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Abstract

Fabric anisotropy has a significant influence on the mechanical behavior of sand. An anisotropic plasticity model incor-

porating fabric evolution is formulated in this study. Information on the overall stress–strain relationship and microme-

chanical fabric states from DEM numerical tests is used in the development of the constitutive model, overcoming the

difficulties of fabric measurement in physical tests. The framework of the model and its formulations for fabric evolution,

plasticity, and dilatancy enables it to capture the strength, shear modulus, and dilatancy of sand under both monotonic and

cyclic loading. The model is validated against DEM numerical tests and physical laboratory tests on samples with different

initial fabric, showing good agreement between the simulation and test results for the anisotropic stress–strain behavior of

sand. The use of DEM test data also allows for the validation of the model on the micromechanical fabric level, showing

that the model can reproduce the fabric evolution and its influence on key constitutive features reasonably well. The model

is further applied to analyze the liquefaction behavior of sand, exhibiting the significant influence of fabric anisotropy on

both liquefaction resistance and postliquefaction shear deformation.
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1 Introduction

Anisotropy has long been acknowledged to be a salient

feature of sand [8]. Sand deposited under gravity or sub-

jected to anisotropic stress inevitably exhibits anisotropy in

strength and deformation (e.g., [1, 3, 42, 61, 77, 79, 80]).

As possible consequences of such anisotropic characteris-

tics, the bearing capacity and earth pressure of sand can be

significantly directional dependent [4, 7, 49]. Yoshimine

et al. [88] showed that under undrained monotonic shearing

in various directions, sand behavior can range from mostly

dilative hardening to strongly contractive, approaching

static liquefaction.

Due to its significance and unavoidable nature, a myriad

of studies have been focused on various aspects of sand

anisotropy. Research on strength anisotropy has been car-

ried out to establish mathematical formulations for the

anisotropic strength criterion of sand (e.g.,

[18, 20, 27, 33, 39, 53]). The influence of anisotropy on

dilatancy has been analyzed (e.g., [25, 43, 69, 88]), with

strong evidence indicating dilatancy to be directional

dependent. Anisotropy in the small strain behavior of sand

has also been investigated [21, 24, 32]. These important

advances in different facets of anisotropic sand behavior

undoubtedly contribute to the development of anisotropic

constitutive models.

The origin of the anisotropic behavior of sand lies within

the microstructural fabric of the material [13, 46, 56]. Two

approaches for constitutive model development have been

adopted to incorporate the anisotropic fabric and

microstructure of soil. One approach introduces assump-

tions for the kinematic and mechanical characteristics of
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sand at the microlevel, such as the particle, particle group,

or generically oriented plane levels [29, 30, 40]. The

microlevel behavior is then integrated to obtain the mac-

rolevel stress–strain relationship (e.g., [9, 10, 44, 50]).

Although this approach avoids most of the assumptions at

the macrolevel, the assumptions made at the microlevel,

which serves as an intermediary between actual granular

sand and the continuum constitutive model, are nonetheless

difficult to validate and calibrate. Another approach is to

introduce a statistical representation of the microstructural

fabric of sand to the continuum constitutive formulations

(e.g., [15, 35, 47, 64, 65, 79, 85]), often making assump-

tions for the dependency of stress–strain relationship on the

fabric tensor [57]. This approach requires quantification of

the fabric tensor and its evolution and more importantly

understanding of its role in various continuum constitutive

components.

Although measuring fabric in physical tests is still

technically challenging, virtual numerical tests through

methods such as DEM (discrete element method [14]) have

become an important means complementary to physical

tests in the quantification and understanding of fabric in

sand [17, 22, 31, 34, 45, 62, 71]. Aided by observations

from DEM tests, Li and Dafalias [36] proposed the ani-

sotropic critical state theory (ACST). ACST adds a fabric

anisotropy condition to the classical critical state theory

and introduces the influence of fabric anisotropy and its

evolution on the state of sand. These advances have pro-

moted rapid development in fabric tensor-based anisotropic

plasticity models. Such models have been upgraded from

only being able to consider inherent anisotropy with fixed

fabric tensors [15, 35, 47] to incorporating the evolution of

fabric [19, 51, 52, 78, 91].

Due to limitations in physical test measurement, fabric

tensor-based anisotropic plasticity models have mostly

only been validated indirectly against physical test results

on the macrostress–strain relationship level, while quanti-

tative validation of the micromechanical assumptions for

fabric evolution and its influence on important constitutive

components such as modulus and dilatancy has rarely been

conducted [26]. DEM numerical test data can be adopted to

validate the fabric anisotropy-related assumptions made for

these models. On the other hand, existing anisotropic

plasticity models have mostly been formulated and applied

for monotonic loading, with little consideration for the

influence of fabric anisotropy on the cyclic behavior of

sand. However, evidence has suggested that fabric aniso-

tropy can significantly affect the liquefaction resistance of

sand and should be considered in the modeling of cyclic

sand behavior [75, 76, 80, 86, 87].

This study aims to develop a plasticity model incorpo-

rating fabric evolution for monotonic and cyclic sand

behavior and utilizes quantitative micromechanical

information obtained through DEM numerical tests in the

development and validation of the continuum-based con-

stitutive model. Section 2 of this paper discusses the

influence of fabric anisotropy and its evolution on the

strength, shear modulus, and dilatancy of sand using DEM

test data. Based on these understandings, the detailed

multiaxial formulation of the proposed model is presented

in Sect. 3. In Sect. 4, the model is validated for both

macrolevel stress–strain relationships and microlevel fabric

evolution against DEM numerical and laboratory physical

test data and is then used to analyze the influence of fabric

anisotropy on the liquefaction behavior of sand. The stress

and strain in this study follow conventional soil mechanics

sign conventions with compression being positive. Tensors

are denoted by bold letters to distinguish them from plain

scalars.

2 Observations on anisotropic behavior
of sand in DEM

DEM is a powerful tool in assisting to bridge the gap

between macroscopic anisotropic behavior of sand and its

microscopic fabric origins. Results from 3D DEM triaxial

tests conducted using the widely adopted open-source code

Yade [60] are used to illustrate the influence of fabric and

its evolution on several key constitutive components in this

section, namely strength, modulus, and dilatancy. Four

tests are conducted on samples with almost the same initial

void ratio of 0.657 ± 0.005 but different bedding plane

angles of 0�, 30�, 60�, and 90�, respectively. The bedding

plane angle d here refers to the angle between the major

principal stress in triaxial loading and the deposition

direction, as illustrated in Fig. 1a. The vertical axis is the

major principal stress axis. Over 200,000 particles

(Table 1) are first randomly generated and deposited under

gravity. Four samples consisting of approximately 40,000

particles each are cut out from the deposit after rotating it

by 0�, 30�, 60�, and 90� angles, respectively, and are

isotropically consolidated under mean effective stress

p = 100 kPa. Constant p drained triaxial numerical test is

then conducted on each sample through strain-controlled

servomechanism loading using rigid walls.

3D clumped particles with aspect ratio of 1.5:1 formed

by two rigidly connected identical overlapping spherical

particles are used in the numerical tests. Linear elastic–

plastic contact is used with contact parameters in Table 1,

and the loading walls are frictionless to limit boundary

effects. The loading rate guarantees quasi-static conditions

with the inertial number smaller than 1.0 9 10-5 [41]. The

homogeneity of the samples is evaluated by comparing the

state of the sample at various subdomains following the

procedures proposed by Fu and Dafalias [18].
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Figure 1b plots the measured [5] deviatoric stress ratio g

at both the peak and critical states for the four samples with

different bedding plane angles. Here, the deviatoric stress

ratio g = q/p, with q = r1–r3 and p = (r1 ? r2 ? r3)/3,

while r1, r2, and r3 are the principal stress values. The

peak g shows clear dependency on bedding plane angle,

which reflects initial fabric orientation. The peak g for

samples with lower d is significantly greater, agreeing with

existing laboratory and DEM test results [23, 46, 64, 83].

At the critical state, g becomes the same under triaxial

compression regardless of the initial bedding plane angle,

conforming to the critical state theory. The critical state is

determined according to its definition, as the state when the

sample approaches constant void ratio while continuing to

deform in shear under constant stress [55, 58]. The

macroscopic stress–strain response of the tests is in more

detail in Sect. 4 in comparison with constitutive model

simulations.

The influence of fabric anisotropy on the shear modulus

of sand can also be investigated using the numerical tests.

An equivalent shear modulus, represented by the deviatoric

stress increment divided by the deviatoric strain increment

dq/deq, at different deviatoric strain values, is plotted in

Fig. 2. The deviatoric strain eq = (2/9((e1 - e2)
2-

? (e2 - e3)
2
? (e1 - e3)

2))1/2, where e1, e2, and e3 are the

three principal strain values. At the initial state, the

equivalent shear modulus decreases with increasing d,

agreeing with the test observations by Yang et al. [82] on

sand. As deviatoric strain increases, not only does the

equivalent shear modulus decrease, the difference in

equivalent shear modulus between the four samples also

reduces. At eq = 0.1, the difference becomes almost

indistinguishable. At the critical state, the equivalent shear

modulus becomes zero, irrespective of the bedding plane

angle.

The dilatancy D at different deviatoric strain values is

plotted in Fig. 3. The dilatancy D = dev
p/deq

p, where the

superscript p indicates plastic strain. The plastic strain is

calculated by subtracting the elastic strain increment from

the total strain in DEM, following Wan and Pinheiro [67].

The dilatancy at the initial state shows strong bedding

plane angle dependency, with dilatancy increasing with

increasing bedding plane angle, indicating stronger con-

traction. As loading progresses, the samples become dila-

tive with negative dilatancy, and the samples with lower d

become dilative at smaller deviatoric strain values. The
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Fig. 1 Influence of bedding plane angle on the strength of granular

material: a schematic illustration of triaxial loading on a sample with

bedding plane angle d; b peak and critical state deviatoric stress ratio

g in constant p = 100 kPa drained triaxial 3D DEM numerical tests

on for four samples with ein = 0.657 ± 0.005 and bedding plane

angles of 0�, 30�, 60�, and 90�

Table 1 DEM test parameters

Parameter dmin dmax d50 Aspect ratio Kn Ks Particle friction angle

Value 0.115 mm 0.305 mm 0.235 mm 1.5:1 2.5 9 105d kN/m2 0.75 9 105d kN/m2 35�

εq = 0.005

Critical stateεq = 0.01

Initial state

εq = 0.1
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Fig. 2 Influence of bedding plane angle d on the shear modulus,

reflected by dq/deq, at various states in constant p = 100 kPa drained

triaxial 3D DEM numerical tests on for four samples with

ein = 0.657 ± 0.005 and bedding plane angles of 0�, 30�, 60�, and 90�
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difference in dilatancy for samples with different d grad-

ually diminishes after reaching the dilative phase. At the

critical state, the dilatancy of all four samples becomes

zero. The observed influence of d on D agrees with the

implications from the test results of Yoshimine et al. [88]

and Nakata et al. [43] and qualitatively supports the

dependency of dilatancy on fabric anisotropy proposed by

Li and Dafalias [36].

The analysis on strength, shear modulus, and dilatancy

indicates that these key constitutive components are sig-

nificantly dependent on the bedding plane angle during the

early stage of loading, but this dependency disappears as

the samples approach the critical state. The origin of such

behavior lies within the samples’ fabric states and their

evolution, the quantification of which is a major advantage

of DEM numerical testing. Fabric tensors of sand can be

defined based on different particle-scale features, including

contact normal directions, particle orientations, and void

orientations. In this study, we mainly focus on the contact

normal fabric tensor, which has been found to be closely

related to dilatancy anisotropy [69]. The deviatoric contact

normal fabric tensor F is calculated based on Satake’s

formulation [57]:

F ¼ 1

1þ eð Þ
1

N

X

N

k¼1

vk � vk � 1

3
I

 !

ð1Þ

N is the number of contacts within the domain, vk is the

unit norm vector in the normal direction of the kth contact,

I is the 2nd-order identity tensor, and e is the void ratio.

The term 1 ? e is introduced as a per-volume measure,

achieving thermodynamic consistency with the continuum

definition of fabric [37]. The anisotropic critical state the-

ory suggests that a critical state fabric tensor exists as

functions of the lode angle and mean effective stress,

irrespective of the initial void ratio and fabric anisotropy

[36]. This has been supported by evidence from DEM

investigations [18, 23, 34, 71, 83]. Hence, F can be nor-

malized by its norm ||Fc|| at the critical state, resulting in a

unit norm tensor Fn at the critical state:

Fn ¼
F

jjFcjj
ð2Þ

Figure 4 presents the fabric orientation hn, norm ||Fn||,

and ||Fn|| - An at different deviatoric strain values for

samples with different d. An is an invariant of the fabric

tensor Fn and the tensor-valued unit norm deviatoric

loading direction tensor n in terms of An = Fn:n = tr(Fnn);

in triaxial loading, it is assumed n ¼
ffiffi

6
p
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Fig. 3 Influence of bedding plane angle d on dilatancy D, at various

states in constant p = 100 kPa drained triaxial 3D DEM numerical

tests on for four samples with ein = 0.657 ± 0.005 and bedding plane

angles of 0�, 30�, 60�, and 90�
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Fig. 4 Fabric at various states in constant p = 100 kPa drained

triaxial 3D DEM numerical tests on for four samples with

ein = 0.657 ± 0.005 and bedding plane angles of 0�, 30�, 60�, and

90�: a contact normal fabric orientation hn, i.e., the angle between the

major principal contact normal fabric and the horizontal plane;

b normalized contact normal fabric norm ||Fn||; c ||Fn|| - An,

An = Fn:n = tr(Fnn)
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and the relative orientation of fabric and loading directions.

Its value is between - ||Fn|| and ||Fn||, and hence

0 B ||Fn|| - An B 2||Fn||. hn is the angle between the major

principal fabric orientation and the horizontal plane. The

average ||Fc|| at the critical state is used to obtain the nor-

malized fabric in Eq. (2).

At the initial state, hn & d ? 90�, while ||Fn|| & 0.4.

||Fn|| - An is distinctly different for samples with different

bedding plane angles at the initial state (Fig. 4c). As

deviatoric strain increases, the fabric orientation hn of each

sample gradually evolves toward 90�, and the difference in

hn between the four samples gradually reduces. Difference

in norm ||Fn|| between the four samples is generated at low

deviatoric strain levels, with ||Fn|| greater for samples with

lower d. This difference in ||Fn|| reduces again at low

deviatoric strain levels. The difference in ||Fn|| - An

between the four samples gradually reduces with increas-

ing deviatoric strain. At the critical state, the fabric ori-

entation becomes the same as the loading direction, while

||Fn|| reaches unity, and ||Fn|| - An reaches zero, irrespec-

tive of the bedding plane angle. During its evolution, the

norm of the fabric tensor ||Fn||, and subsequently An, can

reach a peak beyond its critical state value (e.g., samples

with d = 0� and 30� in Fig. 4b), similar to the peak devi-

atoric stress ratio being greater than that at the critical state

for dense sand. The evolution of fabric is the origin of the

anisotropic behavior of sand observed in Figs. 1, 2, and 3.

In particular, the evolution of ||Fn|| - An for samples with

different d shows strong resemblance to the strength and

evolution of shear modulus and dilatancy. The initial dif-

ference in ||Fn|| - An of the four samples is associated with

the initial differences in stress–strain relationships. As

fabric evolves toward the same critical state, the differ-

ences in stress–strain relationship diminish along with the

difference in ||Fn|| - An. Under the same conditions, a

greater value of ||Fn|| - An corresponds to smaller modulus

and stronger contraction. This feature of ||Fn|| - An makes

it extremely useful in the formulation of constitutive

models considering fabric anisotropy.

||Fn|| - An adopted in this study is different from the

term 1 - An adopted to reflect anisotropy in many ACST-

based constitutive models. This choice is made with con-

siderations of two very appealing characteristics of the

term ||Fn|| - An: (1) ||Fn|| - An decouples the influence of

fabric anisotropy intensity and fabric orientation on ani-

sotropic behavior, as Fnk k � An ¼ Fnk k 1� nF : nð Þ. This
formulation allows for more control over anisotropic

behavior when adopted in constitutive models; (2) the

decoupling of the influence of fabric anisotropy intensity

and fabric orientation on anisotropic behavior results in

||Fn|| - An = 0 when the loading direction is the same as

that of the fabric tensor (Fig. 4). This is very appealing for

the calibration of constitutive models, where many

parameters unrelated to anisotropy can be determined via

traditional tests without the need to consider the coupled

influence of fabric anisotropy, which will be discussed in

more detail in Sect. 4. However, it should be noted that this

choice neglects the influence of fabric anisotropy intensity

on soil behavior when the loading direction is the same as

that of the fabric tensor, which is a compromise.

3 Constitutive model formulation

3.1 Basic equations and elasticity

Based on the anisotropic behavior of sand and its fabric

origins observed in the previous section, an anisotropic

plasticity model is proposed. The model builds on the

framework proposed by Wang et al. [73], which has been

proven to be highly effective in providing a unified

description of sand of different conditions from pre- to

postliquefaction under both monotonic and cyclic loading

[11, 68, 70], but does not consider anisotropy. Here, the

evolution of the fabric tensor and its influence on the

strength, shear modulus, and dilatancy of sand is incorpo-

rated into the model. The basic equations in incremental

form for the model in multiaxial stress space are:

deev ¼
dp

K
; dee ¼ ds

2G
ð3Þ

dep ¼ Lh im; depv ¼ Lh iD ð4Þ

de ¼ 1

2G
pdrþ 1

2G
rþ 1

3K
I

� �

dpþ ðmþ D

3
IÞ Lh i ð5Þ

e is the strain tensor, the volumetric strain is denoted by

ev ¼ tr(eÞ, and the deviatoric strain tensor is e ¼ e� ev=3I.

Superscripts e and p represent elastic and plastic, respec-

tively. r is the effective stress tensor, p ¼ tr(rÞ=3 is the

mean effective stress, and s ¼ r� pI is the deviatoric

stress. The deviatoric stress ratio tensor is here defined as

r ¼ s
p
, and q ¼

ffiffiffiffiffiffiffiffiffiffiffi

3
2
s : s

q

, g ¼ q

p
. K and G are the elastic bulk

and shear moduli, respectively, L is the loading index, m is

the deviatoric strain flow direction, and D is the dilatancy.

In this model, the dilatancy is decomposed into a reversible

and an irreversible part, following Zhang and Wang [87]. h
i are the Macaulay brackets with hxi ¼ x for x[ 0 and

xh i ¼ 0 for x� 0.

K and G are defined following Richart et al. [54]:

K ¼ 1þ e

j
pa

p

pa

� �1
2

ð6Þ

G ¼ Go

2:973� eð Þ2
1þ e

pa
p

pa

� �1
2

ð7Þ
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Go and j are material constants, and pa = 101 kPa is the

atmospheric pressure. Anisotropy in elastic modulus is not

considered in this study.

3.2 Plasticity

Plastic loading occurs when the load index L is greater than

zero:

L ¼ pdr : n

H
ð8Þ

n is a unit norm deviatoric tensor representing the

loading direction, which can be determined following the

mapping rule in Fig. 5. H is the plastic modulus. Figure 5

shows the three surfaces and corresponding mapping rule

of the proposed model in the p plane of the stress ratio

space. The maximum stress ratio surface serves as the

bounding surface of the model. The critical state surface

determines the ultimate critical state stress ratio. The

reversible dilatancy surface determines the stress ratio

beyond which reversible dilatancy occurs. The shape of

these three homothetic surfaces is determined by a function

g(h) of the load angle h, for which the formulation of

Zhang and Wang [90] is adopted, defined as:

gðhÞ ¼
1

1þMcð1þ sin 3h� cos2 3hÞ=6þ ðMc �MoÞ cos2 3h=Mo

ð9Þ

where Mc = M andMo are the critical state deviatoric stress

ratio at triaxial compression and simple shear, which fol-

low the relationship between these two values in the Mohr–

Coulomb criteria. The formulation of g(h) can be replaced

based on the needs to reflect different features of the

influence of intermediate stress coefficient b, which is not

the primary focus of this study, and does not affect the

overall concept of the model. The size of each surface at

h = - 30� is determined by the maximum, critical state,

and reversible dilatancy stress ratios, respectively, at the

triaxial compression state, which will be presented in the

following formulations.

For the mapping rule, n is the unit norm deviatoric

tensor normal to the maximum stress ratio surface at �r,

which is the projection of r� ain on the surface (Fig. 5).

Here, ain is the previous load reversal point and is updated

upon each load reversal to the current r, i.e., when L in

Eq. (8) becomes negative.

The plastic modulus H is defined using bounding surface

plasticity [16]:

H ¼ 2

3
hg hð ÞG expð�npWÞ

M expð�npWÞ
Mm

jj�r� ainjj
jjr� ainjj

� 1

expð�D 1ðjjFnjj � AnÞ1=2Þ

 !

ð10Þ

h is a model parameter for plastic modulus, M is the

stress ratio at critical state in triaxial compression, and is

also a model parameter. The state parameter W = e - ec
proposed by Been and Jefferies [6] is used for state

dependency behavior. The critical state void ratio ec is a

function of the mean effective stress, which is determined

as ec ¼ e0 � kcðpc=patÞn following Li and Wang [38],

where e0, kc, and n are model parameters. np is a model

parameter dictating the sensitivity of the plasticity modulus

to changes in void ratio. Mm is the equivalent maximum

stress ratio at the triaxial compression state. When the

current equivalent stress ratio g/g(h) is smaller than

Mexp(- npW), Mm is the maximum stress ratio that has

occurred during loading. If g/g(h)[Mexp(- npW), Mm-

= g/g(h) until g/g(h)\Mexp(- n
p
W) again. D1 is the

positive-valued modulus anisotropy model parameter.

3.3 Influence of fabric anisotropy on plastic
modulus

The influence of fabric anisotropy on both the strength and

shear modulus anisotropy of sand is introduced in Eq. (10)

through the term exp(- D1(||Fn|| - An)
1/2). As discussed in

Fig. 4, 0 B ||Fn|| - An B 2||Fn||, with An = Fn:n. In

Eq. (10), greater ||Fn|| - An leads to a smaller

exp(- D1(||Fn|| - An)
1/2), which results in smaller peak

deviatoric stress ratio and also smaller H, in accordance

with the DEM results shown in Figs. 1, 2, and 4. In the

constitutive model, Fn is a normalized deviatoric fabric

r1

r2 r3

n

dr

r

r

αin

rd

o

Reversible 

dilatancy surface

Critical state 

surface

Maximum stress 

ratio surface 

Fig. 5 Schematic of the maximum stress ratio surface, critical state

surface, reversible dilatancy surface, and mapping rule of the

proposed model in the p plane of the stress ratio space
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tensor corresponding to the fabric tensor in Eq. (2), the

norm of which is 1 at the critical state. The fabric evolution

equation for the model builds on the incremental formu-

lation by Li and Dafalias [36]:

dFn ¼\L[ cðn� ð1þ DÞFnÞ ð11Þ

This incremental fabric evolution formulation guaran-

tees that at the critical state, the normalized fabric tensor Fn

becomes the same as n, as suggested by the results in Fig. 4

and many other studies [18, 23, 34, 71, 83]. c is a fabric

evolution rate model parameter. The incorporation of the

dilatancy D following Yang et al. [84] allows ||Fn|| to reach

beyond 1, as observed for dense sand and in the DEM

results in Fig. 4b. The use of D to capture the fabric evo-

lution of sand with different densities has been shown to be

effective when simulating DEM test results on samples

with various densities [75]. For dense sand, peak ||Fn||

exceeds its critical state value, while for loose sand, ||Fn||

gradually increases toward its critical state value. Only one

model parameter is introduced in Eq. (11) to try and keep

the fabric evolution formulation as simple as possible for

the current model.

In the proposed model, it is assumed that the deviatoric

strain flow direction m = n, for simplicity. If the influence

of fabric anisotropy on the noncoaxiality between the strain

increment and stress is to be considered, a linear combi-

nation between n and the direction of Fn in the form of

m ¼ ðn� xFn=jjFnjjÞ=jjðn� xFn=jjFnjjÞjj may serve as

possible solution, with x being a positive parameter less

than 1. Calibration and validation of such noncoaxial

behavior should ideally be conducted for radial loading in

the p plane in different directions with respect to the fabric

orientation and more importantly, for loading with rotation

of the principal stress axes, which is not within the scope of

the current study.

3.4 Dilatancy

The dilatancy’s D is a combination of a reversible part Dre

and an irreversible part Dir following the findings of Sha-

moto et al. [59] and Zhang [89]:

D ¼ Dre þ Dir ð12Þ

This decomposition has two major benefits: (1) It allows

for separate control over contraction and dilation, which is

very important when working with cyclic loading; (2)

using the formulation of the model, it allows for the gen-

eration and eventual saturation of the postliquefaction

shear strain during undrained cyclic loading. According to

its definition, the volumetric strain epv;re caused by rever-

sible dilatancy is always nonpositive [87], generating

during loading and releasing after load reversal. Hence, Dre

is determined separately for generation and release fol-

lowing Wang et al. [73]:

Dre ¼
Dre;gen; ðrd � rÞ : n\0

Dre;rel; ðrd � rÞ : n[ 0

�

ð13Þ

rd is the intersection of �r and the reversible dilatancy

surface, i.e., rd ¼ Md

Mm
�r. Md = Mexp(ndW) is the deviatoric

stress ratio beyond which reversible dilatancy is generated

in triaxial compression. nd is a model parameter for state-

dependent dilatancy. The reversible dilatancy generation

Dre,gen follows:

Dre;gen ¼
ffiffiffi

2

3

r

dre;1 rd � rð Þ: n ð14Þ

dre;1 is a reversible dilatancy parameter. After load

reversal, reversible is released until epv;re becomes zero

again. The reversible dilatancy release Dre,rel is:

Dre;rel ¼ dre;2v
� �2

=p ð15Þ

dre;2 is a model parameter. The function v ¼

min �dir
e
p
v;re

e
p;pr
v;ir

; 1

� �

is introduced to guarantee Dre,rel = 0

after evd;re is completely released, where e
p;pr
v;ir is the irre-

versible dilatancy-induced volumetric strain e
p
v;ir at previ-

ous load reversal. dir is a irreversible dilatancy model

parameters. Prior to the first load reversal, v remains zero.

By definition, irreversible dilatancy induces nonnegative

contractive volumetric strain e
p
v;ir only. Zhang and Wang

[90] showed that e
p
v;ir accumulates asymptotically during

cyclic loading, while its accumulation rate also decreases

during every single monotonic shearing event. Based on

these observations, Wang et al. [73] proposed an isotropic

formulation for the irreversible dilatancy Dir,iso:

Dir;iso ¼ dir expðndW� aevd;irÞð\Md � g[ expðvÞ

þ 1þ cmono
cd;r\1� expðndWÞ[ Þ�2

 !

ð16Þ

a is another irreversible dilatancy model parameter. The

term 1þ cmono

cd;r\1�expðndWÞ[

� 	�2

reflects the decrease in e
p
v;ir

accumulation rate during a monotonic shearing event. cmono

is the accumulated shear strain since the last stress reversal.

cd;r is a model parameter that can be assumed to be 0.05 by

default. v is introduced to enhance contraction upon load

reversal.

3.5 Influence of fabric anisotropy on dilatancy

Figure 3 indicates that the dilatancy of sand is significantly

anisotropic, especially during contraction. To take
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dilatancy anisotropy into consideration, the irreversible

dilatancy Dir in this model is proposed as:

Dir ¼
dir þ ðjjFnjj � AnÞD 2

dir
Dir;iso ð17Þ

D2 is the positive-valued irreversible dilatancy aniso-

tropy model parameter. By adding the fabric anisotropy

term (||Fn|| - An)D2 to the isotropic irreversible dilatancy

Dir,iso in Eq. (13), the irreversible dilatancy Dir in Eq. (14)

increases in contraction with increasing ||Fn|| - An, as

indicated by the results in Figs. 3 and 4. Figures 3 and 4

also show that the bedding plane angle has only little

influence on the dilatancy during the dilative phase, which

has also been discussed in Wang et al. [75]. These obser-

vations suggest that dilatancy anisotropy should be able to

be reflected by the anisotropic irreversible dilatancy alone

in the proposed model. Hence, the influence of fabric

anisotropy on Dre is neglected.

The development of total, irreversible, and reversible

dilatancy during a typical undrained triaxial loading and

reverse loading path is plotted in Fig. 6, to visualize the

performance of the dilatancy formulation. The model

parameters for Toyoura sand, discussed later in Sect. 4, are

used here, under the undrained stress path shown in

Fig. 6a. In the model, the total dilatancy D is the sum of the

irreversible dilatancy Dir and the reversible dilatancy Dre.

At the initiation of loading, Dre remains inactive at zero

and D = Dir, being positive, i.e., contractive (Fig. 6b).

When the stress ratio exceeds the reversible dilatancy

surface in Fig. 5, reversible dilatancy Dre is generated

following Eq. (14). Also, as loading continues, Dir

decreases gradually according to Eq. (16). When the sum

of Dir and Dre becomes negative, the model exhibits overall

dilatancy, causing the undrained stress path to show

increase in mean effective stress p in Fig. 6a. Upon reverse

loading, Dir increases significantly due to the combined

effects of Eq. (16) and fabric anisotropy in Eq. (17), while

Dre follows Eq. (15) and becomes strongly contractive. Dre

quickly falls back to zero during reverse loading, and

D once again becomes the same as Dir until the stress state

reaches beyond the reversible dilatancy surface again.

3.6 Liquefaction state

A distinct feature of the models by Zhang and Wang [90]

and Wang et al. [73] is the formulation for the generation

of large yet bounded shear strain at the liquefaction state of

zero effective stress, which uniquely captures the cyclic

liquefaction behavior of sand. This formulation was pro-

posed based on the insights obtained from test observations

of cyclic drained and undrained loading of sand by Sha-

moto et al. [59] and Zhang [89], and is adopted here. At the

liquefaction state, as the increments of p and s are zero, no

elastic strains are assumed to be generated. However, dr is

not zero and the dilatancy equations are still assumed

functional. As the model reaches liquefaction state, it is

initially contractive. During the contractive phase, a ‘‘vir-

tual’’ elastic volumetric strain is generated due to

ðdeevÞvirtual ¼ dev � depv . This is to offset the inconsistency

between the plastic volumetric strain with the volumetric

strain boundary condition, which has been shown to be

caused by the change in internal structure of the material

[70]. As shear strain continues to occur at the liquefaction

state, r increases and the model eventually becomes dila-

tive. During the dilative phase, the ‘‘virtual’’ elastic volu-

metric strain must be fully erased before the model exists

liquefaction. Hence, according to Eq. (4), sufficient shear

strain must occur at the liquefaction state to facilitate the

dilatancy process, which accumulates asymptotically with

increasing number of load cycles due to the asymptotic

accumulation of irreversible dilatancy-induced volumetric

strain e
p
v;ir. This ‘‘virtual’’ elastic volumetric strain is fully

released when sand leaves liquefaction state, and does not

come into the model in nonliquefaction states, where the

sum of the elastic and plastic volumetric strain is consistent

with the volumetric strain boundary condition.
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Fig. 6 Development of total, irreversible, and reversible dilatancy

during undrained triaxial loading and reverse loading: a stress path,

q versus p, b dilatancy D versus deviatoric stress ratio g
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4 Model validation and application

4.1 Model parameters

The proposed model has a total of 17 parameters, as listed

in Table 2. In total, 14 of these parameters are identical to

those in the isotropic model by Wang et al. [73], the cali-

bration of which can also follow the same procedure as

stated in the previous work. Two of these 14 parameters,

namely dre,2 and cd,r, can generally use default values of 30

and 0.05, respectively. Three new fabric anisotropy-related

parameters, D1, D2, and c, are introduced in the proposed

anisotropic model. Two of the three new parameters, D1

and D2, can be calibrated based on results from triaxial or

torsional shear tests on samples with different bedding

plane angles, such as the tests by Oda [46] and Yoshimine

et al. [88]. The fabric evolution parameter c and the nor-

malized initial fabric tensor should ideally be obtained by

measuring the fabric of sand during loading. Though

measuring the microstructure of sand is now possible (e.g.,

[2, 66]), the application of such technology is still not yet

common. For now, the determination of the initial fabric

tensor and the calibration of all three fabric anisotropy

parameters for actual sand without microscopic measure-

ment would still need to rely on an indirect trial-and-error

process using tests on samples with different bedding plane

angles. In this study, the initial fabric tensor Fn,in is not

considered as a model parameter along the same logic as

that of the initial void ratio e not being considered a model

parameter, although many existing ACST models use ini-

tial fabric as a model parameter. The initial fabric of soil is

its inherent property and is independent of the constitutive

model. Although direct measurement of fabric in labora-

tory tests is still difficult compared with void ratio, DEM

already allows ‘‘real measurements’’ of initial fabric. The

current development of DEM can provide a valuable means

to evaluate ACST-based models’ simulation of the true

material fabric, rather than treating fabric as an idealized

concept. The detailed model parameter calibration process

is described as follows:

1. Monotonic drained tests on samples with bedding

plane angle of 0� and different densities and mean

effective stress values are first used to calibrate 10

model parameters G0, j, h, M, dir, n
p, nd, kc, e0, and n

following the conventional method described in Wang

et al. [73]. Here, the advantage of using ||Fn|| - An to

reflect anisotropic behavior is highlighted. When the

bedding plane angle is 0�, ||Fn|| - An is always 0 and

does not affect the calibration of these 10 parameters.

2. Monotonic drained tests on dense sand samples with

bedding plane angle of 90� are then used to determine

the two fabric anisotropy influence parameters D1 and

D2. In the proposed model, the peak deviatoric stress

ratio g f ;90� and maximum volumetric strain in con-

traction ev;max;90� for dense sand samples with bedding

plane angle of 90� are influenced by D1 and D2,

respectively. Therefore, D1 and D2 can be determined

via g f ;90� and ev;max;90� through an iterative approach:

D 1;n � D 1;n�1

D 1;n�1 � D 1;0
¼

g f ;90� � g f ;n�1

g f ;n�1 � g f ;n�2

D 2;n � D 2;n�1

D 2;n�1 � D 2;0
¼ ev;max;90� � ev;max;n�1

ev;max;n�2 � ev;max;n�1

8

>

>

<

>

>

:

ð18Þ

where n is an iteration index. The initial iterative val-

ues can generally be taken as
D 1;0 ¼ 0

D 2;0 ¼ 0

(

and

D 1;1 ¼ 0:5

D 2;1 ¼ 0:5

(

. In most cases, adequate convergence is

achieved after two to three iterations, i.e.,

D 1 ¼ D 1;4

D 2 ¼ D 2;4

(

. Figure 7 shows an example of this

iterative approach. Starting with
D 1;0 ¼ 0

D 2;0 ¼ 0

(

and

D 1;1 ¼ 0:5

D 2;1 ¼ 0:5

(

, convergence toward the peak deviatoric

stress ratio and maximum volumetric strain in

Table 2 Model parameters for various numerical simulations

Model parameter DEM tests Toyoura sand Oda [43]

G0 200 100 70

j 0.025 0.008 0.008

h 0.4 1.0 0.3

M 1.05 1.2 1.2

dre,1 0.6 0.7 0.8

dre,2 (default) 30 30 30

dir 1 0.3 0.4

a 10 20 10

cd,r (default) 0.05 0.05 0.05

np 3.2 6 2.1

nd 5 2 7.8

kc 0.12 0.019 0.08

e0 0.88 0.934 1.132

n 0.7 0.7 0.7

D1 0.6 1.35 0.3

D2 1 0.8 3

c 5 5 2
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contraction of the sample with bedding plane angle of

90� is achieved at
D 1;4¼ 0:6

D 2;4¼ 1:0

(

.

3. The remaining parameters dre,1, a, and the fabric

evolution rate parameter c are then calibrated through a

trial-and-error process via fitting the simulation curves

with test results for undrained cyclic shearing. dre,1
mainly controls the postliquefaction shear strain gen-

eration during each undrained load cycle, and greater

dre,1 results in smaller postliquefaction shear strain. a

affects the asymptotic saturation of the postliquefaction

shear strain, and greater a results in faster saturation of

the postliquefaction shear strain. The fabric evolution

rate parameter c mainly determines how quickly the

stress and strain response of samples with different

bedding plane angles converges.

The previous isotropic model by Wang et al. [73] uses

step 1 and 3 (without parameter c) to complete model

parameter calibration. Step 2 is unique to the current pro-

posed model.

The original isotropic model has been validated against

a wide range of tests on sand of different void ratios and

under different confining stresses [70, 73], allowing for the

evaluation of the proposed anisotropic model performance

in this study to focus on the influence of fabric anisotropy.

The model is first scrutinized against DEM numerical

monotonic drained triaxial tests on samples with different

initial void ratio and bedding plane angle, including the

four presented in Sect. 2, and then against undrained tri-

axial tests on samples with different bedding plane angles

and undrained cyclic simple shear tests, on both macro-

and microlevels. Though several plasticity models incor-

porating fabric tensors have been developed, quantitative

validation of their fabric-related formulations on the

micromechanical level has rarely been reported, especially

under cyclic loading. Undrained and drained monotonic

tests [46, 88] and undrained cyclic tests [12, 28] on various

sand samples are also simulated, validating the model

against physical tests. Numerical analysis is also performed

to investigate the influence of fabric anisotropy on the

liquefaction behavior of sand.

4.2 Validation against DEM tests

The four DEM constant p = 100 kPa triaxial tests on

samples with ein = 0.657 ± 0.005 and d = 0�, 30�, 60�,

and 90�, discussed in Sect. 2, along with two other constant

p triaxial tests on samples with ein = 0.693 and 0.690 and

d = 0� and 90�, two undrained conventional triaxial com-

pression tests on samples with ein = 0.655 and 0.661 and

d = 0� and 90�, and four undrained cyclic simple shear test

on samples with ein = 0.655 and d = 0�, and ein = 0.693

and d = 0�are used to validate the model. In the simula-

tions for these tests with various stress paths on samples

with various void ratio and initial fabric using the proposed

constitutive model, a single set of model parameters is

used, while the initial normalized fabric tensor Fn of each

sample obtained from the DEM tests is used directly as the

input of the simulations. The 17 model parameter values

used for these simulations are provided in Table 2.

Figure 8 shows the overall deviatoric stress ratio–devi-

atoric strain and void ratio–deviatoric strain relationships

from both the DEM tests and the constitutive model sim-

ulations for the constant p triaxial tests on samples with

ein = 0.657 ± 0.005. The proposed model is able to

reproduce the anisotropy in both strength and void ratio

evolution observed in the DEM tests. The peak g is greater

for samples with lower d. Samples with greater d initially

experience stronger contraction. Both the stress and void

ratio converge to each respective unique value at the crit-

ical state.

The equivalent shear modulus dq/deq and dilatancy

D for these DEM tests and constitutive model simulations

on the four samples with ein = 0.657 ± 0.005 are plotted

against the deviatoric stress ratio g in Fig. 9. For the

equivalent shear modulus, the constitutive model simula-

tions agree with the DEM test results in terms of samples

with higher d having lower dq/deq. The model simulations

show faster degradation of equivalent shear modulus with

respect to the g, which is due to the specific formulation of

the plastic modulus in Eq. (10). For the dilatancy, the

simulated results agree well with the DEM results. Both the

simulated and DEM results show greater initial contraction

for samples with higher d. Also, as dilation occurs, the
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D - g plots for the different samples tend to cluster, while

the samples with higher d have smaller absolute values of

peak dilation.

A significant advantage of validating the proposed

model against DEM data is the accessibility of the fabric

information. Figure 10 plots the fabric orientation hn and

norm ||Fn|| against the deviatoric stress ratio g for samples

with different d, for both DEM tests and constitutive model

simulations. The simulations are generally able to reflect

the evolution of the fabric tensor during loading. The

simulations show a similar evolution of hn toward the

loading direction with the DEM results, reaching 90� at the

critical state. The simulation results for ||Fn|| also evolve

toward the same value of 1 at the critical state. Due to the

incorporation of the dilatancy D in Eq. (11), the
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Fig. 8 Stress and deformation results from DEM numerical tests and constitutive model simulations of constant p = 100 kPa triaxial loading on

four samples with ein = 0.657 ± 0.005 and bedding plane angles of 0�, 30�, 60�, and 90�: DEM numerical test results for a deviatoric stress ratio
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constitutive model is able to reflect the peak of ||Fn||

reaching beyond 1 for dense sand.

It should be acknowledged that the simulation of fabric

evolution based on the relatively simple form of Eq. (11) is

far from perfect, especially for the results in Fig. 10b, d.

Recently, through detailed analysis of DEM test data,

Wang et al. [74] showed that the contact normal fabric

evolution is not only dependent on its own state but also is

affected by other particle-scale features, including particle

and void orientations. More realistic simulation of fabric

evolution can be achieved with formulations incorporating

a few extra model parameters. However, considering the

current state of the art for fabric measurement and model

calibration, the current model still adopts the simple for-

mulation in Eq. (11), to limit the number of model

parameters.

Corresponding to the tests with ein = 0.657 ± 0.005 and

d = 0�, 30�, 60�, and 90�, two other constant p triaxial tests

on looser samples with ein = 0.693 and 0.690 and d = 0�

and 90� are also simulated using the model. Using the same

set of parameters, the model is also able to simulate the

behavior of the looser samples under triaxial loading,

which exhibit lower peak g and stronger initial contraction

(Fig. 11). The anisotropic behavior due to different initial d

is again well reflected.

Two undrained conventional triaxial compression DEM

tests on the dense samples, with ein = 0.655 and 0.661 and

d = 0� and 90�, are also conducted and simulated, again

with the same set of model parameters. Undrained loading

is achieved in DEM through applying constant volume

constraint. The simulation from the constitutive model can

capture the difference in stress path and stress–strain

relationships for the two samples with different bedding

plane angles to a good extent (Fig. 12). Stronger initial

contraction is observed for the 90� sample, evident from

the more significant initial decrease in p. The simulations

show slight underestimation of the deviatoric stress com-

pared with the DEM results. These results show that the

proposed model is not only valid for drained triaxial tests

on samples with various void ratio and initial fabric, but

also for undrained tests as well.

Few anisotropic models have been validated against

cases of undrained cyclic loading. Here, an undrained

cyclic simple shear DEM test on a sample with ein = 0.655,

d = 0�, and ||Fn,in|| = 0.43 is conducted and used to validate

the capability of the model in capturing the cyclic lique-

faction behavior of anisotropic sand, on both macroscopic

and microscopic levels. The cyclic simple shear DEM tests

are conducted on samples isotropically consolidated at

p = 100 kPa, and the bedding plane angle d refers to the

angle between the deposition direction and the vertical

direction, and shear is then applied to the horizontal plane.

Figure 13 shows the stress path, stress–strain relationship,

and fabric evolution during undrained cyclic loading in

both DEM test and constitutive simulation.

The proposed constitutive model is able to capture the

decrease in effective stress during undrained cyclic load-

ing, eventually leading to initial liquefaction and the

‘‘butterfly orbit’’ of the stress path after similar number of

load cycles as that in DEM (Fig. 13a, e). The accumulation
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of large shear strain at liquefaction during each load cycle

is well reproduced by the constitutive model, though gen-

eration of shear strain in the constitutive simulations is

slower (Fig. 13b, f). Figure 13c, g also zooms in on the

shear strain in the first six load cycles. The key features of

fabric evolution are also surprisingly well simulated by the

constitutive model (Fig. 13d, h), considering that the fabric

evolution formulation has yet to be directly compared to

that in actual physical or numerical tests.

In Fig. 13d, h, the contact normal fabric norm ||Fn|| is

multiplied by the sign of Fzz - Fxx - Fxz to reflect not

only the value of ||Fn|| but also the direction of the fabric
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tensor, for visual clarity, especially after initial liquefac-

tion. Prior to initial liquefaction, relatively mild evolution

of fabric is observed in both DEM test and constitutive

simulation, where the oscillation of fabric in simulation

results within each cycle is less significant than that in the

DEM results. After initial liquefaction, the fabric tensor is

found to evolve abruptly at the liquefaction state within

each loading cycle, from one direction to another, reflected

by the oscillation of ||Fn||sign(Fzz - Fxx - Fxz) from pos-

itive to negative and vice versa. As with the development

of shear strain, the evolution of fabric in cycles after initial

liquefaction predicted by the constitutive model is slower

than that in the DEM test and shows slower achievement of

the saturated level. These quantitative differences between
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model simulation and DEM results suggest that further

studies on fabric evolution under cyclic loading should be

conducted.

Further undrained cyclic simple shear DEM test is

conducted on the sample with ein = 0.655, d = 0�, and

||Fn,in|| = 0.43 for two other cyclic stress ratios

(CSR = smax/p0
0), and on another sample with ein = 0.693,

d = 0�, and ||Fn,in|| = 0.41, and are simulated using the

proposed model. Figure 14 shows the stress path

(s - p) and stress–strain relationship (s - c) during

undrained cyclic loading in both DEM test and constitutive

simulation. The increase in number of load cycles needed

to reach initial liquefaction with decreasing CSR is well

reflected, while the amplitude of postliquefaction shear

strain is unaffected by CSR, as was found in Wang et al.

[72]. The number of load cycles required to reach initial

liquefaction for the sample with ein = 0.655, d = 0�, and

||Fn,in|| = 0.43 under CSR of 0.1, 0.2, and 0.3 is 46, 8, and 4

in DEM, and 40, 8, 4 in constitutive modeling, respec-

tively. Decrease in liquefaction resistance and increase in

postliquefaction shear strain amplitude with increase in

void ratio is also well modeled.

4.3 Validation against laboratory tests

Although DEM test results may show quantitative differ-

ences to real sand due to the difference in particle shape

and contact, they can be qualitatively representative of

sand and offer the benefit of direct measurement of fabric

quantities. This benefit allows for the direct validation of

fabric anisotropy-based constitutive models. With the aid

of DEM tests, direct evaluation of the dependency of shear

modulus and dilatancy on fabric anisotropy, and the evo-

lution of fabric can be achieved, as in this study.

Nonetheless, it is still very important to apply the model to

real sand. In the case of physical tests, there are not enough

data corresponding to all the DEM test stress paths for the

same sand and no corresponding measurement of micro-

scopic fabric quantities. Consequently, the macroscopic

results of several classical test results on two types of sand

are simulated, using model parameters in Table 2. Both

undrained monotonic and cyclic torsional shear tests on the

widely used Toyoura sand are first simulated using the

same set of model parameters.

The simulations for undrained monotonic loading on

Toyoura sand with e = 0.825 ± 0.004 and bedding plane

angle d of 15�, 30�, 60�, and 75� are presented in Fig. 15.

The tests were conducted by Yoshimine et al. [88] using a

hollow cylinder torsional apparatus, with pin = 100 kPa

and b = (r2 - r3)/(r1 - r3) = 0.5. The model parameters

for the simulations are listed in Table 2. As the fabric

information is not available, the initial fabric tensor ori-

entation is assumed to be d ? 90�, and the initial fabric

norm is assumed as ||Fnin|| = 0.4, similar to that those in the

DEM tests. The three fabric-related model parameters are

estimated. Both the simulated stress paths and stress–strain

curves for the different samples agree well with the test

data. The sample with d = 15� shows mostly dilative

behavior, while the d = 75� shows strong initial contrac-

tion, almost reaching static liquefaction. Figure 15e, f also

plots the evolution of dilatancy D and contact normal fabric

norm ||Fn|| obtained from the constitutive simulations. As

the samples in these tests are relatively loose, the samples

are initially strongly contractive, and dilatancy D is ini-

tially greater for samples with greater bedding plane

angles. The evolution of contact normal fabric of the dif-

ferent samples also shows different features, ||Fnin|| grad-

ually increases toward 1 for the sample with d = 15�, while

it initially decreases and then increases toward 1 for the

sample with d = 75�. It should be noted that by introducing

the dilatancy in the fabric evolution Eq. (11), for a strongly

contractive loose sample, the initial fabric increment

direction may become opposite to the current loading

direction. Whether this feature is realistic still requires

justification from further test evidence.

Using the exact same model parameters and initial

fabric state, the undrained monotonic triaxial tests reported

by Yoshimine et al. [85] are also simulated. These tests are

conducted under different initial confining pressures, under

both triaxial compression (TC) and extension (TE). Overall

good agreement between simulation and test results is

achieved for both initial confining pressures. Stronger

contraction under TE is observed in both simulation and

test results, with the TE tests reaching static liquefaction,

and generating significant shear strain at liquefaction state

(Fig. 16c, d). The TC results show initial contraction fol-

lowed by subsequent dilatancy and increase in p (Fig. 16a,

b). The constitutive model simulations overestimate the

increase in deviatoric stress with increasing deviatoric

strain (Fig. 16c, d), which may be due to the simple g(h)

function in Eq. (9), which does not introduce any param-

eters other than M. If necessary, an alternative function

form may be used for g(h).

The simulations for undrained cyclic hollow cylinder

torsional shear tests on Toyoura sand with e = 0.846 under

CSR = 0.16 and e = 0.768 under CSR = 0.182 are pre-

sented in Fig. 17, and the tests were conducted by Chiaro

et al. [12] and Koseki et al. [28], respectively. The model

parameters are the same as those used to simulate the

monotonic tests by Yoshimine et al. [88], listed in Table 2.

The initial fabric norm is again assumed as ||Fnin|| = 0.4, as

the sample preparation technique was largely consistent for

these tests. The good agreement between simulation and

test results under undrained cyclic loading again highlights

the model’s ability to capture both monotonic and cyclic

behavior of sand, reproducing the decrease in effective
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stress during undrained cyclic loading and also the

postliquefaction shear strain generation. Both test and

simulation results exhibit similar increase in number of

load cycles to liquefaction with decreasing void ratio and

decrease in postliquefaction shear strain with decreasing

void ratio.

A drained cyclic torsional test on Toyoura sand with

e = 0.730 reported by Zhang and Wang [90] is also sim-

ulated using the model with the same set of model

parameters listed in Table 2. The initial fabric norm is

assumed to be the same as those of the previous tests as

||Fnin|| = 0.4. As shown in Fig. 18, the stress–strain loop is
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Fig. 14 Stress and strain results from DEM numerical tests and constitutive model simulations of undrained cyclic simple shear loading on a

sample under various cyclic stress ratios (CSR) and with void ratios (d = 0�): a DEM e = 0.655, CSR = 0.1, s versus p; b constitutive e = 0.655,
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well captured using the model and its parameters and the

accumulation of contractive volumetric strain from con-

stitutive simulation agree well with the laboratory test

results.

It should be noted that different batches of even the

standard Toyoura sand may show large inconsistencies in

terms of material behavior and different preparation

methods would result in significantly different initial state
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of the samples. Therefore, it should not be expected that

this exact same set of parameters and initial state values

will always be applicable to all existing tests using Toyoura

sand.

The drained triaxial compression tests on a quartz sand

at 65% relative density and pin = 100 kPa with bedding

plane angle d of 0�, 30�, 60�, and 90� by Oda [46] are also

simulated using the proposed model (Fig. 19), to evaluate
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Fig. 18 Stress and strain results from laboratory tests and constitutive model simulations of drained cyclic hollow cylinder torsional shear

loading on a sample with e = 0.730 under cyclic shear strain amplitude of 0.01: a laboratory test c versus s; b laboratory test s versus ev;
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the model’s performance for drained loading, using the

parameters in Table 2. Again, the initial fabric tensor ori-

entation is assumed as d ? 90�, while ||Fnin|| = 0.4. Similar

to the simulations of the DEM triaxial tests, the model is

able to capture the anisotropic deviatoric stress and volu-

metric strain development for the four different samples.

4.4 Influence of fabric anisotropy
on liquefaction behavior

As exhibited in the validations against DEM data, one of

the main strength of the model framework adopted in this

study is its capability in reflecting the cyclic and especially

liquefaction behavior of sand. Here, undrained cyclic

simple shear simulations are conducted to investigate the

influence of fabric anisotropy on liquefaction resistance

and liquefaction-induced shear strain. Simulations on

samples of ein = 0.655 with bedding plane angle d = 0�

and initial fabric norm ||Fnin|| = 0.01 and with d = 45� and

||Fnin|| = 0.43 are carried out and compared with the results

for the simulation in Sect. 4.1 on the sample with ein-
= 0.655, d = 0�, and ||Fn,in|| = 0.43.

The shear stress s versus mean effective stress p and

shear stress s versus shear strain c results for the simula-

tions are plotted in Fig. 20. These simulation results, along

with that in Fig. 13, clearly depict the significant influence

of fabric anisotropy on the liquefaction behavior of sand.

Comparison of Fig. 20a, b with Fig. 13d, e indicates that

greater fabric anisotropy can lead to a significant decrease

in liquefaction resistance. The number of load cycles

needed to reach initial liquefaction reduces from 12 to 7 as

||Fnin|| increases from 0.01 to 0.43. These results corrobo-

rate the observations from laboratory tests [48, 81, 86, 87]

and DEM numerical tests [72, 74, 76]. The results from the

simulations on samples with the same ||Fnin|| but different d

show that the fabric anisotropy orientation significantly

affects the shear strain accumulation (Fig. 20c, d and

Fig. 13d, e). When the initial fabric orientation is sym-

metric with respect to the cyclic shearing direction, the

postliquefaction shear strain accumulation is also sym-

metric with respect to zero (Fig. 13e). When the initial

fabric orientation is asymmetric with respect to the cyclic

shearing direction, accumulation of postliquefaction shear

strain in one direction occurs (Fig. 20d).

The influence of initial fabric on liquefaction resistance

is a result of its influence on dilatancy. When the fabric

tensor Fn and loading direction n are not proportional,

greater ||Fn|| can lead to greater irreversible dilatancy,

according to Eq. 17. Figure 21 shows the dilatancy for the

two simulations with the same d = 0 but different ||Fnin||.

Increase in ||Fnin|| causes the positive dilatancy to increase,

indicating stronger contraction tendency.

5 Conclusions

Based on existing understanding of the anisotropic

behavior of sand from laboratory tests and micromechan-

ical DEM numerical test data, an anisotropic plasticity

model incorporating fabric evolution is proposed in this
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study. The development and validation of the proposed

model using macro- and microlevel data from DEM

numerical tests on granular materials provides a paradigm

for the formulation and evaluation of models incorporating

micromechanical features of sand, aiding the endeavor to

bridge the gap between micro and macro.

The proposed model builds on an isotropic model that

can achieve a unified description of sand of different

conditions from pre- to postliquefaction under both

monotonic and cyclic loading. A normalized fabric tensor

and its evolution rule are introduced in the model. By

incorporating the fabric tensor and its invariant with the

loading direction in the formulation for plastic modulus

and dilatancy, the model is able to reflect the influence of

fabric on the strength, shear modulus, and dilatancy of

sand.

The model is directly validated against DEM test results,

using the fabric information obtained from the numerical

tests, exhibiting good performance for both the macrolevel

stress–strain relationships and the microlevel fabric fea-

tures. This validation process using DEM numerical test

results provides a new means of validating micromechan-

ical-based constitutive models on both micro- and macro-

scales. Validation of the model against a wide range of

different laboratory tests is also carried out, showing good

agreement with the laboratory test results, highlighting the

model’s adaptability to different stress paths.

The influence of fabric anisotropy on the undrained

cyclic behavior of sand is investigated using the proposed

model. Initial fabric tensor norm and orientation are found

to significantly affect the liquefaction resistance and

postliquefaction shear strain, respectively. Greater initial

fabric norm leads to weaker liquefaction resistance, which

is due to the influence of fabric anisotropy on dilatancy,

agreeing with observations from laboratory and DEM tests.

In the proposed model, a relatively simple formulation

for the evolution of fabric is currently used. Though the

simple formulation is able to capture the overall fabric

evolution observed in DEM tests, distinct difference still

exists between the model simulation and DEM test fabric

evolution results. Further studies should be carried out to

investigate the evolution of and the relationship between
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Fig. 20 Stress and strain results from simulation of undrained cyclic simple shear loading using the proposed constitutive model on samples of

the same granular material with different initial fabric anisotropy levels and bedding plane angles: a shear stress s versus mean effective stress

p for the sample with initial contact normal fabric norm ||Fnin|| = 0.01 and d = 0�; b shear stress s versus shear strain c for the sample with

||Fnin|| = 0.01 and d = 0�; c s versus p for the sample with ||Fnin|| = 0.43 and d = 45�; d s versus c for the sample with ||Fnin|| = 0.4 and d = 45�

0

0.5

1

1.5

50 60 70 80 90 100

D

p

0.01

0.43

Fig. 21 Dilatancy results from simulation of undrained cyclic simple

shear loading using the proposed constitutive model on samples of the

same granular material with initial contact normal fabric norm

||Fnin|| = 0.01 and ||Fnin|| = 0.43

62 Acta Geotechnica (2021) 16:43–65

123



fabric tensors based on various particle-level characteris-

tics, such as the contact normal, particle orientation, and

void orientation, under both monotonic and cyclic loading.

More accurate formulations for fabric evolution and its

influence on the mechanical behavior can be developed

based on such analysis. Also, the influence of intermediate

stress coefficient b on the evolution and the effects of fabric

should be further investigated and considered in constitu-

tive model formulations.

Although the current model mainly focuses on the

influence of fabric anisotropy on the shear strength, shear

modulus, and dilatancy of sand, it should be acknowledged

that fabric anisotropy can also affect other behaviors as

well, which should also be explored in future studies. In

applications where the small strain behavior of sand is

important, anisotropic elasticity should be considered. For

loading with a significant rotation of principal stress axes,

fabric anisotropy induced noncoaxiality between strain

increment and total stress may also be important.
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