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Abstract: Aiming at the serious problem of agricultural tractor emission pollution, especially the
limitation of nitrogen dioxide (NOx) and soot emissions, we took an agricultural diesel engine
as the research object, and a diesel engine combustion chamber model was established for both
simulated calculations and experimental verification analysis. The in-cylinder pressure and heat
release obtained from the combustion chamber model simulation calculations were within 6% error
of the experimental data. The overall trend of change was basically consistent. The established model
can simulate the working conditions of the experimental engine relatively well. An artificial neural
network (ANN) was also established as an agent model based on the indentation rate, tab depth, and
combustion chamber depth as the input, and NOx and soot as the output. The decision coefficients of
the ANN model were R2 = 0.95 and 0.93, with corresponding Mean Relative Error (MRE) values of
10.13 and 8.18%, respectively, which are within the generally required interval, indicating that the
obtained ANN model has good adaptability and accuracy. On the basis of the general particle swarm
optimization (PSO) algorithm, an improved PSO algorithm was proposed, in which the inertia factor
is continuously adjusted with the help of the skip line function in the optimization process so that
the inertia factor adapts to different rates and adjusts the magnitude of the corresponding values in
different periods. The improved PSO algorithm was used to optimize the optimal input parameter
matching of the agent model to form a new combustion chamber structure, which was imported
into CONVERGE CFD software for emission simulation and comparison with the emissions of the
original combustion chamber. It was found that the NOx reduction was about 1.21 g·(kW·h)−1, and
the soot reduction was about 0.06 g·(kW·h)−1 with the new combustion chamber structure. The ANN
+ PSO optimization method proved to be effective in reducing the NOx and soot emissions of diesel
engine pollutants, and it may also provide a reference and ideas for the design and development of
relevant agricultural engine combustion chamber systems.

Keywords: tractor; diesel engine; emission; artificial neural network; improved particle swarm algorithm

1. Introduction

With increasing levels of agricultural mechanization operations in China, the overall
quantity of agricultural machinery has also been increasing. By the beginning of 2022,
the total power consumption of agricultural machinery in China was 107,768.02 million
kilowatts, the total number of medium and large tractors was 477,737, and the number of
small tractors was 17,275,995 [1]. The vast majority of these tractors source their power from
diesel engines. Compared to gasoline engines, diesel soot (soot), and nitrogen oxide, (NOx)
emissions from diesel engines are significantly increased, which is a serious hazard in
respect of human health and the environment [2]. In China, in order to solve this problem,
the Ministry of Environmental Protection introduced emission regulations for non-road
mobile machinery (the “National IV” emission standards) on 1 December 2022, but the
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current emission levels of agricultural machinery in most regions are still dominated by
the National II and National III emission standards. In the face of increasingly stringent
emission regulations and serious energy and environmental issues, reducing the emission
of pollutants from agricultural machinery is of great significance to the stable development
of China’s economy and society and to environmental protection [3,4].

There are three mainstream methods used to reduce pollutants in diesel engines:
Pre-treatment technology (oil technology), in-cylinder technology (in-engine purification
technology), and post-treatment technology (off-engine exhaust after-treatment technol-
ogy) [5]. Internal optimization, such as combustion chamber system optimization, can
effectively improve the combustion efficiency of the engine and reduce pollutant emis-
sions [6]. As the main container for fuel mist formation and combustion, the combustion
chamber plays a key role in mixture formation and combustion. Different combustion
chamber structure designs can change the oil–gas mixture state in the cylinder and affect the
fluid motion state and combustion process in the cylinder [7]. An appropriate combustion
chamber design can enhance the interaction between vortex and turbulence in the cylinder,
accelerate the formation of the oil–gas mixture, and distribute it well in the cylinder, thus
improving the combustion efficiency of the whole engine and effectively reducing the gen-
eration of harmful emission gases. In this regard, a significant amount of research has been
conducted in China and abroad. The team of Su Wanhua of Tianjin University designed a
BUMP-type combustion chamber based on the phenomenon of convex ring stripping wall
jets [8–10], where a finite flow edge is set on the inner wall of the combustion chamber so
that a secondary jet is formed in the combustion chamber after the oil beam touches the
wall, which accelerates the mixture formation rate and improves the overall combustion
efficiency while reducing soot and NOx emissions. Rakopulos et al. [11] investigated the
effect of combustion chamber structure on diesel engine performance and emissions based
on a high-speed direct injection diesel engine and found that combustion chamber structure,
fuel injection, and airflow motion are the key factors affecting diesel engine performance
and emissions. Li et al. [12] investigated the effect of different combustion chamber crater
depths on diesel engine performance and emissions, and the results showed that indented
combustion chambers exhibit better oil–gas mixing and open combustion chambers exhibit
better combustion performance at low-speed operating conditions. Abdul et al. [13] inves-
tigated the effect of the swirl ratio on engine performance and emissions under different
combustion chambers and showed that a lower indentation rate leads to an increase in NOx
emissions and a decrease in soot emissions. Jafarmadar et al. [14] investigated the effect
of the piston combustion chamber structure on the swirl number and uniformity index
and found that a larger crater diameter generally has a higher swirl number and causes
lower soot emissions, while a smaller crater depth results in a stronger squeeze flow and
output power. Shahanwaz et al. [15] studied the effects of different combustion chamber
sizes and injection cone angles on engine emissions and found that an annular combustion
chamber structure with different injection cone angle couplings can enable oil and gas to
mix more fully and reduce carbon soot emission. At present, scholars at both domestic
and international levels mainly focus on two methods for combustion chamber design
and optimization. One involves designing and optimizing the traditional combustion
chamber shape, and the other involves developing new combustion chambers based on
new concepts. However, the common purposes of both are to improve the quality of the
oil–gas mixture in the combustion chamber, improve the combustion process, and reduce
pollutant emissions. The main research approaches include empirical formulations [16],
numerical simulations [17], and complete engine experiments [18,19]. However, most of the
methods have long working cycles, high costs, and high accuracy requirements in respect
of the experimental models. In recent years, the rise in popular computer technologies,
such as machine learning, has provided a new research idea for the rapid prediction of
combustion chamber emissions and the mining of new methods and new information [20].

Based on the above, in this study, we first established a diesel engine combustion
chamber model based on a YTO Company (China, Luoyang) agricultural tractor diesel
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engine for simulation, and the simulation model was then tested to enable validation and
analysis. The in-cylinder pressure and heat release values obtained from the simulation of
the combustion chamber model were within 6% error of the test data. The overall trend of
change was basically consistent. The simulation model can simulate the working conditions
of the test engine relatively well. Next, an artificial neural network was established as an
agent model based on the indentation rate, tab depth, and combustion chamber depth as
the input, and NOx and diesel soot emitted from the engine as the output. Subsequently,
based on the general particle swarm optimization (PSO) algorithm, an improved PSO
algorithm was proposed, which continuously adjusts the inertia factor with the help of
a skip line function during the optimization process, so that the inertia factor adapts to
different rates and adjusts the magnitude of the corresponding values in different periods,
thus facilitating the PSO in switching gradually from local optimization seeking to global
optimization seeking. The improved PSO algorithm was used to optimize the optimal
input parameter matching of the proxy model, and the new combustion chamber structure
was formed and imported into CONVERGE CFD (Convergent Science Company, Madison,
WI, USA) software for comparison with the original combustion chamber. It was found
that the new combustion chamber structure can effectively reduce diesel engine emission
soot and NOx, which provides suggestions and references for the development of relevant
engine combustion chamber systems.

2. Materials and Methods
2.1. Theoretical Modeling Basis

In this study, a typical fluid dynamics approach was used as the theoretical basis for the
gas flow model in the engine cylinder, and the laws of conservation of mass, conservation of
momentum, and conservation of energy were chosen as the theoretical basis for calculation.
The mass conservation equation is as follows:

∂ρ

∂t
+

∂(ρux)

∂x
+

∂
(
ρuy
)

∂y
+

∂(ρuz)

∂z
= 0 (1)

In Equation (1), ρ denotes density in kg/m3 and t denotes time in seconds; ux, uy, uz
are the components of the velocity vector u in the x, y, and z directions in units of m/s.
The mass conservation equation reflects the relationship between fluid motion and mass
and follows the law of mass conservation. That is, the increase in mass within the control
system is equal to the difference between the mass flowing into the control system and the
mass flowing out of the control system.

The conservation of momentum equation is as follows:
∂(ρux)

∂t + div(ρuxu) = − ∂p
∂x + ∂τxx

∂x +
∂τxy
∂y + ∂τxz

∂z + Fx
∂(ρuy)

∂t + div
(
ρuyu

)
= − ∂p

∂y +
∂τyx
∂x +

∂τyy
∂y +

∂τyz
∂z + Fy

∂(ρux)
∂t + div(ρuxu) = − ∂p

∂z + ∂τzx
∂x +

∂τzy
∂y + ∂τzz

∂z + Fz

(2)

In Equation (2), p is the surface force acting on the fluid micro-element in the cylinder
in N; τxx, τxy, τxz denote the components of viscous stress in the x, y, and z directions in Pa;
Fx, Fy, Fz denote the volume force acting on the micro-element in the x, y, and z directions
in N. The momentum conservation equation is the embodiment of Newton’s second law in
fluid mechanics, which means that the increased momentum in the control body is equal to
the difference between the inflowing momentum and the impulse produced by the surface
and volume forces. div denotes the divergence, and the divergence equation is shown in
Equation (3):

div(ρu) =
∂(ρux)

∂x
+

∂
(
ρuy
)

∂y
+

∂(ρuz)

∂z
(3)
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The momentum conservation equation is the embodiment of Newton’s second law in
fluid mechanics, i.e., the increased momentum in the control body is equal to the difference
between the inflowing momentum and the impulse produced by the surface and volume
forces. div denotes the scatter, and the scatter equation is shown in Equation (3).

The conservation of energy equation is as follows:

∂(ρT)
∂t

+
∂(ρuxT)

∂x
+

∂
(
ρuyT

)
∂y

+
∂(ρuzT)

∂z
=

∂

∂z

[
h

Cp

∂y
∂x

]
+

∂

∂z

[
h

Cp

∂y
∂y

]
+

∂

∂z

[
h

Cp

∂y
∂z

]
+ ST (4)

In Equation (4), Cp denotes the constant pressure-specific heat capacity in J/(kg·K), T
denotes the temperature in K, h denotes the fluid heat transfer coefficient, and ST denotes
the viscous consumption term in J. That is, when the fluid is subject to viscous friction in
the flow process, the mechanical energy of the fluid is converted into thermal energy. The
conservation of energy equation is the application of the law of conservation of energy in
fluid mechanics, that is, the total energy of the fluid is equal to the sum of kinetic energy
and internal energy.

The turbulence model was selected as the RNGκ-εmodel in CONVERGE CFD because
it has good stability and convergence and can better reflect the effects of rotation, shock,
and stratification within the flow field. The turbulent kinetic energy equation is as follows:

1
√

g
∂
(√

gρk
)

∂t
+

∂

∂xj

(
ρujk−

µe f f

σk

∂k
∂xj

)
= µt(P + PB)− ρε− 2

3

(
µt

∂ui
∂xi

+ ρk
)

∂ui
∂xi

. (5)

The turbulent dissipation rate equation is as follows:

1√
g

∂(
√

gρk)
∂t + ∂

∂xj

(
ρujk−

µe f f
σk

∂k
∂xj

)
= cε1

ε
k

[
µtP− 2

3

(
µt

∂ui
∂xi

+ ρk
)

∂ui
∂xi

]
+ cε3

ε
k µtPB − cε2

ε2

k + cε4ρε ∂ui
∂xi
− ρε2

k
cµη3(1−η/η0

1+βη3

(6)

η ≡ S
k
ε

, S ≡
(
2SijSij

) 1
2 , Sij =

1
2

(
∂ui
∂xi

+
∂ui
∂xj

)
, P ≡ 2Sij

∂ui
∂xi

, PB ≡ −
g

σh,t

1
ρ

∂ρ

∂xi

where k is the turbulent kinetic energy in J,
√

g is the distance tensor determinant, xj
is the coordinate (j = 1,2,3), and uj is the velocity component in m/s in the x, y, and z
directions. η is the ratio of average flow to turbulent time scale, ui is the velocity compo-
nent in the direction of coordinate axis xi in m/s. cε1, cε2, cε3, cε4, σk, σh,t, cµ, and η0 are
empirical constants.

2.2. Building Geometric Models and Validation

A three-dimensional model was designed based on a YTO Company agricultural
tractor diesel engine combustion chamber. This engine is a four-stroke supercharged
intercooled diesel engine and is mainly used in agricultural machinery field operation
conditions. According to the engine parameters provided by YTO, the three-dimensional
model was drawn and imported into CONVERGE CFD software. The calibrated power
condition was selected, and the flow medium was air. The testing location was the Luoyang
Xiyuan Vehicle and Power Inspection Institute. The main technical parameters of the diesel
engine are shown in Table 1. The engine model used in the study includes intake and
exhaust pipes, intake and exhaust valves, cylinders, and a combustion chamber in-cylinder
geometry model, as shown in Figure 1. In CONVERGE 3.0 software, a combination of
adaptive encryption and fixed encryption was used to dynamically generate a hexahedral
mesh, and the base mesh size of the model was determined to be 8 mm × 8 mm × 8 mm,
with dynamic adaptive encryption according to the temperature and velocity gradient, and
the highest encryption level being 3. The smaller base mesh size and higher encryption
level allow the model calculation results to be more convergent. The initial conditions used
in the calculation are shown in Table 2.
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Table 1. Main technical parameters of diesel engine.

Parameters Value

Cylinder bore × stroke 105 mm × 125 mm
Total capacity 4.33 L
Rated power 73.5 KW
Rated speed 2200 rpm

Maximum torque 400 N·m
Maximum torque speed 1400–1600 rpm

Compression ratio 17.5
Combustion geometry ω-type
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Table 2. Calculation model initial conditions.

Condition Area Temperature/K Pressure/MPa

Initial conditions
Air intake tract 309 1.83
Exhaust tract 800 1.21

Combustion chamber 533 1.56

Boundary conditions

Air inlet 309 1.83
Exhaust port 800 1.20

Combustion chamber wall surface 433 —
Cylinder head bottom surface 525 —

Piston top surface 553 —

In order to verify the reliability of the model and calculation method, the in-cylinder
combustion process was simulated under the working conditions of the agricultural engine
with a speed of 2000 rpm/min and a torque of 305 N-m. Figure 2 shows the comparison
of the simulated calculation results for in-cylinder pressure and heat release with the test
data. The peak phase of in-cylinder pressure and heat release obtained from the simulation
is basically the same as that of the test data, and the error did not exceed 6%. The overall
trend of change is basically consistent, and the simulation model can simulate the test
engine conditions relatively well.
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2.3. Combustion Chamber Structure and Parameters

The geometric shape characteristics of the engine combustion chamber are defined
as shown in Figure 3. The parameters indentation rate δ and diameter-depth ratio γ are
introduced and calculated as:

δ =
dm − dk

dm
× 100% (7)

γ =
dm

H
(8)

where dm is the maximum diameter of the combustion chamber in mm, dk is the indentation
diameter of the combustion chamber in mm, H is the depth of the combustion chamber in
mm, and h is the depth of the tab in mm.
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The combustion chamber indentation rate has an important influence on the airflow
movement at the end of the compression process in the cylinder and also increases the
heat load inside the piston. The indentation diameter dk reflects the volume of the com-
bustion chamber, which in turn affects the formation and combustion of the oil and gas
mixture. As the diameter of the indentation increases, the oil–gas mixture and combustion
rate in the combustion process will increase, and the combustion temperature inside the
cylinder will increase, so there will be more areas in the cylinder in which to meet the
high temperature and sufficient oxygen conditions required for NOx generation, and NOx
will increase. However, as the temperature increases, it will accelerate some of the soot
oxidation, thus reducing the production of soot. If the diameter of the indentation is too
large, the combustion temperature decreases, and NOx generation decreases while soot
generation increases. The change in the indentation depth h affects the partition ratio of oil
and gas spray after hitting the wall in the cylinder, which has an impact on the combustion
process and combustion temperature and ultimately, on the emission generation. The
design of the combustion chamber depth H affects the height of the piston in the cylinder.
If the piston height is too large, the exhaust gas cannot easily be discharged from the
exhaust port, increasing the heat load in the combustion chamber, and leading to a series
of problems such as reduced piston life. Therefore, it can be seen that the combustion
chamber indentation rate, tab depth, and combustion chamber depth have an important
impact on the design of the combustion chamber system and are also important factors
for the optimization of agricultural diesel engine emissions. The airflow motion inside
the combustion chamber is mainly turbulent motion, which is a highly nonlinear type of
fluid motion. The traditional multi-objective optimization method for a diesel combustion
chamber cannot easily ensure a good optimization effect when the multi-objective problem
presents complex features such as nonlinearity and high dimensionality. Therefore, in this
study, the ANN-PSO approach was used to optimize the diesel engine combustion chamber
dimensions with the lowest NOx and soot emissions as the optimization objective and then
reduce the engine emissions.
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2.4. Construction of Artificial Neural Network (ANN) Model and Validation

In this study, the indentation rate, tab depth, and combustion chamber depth of the
combustion chamber were used as inputs, and the nitrogen oxide (NOx) and diesel soot
(diesel soot) emitted from the engine were used as outputs to build an artificial neural
network as an agent model. The structure of the model is shown in Figure 4, and consists
of an input layer, hidden layer, and output layer. Based on the premise of not changing
the overall structure of the original 3D model, 200 sets of random data were collected
for building the artificial neural network model by using CONVERGE CFD software to
randomly generate and collect sample points for three input quantities: Indentation rate, tab
depth, and combustion chamber depth. Approximately 75% of the data were used to train
the model, and 25% were used to test the model. The logistic sigmoid activation function
with distinguishable, continuous, and nonlinear advantages was chosen to formulate the
model [21,22]. In addition, gradient descent with momentum weights and a bias learning
function (LEARNGDM) was used to minimize the error [23].
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In order to ensure the adaptability and accuracy of an established ANN model, the
model is generally tested for significance, and the coefficient of determination (R2) and
MRE are often used to verify the accuracy of the model. Usually, the R2 value is required to
be between 0.9 and 1. The calculation formulas are shown in Equations (9) and (10):

R2 =
SSR
SST

=
SSR − SSE

SST
= 1− ∑n

i=1(ti − oi)
2

∑n
i=1 (oi)

2 (9)

MRE(%) =
1
n

n

∑
i

∣∣∣∣100
ti − oi

ti

∣∣∣∣ (10)

where SST is the total sum of squares, SSR is the regression sum of squares, SSE is the
residual sum of squares, n is the number of points in the information set, o denotes the
test data, and t denotes the actual data. Combined with the typical agricultural engine
operating conditions, the accuracy of the established ANN model was verified and the R2

values were calculated under a speed of 2200 rpm/min, as shown in Figure 5, and the R2

values were 0.95 and 0.93, MRE values were 10.13% and 8.18%, respectively, which are
within the generally required interval.
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2.5. Improved Particle Swarm Algorithm (PSO) Application

Particle swarm optimization was jointly proposed by Kennedy and Eberhart in 1995.
The particle swarm algorithm is an evolutionary algorithm inspired by the foraging behav-
ior of bird groups in nature and has been widely used in various complex experimental
tests and practical engineering applications in view of its simple implementation, efficient
searching, and fast convergence. Ven den Bergh [24] analyzed and proved the stability
and convergence of the PSO algorithm from a theoretical perspective. In 2002, Cello and
Lechuga [25] formally published the results of the multi-objective particle swarm optimiza-
tion algorithm. The particle swarm algorithm for solving multi-objective optimization
problems is called the multi-objective particle swarm optimization (MOPSO) algorithm.
With the PSO algorithm, the individual position or food of the flock is treated as the solution
to the optimization problem, and the information interaction between the individuals in
the flock and the optimal individual, and between the individuals, is used to guide the
individuals in the whole flock to converge toward the optimal individual of the flock while
retaining their own diversity information, and gradually find the optimal solution through
continuous updating. Individuals in the flock are abstracted as “particles”, ignoring their
mass and volume, and the topological structure determines that the particles are influenced
by the combined information of their own and group states in each iteration, i.e., the up-
date mechanism of particles is obtained by the organic combination of population history
optimal particles and individual history optimal particles. The particle update mechanism
is obtained through the organic combination of population history optimal particles and
individual history optimal particles, as shown in Figure 6. The current velocity vj(t) of
particle J, its own optimal position pbj(t), and the global optimal position gbj(t) determine
the velocity vj(t + 1) at the next moment, after which the particle moves from the original
position pj(t) to the new position pj(t + 1) with the updated velocity vj(t + 1). As the
number of iterations increases, the particle reaches the entire global optimal position by
continuously updating the speed and position, thus completing the search for the optimal
solution in space.
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The selection of the objective function mainly considers the emission performance
of the combustion chamber, where a better emission performance is defined in the PSO
algorithm as the emission of less NOx and soot. According to the analysis of previous
tests, different indentation ratios, tab depths, and combustion chamber depth dimensions
will affect the emissions of NOx and soot. Therefore, the objective function is shown in
Equation (11):

min f (a, b, c) = δ1NOx + δ2Soot (11)

where a, b, and c denote the indentation rate, tab depth, and combustion chamber depth,
respectively, NOx and soot are NOx emissions and soot emissions, respectively, and δ1 and
δ2 are their corresponding constant coefficients. Each particle in the PSO algorithm has two
attributes, velocity and position, and the velocity and position are iterated several times in
the optimization process, whose iterative formula is shown in Equation (12):

vj+1
i = wvi + c1r1

(
pbestj

i − pj
i

)
+ c2r2

(
gbestj

i − gj
i

)
pj+1

i = pj
i + vj+1

i

(12)

where w is the inertia factor, whose value is non-negative and represents the degree of
influence of the last velocity of the particle on the current particle. According to experience,
w is generally taken as 0.9. c1 and c2 are learning factors, usually taken as c1 = c2 = 2; r1
and r2 are random values whose values range from 0 to 1. In the general PSO algorithm,
the inertia factor is a constant because the inertia factor plays different roles in different
stages of optimization, which is to say, at the beginning of optimization, a larger inertia
factor can enhance the global search ability, but at the end of optimization, a smaller inertia
factor can enhance the local search ability. In general, PSO algorithms are influenced by
the “optimal” particles, and sometimes the population will converge too fast and lead to
“premature maturity”, and the particles will fall into the local optimum. Therefore, a larger
value of the inertia factor at the beginning of optimization and a smaller value at the end of
optimization can significantly improve the solving ability of PSO, and it has been found
that the rate of change of the inertia factor will also greatly affect the global optimal finding
ability of PSO. Based on the improved PSO algorithm proposed by Feng et al. [26], the
inertia factor is continuously adjusted during the optimization process with the help of the
skip line function so that the inertia factor takes a larger value and changes slowly at the
beginning of the iteration, and takes a smaller value and changes quickly at the end of the
iteration, which facilitates the gradual switch from local to global optimization in respect
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of PSO. The skip line function is shown in Equation (13). The second-order derivative of
Equation (13) is solved to obtain Equation (14).

y =
8a3

x2 + 4a2 (13)

y′′ =
−16a3(4a2 − 3x2)

(4a2 + x2)
3 (14)

From Equation (14), it can be derived that the coordinates of the inflection point of
the skip line function are (± 2

√
3

3 a, 3
2 a). The function has the following characteristics: Its

function value at the point (0, 2a) is larger, and the rate of change of the curve is a minimum,
while at the inflection point, the function value is smaller, and the rate of change of the
curve is a maximum. Based on these characteristics, the adjustment strategy of the inertia
factor is designed as follows:

w(i) = wmin + (wmax − wmin){ 2
a [

8a3

(
ηi

ηmax
2
√

3
3 a)+4a2

]− 3
}

= wmin + (wmax − wmin)(
12

h(i)2+3 − 3)
(15)

where wmin and wmax are the maximum and minimum values of the inertia factor, ηi and
ηmax denote the current iteration number and the maximum iteration number. Finally,
after calculating 200 sets of data iteratively, the parameters of the combustion chamber
optimization model were obtained as in Table 3.

Table 3. Comparison of combustion chamber parameters before and after optimization.

Combustion Parameters Original Value ANN + PSO Optimization Value

Indentation rate 0.924 0.82
Tab depth 7.9 8.1

Combustion chamber depth 17.8 18.56

3. Discussion and Results

In this study, the results of the standard PSO algorithm optimization and the improved
PSO algorithm optimization were compared, as shown in Figure 7. The improved PSO
algorithm has two main improvements compared with the general PSO algorithm. On the
one hand, it can enable the particles to jump out of the local optimum to reach the global op-
timum during the optimization search process, and on the other hand, it further reduces the
objective function value under the premise of satisfying the constraints. Thus, the optimal
combination of indentation rate, tab depth, and combustion chamber depth is obtained.
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The combustion emission process was re-run by redesigning the combustion chamber
imported into CONVERGE CFD software. The emissions of the engine are shown in
Table 4 and Figure 8, with reductions of approximately 1.21 g·(kW·h)−1 for NOx and
0.06 g·(kW·h)−1 for soot. The indentation rate was reduced from 0.924 to 0.82, indicating
that the NOx emission level increased, and the soot emission level decreased as the diameter
of the shrinkage became larger. This is due to the increase in the oil–gas mixture and
the combustion level in the cylinder after the indentation diameter became larger, and
the increase in temperature during the whole combustion process promoting the NOx
generation efficiency and suppressing the soot generation. The tab depth increased from
7.9 to 8.1 mm, which affected the in-cylinder temperature and which, in turn, affected the
in-cylinder NOx and soot generation rates. The combustion chamber depth increased from
17.8 to 18.56 mm, and the NOx emission level decreased with the increase in the combustion
chamber depth, while the soot exhibited an opposite pattern of changes. The trend in the
parameters optimized by the improved PSO algorithm is consistent with the results of the
conventional experimental verification. The ANN + PSO method shortens the experimental
period and saves experimental costs compared with the conventional method.

Table 4. Comparison of combustion chamber emissions before and after optimization.

Emission/g·(kW·h)−1 NOx Soot

Non-road National III Emission Limits 4.00 0.20
Non-road National IV Emission Limits 2.00 0.025
Original Engine Emission Value 3.45 0.20
Optimized Engine Emission Value 2.24 0.14
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Furthermore, by comparing with the existing studies in the literature, we found that
ANN + PSO is feasible [27]. It can be found that most of the studies take the engine body
as the object of study and use different parameters as inputs, such as different ratios of
biodiesel mixed with diesel, different injection pressure and engine load, etc. Then the
performance and emission of the engine are taken as the output, and an ANN model
or other models such as support vector machine (SVM), K-nearest neighbors (k-NN) are
established, and predictions are made based on the established models [28]. Some studies
use standard PSO algorithms and other algorithms combined together to find the optimal
input parameter ratios and obtain the optimized performance and emission data [27].
Some studies compared the prediction results after using different models cross-sectionally,
such as comparing ANN, SVM, k-NN, etc. [29]. In this study, the same cross-sectional
comparison method was used to build ANN model, SVR model and k-NN model using
the same data collected, and the R2 and MRE of ANN model, SVR model and k-NN model
were compared as shown in Table 5. It was found that the accuracy of all three models
met the requirements, but the accuracy of ANN model was higher compared with other
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models. In this study, to address the current situation that the emission level of domestic
agricultural machinery engines is still at a low level, an engine combustion chamber system
is used as the research object to investigate the effect of changing the size of combustion
chamber parameters on the engine emission by changing the size of the internal parameters
of the combustion chamber system, and an improved particle swarm algorithm based on
the standard PSO algorithm is used to optimize the established combustion chamber proxy
model An improved particle swarm algorithm based on the standard PSO algorithm is used
to optimize the established combustion chamber proxy model and find the optimal size
of the engine combustion chamber with the lowest emission as the optimization objective.
In addition, by comparing the existing studies, the fitting accuracy of the ANN model
used and established in this study meets the basic conditions of the proxy model, and
the relevant accuracy parameters R2 and MRE meet the requirements, which ensures the
accuracy of the model, and the ANN model, as a proxy model in the intermediate process,
only needs the accuracy of the established model to meet the requirements. Compared with
other literature, the improved particle swarm algorithm used in this study can solve the
problem that the particles are easy to fall into the local optimum in the process of finding
the optimum and can find the optimum value in the global search, which can further reduce
the cost of the objective function value while satisfying the constraints, so as to obtain the
best combination of parameters of indentation rate, tab depth, and combustion chamber
depth with the lowest emission as the optimization goal.

Table 5. Comparison of fitting accuracy of different models.

Model Name Emission R2 MRE

ANN
NOx 0.937 10.13%
Soot 0.955 8.18%

SVM
NOx 0.902 15.67%
Soot 0.911 20.45%

k-NN
NOx 0.915 16.21%
Soot 0.902 25.21%

Table 6 lists some of the literature reviews using the ANN + PSO approach for the
relevant emission optimization.

Table 6. Comparison of prediction capability of different techniques and the developed PSO-ANN.

Reference NOx Soot

Roy et al. [30] ANFIS 0.08054 N/A
Roy et al. [30] ANN 0.1224 N/A
Norhayati et al. [31] N/A N/A
Sakthivel et al. [32] 9.9636 3.1611
Rai et al. [33] N/A 0.3057
Kokkulunk et al. [34] 7.5102 2.1451
Ozener et al. [35] 0.0852 N/A
Isin et al. [36] N/A N/A
Nishant et al. [37] ANFIS 0.7708 N/A
Nishant et al. [37] GA-ANFIS 0.6354 N/A
Nishant et al. [37] PSO-ANFIS 0.4893 N/A

4. Conclusions

In this study, a diesel engine combustion chamber model was established based on
a YTO Group agricultural diesel engine for simulation modeling and calculation, fol-
lowed by an experimental verification analysis of the simulation model. The results show
the following:
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(1) The in-cylinder pressure and heat release obtained from the combustion chamber
model simulations were within 6% error of the test data. The overall trend of change
was basically consistent. The simulation model can simulate the working conditions
of the test engine relatively well.

(2) An artificial neural network was established as an agent model with the indentation
rate, tab depth, and combustion chamber depth as inputs and NOx and soot emitted
from the engine as outputs. The R2 values were 0.95 and 0.93. The MRE values were
10.13% and 8.18%, respectively, which indicates that the obtained ANN model has
good adaptability and accuracy.

(3) On the basis of the general particle swarm (PSO) algorithm, an improved PSO al-
gorithm was proposed in which the inertia factor is continuously adjusted with the
help of the skip tongue function in the optimization process so that the inertia factor
adapts to different rates in different periods and adjusts the size of the corresponding
value. On the one hand, it is beneficial for PSO to gradually switch from local to
global optimization. On the other hand, this can further reduce the value of the
objective function needed to reach the optimum under the condition of satisfying the
constraints. The improved PSO algorithm was used to optimize the agent model and
obtain the optimal combination of input parameters (i.e., an optimized combustion
chamber structure with indentation rate, tab depth, and combustion chamber depth
of 0.82, 8.1, and 18.56 mm, respectively). The model was then imported into CON-
VERGE CFD software for combustion emission calculation to obtain the emission
generation compared with the original combustion chamber. It was found that the
optimized combustion chamber reduced NOx by about 1.21 g·(kW·h)−1 and soot by
about 0.06 g·(kW·h)−1, which values are close to the National IV emission standards.

For future applications of tractor emission reduction in agriculture, we will focus
on the optimization of tractors with different horsepower in different field operating
environments and working conditions. We will also increase the complexity of the artificial
neural networks used in order to perform larger-scale model building and optimization.
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