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Abstract

We propose a two-dimensional phase field model for solid state dewetting where the sur-
face energy is weakly anisotropic. The evolution is described by the Cahn-Hilliard equation
with a bi-quadratic degenerate mobility together with a bulk free energy based on a double-
well potential and a free boundary condition at the film-substrate contact line. We derive
the corresponding sharp interface limit via matched asymptotic analysis involving multiple
inner layers. We show that in contrast to the frequently used quadratic degenerate mobil-
ity, the resulting sharp interface model for the bi-quatratic mobility is consistent with the
pure surface diffusion model. In addition, we show that natural boundary conditions at the
substrate obtained from the first variation of the total free energy including contributions
at the substrate imply a contact angle condition in the sharp-interface limit which recovers
the Young-Herring equation in the anisotropic and Young’s equation in the isotropic case,
as well as a balance of fluxes at the contact line (or contact point).

Key words. phase-field model, matched asymptotic expansions, exponential asymptotics,
sharp interface model, free boundary problems, dewetting solid films
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1 Introduction

Dewetting of solid films is one of the important processes used for nanostructuring and function-
alizing surfaces for a variety of technological applications, such as for example in thin-film solar
cells and other optoelectronic devices. Examples can be found in [52, 14, 13] and for a recent
review we refer to Thompson [56]. Typically, the dewetting scenario begins with the formation
of a three-phase contact line between the thin solid film, the solid substrate and the surrounding
vapor phase. The subsequent retraction of the film leads to the formation of a rim that eventually
destabilizes into nano- or micro- islands [57].

While the dynamical evolution has many similarities with the dewetting of liquid thin films,
which has been investigated in numerous theoretical and experimental studies [50, 51, 28, 2]
and recently reviewed in [8], solid dewetting has not received as much attention. The physical
mechanisms for the mass transport underlying the dewetting of solid films is also quite different
and it is based on capillarity driven surface diffusion [61, 26, 57]. In addition, further properties
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such as anisotropy of its surface energy can dominate the dynamics [65, 15, 58]. This can have
important implication on the stability of the moving three-phase contact-line, where vapor, solid
film and solid substrate meet. For the equilibrium state the equations governing the shape of
a nano- or micro crystal in contact with a substrate has been systematically derived as well as
experimentally validated in [59, 31].

Since the dynamical dewetting process usually involves a succession of topological transitions
of the thin dewetting film, the phase field framework provides an adequate modelling approach
for a continuum description that allows the creation and vanishing of interfaces to occur naturally
as part of the solution. This is in contrast to interface tracking methods used for sharp-interface
models.

Establishing the correct correspondence between the phase-field and sharp-interface models
has therefore been investigated intensively during the last decades, see for example the review by
[42]. One of the first systematic derivations of sharp-interface models using matched asymptotic
expansions has been carried out by Pego [47]. His analysis concerned the Cahn-Hilliard equation
for a conserved order parameter u(x, t)

∂tu = ∇ · j, j = m(u)∇µ, µ = F ′(u)− ε2∆u, (1)

for x in a domain Ω in RN , for time t > 0, and with the homegeneous free energy F (u) =
1
2 (1−u2)2 and constant mobility m(u) = 1. The boundary conditions in [47] may be taken to be
of homogeneous Neumann type, i.e. n · ∇µ = n · ∇u = 0, where n is the outward unit normal to
∂Ω, or of Dirichlet type, i.e. µ = µb, u = ub, on ∂Ω, where ∂Ω should be of suitable regularity.
For time t = 0, arbitrary, smooth initial values u(x, 0) are permitted which describe a smooth
interface Γ0, independent of ε, and subject only to the restriction that at any point, whose
distance from Γ0 is greater than ε, the corresponding values of u(x, 0) are sufficiently stable. At
distances greater than O(ε) the derivatives will be presumed to be bounded independent of ε as
ε tends to zero. For this model Pego recovered on the time scale t = O(ε−1) the Mullins-Sekerka
problem [41], for which the interface motion is driven by pure bulk diffusion. Rigorous treatments
using ideas from matched asymptotic expansions were given by Alikakos et al. [1] and for radially
symmetric stationary solutions by Niethammer [43].

The particular choice for F (u) = 1
2 (1 − u2)2 and m(u) = 1 is actually an approximation of

the Cahn-Hilliard equation derived in [45] with the concentration dependent degenerate mobility
m(u) = 1− u2 and the logarithmic free energy

F (u) =
T

2
((1 + u) ln(1 + u) + (1− u) ln(1− u)) +

1

2
(1− u2)2

in the limit T → 1, where T is the temperature. For the deep quench limit, T = 0, and for
T = O(εα) with α > 0 Cahn et al. [7] considered the sharp interface limit ε → 0 and obtained
Mullins’ model for surface diffusion [40].

Phase-field models combining other approximations of the bulk free energy and the mobility
have frequently been investigated as candidates for sharp-interface models driven by surface
diffusion in the limit ε→ 0, for example the biquadratic free energy F (u) = 1

2 (1−u2)2 combined
with the degenerate mobility m(u) = 1 − u2 or the biquadratic degenerate mobility as m(u) =
(1−u2)2, see for example the studies [25, 53]. However, as has been pointed out by Guggenberger
et al. [20] and more recently by Dai et al. [9, 10] the standard matched asymptotic derivations
that recover Mullins’ model with pure surface diffusion lead to inconsistencies that appear in
the asymptotic derivations except when the interface is flat. Indeed, in Lee et al. [34, 33] it
was shown that for the combination F (u) = 1

2 (1− u2)2 and m(u) = 1− u2 a careful asymptotic
analysis involving exponential asymptotics is necessary to resolve this problem and in fact yields
to leading order in ε a sharp interface model where both surface and bulk diffusion are present.
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The fact that nonlinear bulk diffusion and surface diffusion contribute to the interfacial mass flux
at the same order implies that the phase field model describes a different driving mechanism for
the interface evolution than intended (i.e. than in Mullins’ model) and this fact has implications
for phase-field models intended to describe a particular physical process.

Such is the case for the problem of solid state dewetting. For the isotropic case, a phase-field
model has been proposed by Jiang et al. [25] with a phase-field variable u = u(x, t) that is
defined on the domain Ω and where u(x, t) > 0, u(x, t) < 0 and u(x, t) = 0 characterise the
solid (or film) phase, the vapor phase, and the location of the interface, respectively. For this
phase-field variable the total free energy

W ε =

∫
Ω

fFV dΩ +

∫
Γw

fw dΓ, (2)

combines a bulk contribution from the Ginzburg-Landau free energy density

fFV = λm

(
F (u) +

ε2

2
|∇u|

)
(3)

with a surface energy density contribution from the contact line at the substrate Γw ⊂ ∂Ω,

fw =
σV S + σFS

2
− u(3− u2)

4
(σV S − σFS). (4)

The width of the diffuse interface layer is proportional to ε, λm denotes the mixing energy density
and σV S and σFS the vapor-substrate and film-substrate interface energy densities, respectively.
A derivation via the first variational derivative of the total free energy functional with respect to
u, following for example [45], yields the corresponding chemical potential µ = (1/λm)δW ε/δu,
so that by making use of the fact that u is a conserved order parameter, the Cahn-Hilliard
equation (1) is obtained together with a no-flux boundary condition on ∂Ω. In Jiang et al. [25]
for example, the choice m(u) = 1−u2 and F (u) = 1

2 (1−u2)2 was suggested to correspond to the
sharp-interface model for pure surface diffusion that reflects the underlying physical mechanism
of the solid dewetting process. However, since the asymptotic limit does not yield this result,
we suggest the mobility of form m(u) = (1 − u2)2 and show that this indeed yields the desired
sharp-interface model, that is with pure surface diffusion to leading order.

As a model for the wall energy we also include (4) as suggested in [24, 64]. As discussed in [21],
it is convenient to choose fw such that away from the contact line, fw gives the vapor/substrate
interfacial energy in the vapor phase, i.e. fw = γV S , when u = −1, and the film/surface interfacial
energy in the film phase, i.e. fw = γFS , when u = 1. Moreover fw has to satisfy f ′w(±1) = 0,
which provides that the energy minimizing solution of the free energy part, i.e.

∫
Ω
fFV , is

undisturbed by fw. The cubic form of fw is in particular mathematically convenient since it
naturally provides the above mentioned properties. Other physically motivated expressions for
the wall energy can be found in [48].

In addition, our phase-field model also includes an anisotropic surface energy γ, which in
two space dimensions can be represented by γ(θ), where θ is the interface orientation angle. We
note that anisotropic surface energy may lead to an ill-posed problem when there are missing
orientations in the corresponding Wulff shape. If γ2|∇u|2 is not convex then the term ∇u may
be backwards diffusive for some initial data [60, 16]. In particular, in the two-dimensional case
which we consider here, ∇u is backwards diffusive precisely when γ(θ) + γ′′(θ) < 0. This case is
referred to as strongly anisotropic and has been investigated by Cahn and Taylor [6], Eggleston et
al. [16] suggesting various convexification schemes and has been numerically treated for example
by Wise et al. [60] to solve the regularized, anisotropic Cahn-Hilliard equation.
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For weak anisotropy different Cahn-Hilliard models were studied by McFadden et al. [37],
considering the solidification process of a pure material, and Rätz et al. [49] for the surface
evolution of elastically stressed films, where in both cases the method of matched asymptotic
expansions is used to recover the appropriate anisotropic form of the Gibbs-Thomson equation
in the sharp interface limit. i.e.

µ ∝ (γ + γ′′)κ,

where κ is the mean curvature of the interface. The latter work, however, introduces an additional
so-called stabilizing function g(u) = 30u2(1−u2) which is multiplied with the chemical potential,
i.e. Rätz et al. consider gµ instead of µ in their corresponding version of (1). This factor has
been claimed by Guggenberger et al. [20] to remove an inconsistency in the asymptotic derivation
which arises because the authors assume that the leading order outer solution is exact i.e. does
not require corrections. However, as has been shown previously by Dai and Du [10] for the
mobility |1− u2| and by Lee et al. [34] for the mobility (1− u2)+ and solutions that additionally
satisfy |u| ≤ 1, the outer correction problems do indeed have non-trivial contributions. Here, we
carry out the systematic matched asymptotic analysis for the mobility (1−u2)2 in the anisotropic
case. Our first goal is to show that in the limit ε→ 0 the sharp interface dynamics for anisotropic
surface diffusion dewetting is recovered. According to [54], the anisotropic version of the sharp-
interface law for surface diffusion is characterized by

vn ∝ ∂s
[
D(γ)∂s((γ + γ′′)κ)

]
, (5)

where vn is the normal velocity of the interface, D(γ) is an anisotropic phenomenological param-
eter and ∂s denotes the derivative with respect to the arclength s. The sharp interface deriva-
tions and numerical simulations presented in this paper are for an isotropic diffusional mobility
m(u) = (1−u2)2 similar to the one used in [27]. The sharp interface limit for this particular case
leads to D(γ) = γ in (5). In [49], the authors consider a general mobility m̃(u) = (1−u2)2D(γ)/γ
instead of m(u) and therefore their sharp interface derivations results in an expression like (5)
with a general anisotropic coefficient function D(γ).

Moreover, our analysis takes into account the boundary layers at the substrate and the inner
solution at the contact line and derives adequate boundary conditions at triple junctions for
the anisotropic Cahn-Hilliard equation. Other studies that deal with the boundary conditions
at triple junctions have considered the isotropic Cahn-Hilliard equation [44], or a system of
isotropic Cahn-Hilliard equations [19], where the ideas of [4] are adapted in order to show that
in the asymptotic limit the boundary condition leads to Young’s law at triple junctions [62], i.e.

σV S − σFS = σFV cosα, (6)

where σV S , σFS and σFV are the interface energy densities describing the interfaces between
vapor and substrate, film and substrate, and film and vapor, respectively, α and the equilibrium
contact angle. Of particular interest in our study is the technique as well as the geometry
presented in [46], in order to study the asymptotic behavior at the contact line for our problem.

As mentioned above, anisotropies in phase-field models and in particular their sharp interface
limit [37, 49, 18] as well as boundary conditions at triple junctions [44, 19, 4, 46] have been
discussed in the literature. Here, we carry out the matched asymptotic analysis of the sharp
interface limit for a phase-field model with biquadratic degenerate mobility and continuous double
well free energy, anisotropic surface energy together with the boundary layer at a substrate and
the triple point at the contact line that is required for modeling surface-diffusion driven dewetting
of a crystalline film from a substrate.

The paper is organized as follows. First we propose a two-dimensional phase field model for
solving the anisotropic surface-diffusion dewetting problem. In section 3 we derive the corre-
sponding sharp-interface limit in the weakly anisotropic case and inside the model domain which



Anisotropic sharp interface limits 5

Figure 1: A sketch of the model domain.

confirms the approach of surface diffusion for the present choice of mobility m and free energy F .
In section 4 we deal with the corresponding boundary condition at the solid boundary and apply
an appropriate asymptotic method in order to derive the anisotropic contact angle boundary
condition.

2 Problem formulation

We consider a one-dimensional film/vapor interface centered around the x-axis on a substrate,
which we define to be located at y = 0, and define the domain Ω to be a two-dimensional
rectangular box around this interface, i.e. Ω = [−Lx, Lx] × [0, Ly], where Lx, Ly ∈ R+, with
boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γw (see Fig. 1). The reason for choosing this model domain is that
it is easy to handle and adequate for the dewetting of a solid film from a substrate. Then for the
phase-field function u as defined in the introduction, the energy functional W ε is generalised,
following the approach by Kobayashi [29] and similarly in [60, 55], by introducing an anisotropic
gradient contribution to the bulk free energy of the form

fFV (u,∇u) = λm

(
F (u) +

ε2

2
γ(θ)2|∇u|2

)
, (7)

where F (u) is the homogeneous free energy, γ : R → R+ is the anisotropic interface energy
between film and vapor and λm represents the mixing energy density [23, 63]. In this paper,
we will consider the sharp interface limit for the case where the homogeneous free energy is the
double well potential

F (u) =
1

2
(1− u2)2. (8)

Furthermore, γ is a smooth (at least C4) 2π-periodic function and −π < θ ≤ π is the angle
between −∇u and the x-axis. Note that −∇u corresponds to the vector which points from
the ”+” to the ”−” phase and may be identified as the outwards pointing normal vector onto
the ”interface”. In order to write γ(θ) in terms of ∇u we introduce the following common
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generalisation of the arctangent function

θ = atan2(uy, ux) =



arctan
uy
ux

for ux > 0

arctan
uy
ux

+ π for ux < 0 and uy ≥ 0

arctan
uy
ux
− π for ux < 0 and uy < 0

+ π
2 for ux = 0 and uy > 0

− π
2 for ux = 0 and uy < 0

0 for ux = 0 and uy = 0,

(9)

so that
γ(θ) = γ (atan2(uy, ux)) .

We assume that γ(θ) = γ(−θ) which implies smoothness of γ everywhere except for ux = uy = 0.
Note that in this special case all the expressions where γ occur become smooth anyway due to
multiplication by ux and uy. Moreover we will require the interface energy to be only weakly
anisotropic, i.e.

γ(θ) + γ′′(θ) > 0, (10)

for all θ ∈ [−π, π], to avoid ill-posedness of the resulting evolution equations [16]. To be more
precise, if γ2|∇u|2 is not convex then the equation can become backwards parabolic for some
initial data [60, 16] and in the two-dimensional case, which we consider here, this corresponds to
the case if and only if γ(θ) + γ′′(θ) ≤ 0, which is referred to as strongly anisotropic. For the wall
energy density fw, we adhere to [24] and use (4).

We assume that the order parameter u is conserved,

∂tu = ∇ · j, (11a)

and define the mass flux of u to be
j = m(u)∇µ, (11b)

where the chemical potential µ is determined from the first variational derivative of W ε with
respect to u

µ =
1

λm

δW ε

δu
= F ′(u)− ε2∇

(
γγ′
(
−uy
ux

)
+ γ2∇u

)
. (11c)

For m, we chose the biquadratic mobility

m(u) =
(
1− u2

)2
. (11d)

This is subject to the following boundary conditions

ε nΩ ·
[
γ(θ)γ′(θ)

(
−uy
ux

)
+ γ(θ)2∇u

]
+
f ′w
λm

= 0, nΩ · (m(u)∇µ) = 0, (11e)

on Γw and

nΩ · ∇u = 0, nΩ · (m(u)∇µ) = 0, (11f)

on Γ0 ∪ Γ1, where nΩ is the outwards pointing normal vector onto ∂Ω. The second of each
of these pairs of conditions represents no-flux at the boundary, while the first are the natural
boundary conditions for u that arise when calculating the first variation of W ε via integration
by parts.



Anisotropic sharp interface limits 7

The aim of this paper is to study the sharp interface limit for the anisotropic phase field
model (11) with mobility m defined by (11d) and free energy F defined by (8) on a long time
scale t = O(1/ε2), using the method of matched asymptotic expansions. Observing that the
evolution of the order parameter occurs at an O(1/ε2) time scale (see [34]), we suggest to rescale
time via τ = ε2t, so that the Cahn-Hilliard equation (11a)-(11c) reads

ε2∂τu = ∇ · j, j = m(u)∇µ, µ = F ′(u)− ε2∇
(
γγ′
(
−uy
ux

)
+ γ2∇u

)
. (12)

The domain Ω decomposes into several regions with different scalings: An outer region away
from Γw and from the solid-vapor interface Γ; an inner region at the interface; an inner region
at Γw and at an additional free boundary, where the previously mentioned inner regions meet.
We now investigate these regions in turn.

3 Sharp interface asymptotics away from the solid sub-
strate

We first study the asymptotic behavior of the solution in the outer region and the inner interface
region away from the solid substrate which is located at y = 0, i.e. we consider the partial differ-
ential equation (12) without the boundary condition (11e). The method of matched asymptotic
expansions for anisotropic sharp interface limits has already been applied in [37] and [18] in or-
der to recover the appropriate anisotropic sharp interface form of an anisotropic Allen-Cahn-type
equation. In [18] it is in addition pointed out how the analysis has to be modified when consider-
ing the Cahn-Hilliard system or the related minimum problem. The Cahn-Hilliard case was also
studied in [49] where a connection between sharp interface models for isotropic and anisotropic
surface evolution and their diffuse interface counterparts is given. In contrast to our work, [49]
as well as [18] also consider different driving forces such as deposition flux and elastic stress in
the diffuse interface model, which induce that the evolution in the sharp interface limit is not
only driven by surface diffusion. In this section we will present a matched asymptotic analysis
for the anisotropic Cahn-Hilliard equation (12) with the aim to recover pure surface diffusion in
the sharp interface limit. As shown in [34] this is already in the isotropic case a non-trivial topic
and we will exploit this knowledge as well as the particular asymptotic method presented in [34]
in order to verify the sharp interface limit in our case.

3.1 Outer problem

The equations (12) are already stated in outer variables. For the outer expansions, we will use

u = u0 + εu1 + ε2u2...,

µ = µ0 + εµ1 + ε2µ2...,

j = j0 + εj1 + ε2j2....

(13)

which suggests the following expansions for m(u) and F (u)

m(u) = m(u0) + εm′(u0)u1 + ε2
(

1

2
m′′(u0)u2

1 +m′(u0)u2

)
+O(ε3)

F ′(u) = F ′(u0) + εF ′′(u0)u1 + ε2
(

1

2
F ′′′(u0)u2

1 + F ′′(u0)u2

)
+O(ε3).
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3.2 Inner problem

Similar as in [47, 34], we define the inner layer in a coordinate system relative to the interface

x = R(s, τ) + ερn(s, τ), (14)

and let U(s, ρ, τ) = u(x, y, t), M(s, ρ, τ) = µ(x, y, t), J(s, ρ, τ) = u(x, y, t). Here, R = (r1, r2) is
the position of the interface defined by

u(R, t) = 0, (15)

s is the arclength and n = (n1, n2)T is the unit normal to the solid-vapor interface oriented
such that it points out of the solid. The orientation of the unit tangent t = (t1, t2)T and of
the corresponding arclength parametrisation of R are chosen so that (t,n) forms a right-handed
system, t = (n2,−n1)T , thus the solid always lies to the right of the curve. The sign of the
curvature κ is defined so that the normal and tangent unit vectors satisfy the Frenet-Serret
formulae in the form

∂st = −κn, ∂sn = κt (16)

This choice implies that κ > 0 if the curve is convex with respect to the solid. The gradient
operator in these curvilinear coordinates reads

∇ = nε−1∂ρ +
1

1 + ερκ
t∂s, (17)

and for the divergence operator of a vector field A ≡ Ann +Ast we obtain

∇ ·A =
1

1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)An

)
+ ∂s

(
1

1 + ερκ
As

)]
. (18)

For the inner expansions, we will use

U = U0 + εU1 + ε2U2...,

M = M0 + εM1 + ε2M2...
(19)

Moreover, in view of the last equation in (12), we will apply

F ′(U) = F ′(U0) + εF ′′(U0)U1... (20)

and introduce expansions for θ and γ respectively, as these are relevant for the first three orders
of the inner problem

θ = θ0 + εθ1 + ε2θ2...,

γ = γ(θ0) + εγ′(θ0)θ1 + ε2
(

1

2
γ′′(θ0)θ2

1 + γ′(θ0)θ2

)
....

(21)

Taylor expanding γ in ε around ε = 0 then reveals the identification

γ0 = γ(θ0) and γ1 = γ′(θ0)θ1. (22)

The last part in the last equation of (12) can be expanded as

ε2
(
γγ′
(
−Uy
Ux

)
+ γ2∇U

)
= ∂ρ

(
γ2

0∂ρU0

)
+ ε

(
t∂s
(
− γ0γ

′
0t∂ρU0 + γ2

0n∂ρU0

)
+ n∂ρ

(
γ0γ
′
0n∂sU0 + γ2

0t∂sU0

)
+ n∂ρ

(
− (γ1γ

′
0 + γ0γ

′
1) t∂ρU0 − γ0γ

′
0t∂ρU1 + 2γ0γ1n∂ρU0 + γ2

0n∂ρU1

))
....

(23)
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For further analysis it will prove useful to calculate γ0, γ1 or θ0, θ1 explicitly in view of inner
coordinates, but since the corresponding calculation is long and technical we skip it at this
point and refer the reader to Appendix A for a detailed derivation. The result is the following
representation of θ0 and θ1

θ0 =

{
atan2(n2, n1) for n1 6= 0

± π
2 for n1 = 0

(24)

and

θ1 =

 −
Us
Uρ

for n1 6= 0

0 for n1 = 0.

(25)

Hence, the leading order of θ and therefore also of γ (see (22)) are independent of ρ.
Applying the inner expansions in (12) we find that, the first two equations combined become

ε2∂τU − εvn∂ρU = ∇(m(U)∇M) (26)

with vn = ∂τR · n and where

∇ · (m(U)∇) =ε−2∂ρm(U0)∂ρ + ε−1

[
∂ρ

(
κρm(U0) +m′(U0)U1

)
∂ρ − κρ∂ρm(U0)∂ρ

]
+

[
κ2ρ2∂ρm(U0)∂ρ − κρ∂ρ

(
κρm(U0) +m′(U0)U1

)
∂ρ

+ ∂ρ

(
κρm′(U0)U1 +

1

2
m′′(U0)U2

1 +m′(U0)U2

)
∂ρ + ∂sm(U0)∂s

]
+O(ε).

(27)

All together we obtain

ε4∂τU − ε3vn∂ρU = ∂ρ (m(U0)∂ρM0)

+ ε

[
∂ρ (m(U0)∂ρM1) + ∂ρ

( (
κρm(U0) +m′(U0)U1

)
∂ρM0

)
− κρ∂ρ (m(U0)∂ρM0)

]
+ ε2

[
∂ρ(m(U0)∂ρM2) + ∂ρ

( (
κρm(U0) +m′(U0)U1

)
∂ρM1

)
− κρ∂ρ (m(U0)∂ρM1)

+ κ2ρ2∂ρ (m(U0)∂ρM0)− κρ∂ρ
( (
κρm(U0) +M ′(U0)U1

)
∂ρM0

)
+ ∂ρ

((
κρm′(U0)U1 +

1

2
m′′(U0)U2

1 +m′(U0)U2

)
∂ρM0

)
+ ∂s (m(U0)∂sM0)

]
+O(ε3).

(28)

Finally we motivate the inner asymptotic expansions for J. Taking only the first equation in
(12) we have

ε2∂τU − εvn∂ρU =
1

1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)n · J

)
+ ∂s

(
1

1 + ερκ
s · J

)]
,

which reveals that the normal component Jn = n · J is the dominant contribution of J in the
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inner evolution equation. This normal component Jn can be expanded as

Jn =
m(U)

ε
∂ρM

= ε−1m(U0)∂ρM0 +m′(U0)U1∂ρM0 +m(U0)∂ρM1

+ ε

[
m(U0)∂ρM2 +m′(U0)U1∂ρM1 +m′(U0)U2∂ρM0 +

1

2
m′′(U0)U2

1∂ρM0

]
+ ε2

[
m(U0)∂ρM3 +m′(U0)U1∂ρM2 +

(
m′(U0)U2 +

1

2
m′′(U0)U2

1

)
∂ρM1

+

(
m′(U0)U3 +m′′(U0)U1U2 +

1

6
m′′′(U0)U3

1

)
∂ρM0

]
+O(ε3).

(29)

which motivates the following inner expansions for J

J = ε−1J−1 + J0 + εJ1 + ε2J2.... (30)

Note that in the following we will refer to Jn,i as the O(εi) term of Jn.

3.3 Solutions with |u| ≤ 1

In this paper, we focus on solutions of the phase field model with |u| ≤ 1, for which existence has
been proved for the standard (isotropic) Cahn-Hilliard equation with degenerate mobilities in
[17]. On the other hand, an existence proof for the isotropic Cahn-Hilliard equation that does not
impose |u| ≤ 1 has been given in [11], and numerical solutions with regions where |u| > 1 have
been discussed in [34, 12]. These results are not in contradiction, as uniqueness cannot in general
be expected for degenerate PDEs. It is therefore reasonable to expect that these two types of
solutions also exist for the anisotropic model (12). Interestingly, for the mobility m(u) = |1−u2|
(which has simple zeros at u = ±1), the two types of solutions lead to different sharp interface
limits [34, 9], but even in the case of the biquadratic mobility m(u) = |1 − u2|2 that we use
here, there are technical differences between the two cases (resulting from the introduction of
χ, see below), so we have to make a choice before we carry out the asymptotic analysis. We
have chosen the case where u remains in the range |u| ≤ 1. This type of solutions has been
widely considered in the literature [17], where it is often argued to be physically desirable that
the phase-field variables do not exceed the values u = ±1, since these correspond to the pure
phases.

The sharp interface limit describes the long-time asymptotic quasi-stationary behaviour of
the interface. The first two orders are, in fact, stationary solutions, both in inner and outer
variables. It turns out that solutions of the stationary Cahn-Hillard equation

µ = ε2∆u− F ′(u) = const (31)

near a non-flat interface typically have solutions with values that do not remain in the range
|u| ≤ 1, see [10, 34, 12]. This can be seen particularly easily for radially symmetric solutions
of the stationary Cahn-Hillard equation [43] which usually exceed |u| = 1 in a region around
the origin until close to the (diffuse) interface [34]. This raises the question how we can carry
out a quasi-stationary limit if the solutions of the stationary Cahn-Hilliard equation exceed the
permissible range |u| ≤ 1.

The apparent contradiction can be resolved by observing that the degenerate mobility (12)
increases the range of candidates for stationary solutions, which now can be pieced together from
solutions of (31) and parts where u = 1 or u = −1. Indeed, numerical experiments carried out
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in [34] suggest that solutions of the Cahn-Hilliard equation with degenerate mobility converge
to a profile for u where u = 1 along a curve on the convex side of the interface. We follow the
example in [34] (and also refer to this article for an expanded discussion on the introduction of
χ) and assume that u and j satisfy

u = 1, j · nχ = 0, ∇u · nχ = 0, (32)

at x = χ, where nχ is the normal to χ. We thus introduce a free boundary at χ, and avoid
having to analyse the solution beyond the point x = χ where u reaches ±1.

Now let ρ = −ω(s, τ) be the position of χ in inner (i.e. ρ-) coordinates. To take (32) into
account, it is useful to introduce a second inner layer at χ in addition to the layer at x = R. This
will allow us to introduce the conditions (32) by enforcing them on the solution of the additional
layer and then matching this layer to the inner layer at x = R. For this purpose introduce shifted
inner coordinates, centered at χ, via

z = ρ+ ω(s, τ), (33)

so that the transformation between the new inner and the outer coordinates is, using (14),

x = R(s, τ) + ε(z − ω(s, τ)) n(s, τ). (34)

The corresponding inner expansions may then be written as

U = 1 + εU1 + ε2U2...,

M = M0 + εM1 + ε2M2...,

J = ε−1J−1 + J0 + εJ1 + ε2J2...

and the boundary conditions (32) become

U(0) = 1, Jz = 0, ∂zU(0) = 0, (35)

where Jz denotes the z-component of J. Note that since the position of the two inner layers
depends also on ε, the positions ω and R actually need to be expanded in terms of ε as well.
However, since we are only interested in the leading order behaviour of the interface we use ω
and R and their leading order contributions interchangeably. We now solve and match the outer
and inner problems order by order.

3.4 Matching

Leading order

For the leading order outer problem we obtain

0 = ∇ · j0, j0 = m(u0)∇µ0, µ0 = F ′(u0), (36)

and the corresponding boundary conditions are nΩ · ∇u = 0 and nΩ · j0 = 0. Since we suppose
that the ”-” phase is outside the solid film, we conclude that

u0 = −1, µ0 = 0. (37)

The leading order inner expansion reads

∂ρ(m(U0)∂ρM0) = 0, (38a)

F ′(U0)− ∂ρ
(
γ2

0∂ρU0

)
= M0. (38b)
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Integrating once in ρ, we obtain

m(U0)∂ρM0 = a1(s, τ). (39)

From the matching conditions we require

lim
ρ→∞

U0(ρ) = −1, (40)

which implies a1 ≡ 0 and therefore also M0 = 0. Moreover, from (24) we know that θ0 is constant
in ρ, which leads to

2(U3
0 − U0)− γ2

0∂ρρU0 = 0 (41)

and, by applying the phase condition U0(0) = 0 (obtained from (15)), consequently

U0 = − tanh

(
1

γ0
ρ

)
. (42)

Using M0 = 0 we also conclude that
Jn,−1 = 0. (43)

Finally it is easily seen, that from the inner expansions about χ we get

U0 = 1, M0 = 0, Jn,−1 = 0. (44)

O(ε) correction

The first two parts of the outer O(ε) correction problem for (12) are trivial, since µ0 = 0 and
m(u0) = 0 and consequently

j1 = 0. (45)

The last equation becomes
µ1 = F ′′(u0)u1 = 4u1, (46)

which we need to match to M1 in the following. As M0 = 0 we obtain for the first equation of
the inner correction problem

∂ρ(m(U0)∂ρM1) = 0, (47)

such that m(U0)∂ρM1 is constant in ρ. Comparison with (29) then reveals that (47) corresponds
to the normal flux term Jn,0, which has to match with j0 and consequently is zero. Thus M1

does not depend on ρ.
Applying curvilinear coordinates the equation for M1 reads

M1 = F ′′(U0)U1 −
(

t∂s
(
− γ0γ

′
0t∂ρU0 + γ2

0n∂ρU0

)
+ n∂ρ

(
γ0γ
′
0n∂sU0 + γ2

0t∂sU0

)
+ n∂ρ

(
− (γ1γ

′
0 + γ0γ

′
1) t∂ρU0 − γ0γ

′
0t∂ρU1 + 2γ0γ1n∂ρU0 + γ2

0n∂ρU1

))
.

(48)

Exploiting that γ0,n and t do not depend on ρ, applying the two-dimensional Frenet-Serret
formulae (16), i.e.

∂st = −κn, ∂sn = κt,

and using the ρ-independence of θ0 (see (24)) in order to calculate ∂sγ0, equation (48) becomes

M1 = F ′′(U0)U1 − κ
(
γ′′0 + γ0

)
γ0∂ρU0 + κγ′20 ∂ρU0 + 2κγ′20 ρ∂ρρU0 − γ2

0∂ρρU1. (49)
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Note that we also exploited the particular representation of θ1 in γ1 = γ′0θ1, which is

θ1 ∼ −
γ′0
γ0
ρκ, (50)

and whose derivation can be found in Appendix B. From (49) we then obtain the ordinary
differential equation

γ2
0∂ρρU1 − 2(3U2

0 − 1)U1 = −κc1γ0∂ρU0 + κc2 γ0∂ρU0 + 2κc2 γ0ρ∂ρρU0 −M1, (51)

where we substituted c1 := γ′′0 + γ0 and c2 := γ′20 /γ0. Then the general solution of (51) is given
by

U1 = C1 sech2

(
ρ

γ0

)
+ C2 sech2

(
ρ

γ0

)(
3ρ

8γ0
+

1

4
sinh

(
2ρ

γ0

)
+

1

32
sinh

(
4ρ

γ0

))
+

1

8
(2c1κ−M1) +

1

48
(2c1κ− 3M1)

(
2 cosh

(
2ρ

γ2

)
− 5 sech2

(
ρ

γ0

))
− 1

2
c2κ

(
ρ

γ0

)2

sech2

(
ρ

γ0

)
,

(52)

and including the interface condition U1(0) = 0 and boundedness as ρ → ∞ to match with the
outer solution, the two constants are given by

C1 = − 1

16
(M1 + 2c1κ), C2 =

1

3
(3M1 − 2c1κ). (53)

Finally for the inner layer about χ, according to U0 ≡ 1, we obtain F ′′(U0) = 4 and ∂ρU0 = 0.
Inserting this into the analogous equation to (49), we obtain

M1 = 4U1 − γ2
0∂zzU1, (54)

with initial conditions
U1(0) = U

′
1(0) = 0. (55)

The general solution of (54) is given by

U1 = A exp(2z) +B exp(−2z) +
M1

4
(56)

and substituting the initial conditions (55) we arrive at

U1 =
M1

4

(
1− cosh

(
2z

γ0

))
. (57)

3.4.1 Matching of exponential terms

We will now match the two interior layers. We first observe that on the one hand, from the
definition of ω(s, τ) in the paragraph before equation (33), we have that U(s, ω, τ) = 1 and
U ′(s, ω, τ) = 0. On the other hand, for ε → 0, we also have that U → U0 = − tanh (ρ/γ0) < 1
which suggests to assume ω(s, τ) → ∞ for ε → 0. Matching of the inner expansions therefore
involves exponential terms with large negative arguments ρ, which we deal with in the spirit of
Lange [32]. The corresponding method entails to explicitly match the exponentially growing and
decaying terms in the expansion. Note that this method was also considered in Lee et al. [34]
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and has been generalized to partial differential equations of higher (fourth and sixth) order in
[30]. The solution centered at the interface is expanded at ρ → −∞ and the result written and
re-expanded in terms of z = ρ + ω(s, τ). The solution for the layer around the free boundary
ξ is directly expanded in terms of z → ∞ and then the terms are matched between the two
expansions.

Expanding U0 and U1 for ρ→ −∞ and substituting ρ = z − ω gives

U0 = 1− 2e−
2
γ0
ωe

2
γ0
z︸ ︷︷ ︸

A

+O(e4z),

U1 =
1

24
(2c1κ− 3M1)e

2
γ0
ωe−

2
γ0
z︸ ︷︷ ︸

B

+
1

2
(c1κ−M1)︸ ︷︷ ︸

C

+

[(
7M1

4
− 11c1κ

6

)
+

(
3M1

2
− c1κ

)
z − ω
γ0

− 2c2κ

(
z − ω
γ0

)2
]
e−

2
γ0
ωe

2
γ0
z

︸ ︷︷ ︸
D

+O(e4z).

(58)

The inner expansion about the free boundary can be rewritten as

U = 1 +
εM1

4︸︷︷︸
E

− εM1

8
e

2
γ0
z︸ ︷︷ ︸

F

− εM1

8
e−

2
γ0
z︸ ︷︷ ︸

G

+O(ε2). (59)

The terms of the same dependence on z and ε are now matched in the expansions (58) and (59).
We first observe that the constant terms at O(1) are already matched. Matching εC and E yields

M1

4
=

1

2
(c1κ−M1), (60)

where c1 = γ′′0 + γ0 > 0, thus

M1 =
2

3
(γ′′0 + γ0)κ. (61)

Applying (61) in B reveals B = 0. Matching term A and F we arrive at

2e−
2
γ0
ω =

ε

12
(γ′′0 + γ0)κ, (62)

which we solve for ω giving

ω =
γ0

2
log

(
24

ε(γ′′0 + γ0)

)
. (63)

This asymptotic analysis shows that without the contact line χ, i.e. if we were to consider only
one inner layer about the interface and would match to the outer solution of the ”+” phase via
U ′ = 0 for ρ → −∞, we would expect an outer solution (of the ”+” phase) which tends to a
value of 1 plus a positive O(ε) term, i.e. u = 1 + cε(γ′′0 + γ0)κ + O(ε2), where c > 0 . This can
be seen by matching (46) to (61). This solution intersects u = 1 at a distance ω = O(log(1/ε))
from the interface, which is large but tends to zero in the outer variable. The assumption |u| ≤ 1
thus implies that (32) has to be satisfied in the inner variable but since ω depends, though only
logarithmically, on ε, this involves exponentially re-expanding the inner solution.

Note that at this stage, it is obvious that the matching is not yet complete to O(ε), as the
terms in (58) and (59), or to be more precise εD and G, are non-zero and lack counterparts in the
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outer expansion. Applying (63) in εD reveals that εD is of the form ε2e−
2
γ0
z which shows that

the matching at this point can only be resolved by considering the next higher order solutions U2

and Ū2. However, since this consideration does not influence the following asymptotic analysis,
we omit it at this point.

O(ε2) correction

Since m′(u0) = 0 we obtain for the outer correction problem

n · j2 = 0, (64)

and again the first two parts of (12) are automatically satisfied. In view of the outer expansions
of F ′(u) and recalling that u0 = −1, the last part requires

µ2 =
1

2
F ′′′(u0)u2

1 + F ′′(u0)u2, (65)

where F ′′′(u0) = −12 and F ′′(u0) = 4.
Considering the inner correction problem and recalling that M0,M1 are independent of ρ we

obtain for the first part of (12)
∂ρ(m(U0)∂ρM2) = 0, (66)

thus m(U0)∂ρM2 is constant in ρ and since we can identify this expression via (29) as Jn,1 which
has to match with n · j1 we find that

Jn,1 = m(U0)∂ρM2 = 0. (67)

Therefore, M2 is independent of ρ.

O(ε3) correction

Consider the inner correction problem at this point. Since we have m′(U0) = m′′(U0) = 0 we
obtain from (29) that

Jn,2 = m(U0)∂ρM3. (68)

For ρ→ −∞ the left hand side has to match with Jn,2 and the right hand side with m(1)∂ρM3,
but since Jn,2 = 0 we immediately obtain

lim
ρ→−∞

Jn,2 = lim
ρ→−∞

m(U0)∂ρM3 = 0. (69)

Moreover, Jn,2 also matches with n·j2 = 0 for ρ→∞. Considering the last part of the correction
problem for (12) and exploiting that M0,M1 and M2 are independent of ρ we find

−vn∂ρU0 = ∂ρ (m(U0)∂ρM3) + ∂s (m(U0)∂sM1)

= ∂ρ (m(U0)∂ρM3) +
2

3
∂s (m(U0)∂s(c1κ)) .

An integration over (−∞,∞) then yields

vn =
1

3
∂s

[(∫ ∞
−∞

m(U0)dρ

)
∂s (c1κ)

]
=

(
2

3

)2

∂s
[
γ0 ∂s (c1κ)

]
.

(70)
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Finally we obtain the sharp interface problem which correctly describes the anisotropic evolution
due to surface diffusion (compare to (5) in the introduction)

µ1 =
2

3
(γ0 + γ′′0 )κ,

vn =

(
2

3

)2

∂s
[
γ0∂s((γ0 + γ′′0 )κ)

]
,

(71)

on χ0.

4 Sharp interface dynamics on solid boundaries

We now focus our studies on the behavior of the anisotropic Cahn-Hilliard equation (12) in a local
domain around the contact point (xc, 0) with boundary condition (11e). The more general topic
of boundary conditions at triple junctions has already been studied by [4, 18] for the Allen-Cahn
equation and in [44] for an Allen-Cahn/Cahn-Hilliard system where in both cases the surface
energies are assumed to be isotropic which leads to Young’s law in the sharp interface limit.
Another work by Owen et al. [46] considers the boundary conditions for an Allen-Cahn gradient
flow on a solid substrate where the corresponding geometry turns out to be suitable for our
problem.

Motivated by [46] we study the behaviour of u in a box around the contact point (xc, 0).
Introducing a boundary layer and an interior layer which imply corresponding matching condi-
tions, we will show that the leading order system of (12) with boundary condition (11e) leads
to a contact angle boundary condition, which is referred to as the Young-Herring condition in
the literature [3, 38]. The subsequent analysis is given for the left contact point but carries over
correspondingly to the right contact point.

Figure 2: A sketch of the local domain.

Boundary layer near Γw We first introduce the inner variable near Γw via

η =
y

ε
, (72)

see Fig. 2, and correspondingly U b,M b, γb and θb. We expand U b(x, η) and M b into

U b = U b0 + εU b1 + ε2U b2 ...,

M b = M b
0 + εM b

1 + ε2M b
2 ....

(73)
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Moreover we find for γb the expansion

γb = γ(θb0) +εγ′(θb0)θb1 + ...

=: γb0 + εγb1 + ...
(74)

where

θb0 = lim
ε→0

atan2
(
∂ηU

b
0 , ε∂xU

b
0

)
=


+π

2 for ∂ηU
b
0 > 0,

−π2 for ∂ηU
b
0 < 0,

0 for ∂ηU
b
0 = 0,

(75)

such that γb0 = γ(θb0) = γ(±π2 ) is constant. The leading order problem of (12) then reads

0 = ∂η
(
m(U b0)∂ηM

b
0

)
, (76a)

M b
0 = F ′(U b0)− ∂η

(
(γb0)2∂ηU

b
0

)
, (76b)

with boundary conditions

(γb0)2∂ηU
b
0 =

f ′w(U b0)

λm
, m(U b0)∂ηM

b
0 = 0, (76c)

at η = 0. Considering (76a) we first observe that

a1(τ, x) = m(U b0)∂ηM
b
0 ,

where a1(τ, x) is a constant of integration and including the no-flux boundary condition at η = 0
it follows that a1(τ, x) must be zero. This also implies that either m(U b0) = 0 or ∂ηM

b
0 = 0.

Considering m(U b0) 6= 0, which corresponds to the region about the interface, we obtain that M b
0

is constant in η. Matching to M0 = 0 away from the substrate, i.e. for η → ∞, we conclude
that M b

0 must be zero as well. Note that m(U b0) = 0 corresponds to the region where U b0 = ±1,
i.e. the outer region, where M b

0 has to match with M0 = 0 anyways. Consequently we obtain for
(76b)

0 = F ′(U b0)− ∂η
(
(γb0)2∂ηU

b
0

)
. (77)

Multiplying by ∂ηU
b
0 and integrating over η then yields∫

F ′(U b0)∂ηU
b
0 dη =

∫
∂η
(
(γb0)2∂ηU

b
0

)
∂ηU

b
0 dη (78)

which, since γb0 is constant, leads to

F (U b0) =
1

2
(γb0)2

(
∂ηU

b
0

)2
+ a2(τ, x). (79)

As U b0 has to match to u0 ≡ −1 for x→ −∞, a2 must be zero as well, and consequently we have

F (U b0) =
1

2
(γb0)2

(
∂ηU

b
0

)2
. (80)

Contact line region Next we introduce an interior layer centered at the contact point (xc, 0).
We choose inner coordinates which are stretched in both directions, i.e.

ξ =
x− xc
ε

, η =
y

ε
, (81)
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and also the corresponding dependent variables and their expansions

U c = U c0 + εU c1 + ε2U c2 ...,

M c = M c
0 + εM c

1 + ε2M c
2 ....

(82)

Similar as before we have for γc the expansion

γc = γ(θc0) +εγ′(θc0)θc1 + ...

=: γc0 + εγc1 + ...
(83)

where now we have
θc0 = atan2 (∂ηU

c
0 , ∂ξU

c
0 ) . (84)

The leading order problem of (12) then reads (with ∇′ ≡ (∂ξ, ∂η))

0 = ∇′ (m(U c0 )∇′M c
0 ) , (85a)

M c
0 = F ′(U c0 )−∇′

(
γc0γ

c
0
′
(
−∂ηU c0
∂ξU c0

)
+ (γc0)2∇′U c0

)
. (85b)

and we have the leading order boundary conditions

γc0γ
c
0
′∂ξU

c
0 + (γc0)2∂ηU

c
0 =

f ′w(U c0 )

λm
, m(U c0 )∂ηM

c
0 = 0, (85c)

at η = 0. Considering an arbitrary rectangular box ΩR in [−R1/2, R1/2]× [0, R2] and integrating
(85a) over this box we obtain from Gauss’ theorem

0 =

∫
ΩR

∇′ (m(U c0 )∇′M c
0 ) dΩ =

∫
∂ΩR

(m(U c0 )∇′M c
0 ) · nΩR dΓ, (86)

which implies that m(U c0 )∂ξM
c
0 and m(U c0 )∂ηM

c
0 must be zero in the whole of [−R1/2, R1/2]×

[0, R2]. Considering m(U c0 ) 6= 0 this reveals that M c
0 must be constant and matching to M b

0 = 0
for ξ → ∞ and to M0 = 0 for η → ∞ we obtain that M c

0 must be zero as well. Conversely
m(U c0 ) = 0 corresponds to the pure phases where M c

0 is constant as well and the same matching
arguments lead to M c

0 = 0. Consider now a box R of size R1 in the ξ-direction and R2 in the η
direction (see Fig. 2). Multiplying (85b) by ∂ξU

c
0 and integrating over R then leads to∫∫

R

∂ξU
c
0F
′(U c0 ) =

∫∫
R

∂ξU
c
0

[
∂ξ
(
−γc0γc0

′∂ηU
c
0 + (γc0)2∂ξU

c
0

)
+ ∂η

(
γc0γ

c
0
′∂ξU

c
0 + (γc0)2∂ηU

c
0

) ]
,

(87)

which can be rewritten as

(LHS) :=

∫∫
R

∂ξ

[
F (U c0 ) +

1

2
(γc0)2 (∂ηU

c
0 )

2 − 1

2
(γc0)2 (∂ξU

c
0 )

2
+ γc0γ

c
0
′∂ξU

c
0∂ηU

c
0

]
=

∫∫
R

∂η

[
∂ξU

c
0

(
γc0γ

c
0
′∂ξU

c
0 + (γc0)2∂ηU

c
0

) ]
=: (RHS)

(88)

where we exploited that

1

2
∂ξ(γ

c
0)2 = γc0γ

c
0
′ ∂ξ∂ηU

c
0∂ξU

c
0 − ∂ξξU c0∂ηU c0

(∂ξU c0 )
2

+ (∂ηU c0 )
2 .
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We first consider the left-hand side (LHS) of (88), integrate in ξ and apply that ∂ξU
c
0 → 0 as

|ξ| → ∞, since
∫
|∇u|2 is finite for finite energy solutions, giving

lim
R1,R2→∞

(LHS) = lim
R1→∞

∫ ∞
0

[
F (U c0 ) +

1

2
(γc0)2 (∂ηU

c
0 )

2

]R1
2

−R1
2

dη. (89)

In order to match U c0 with U b0 for large ξ we have the matching conditions

lim
ξ→+∞

U c0 = lim
x→x+

c

U b0(x, η) =: U b+0 (xc, η),

lim
ξ→−∞

U c0 = lim
x→x−c

U b0(x, η) =: U b−0 (xc, η),
(90)

where U b+0 denotes the solution which corresponds to the side of the ”+” phase and U b−0 the
solution which corresponds to the side of the ”−” phase. Moreover, recalling (80) and (75) we
obtain

∂ηU
b+
0 =

1

|γb0|

√
2F (U b+0 ), and ∂ηU

b−
0 = − 1

|γb0|

√
2F (U b−0 ). (91)

We then obtain for (89)

lim
R1,R2→∞

(LHS) =

∫ ∞
0

2F (U b+0 (xc, η)) dη −
∫ ∞

0

2F (U b−0 (xc, η)) dη

=
√

2|γb0|
(∫ 1

0

√
F (t) dt+

∫ −1

0

√
F (t) dt

)
= |γb0|

(
2

3
− 2

3

)
= 0

(92)

where we also applied the specific form of F (u) = 1
2 (1− u2)2.

Considering the right hand side (RHS) of (88) we first obtain after integrating in η and
including the boundary condition (85c)

(RHS) =

[ ∫ R1/2

−R1/2

∂ξU
c
0

(
γc0γ

c
0
′∂ξU

c
0 + (γc0)2∂ηU

c
0

)
dξ

]R2

0

=

∫ R1/2

−R1/2

∂ξU
c
0

(
γc0γ

c
0
′∂ξU

c
0 + (γc0)2∂ηU

c
0

)
dξ

∣∣∣∣
R2︸ ︷︷ ︸

I

−
∫ R1/2

−R1/2

∂ξU
c
0

f ′w(U c0 )

λm
dξ︸ ︷︷ ︸

II

where (II) in the limit R1, R2 →∞ is

lim
R1,R2→∞

(II) =
1

λm

∫ 1

−1

f ′w(t) dt =
1

λm
(σFS − σV S). (93)

Analysing (I) we continue by transforming into a local coordinate system that is aligned with
the tangent and normal direction to the film/vapor interface at (xc, 0) (see Fig. 3), that is

ρ = −ξ sinα + η cosα

ς = ξ cosα + η sinα
(94)
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Figure 3: A sketch of the coordinate transformation.

and consequently
∂ξ = − sinα∂ρ + cosα∂ς

∂η = cosα∂ρ + sinα∂ς .
(95)

Here α ∈ (0, π) denotes the contact angle on the right hand side of the thin solid film which has
negative sign due to the geometric orientation (see Fig. 3). The transformed integral then reads

(I) =

∫ −R1
2 sinα+R2 cosα

R1
2 sinα+R2 cosα

S dρ (96)

where

S =γc0γ
c
0
′
(
− sinα (∂ρU

c
0 )

2
+ 2 cosα∂ρU

c
0∂ςU

c
0 −

cos2 α

sinα
∂ς (U c0 )

2

)
+ (γc0)2

(
cosα∂ρ (U c0 )

2
+

(
sinα− cos2 α

sinα

)
∂ρU

c
0∂ςU

c
0 − cosα∂ς (U c0 )

2

) (97)

For ς →∞ the leading order U c0 has to match with the solution U0 in (42). Since this is constant
in ς, we can conclude that limς→∞ ∂ςU

c
0 = 0. Taking the limit R1 →∞, R2 →∞ as in

lim
R1,R2→∞

(I) = lim
a→∞

lim
R1→∞
R2→∞

|R1 sinα+R2 cosα| < a

∫ −R1
2 sinα+R2 cosα

R1
2 sinα+R2 cosα

S dρ, (98)

which ensures that we don’t match “into the substrate”, we obtain

lim
R1,R2→∞

(I) = −
(
−γc0γc0

′ sinα+ (γc0)
2

cosα
)∫ ∞
−∞

(∂ρU
c
0 )

2
dρ (99)

where we applied that

lim
ς→∞

γc0 = lim
ς→∞

γ(θc0) = γ(atan2 (cosα,− sinα)),

lim
ς→∞

γc
′

0 = lim
ς→∞

γ′(θc0) = γ′(atan2 (cosα,− sinα)),
(100)
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and consequently limς→∞ γc0 and limς→∞ γc
′

0 are constant in ς and ρ. Moreover, note that θc0
and α are related by

θc0 =

{
α+ π

2 for α ≤ π
2

α− 3π
2 for α > π

2

. (101)

Recalling that S corresponds to the integrand of (I) in (RHS) evaluated at η = R2, we obtain
that for large R2 (due to matching to (80))

∂ρU
c
0 = − 1

γ0

√
2F (U c0 ), (102)

which reveals that ∫ ∞
−∞

(∂ρU
c
0 )

2
dρ = −

√
2

γ2
0

∫ ∞
−∞

√
F (U c0 )∂ρU

c
0 dρ

= −
√

2

γ0

∫ −1

1

√
F (t) dt =

1

γ0

4

3
.

(103)

By merging the results for (LHS) and (RHS) in (88) we obtain

0 =
4

3
(−γ0

′ sinα+ γ0 cosα)− 1

λm
(σV S − σFS) (104)

with α ∈ (0, π), which is, after applying the correct mixing energy λm, referred to as Young-
Herring condition. Note that the same condition holds at the right contact point if we replace
α by αR. Herring [22] derived the anisotropic contact angle condition for the interception point
of up to three interfaces by the method of virtual displacement. Another derivation of (104) is
given in [38] where a variational approach is applied with the addition of mass conservation.

If the surface energy is isotropic, i.e. γ = 1, then (104) reduces to the Young’s equation (6)
if we notice that the film/vapor interface energy σFV in this case is given by the integral of
the square of the gradient of the inner solution across the interface layer, that is, by λm times
the integral in (103), see for example [39]; thus σFV = 4λm/3. Moreover, in the case of weak
anisotropy, γ+ γ′′ > 0, equation (104) has a unique solution α, since then, the right hand side is
a strictly monotonically decreasing function of α ∈ (0, π) as can be seen by taking the derivative
with respect to α.

Balance of flux condition For the sake of completeness we also need a balance of flux
condition which matches the flux of the boundary layer near Γw to the flux in the outer region.
To this end let Jb be the flux in the boundary layer near Γw and let Jc be the flux in the contact
line region. Similar as before, consider now a box R of size R1 in the ξ-direction and R2 in the η
direction (see Fig. 2). The size will later be taken to infinity while still ensuring that it remains
within the inner region, that is, εR1 � 1, εR2 � 1. By the divergence theorem and the no-flux
condition at the wall we have that∫ R2

0

[
Jc · eξ

]R1/2

−R1/2

dη +

∫ R1/2

−R1/2

Jc · eη
∣∣∣∣
R2

dξ = 0. (105)

On the one hand, the terms in the expansion of Jc · eξ|∞ have to match with Jb · ex away from
the contact point (xc, 0), i.e.

Jb · ex = m(U b)∂xM
b. (106)
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Since we may assume that for large R1 we have U b0 ≡ ±1, which implies m(U b0) = 0 as well as
m′(U b0) = 0, and recalling that M b

0 = 0 we obtain that the expansions for Jb are zero up to at
least O(ε3). On the other hand, the terms in Jc · eη|∞ have to match with those in J · ey|0.
According to (17) we know that J · ey in curvilinear coordinates reads

J · ey = m(U)

[
n2ε
−1∂ρM(U)− n1

1 + ερκ
∂sM(U)

]
, (107)

and since M0 ≡ 0 and M1,M2 are independent of ρ, the dominant terms of (107) are of O(ε2)

J · ey = ε2m(U0) (n2∂ρM3 − n1∂sM1) +O(ε3), (108)

In total, therefore, the leading order condition that follows from (105) is

0 =

∫ ∞
−∞

m(U0) (n2∂ρM3 − n1∂sM1)

∣∣∣∣
R2

dρ

= C∂s [(γ0 + γ′′0 )κ]

∫ ∞
−∞

m(U0)dρ ,

where C is a constant and we have used (69), (61) and also assumed to pass over in a similar
way as in (96) in order to stay inside the box all the time. By virtue of (42), the integral is finite,
thus

∂s [(γ0 + γ′′0 )κ] = 0 (109)

at the contact line. Notice that via (61), this condition is equivalent to requiring the leading
order tangential flux (from surface diffusion) along the interface Γ to be zero at the contact line.

5 Numerical results

In this section we present the numerical results from a finite element based simulation in MAT-
LAB. The system is solved by an operator splitting ansatz and exploits a diffuse boundary
approximation at the solid substrate, similar as in [36, 35]. To be more precise, for the numerical
consideration, we introduce an additional boundary layer at Γw with thickness εy � 1 and use a
surface delta function for the wall energy density (4) such that we can formally rewrite the total
free energy (2) on Ω1 in one integral

W ε =

∫
Ω1

fFV + δΓwfw dΩ1,

where δΓw satisfies ∫
Ω1

hδΓw dΩ1 ≈
∫

Γw

h dΓ,

for any smooth function h. Calculating the first variation of the free energy functional thus leads
to the chemical potential

µ = F ′(u) + δΓwε
f ′w
λm
− ε2∇ ·

(
γγ′
(
−uy
ux

)
+ γ2∇u

)
,

which entails that the natural boundary conditions for the approximate problem are simple
homogeneous Neumann boundary conditions

∂u

∂y
= 0,

∂µ

∂y
= 0,
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Figure 4: Numerical result showing the evolution of two thin films with different mobility where
ε = 0.01 at a) t = 0, b) t = 1, c) t = 10, d) t = 50, e) t = 100, f) t = 150. In c) it is clearly
visible how the film corresponding to the mobility m(u) = (1 − u2)2 (pink solid line) forms a
little valley in the middle whereas the film corresponding to the mobility m(u) = 1 − u2 (blue
dashed line) moves upwards at x = 0. In e) and f) the corresponding equilibrium shape, which
is a truncated circle, is displayed (green dotted line), which shows, that the film corresponding
to the mobility m(u) = 1− u2 achieves its equilibrium much faster.

at y = 0. Note that these are easy to handle from a numerical point of view. It remains to show
that the present model recovers the original equation (11) subject to the boundary conditions
(11e) and (11f), which can be done via matched asymptotic expansions but but which we don’t
want to discuss further at this point.

As a discrete basis we implement standard piecewise linear finite elements (P1). We choose
the grid width according to the size of ε. In particular, in order to achieve a good resolution we
choose dx = dy ≈ ε/5. Moreover we discretize the time via

∂tu ≈
u(x, t+ τ)− u(x, t)

τ
,

where τ is the time-step size and treat most of the nonlinear functions, such as m(u)∇µ and the
anisotropic part of µ, semi-implicitly in time. The only nonlinear functions which are treated
explicitly in time are F ′(u) and the part corresponding to the diffuse boundary approximation in
µ. The resulting code turned out to have good stability properties for time-step sizes τ = O(ε2).
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The main aim of the present Section is to show how the mobility influences the evolution. As
motivated in the introduction, the frequently applied mobility m(u) = 1 − u2 does not lead to
motion by pure surface diffusion in the sharp interface limit of the present model. Instead, the
sharp interface limits which we derived in Section 3 show that the mobility (11d), i.e. m(u) =
(1−u2)2 turns out to recover this physical process correctly. In the following we will document the
difference of these two particular mobilities by comparing the zero-level sets of the corresponding
phase field functions.

We start with a comparison motivated by a simulation given in [25]. Considering the isotropic
case of (11a)- (11f), Jiang et. al simulate the evolution of a retracting solid film with mobility
m(u) = 1− u2, as shown in Fig. 4 in [25]. In order to compare to this result, we chose a similar
setting, i.e. we confine ourselves to the isotropic case, define an initial state which is a rectangle,
located in [−0.5, 0.5]× [0, 2] of a [−0.7, 0.7]× [0, 0.7] computational domain, chose ε = 0.01 and
the Young contact angle α = 3π/4. The mesh size is dx = dy = 0.002 and the time step is fixed
as τ = 5 · 10−5. The equilibrium shape of the thin film island is again a predictable truncated
circle.

The simulation, see Fig. 4, shows how the film which corresponds to the mobility m(u) =
1− u2 evolves clearly faster than the film corresponding to m(u) = (1− u2)2. In particular the
film with m(u) = 1−u2 achieves its equilibrium at approximately t = 100, see Fig. 4 e), whereas
the film corresponding to m(u) = (1−u2)2 needs significantly longer. Furthermore the evolution
corresponding to m(u) = 1 − u2 is in good qualitative agreement with the simulation given in
Fig. 4 in the reference [25], which suggests the correctness of the numerical algorithm.

Observing that the evolution corresponding to the model with m(u) = (1− u2)2 is not only
slower in general but also differs qualitatively in view of the valley which forms in the middle of
the film, see Fig. 4 c), the question naturally arises as to whether there is a critical film length
at which the faster film contracts to a single droplet whereas the slower film pinches off. The
answer is yes, as shown in Figure 5. Here we simulated a fourfold anisotropic surface energy
with strength G = 0.05. The other parameters are θc = 3π/4, ε = 0.02, dx = dy = 0.002 and
τ = 0.001. As expected the film corresponding to m(u) = 1 − u2 forms a single equilibrium
crystal, whereas the film corresponding to m(u) = (1 − u2)2 pinches off. The Figure shows in
addition the exact equilibrium shape, which is determined by the Winterbottom construction
[59].

6 Conclusion

In the present work we have investigated a two-dimensional phase-field model describing the
dewetting of a solid film from a solid substrate. The main goal was to establish the connection
between the phase-field model and the corresponding sharp-interface model in the limit as ε→ 0
for a mobility where surface diffusion is recovered as the dominant driving mechanism for the
contact-line dynamics of the dewetting film. This requires an asymptotic analysis that allows us
to incorporate multiple boundary and interfacial layers that occur in the sharp-interface limit as
well as techniques of exponential matching, both in the isotropic and the anisotropic case.

We established that by using exponential asymptotic matching the bi-quadratic mobility
combined with the bi-quadratic bulk free energy density yields the correct limiting model as
ε → 0. We note that this is in contrast to the frequently applied quadratic mobility, which
leads to sharp-interface models, where a contribution from a non-linear, porous medium like
bulk diffusion enters the driving force at the same order of magnitude as surface diffusion, as it
also has previously been shown in [34].
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Figure 5: Numerical comparison between the evolution with mobility m(u) = (1 − u2)2 and
m(u) = 1− u2 where ε = 0.02, dx = dy = 0.002 and τ = 0.001 at a) t = 0, b) t = 1, c) t = 5, d)
t = 10 and e) t = 20. The mobility m(u) = 1 − u2 leads to the formation of one single crystal
whereas the mobility m(u) = (1− u2)2 results in film pinch-off.
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In addition, since the solid dewetting problem considered here includes boundary conditions
at a solid substrate, another appropriate matching procedure has to be provided in order to
derive the sharp interface limits at this solid boundary. We introduced another inner layer about
the boundary Γw and presented an asymptotic analysis which refers to a particular geometry
allowing to match the inner and outer layers without matching ”into the substrate”, which is not
defined. The result is that the sharp interface limits of the boundary conditions at the substrate
recover the Young-Herring equation for the contact angle, and Young’s equation in the isotropic
case.

Finally, we presented numerical simulations for various initial states which address the ques-
tion of how the mobility influences the evolution. We compared the results with mobility (11d)
to the simulations with mobility m(u) = 1− u2 and demonstrated a significant difference. Con-
sidering a fourfold symmetry, for example, leads to film pinch-off in the one case and complete
film retraction in the other case.

The work here has focused on the two-dimensional phase-field formulation, while practical
situations are three dimensional. Generalisation of the phase-field model to three dimensions
require expressing the surface tension coefficient γ dependence directly in terms of ∇u instead
of through θ. We anticipate that the sharp interface limit will lead to 3D generalisations of (70),
see [5] and [35] and references therein.

We also note that from liquid dewetting studies it is known that the, typically degenerate,
mobility of the governing fourth order parabolic thin film equation does not only control the
dewetting rates but also decides the morphology and scale of the contact-line instability that
arises eventually [2]. In principle, similar scenarios have to be explored here. Moreover, in
combination with the anisotropic nature of the solid film, such as for example Si, the evolution
of the contact line instability becomes particularly interesting and, according to experimental
results [15], depends on the crystalline orientation relative to the contact line. For comparisons
to realistic experimental results of dewetting solid films, such as crystalline Si films used for
nanopatterning surfaces, the extension of the present phase field model to three space dimensions
is desirable.
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A Inner expansions for θ

We first consider ux = 0. In inner coordinates this is equivalent to

ε−1n1Uρ + (1 + ερκ)−1t1Us = 0

for all ε > 0, which can be rewritten to

n1Uρ + ε(ρκn1Uρ + t1Us) = 0.

As this is a polynomial in ε it is zero for all ε if an only if

n1Uρ = 0 ∧ ρκn1Uρ + t1Us = 0.
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Since we consider the inner problem at the interface, which describes phase transition we can
assume that Uρ 6= 0 and the condition can be rewritten as

n1 = 0 ∧ Us = 0, (110)

where we also exploited that t1 = n2 6= 0 since (n1, n2) = 0 cannot occur in inner coordinates,
i.e. near the interface. Consequently we obtain that from ux = 0 it follows that n1 = −t2 = 0 in
inner coordinates, thus uy reads

uy = ε−1n2Uρ + (1 + ερκ)−1t2Us = ε−1n2Uρ.

Exploiting the definition of θ, i.e. (9) we then obtain that for ux = 0 we have

θ = θ0(uy) =

{
+ π

2 for n2Uρ > 0

− π
2 for n2Uρ < 0

(111)

where we also exploited that n2Uρ 6= 0. Finally, since γ(θ) = γ(−θ) we obtain that γ = γ0 = γ(θ0)
is constant and in particular independent of ρ.

We now consider ux 6= 0.
According to (110) this implies either n1 6= 0 or Us 6= 0. We first consider n1 6= 0. In inner
coordinates and exploiting (t1, t2) = (n2,−n1), as well as n2

1 + n2
2 = 1, we have

uy
ux

=
ε−1n2Uρ + (1 + ερκ)−1t2Us
ε−1n1Uρ + (1 + ερκ)−1t1Us

=
ε−1n2Uρ + ρκn2Uρ + t2Us
ε−1n1Uρ + ρκn1Uρ + t1Us

=
n2Uρ + ε (ρκn2Uρ + t2Us)

n1Uρ + ε (ρκn1Uρ + t1Us)
∼ n2

n1
− ε Us

n2
1Uρ

.

A Taylor-expansion of θ at ε = 0 then leads to

θ = atan2 (n2, n1)− εUs
Uρ

+O(ε2) (112)

which reveals the identification

θ0 = atan2 (n2, n1) and θ1 = −Us
Uρ
. (113)

On the other hand, for n1 = −t2 = 0 and Us 6= 0, we have

uy
ux

= ε−1Uρ
Us

+ ρκ
Uρ
Us

such that in the limit ε→ 0 we obtain

θ = θ0 = sign

(
Uρ
Us

)
π

2
. (114)

Finally we conclude that

θ0 =

{
atan2(n2, n1) for n1 6= 0

± π
2 for n1 = 0

(115)

and

θ1 =

 −
Us
Uρ

for n1 6= 0

0 for n1 = 0.

(116)
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B Inner expansion for θ1 in view of U0

We consider n1 6= 0. From (25) we already know that

θ1 = −Us
Uρ
∼ −∂sU0

∂ρU0
. (117)

Exploiting the leading order representation of U , i.e.

U0 = − tanh

(
1

γ0
ρ

)
we calculate

∂sU0 = (1 + U2
0 )
ρ ∂sγ0

γ2
0

∂ρU0 = −(1 + U2
0 )

1

γ0

(118)

and since γ0 = γ(atan2(n2, n1)) we obtain from the Frenet-Serret formulae (16)

∂sγ0 = γ′0
n1∂sn2 − n2∂sn1

n2
1 + n2

2

= −γ′0κ. (119)

Applying (118) and (119) in (117) then gives

θ1 ∼ −
γ′0
γ0
ρκ. (120)

Note that in the case n1 = 0 the leading order of γ is constant and in particular independent of
s and ρ. Consequently the representation (120) can be applied to this case as well as it is zero
and this is consistent with (116).
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