steel and the aluminum subjected to the major principal loads at o0 , o45 and o90  from 

the rolling direction of the sheet metal can be fitted reasonably well by those based on the 

modified anisotropic Gurson yield criterion in terms of the average anisotropy parameter 

R  with suggested fitting parameters.  When the matrix plastic hardening behavior is 

considered, we found that the macroscopic plastic hardening relations based on the finite 
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element computations and the unmodified anisotropic Gurson yield criterion are in good 

agreement for the steel and the aluminum under nearly uniaxial and equal-biaxial loading 

conditions.  Therefore, based on the limited computational results obtained in this 

investigation, the proposed anisotropic Gurson yield criterion in Equations (8), (9), and 

(6) can be a reasonable candidate to be used to investigate the anisotropic behavior of 

porous materials with the matrices characterized by Hill’s quadratic anisotropic yield 

criterion. 
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Appendix A:  Hill’s quadratic anisotropic yield criterion 

Hill’s quadratic anisotropic yield criterion (1948) can be written as 
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Based on the associated flow rule, the plastic strain rates p

11ε& , p

22ε& , p

33ε& , and p

12ε&  can be 

obtained as 

( ) ( )[ ]22111133

1

11 22 σσσσλ
σ
φλε −+−−=

∂
∂

= HGp &&&  (A2) 

( ) ( )[ ]22113322

2

22 22 σσσσλ
σ
φλε −−−=

∂
∂

= HFp &&&  (A3) 

( ) ( )[ ]11333322

3

33 22 σσσσλ
σ
φλε −+−−=

∂
∂

= GFp &&&  (A4) 

[ ]12

12

12 42 σλ
σ
φλε Np &&& =

∂
∂

=  (A5) 

where λ&  is a scalar factor of proportionality. 

We first consider a uniaxial loading in the 1X  direction which is at o0  from the 

rolling direction.  In this case, 011 ≠σ , 01231233322 ===== σσσσσ , 0R  can be 

obtained as 
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Then we consider a uniaxial loading in the 2X  direction which is at o90  from the rolling 

direction.  In this case, 022 ≠σ , 01231233311 ===== σσσσσ , 90R  can be obtained as 
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Consider the coordinate system rotates o45  counterclockwise with respect to the 3X  axis 

to a new coordinate system of 1X ′ , 2X ′ , and 3X ′ . Now we consider a uniaxial loading in 

the 1X ′  direction with respect to the rolling direction.  In this case, the stress 

transformation gives the stress components with respect to the 1X , 2X , and 3X  

coordinates as 2122211 σσσσ === , and 0233133 === σσσ .  Here, σ  represents the 

tensile stress.  The plastic strain rates can be obtained from Equations (A2), (A3), and 

(A5) as 
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Based on the strain transformation, the plastic transverse plastic strain rate p

22ε ′&  with 

respect to the coordinate system of 1X ′ , 2X ′ , and 3X ′  is 
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Since pp

3333 εε && =′ , we can write the through-thickness plastic strain rate p

33ε ′&  with respect to 

the coordinate system of 1X ′ , 2X ′ , and 3X ′  as 

[ ]σσλε GFp −−=′ &&
33  (A12) 

Therefore, 45R  can be written as 
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45 ε

ε
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&
 (A13) 

As mentioned before, we take 0σ  in Equation (A1) as the yield stress in the 1X  direction.  

Then 
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1=+ HG  (A14) 

We can solve for F , G , H , and N  using Equations (A6), (A7), (A13), and (A14) as 
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1 R
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90045
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RR

RRR
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+
++

=  (A18) 

Substituting Equations (A15) - (A18) into (A1) and assuming NML ==  give the yield 

criterion in Equation (2). 
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Appendix B:  Macroscopic plastic behavior of porous ductile materials with 

consideration of the matrix strain hardening 

We consider monotonically increasing proportional deformation histories such as 

monotonically increasing nearly uniaxial and equal-biaxial tensile conditions where the 

principal directions of the macroscopic deformation do not change. The macroscopic 

strain rate tensor ijE&  can be decomposed into an elastic part e

ijE&  and a plastic part p

ijE& . 

p

ij

e

ijij EEE &&& +=  (B1) 

The elastic macroscopic strain rates e

ijE&  are related to the macroscopic stress rates ijΣ&  as 

( )( ) klklijjlik

e

ij
E

E Σ−+= && δδνδδν **

*
1

1
 (B2) 

where *E  and *ν  represent the effective Young’s modulus and Poisson’s ratio of the 

porous material (Tandon and Weng, 1988).  *E  and *ν  are expressed in terms of 

Young’s modulus E and Poisson’s ratio ν  of the matrix material as 

).1513)(1(1014
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 (B3) 

For porous materials with the matrix strain hardening, the modified anisotropic 

Gurson yield criterion in Equation (8) is written here again as 
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qfq
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M
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 (B4) 

where Mσ  represents the matrix flow stress.  The matrix strain hardening is specified in 

Equation (10).  The macroscopic plastic strain rates p

ijE&  are determined by the associated 

flow rule as 
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ij

p

ij Σ
Φ

E
∂
∂

Λ= &&  (B5) 

where Λ&  is a scalar factor of proportionality. 

Due to the plastic incompressibility of the matrix material, the growth rate of the 

void volume fraction, f& , can be related to the macroscopic plastic dilatational strain rate 

p

kkE&  as 

p

kkEff && )1( −=  (B6) 

The equivalence of macroscopic plastic work rate and microscopic plastic dissipation rate 

gives 

p

MM

p

ijij fE εσΣ && )1( −=  (B7) 

Equation (B7) can be rewritten as  

MM

p

ijij f
h

E σσ && )1(
1

−=Σ  (B8) 

where p

MM ddh εσ /= . 

The consistency condition is expressed as 

0=
∂
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+
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ΦΦΦΦ M

M

ij
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&&&& σ
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 (B9) 

Combining the above equations, the macroscopic stress rates can be expressed in terms of 

the macroscopic strain rates. 

For uniaxial tension applied at o0  from the rolling direction, 22Σ  = 33Σ  = 0.  

Therefore, eΣ  = 11Σ  and kkΣ  = 3 mΣ  = 11Σ .  We first solve the initial value of 11Σ  from 

the macroscopic yield criterion in Equation (B4) for a given f and Mσ  (= oσ ).  With the 

initial conditions, rate equations are needed to determine the evolution of the 
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macroscopic stresses ijΣ , the matrix flow stress Mσ , and the void volume fraction f.  

From Equation (B5), the macroscopic plastic strain rates pE11
& , pE22

&  and pE33
&  can be 

obtained as 
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where ( )R

R
qQ

+
+

=
16

21
22 .  For a prescribed pE11

& , the scalar factor Λ&  can be solved from 

Equation (B10).  Once Λ&  is solved, pE22
&  and pE33

&  can be obtained.  Then the macroscopic 

plastic dilatational strain rate p

kkE&  can be determined as 
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Substituting Equation (B13) into Equation (B6) gives the growth rate of the void volume 

fraction, f& .  For uniaxial tension at o0  from the rolling direction, Equation (B8) becomes  

( ) MM

p f
h

EΣ σσ && −= 1
1

1111  (B14) 

From Equation (B14), Mσ&  can be obtained.  The consistency condition in Equation (B9) 

becomes 
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Now 11Σ&  can be solved from Equation (B15).  Once 11Σ&  is determined, eE11
&  can be 

determined by Equation (B2).  Then 11E&  can be determined by Equation (B1).  Based on 

the rate equations discussed earlier, the evolution of the macroscopic stress 11Σ , the 

matrix flow stress Mσ , and the void volume fraction f can be obtained incrementally as a 

function of 11E  with the initial conditions of f and )( oM σσ = . 

For the uniaxial tensile load applied at o45  with respect to the rolling direction, 

denote the macroscopic tensile stresses as 11Σ ′  and 12Σ ′ , the macroscopic strains as 11E′  

and 22E′ .  Note that 01222 =′=′ EΣ .  Based on the stress transformation, 121111
2

1 ΣΣΣ ′−′= , 

121122
2

1 ΣΣΣ ′+′= , 1112
2

1 ΣΣ ′= , 23Σ  = 31Σ  = 33Σ  = 0.  Based on the strain transformation, 

221112
2

1

2

1
EEE +−=′ .  The macroscopic plastic strain rate p

ijE&  can be obtained from the 

associated flow law as 
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Manipulate the imposed macroscopic stress, strain conditions and the stress, strain 

transformations, 12Σ ′  can be expressed as 
( )

( )909000

09011

42 RRRR

RRΣ
++

−′
. Therefore, eΣ  = 113ΣQ ′ , 

where 
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= , and 

kkΣ  = 2211 ΣΣ + .  We first solve the initial value of 11Σ  from the macroscopic yield 

criterion in Equation (B4) for a given f and Mσ  (= oσ ).  With the initial conditions, rate 

equations are needed to determine the evolution of the macroscopic plastic strain rates 

p

ijE& , the matrix flow stress Mσ , and the void volume fraction f. 

For a prescribed pE11
& , the scalar factor Λ&  can be solved from Equation (B16).  

Once Λ&  is solved, pE22
& , pE12

& , and p

kkE&  can be obtained.  Once p

kkE&  is determined, 

Equation (B6) gives the growth rate of the void volume fraction, f& .  Equation (B8) 

becomes 

MM

ppp f
h

EΣEΣEΣ σσ &&&& )1(
1

2 121222221111 −=++  (B20) 

Equation (B20) can be used to determine Mσ& . 

The consistency condition in Equation (B9) becomes 
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Now 11Σ&  can be solved from Equation (B21) and the stress transformation, 

121111
2

1 ΣΣΣ ′−′= , 121122
2

1 ΣΣΣ ′+′= , 1112
2

1 ΣΣ ′= .  eE11
& , eE22

& , and eE12
&  can then be 

determined by Equation (B2) when 11Σ& , 22Σ& , and 12Σ&  is determined.  Then 11E& , 22E& , 

and 12E&  can be determined by Equation (B1).  Based on the rate equations discussed 

earlier, the evolution of the macroscopic stress 11Σ& , 22Σ& , and 12Σ& , the matrix flow stress 

Mσ , and the void volume fraction f can be obtained incrementally as a function of pE11
&  

with the initial conditions of f and )( oM σσ = .  Based on the stress transformation, as a 

function of 11E ′  can be obtained. 

For the uniaxial tension applied at o90  from the rolling direction case, 11Σ  = 33Σ  

= 0.  Therefore, eΣ  = 224ΣQ , where 
900

900

4
)1(

)1(

RR

RR
Q

+
+

= , and kkΣ  = 3 mΣ  = 22Σ .  The 

numerical procedure is the same as that of the uniaxial tension at o0  from the rolling 
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direction except that we first solve the initial value of 22Σ  from Equation (B4) for a given 

f and Mσ  (= oσ ).  However, Equation (B10) - (B12) should be modified as 
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and Equation (B13) becomes 
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Equation (B8) becomes 
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Equation (B9) becomes 
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For the equal biaxial tension case, 11Σ  = 22Σ  and 33Σ  = 0.  In this case, eΣ  = 
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 and kkΣ  = 112Σ .  The numerical 
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procedure is the same as that of the uniaxial tension at o0  from the rolling direction.  

However, Equation (B10) – (B12) should be modified as 
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and Equation (B13) becomes 
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Equation (B8) becomes 
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Equation (B9) becomes 
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Table Captions 

Table 1. Relative uniform normal displacements applied to the faces of the unit cell for 

different loading conditions with the major principal loading at o0  from the rolling 

direction. 

Table 2. Relative uniform normal displacements applied to the faces of the unit cell for 

different loading conditions with the major principal loading at o90  from the rolling 

direction. 

Table 3. Material properties of the steel and the aluminum (from Numisheet’93 

conference). 

Table 4. Relative uniform normal displacements applied to the faces of the unit cell for 

nearly uniaxial and nearly equal-biaxial conditions when the matrix hardening is 

considered. 

Figure Captions 

Figure 1.  An element of sheet metal and a Cartesian coordinate system. 

Figure 2.  (a) A voided unit cell.  (b) One eighth of a finite element mesh of the unit cell.  

Note that a full unit cell is used for computations. 

Figure 3.  Finite element computational results (symbols) and the results based on the 

unmodified anisotropic Gurson yield criterion (curves) with the major principal direction 

of loading at (a) o0  (b) o45  (c) o90  from the rolling direction for the steel and with the 

major principal direction of loading at (d) o0  (e) o45  (f) o90  from the rolling direction 

for the aluminum. 

Figure 4.  Finite element computational results (symbols) and the results based on the 

modified anisotropic Gurson yield criterion (curves) with the major principal direction of 

loading at (a) o0  (b) o45  (c) o90  from the rolling direction for the steel and with the 

major principal direction of loading at (d) o0  (e) o45  (f) o90  from the rolling direction 

for the aluminum. 

Figure 5.  The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly uniaxial 

tensile conditions for the steel: (a) f = 0.01, straining direction at o0  (b) f = 0.01, straining 

direction at o45  (c) f = 0.01, straining direction at o90  (d) f = 0.09, straining direction at 
o0  (e) f = 0.09, straining direction at o45  (f) f = 0.09, straining direction at o90 . 
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Figure 6.  The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly uniaxial 

tensile conditions for the aluminum: (a) f = 0.01, straining direction at o0  (b) f = 0.01, 

straining direction at o45  (c) f = 0.01, straining direction at o90  (d) f = 0.09, straining 

direction at o0  (e) f = 0.09, straining direction at o45  (f) f = 0.09, straining direction at 
o90 . 

Figure 7.  The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly equal-

biaxial tensile conditions for the steel: (a) f = 0.01, stress-strain relation in the 1X  

direction (b) f = 0.01, stress-strain relation in the 2X  direction (c) f = 0.09, stress-strain 

relation in the 1X  direction (d) f = 0.09, stress-strain relation in the 2X  direction. 

Figure 8.  The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly equal-

biaxial tensile conditions for the aluminum: (a) f = 0.01, stress-strain relation in the 1X  

direction (b) f = 0.01, stress-strain relation in the 2X  direction (c) f = 0.09, stress-strain 

relation in the 1X  direction (d) f = 0.09, stress-strain relation in the 2X  direction. 
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Table 1. Relative uniform normal displacements applied to the faces of the unit cell for 

different loading conditions with the major principal loading at o0  from the rolling 

direction. 

 

 Equal-triaxial Equal-biaxial Plane strain Nearly uniaxial Nearly pure shear

1X∆  1 1 1 1 1 

2X∆  1 1 0 -1/2 -1 

3X∆  1 Not prescribed Not prescribed Not prescribed Not prescribed 

 

Table 2. Relative uniform normal displacements applied to the faces of the unit cell for 

different loading conditions with the major principal loading at o90  from the rolling 

direction. 

 

 Equal-triaxial Equal-biaxial Plane strain Nearly uniaxial Nearly pure shear

1X∆  1 1 0 -1/2 -1 

2X∆  1 1 1 1 1 

3X∆  1 Not prescribed Not prescribed Not prescribed Not prescribed 

 

Table 3. Material properties of the steel and the aluminum (from Numisheet’93 

conference). 

 

 Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Yield stress 

(MPa) 
0R  45R  90R  

Steel 206 0.3 269.5 1.73 1.34 2.24 

Aluminum 71 0.33 137.0 0.71 0.58 0.70 
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Table 4. Relative uniform normal displacements applied to the faces of the unit cell for 

nearly uniaxial and nearly equal-biaxial conditions when the matrix hardening is 

considered. 

 

Nearly uniaxial 
 

Nearly equal-biaxial  

o0  

 
o45  

o90  
o0  

1X∆  1 
 

1 Not prescribed 1 

2X∆  Not prescribed 
 

Not prescribed  1 
900 / RR  

3X∆  Not prescribed Not prescribed Not prescribed Not prescribed 
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X1

X 3

X 2

 

Figure 1.  An element of sheet metal and a Cartesian coordinate system. 

 

X1

X2

X3

    
X 1X 2

X 3

 

(a)       (b) 

Figure 2.  (a) A voided unit cell.  (b) One eighth of a finite element mesh of the unit cell.  

Note that a full unit cell is used for computations. 
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Figure 3(c)     Figure 3(f) 

Figure 3. Finite element computational results (symbols) and the results based on the 

unmodified anisotropic Gurson yield criterion (curves) with the major principal direction 

of loading at (a) o0  (b) o45  (c) o90  from the rolling direction for the steel and with the 

major principal direction of loading at (d) o0  (e) o45  (f) o90  from the rolling direction 

for the aluminum. 
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Figure 4. Finite element computational results (symbols) and the results based on the 

modified anisotropic Gurson yield criterion (curves) with the major principal direction of 

loading at (a) o0  (b) o45  (c) o90  from the rolling direction for the steel and with the 

major principal direction of loading at (d) o0  (e) o45  (f) o90  from the rolling direction 

for the aluminum. 
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      Figure 5(c)   Figure 5(f) 

Figure 5. The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly uniaxial 

tensile conditions for the steel: (a) f = 0.01, straining direction at o0  (b) f = 0.01, straining 

direction at o45  (c) f = 0.01, straining direction at o90  (d) f = 0.09,straining direction at 
o0  (e) f = 0.09, straining direction at o45  (f) f = 0.09, straining direction at o90 . 
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      Figure 6(c)   Figure 6(f) 

Figure 6. The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly uniaxial 

tensile conditions for the aluminum: (a) f = 0.01, straining direction at o0  (b) f = 0.01, 

straining direction at o45  (c) f = 0.01, straining direction at o90  (d) f = 0.09, straining 

direction at o0  (e) f = 0.09, straining direction at o45  (f) f = 0.09, straining direction at 
o90 . 
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      Figure 7(b)   Figure 7(d) 

Figure 7. The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly equal-

biaxial tensile conditions for the steel: (a) f = 0.01, stress-strain relation in the 1X  

direction (b) f = 0.01, stress-strain relation in the 2X  direction (c) f = 0.09, stress-strain 

relation in the 1X  direction (d) f = 0.09, stress-strain relation in the 2X  direction. 
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      Figure 8(b)   Figure 8(d) 

Figure 8. The macroscopic stress-strain relations based on the finite element results, and 

the unmodified and modified anisotropic Gurson yield criterion under nearly equal-

biaxial tensile conditions for the aluminum: (a) f = 0.01, stress-strain relation in the 1X  

direction (b) f = 0.01, stress-strain relation in the 2X  direction (c) f = 0.09, stress-strain 

relation in the 1X  direction (d) f = 0.09, stress-strain relation in the 2X  direction. 

 

 

 


