
Research Article

An Anomaly Detection Algorithm of Cloud Platform
Based on Self-Organizing Maps

Jun Liu,1 Shuyu Chen,2 Zhen Zhou,1 and Tianshu Wu1

1College of Computer Science, Chongqing University, Chongqing 400044, China
2College of So�ware Engineering, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Jun Liu; liujuncqcs@163.com

Received 24 November 2015; Accepted 6 March 2016

Academic Editor: Yassir T. Makkawi

Copyright © 2016 Jun Liu et al. 	is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Virtual machines (VM) on a Cloud platform can be in
uenced by a variety of factors which can lead to decreased performance
and downtime, a�ecting the reliability of the Cloud platform. Traditional anomaly detection algorithms and strategies for Cloud
platforms have some
aws in their accuracy of detection, detection speed, and adaptability. In this paper, a dynamic and adaptive
anomaly detection algorithm based on Self-OrganizingMaps (SOM) for virtual machines is proposed. A uni�edmodeling method
based on SOM to detect the machine performance within the detection region is presented, which avoids the cost of modeling
a single virtual machine and enhances the detection speed and reliability of large-scale virtual machines in Cloud platform. 	e
important parameters that a�ect the modeling speed are optimized in the SOM process to signi�cantly improve the accuracy of the
SOMmodeling and therefore the anomaly detection accuracy of the virtual machine.

1. Introduction

As Cloud computing applications become increasingly
mature,more andmore industries and enterprises are deploy-
ing increasing numbers of applications within Cloud plat-
forms, in order to improve eciencies and on-demand ser-
vices where resources are limited. Virtual machines for com-
puting and resource storage are core to a Cloud platform and
are essential to ensure normal operation of various businesses
[1, 2]. However, as the number of applications increases, the
scale of the Cloud platform is expanding. Resource competi-
tion, resource sharing, and load balancing within the Cloud
platform reduce the stability of virtual machines, which leads
directly to a decrease in the reliability of the entire Cloud plat-
form [3–7].	erefore, anomaly detection of virtual machines
is an important method for durable and reliable operation on
a Cloud platform.

At present, themainmethods of virtualmachine anomaly
detection on Cloud platforms are to collect system operation
logs and various performance metrics of the virtual machine
status and then determine the anomaly using anomaly detec-
tion methods such as statistics, clustering, classi�cation, and
nearest neighbor.

	e statistical anomaly detection method is a statistical
method based on a probabilistic model. 	is method makes
certain assumptions about the conditions [8]. However, in
real Cloudplatforms, the distribution of data is usually unpre-
dictable, which means that the statistics-based method has
low detection rates and thus may be unsuitable. Clustering-
basedmethods group similar virtualmachines states together
and consider any states which are distant from the cluster
center to be abnormal [9, 10]. Since this method does
not need a priori knowledge of the data distribution, its
accuracy is better than the statistics-based method. However,
it is dicult to choose a reasonable clustering algorithm
in clustering-based methods. Self-Organizing Maps (SOM)
[11, 12], �-means [13, 14], and expectation maximization [15]
are three commonly used clustering algorithms in anomaly
detection.	e classi�cation-based algorithmmainly includes
neural networks [16, 17], Bayesian networks [18, 19], and
support vector machines [20–22]. 	e main drawback of
these algorithms is the high training cost and the complexity
of the implementation.	eneighbor-based algorithmdetects
anomalies based on clustering or the similarity of the data.
However, the main disadvantage of this algorithm is that the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 3570305, 9 pages
http://dx.doi.org/10.1155/2016/3570305

2 Mathematical Problems in Engineering

recognition rate decreases when the normal dataset that is
being detected does not have enough neighbors.

In a Cloud environment, the performance and running
status of the virtual machine is represented mainly by the
performance metrics. 	e performance metrics include �ve
primary metrics: CPU, memory, disk, network, and process
[23]. 	ese metrics can determine whether a virtual machine
is abnormal. Reference [23] has a more detailed explanation
of the performance metrics of virtual machine.

	is paper proposes an SOM-based anomaly detection
algorithm which is based on determining the various per-
formance metrics of each virtual machine. 	is algorithm
is di�erent from traditional strategies in that the detection
domains of the virtual machines with similar running envi-
ronments are divided and each domain is trained iteratively in
the SOM network. 	is enables reasonable adaptation of the
training of the large-scale virtual machines in the Cloud plat-
form and overcomes the shortcomings of traditionalmethods
where each virtual machine is treated as a training sample.
In addition, two important parameters of the SOM network
training are optimized, which greatly reduce the training time
of the SOM network and the performance metrics of the vir-
tual machine and enhances the eciency and the accuracy of
anomaly detection of the virtual machine in the Cloud
platform.

Various experiments were conducted in order to verify
the eciency and accuracy of the SOM-based anomaly detec-
tion algorithm. 	e results show that the sample training
speed and detection accuracy are signi�cantly improved by
the proposed algorithm.

	e rest of this paper is organized as follows. Section 2
describes existing anomaly detection methods. Section 3
describes the SOM-based virtual machine anomaly detection
algorithm. Section 4 shows the performance evaluation. And,
�nally, Section 5 lists the conclusions derived from the
experiment.

2. Related Work

Current anomaly detection methods are mainly based on
classi�cation, clustering, statistics, and nearest neighbor
methods [24]. 	ese methods will now be introduced.

	e classi�cation-based method obtains a classi�er
model from a set of selected data and then uses the model
to classify new data [25, 26]. Shin and Kim proposed a hybrid
classi�cation method that combines the One-Class SVM [27,
28] hybrid classi�cation method with the nearest mean clas-
si�er (NMC) [29]. 	e highly
exible nonlinear correlation
model can be easily classi�ed by the nonlinear kernel function
in this method [30–32]. 	is method introduces a feature
subset selection algorithm, which not only reduces the num-
ber of classi�cation dimensions, but also improves the per-
formance of the classi�er. However, the main disadvantage
of this method is slow training and potential for misclassi�-
cation.

	e clustering-basedmethod is an unsupervised learning
method [26, 33]. SNN [34], ROCK [35], and DBSCAN [36]
are three typical clustering-based anomaly detection meth-
ods. All of these three methods assume that normal samples

are within a single cluster within the dataset, and abnormal
samples are outside any cluster. However, if a cluster is formed
by the anomaly data a�er a period of clustering, then the
anomalies cannot be recognized properly. Additionally, it is
important for the clustering that the width of the cluster is
accurately selected. 	e advantages of the clustering-based
approach are that a priori knowledge of the data distribution
is not required and it can be used for incremental modeling.
For example, for anomaly detection of virtual machines, a
newly collected virtual machine sample can be analyzed by
a model already known for anomaly detection.

A typical nearest neighbor based approach is proposed
by Breuniq et al. [37] using a local outlier factor for the data
abnormality detection. Any data that requires analysis is asso-
ciated with a local outlier factor, which is the ratio of the aver-
age local density of the � nearest neighbors to the data itself.
	e local density is the volume of data-centric spheres of the �
smallest neighbors divided by �. If data is abnormal, then its
local density should be signi�cantly di�erent than the local
density of its nearest neighbors.

	e statistics-based approach is an earlier anomaly detec-
tionmethod, which is usually based on an assumption that an
anomaly is an observation point that is not generated by an
assumedmodel and is partly or completely irrelevant [37]. Ye

and Chen [24, 38] used �2 statistics to detect anomalies in the
operating system. Assuming that normal data under training

is subject to a multivariate normal distribution, then the �2 is
�2 = �∑
�=1

(�� − ��)2�� , (1)

where �� is the observed value of the 	th variable, �� is the
expected value of the 	th variable (obtained from the training

data), and
 is the number of variables. A large value of �2
represents an anomaly in the observed samples.

3. SOM-Based Virtual Machine Anomaly
Detection Algorithm

In a Cloud platform, virtual machines with a similar running
environment have similar system performances. A SOM-
based virtual machine anomaly detection algorithm is aimed
at Cloud platforms that have a large number of virtual
machines. In this paper, we partition virtual machines with
similar running environments; that is, we assign a set of vir-
tual machines with similar properties to the same detection
�eld.	is avoids the requirement for SOMnetworkmodeling
for every single virtual machine, signi�cantly reducing the
modeling time and the training cost. For instance, when the
proposed method is not used, 100 SOM network models
need to be built for 100 virtual machines; however with the
proposed method, 100 virtual machines with similar running
environments only need one SOMnetworkmodel to be built.
In addition, a SOM network can be trained more accurately
by collecting 100 samples than by training using one sample
only.

A�er partition of the virtual machines, SOM network
training is used in every domain. In this paper, the two most

Mathematical Problems in Engineering 3

VM VM
VM

VM

VM

VM

VM VM

VM

VM

VM

VM VM
VM

VM

VM
VMVM

VM

VM
VM

Set of detected VMs

Detection domain partition based on
similarities of the VM running environments

Collect running environment vectors (RE) of each VM

Detection domain 1 Detection domain 2 Detection domain N
Generate multiple
detection domains

Anomaly detection of VM
based on SOM

Collect system performance vector (SS)
of each VM in the detection domain

Results of anomaly detection

Anomaly detection of VM
based on SOM

Anomaly detection of VM
based on SOM

· · ·

· · ·

VMVMVM VM VM VM
VM

VM

VM

Figure 1: SOM anomaly detection logic diagram.

important parameters of training, width and learning-rate
factor, are optimized to enhance the training speed. 	e
ow
chart of the anomaly detection algorithm is shown in Figure 1.

3.1. SOM-Based State Modeling of the Virtual Machine.
Because prior knowledge of similar performance for virtual
machine classi�cation is unknown, the �-medoids method is
used in this paper for initial classi�cation; that is, the VMs
on the Cloud platform are divided into multiple detection
domains. 	e reason the �-medoids method is chosen is
that, comparedwith the �-means algorithm, �-medoids is less
susceptible to noise.

	e SOM network is generated in each detection domain
using the SOM algorithm. 	e network is constructed as
a two-dimensional (� × �) neuron array. Each neuron
can be represented as
��, 	 = 1, 2, 3, . . . , �, and each
neuron is related to a weight vector, which is de�ned
as ���(1, 2, 3, . . . , �). � is the column subscript. 	e
dimensions of a weight vector � are the same as the dimen-
sions of the training set for training its SOM network. 	e
training set used in this paper includes the CPU utilization
performance which re
ects the running state of the virtual
machine, its memory utilization, and its network throughput.
	ese performance metrics are described by a vector de�ned
as ��(��1, ��2, ��3, . . . , ���).

	e modeling of a speci�c virtual machine-based detec-
tion domain in SOM requires periodic measurements and
adequate collection of the training data (performance �).	e
collected performance vector �� ∈ �� can be considered to
be a random variable within the performance sample space.
	eVMperformance samples collected within a certain time
series can be expressed as ��� (where � = 1, 2, 3, . . . ,
). 	e
iterative training of the samples collected within this time
series is the modeling process of the SOM virtual machine

	erefore, the detection domain modeling algorithm can
be summarized as follows.

Step 1 (initialization of the SOM network). SOM neurons are
represented by a weight vector (���(0), 	, � = 1, 2, 3, . . . , �),
where 	 and � indicate the location of the neurons in the SOM
network. In this paper, the weight vector (���(0)) is initialized
randomly in the SOM network.

Step 2 (de�ning the training space of the SOM network for
training sample ���). When a training sample ��� at time � is
added to the SOM network, the most suitable neuron needs
to be found to be the training center of the neighborhood. For��� at time �, the most suitable neuron � can be found using
(2), and�will be the training center in the SOMnetwork a�er��� is added:

� = {{{{{
argmin
(�,�)

{�������� − ��� (0)�����} , � = 1
argmin
(�,�)

{�������� − ��� (� − 1)�����} , � = 2, 3, (2)

A�er the training center � is de�ned using (2), we need
to set the training neighborhood. According to the de�nition
of SOM, to ensure convergence of the training process of the
SOM network, the training neighborhood can be de�ned as

� = �(�,�)� (�, ���� � − (, �)����) , (3)

where � is a function of the training neighborhood that
is a monotonically decreasing function of parameter ‖ � −(, �)‖ and training iterations �; � is the coordinate vector of
the training center � in the SOM network; and (, �) is the
coordinate vector of neuron node
�� in the SOM network.
Due to its e�ective smoothing, a Gaussian function is used

4 Mathematical Problems in Engineering

as the neighborhood training function in this paper, which is
de�ned as follows:

�(�,�)� = " (�) ⋅ exp(−���� � − (, �)����22%2 (�)) . (4)

In (4), "(�) represents the learning-rate factor, which deter-
mines the �tting ability of the SOM network for the training
sample ��� in the training process. %(�) represents the width
of the neighborhood that determines the range of in
uence of
a single training sample ��� on the SOM network. According
to SOM related theory, to ensure convergence of the training
process, "(�) and %(�) should be both monotonically decreas-
ing functions of the number of training iterations �.
Step 3 (SOM network training based on training sample���). 	e training neighborhood has been de�ned in Step 2.
	e neurons, which are within the training domain of the
SOM network, are trained based on the training sample ���
according to (5). 	e �tting equation is de�ned as follows:

��� (�) = ��� (� − 1) + �(�,�)� ⋅ [��� − ��� (� − 1)] . (5)

A�er the training process is completed using (5), the
convergence of the training process needs to be veri�ed.
	e process is convergent if every neuron associated with its
weight vector in a SOM network is stabilized. 	e method is
described in detail below.

Assume that there is a neuron
�� in the SOMnetwork and

the time index of its latest training sample is �(�,�)� . Meanwhile,
assume that there is a suciently small real number - and that
convergence of the training process of the SOM network can
be checked using the following:

/ (�) = 1�2
	∑
�=1

	∑
�=1

��������� (�(�,�)�) − ��� (�(�,�)� − 1)������ ≤ -. (6)

In (6), /(�) represents the average deviation between the
latest �tting state and the previous value for every neuron
with a weight vector in the SOMnetwork a�er � training sam-
ples are used in a training process. Obviously, when /(�) < -,
the neurons��� with a weight vector are stabilized, indicating
that the iterative training process can be stopped. When/(�) > -, further collection of the training samples is required,
and Steps 2 and 3 need to be repeated.

3.2. Parameter Setting in the SOM-Based Modeling Process.
	e SOM network modeling process is an iterative �tting
process that mainly consists of two stages: the initial ordered
stage and the convergence stage. 	ere are two important

parameters in the training neighborhood function �(�,�)� : the
width of the training neighborhood%(�) and the learning-rate
factor "(�). Correct setting of these two parameters plays an
important role in preventing the SOMnetwork training from
getting trapped in ametastable state.	e processes for setting
these two parameters are as follows.

(1) Setting theWidth of the Training Neighborhood %(�). Based
on the principle of SOM, %(�) is a monotonically decreasing

function of �. At the beginning of the training process, the
value of %(�) should be set properly so that the radius of the

neighborhood de�ned by �(�,�)� can reach at least half the
diameter of the SOM network [39]. In this paper, the value is
set to �/2.

Since �(�,�)� is a monotonically decreasing function of‖ � − (, �)‖, it can be seen from (4) that, when other variables

remain unchanged, the �(�,�)� value is small if the neuronal

node is distant from the training center. Additionally, if �(�,�)�
is smaller, it has a lower in
uence on the neuronal node
�� in
the �tting process. When the value of �(�,�)� is small enough,
the neuron node
�� is una�ected.	erefore, although there is
no clear boundary for the training neighborhood de�ned by
the Gaussian function in this paper, the in
uential range of a
single training sample ��� on the training of the SOMnetwork
can still be limited.

Assume that 8 is a suciently small threshold of �(�,�)� .

When �(�,�)� < 8, the current iteration step has no in
uence

on neuronal node
��, while when �(�,�)� > 8, the current
iteration step will in
uence
��.

	erefore, when � = 1 at the beginning of the SOM
network training process, the lower bound of %(�) can be
determined based on the threshold 8 and (4). 	e detailed
derivation process is shown as follows.

When � = 1, assume that ‖ �−(, �)‖ = �/2, and the lower
bound of %(1) is then determined by the following inequality
derivation process:

" (1) ⋅ exp(−(�/2)22%2 (1)) ≥ 8 ?⇒
ln" (1) − (�/2)22%2 (1) ≥ ln8 ?⇒

(�/2)22%2 (1) ≤ ln
8" (1) ?⇒

%2 (1) ≥ �28 ⋅ ln (8/" (1)) ?⇒
% (1) ≤ − �

2√ln (8/" (1))2 ,

% (1) ≥ �
2√ln (8/" (1))2

∵ % (1) > 0,
∴ ?⇒ % (1) ≥ �

2√ln (8/" (1))2 .

(7)

Based on this derivation, the lower bound of %(1) can be
determined by (7), where the threshold8 = 0.05 in this paper.
	e following discussion will describe the value of "(1) used

Mathematical Problems in Engineering 5

for setting "(�). According to (7), %(�) in �(�,�)� of the initial
ordered stage can be de�ned as follows:

% (�) = �
2√ln (8/" (1))2 ⋅ exp (−� − 1�) ,

� = 1, 2, 3, . . . , 1000.
(8)

When the iteration of the SOM network training is
gradually converging, the size of the training neighborhood

de�ned by�(�,�)� should be constant and can cover the nearest
neighborhood of the training center � in the SOM network.
In this paper, the nearest neighborhood, that is, the nearest
four neurons around neuron � in all four directions (up,
down, le�, and right) in the SOM network, is shown in
Figure 2.

(2) Setting the Learning-Rate Factor "(�). Since "(�) is a
monotonically decreasing function of �, the range of "(�) is0.2 < "(�) < 1 in the initial ordered stage of the SOM training
process, and 0 < "(�) < 0.2 in the convergent stage of the
SOM training process. 	en "(�) can be set to

" (�) = {{{{{
exp (−� − 1�) , � = 1, 2, 3, . . . , 1000
0.2 ⋅ exp (−� − 1�) , � > 1000. (9)

3.3. VM Anomaly Recognition Based on SOM Model. 	e
modeling method of VM status based on SOM is described
suciently in the previous section. In this section, we will
describe the recognition of an anomaly using the trained
SOM network. A�er several rounds of �tting iterations, the
SOM network can be used to e�ectively discover the normal
state of virtual machines. 	e normal state is represented by
neurons with weight vectors in the SOM network. In other
words, a neuron associated with weight vectors in the SOM
network can be used to describe whether a class of similar
virtual machines is normal.

In order to check whether the current state of a VM
is an anomaly on a Cloud platform, we can compare the
current running performance of virtual machines with the
neurons with weight vectors in the SOM network. In this
paper, Euclidean distance is used to determine similarity. If
the current state is similar to one of the neurons with weight
vectors (assuming that the probability of anomaly is less than
a given threshold �), the virtual machine will be identi�ed to
be normal; otherwise it will be considered to be abnormal.

Let VM
 represent a virtual machine on a Cloud plat-
form. 	e corresponding SOM network of VM
 is de�ned
as SOM(VM
). 	e weight vector of each neuron can be

represented as ���� , a�er the training iterations have �nished.
	e currently measured performance value of VM
 is ��,
and the abnormal state of VM
 is VmStatus(VM
). 	en the

W11 W12 W13 W14 W15

W21 W22 W23 W24 W25

W31 W32 C W34 W35

W41 W42 W43 W44 W45

W51 W52 W53 W54 W55

W1N· · ·

· · ·

...

...

⋱

WNNWN1

Figure 2: Nearest neighborhood of neuron node �.

abnormal state of the virtual machine can be determined by
the following equation:

anomaly (VM
)
= {{{

true, min {������� − ��������� | 	, � = 1, 2, 3, . . . , �} ≥ H
false, min {������� − ��������� | 	, � = 1, 2, 3, . . . , �} < H

(10)

in which H is a suciently small constant.

4. Experimental Results and Analysis

4.1. Experimental Environment and Setup. In this paper, the
experimental Cloud platform is built on an open source
Cloud platform OpenStack [40, 41]. 	e operating system
CentOS 6.3 is installed on the physical servers for the running
virtual machines, on which the hypervisor Xen-3.2 [42, 43] is
installed.	eoperating systemCentOS 6.3 is also installed on
the physical servers for running the Cloud management pro-
gram, on which the Cloud management components Open-
Stack are installed. 100 virtualmachineswere deployed on this
Cloud platform.

	e performance metrics of the virtual machines in this
experiment were collected by tools such as libxenstat and
libvirt [44, 45]. For the fault injection method, we used tools
to simulate system failures: memory leak, CPU Hog, and
network Hog [46–48].

4.2. Experimental Program and Results

4.2.1. First Set of Experiments. 	e impact of the SOM
network, training neighborhood width, and learning-rate
factor values on the performance of the anomaly detection

6 Mathematical Problems in Engineering

Table 1: 	e impact of SOM net size on the detection accuracy.

Size of SOM net Accuracy rate (%)

8 × 8 ≈96.3
13 × 13 ≈97.9
18 × 18 ≈97.5
20 × 20 ≈97.7
24 × 24 ≈97.8
Table 2:	e impact of the initial training neighborhood size on the
accuracy of SOM.

	e initial width for the
training neighborhood

Detection accuracy

0.5 dsn ≈97.8
0.4 dsn ≈93.1
0.3 dsn ≈90.4
0.2 dsn ≈89.1
0.1 dsn ≈73.7
Dsn indicates the diameter of the SOM network.

Table 3: 	e impact of the initial value of the learning-rate factor
on the accuracy of SOM.

Initial learning-rate factor Detection accuracy

1 ≈98
0.9 ≈95.6
0.8 ≈93.3
0.7 ≈90.7
0.6 ≈88.6

mechanism of the SOM-based dynamic adaptive virtual
machine was evaluated.

Training Stage. Firstly, several virtual machines were selected
from 100 virtual machines. One fault was then randomly
selected (a memory leak, CPU Hog, or network Hog) and
then injected. 1000 virtualmachine systemperformancemea-
surements were collected as training samples for the model
training during 10 rounds (one second per round), on the 100
virtual machines.

Anomaly Detection Stage. In order to simulate an anomaly
in the objects under detection, one of the three faults was
randomly injected in the 100 virtualmachines.	e anomalies
in each of the 100 virtual machines were then detected based
on the trained model. 	e detection results were recorded.

Several sets of experimental resultswith di�erent parame-
ter valueswere obtained. It should be noted that the same fault
was injected in each experiment to exclude unnecessary
variables.

	e experimental results are shown in Tables 1, 2, and 3.
As can be seen from Table 1, there is no obvious change in

accuracy using the proposed detection method for di�erent
SOM network sizes, which means that the proposed anomaly
detection method is not a�ected by the size of the SOM
network.

Table 4: 	e impact of SOM net size on the detection accuracy.

Size of SOM net Accuracy rate (%)

8 × 8 ≈95.8
13 × 13 ≈97.1
18 × 18 ≈96.7
20 × 20 ≈96.9
24 × 24 ≈97.1
Table 5:	e impact of the initial training neighborhood size on the
accuracy of SOM.

	e initial width for the
training neighborhood

Detection accuracy

0.5 dsn ≈97.1
0.4 dsn ≈92.5
0.3 dsn ≈90.1
0.2 dsn ≈89.4
0.1 dsn ≈73.1
Table 6: 	e impact of the initial value of the learning-rate factor
on the accuracy of SOM.

Initial learning-rate factor Detection accuracy

1 ≈97.5
0.9 ≈95.4
0.8 ≈93.1
0.7 ≈89.9
0.6 ≈88.1

As can be seen from Table 2, the size of the initial trained
neighborhood has a signi�cant impact on the detection accu-
racy. 	e main reason is that if the training size is too small,
it may cause a metastable state in the training process, and
further training iterations are required to achieve real steady
state.

As can be seen from Table 3, as the initial value of the
learning-rate factor decreases, the accuracy of the abnormal-
ity detection signi�cantly decreases. 	e reason is that if the
initial value of the learning-rate factor is too small, the contri-
bution of each training sample in the SOM network training
is small too. 	us the �tting ability of the SOM network to
detect an object is not sucient, which leads to poor quality
of model training, hence decreasing the accuracy of the SOM
network-based anomaly detection.

Analysis of the �rst set of experiments shows that better
anomaly detection results can be obtained in DA SOMwhen
the parameters are set as follows: SOM network size = 13 ×
13, initial size of training neighborhood = 0.5 dsn, and initial
value of learning-rate factor = 1.

	e above experiments have been carried out on the
training data set. To further demonstrate the e�ectiveness
of the proposed algorithm, the algorithm is tested on the
untrained anomaly set (disk Hog).

	e experimental results about disk Hog are shown in
Tables 4, 5, and 6.

Mathematical Problems in Engineering 7

0
0 10

10

20

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

False positive rate (%)

S
en

si
ti

vi
ty

 (
%

)

DA_SOM

k-NN

k-M

(a) Memory leak

0
10

10

20

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90

False positive rate (%)

S
en

si
ti

vi
ty

 (
%

)

DA_SOM

0

k-NN

k-M

(b) CPU Hog

0
10

10

20

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

False positive rate (%)

S
en

si
ti

vi
ty

 (
%

)

DA_SOM

k-NN

k-M

0

(c) Network Hog

Figure 3: Comparison of the three anomaly detection algorithms: DA SOM, �-NN, and �-M.

As can be seen from Tables 4, 5, and 6, the accuracy of the
proposed algorithm still has better accuracy in the untrained
data set. 	e impact of three parameters (som net size, train-
ing neighborhood width, and learning-rate factor) on the
accuracy is similar with the previous experiments.

4.2.2. Second Set of Experiments. 	e objective of this
set of experiments was to evaluate the e�ect of the VM
anomaly detection mechanism based on SOM (represented
by DA SOM in the following sections). In order to compare
this with other approaches, we use two typical unsupervised
anomaly detection techniques in the experiments: (1) �-
nearest neighbor based anomaly detection technique (called�-NN) where prior training of the anomaly identi�cation

model is not required; (2) cluster-based anomaly detection
technique (called �-M) where training of the anomaly iden-
ti�cation model is required in advance.

Several experiments for di�erent techniques and di�erent
parameters with the same aforementioned con�guration and
experimental procedure are applied to obtain the correspond-
ing results. It should be noted that, since the training process
is not required for the �-NN technique, it started directly
in the abnormality detection stage. In addition, to ensure
comparability, the training process of the clustering-based
method is the same as the proposed method, where an
anomaly detectionmodel is built for 100 virtualmachines and
the training data set is the same as training SOM. Experimen-
tal results are shown in Figure 3.

8 Mathematical Problems in Engineering

Figure 3 shows that compared to the other two injected
failures, the sensitivities of the three techniques to memory
leak failure are relatively low. 	e main reason is that an
anomaly does not immediately appear on the failed object
when there is fault introduced by a memory leak. It takes
some time for this fault to accumulate to eventually cause an
obvious abnormality. 	e consequence of this is that detec-
tion systems tend tomistake these objects with an anomaly as
normal. In contrast, faults caused by CPU Hog and network
Hog events will immediately lead to an abnormal state
within the fault object thusminimizingmisjudgments, which
enhances the sensitivity of all three anomaly detection tech-
niques, as shown in Figures 3(b) and 3(c).

Meanwhile, as shown in each subgraph of Figure 3,
compared with the other two anomaly detection techniques,
DA SOMmaintains a better balance between sensitivity and
false alarm rate. In other words, with the same false alarm
rate, the sensitivity of DA SOM is better than that of the other
two approaches, showing a strong performance in improving
warning e�ect and reducing the false alarm rate.

Moreover, the computational complexity of DA SOM is
much lower than that of the �-NN in anomaly detection stage
while the computational complexity of DA SOM is equiva-
lent to the �-M technique. 	eir complexity is constant with
the detected object size and with the parameter � in the �-M
technique. Meanwhile, during the model training stage, the
training cost of �-M is higher than that of DA SOM, for the
same size of training data.	emain reason is that iteration is
required in �-M on the entire training data set (i.e., the cluster
centers need to be updated, and the training data set needs to
be reclassi�ed according to the updated center point), while
there is only one classi�cation operation for each training
sample in DA SOM.

5. Conclusion

Ananomaly detection algorithmbased on SOMfor theCloud
platform with large-scale virtual machines is proposed. 	e
virtual machines are partitioned initially according to their
similarity, and, then based on the results of initial partition,
the SOM is modeled. 	e proposed method has a high
training speed, which is not possible in traditional methods
when there are a large number of virtual machines. We also
optimized the two main parameters in the SOM network
modeling process, which highly improved this process. 	e
proposedmethod is veri�ed on an incremental SOManomaly
detection model.	e results showed strong improvements in
detection accuracy and speed using the proposed anomaly
detection method.

Competing Interests

	e authors declare that they have no competing interests.

Acknowledgments

	e work of this paper is supported by National Natural
Science Foundation of China (Grants no. 61272399 and no.
61572090) and Research Fund for the Doctoral Program of
Higher Education of China (Grant no. 20110191110038).

References

[1] J. Li, Y. Cui, and Y. Ma, “Modeling message queueing services
with reliability guarantee in cloud computing environment
using colored petri nets,”Mathematical Problems in Engineering,
vol. 2015, Article ID 383846, 20 pages, 2015.

[2] M.A. Rodriguez-Garcia, R. Valencia-Garcia, F. Garcia-Sanchez,
and J. J. Samper-Zapater, “Ontology-based annotation and
retrieval of services in the cloud,”Knowledge-Based Systems, vol.
56, pp. 15–25, 2014.

[3] C.-C. Chang, C.-Y. Sun, and T.-F. Cheng, “A dependable storage
service system in cloud environment,” Security and Commu-
nication Networks, vol. 8, no. 4, pp. 574–588, 2015.

[4] W. He and L. Xu, “A state-of-the-art survey of cloud manufac-
turing,” International Journal of Computer Integrated Manufac-
turing, vol. 28, no. 3, pp. 239–250, 2015.

[5] A. F. Barsoum and M. Anwar Hasan, “Provable multicopy
dynamic data possession in cloud computing systems,” IEEE
Transactions on Information Forensics and Security, vol. 10, no. 3,
pp. 485–497, 2015.

[6] J. Subirats and J. Guitart, “Assessing and forecasting energy
eciency on Cloud computing platforms,” Future Generation
Computer Systems, vol. 45, pp. 70–94, 2015.

[7] S. Ding, S. Yang, Y. Zhang, C. Liang, and C. Xia, “Combining
QoS prediction and customer satisfaction estimation to solve
cloud service trustworthiness evaluation problems,”Knowledge-
Based Systems, vol. 56, pp. 216–225, 2014.

[8] I. C. Paschalidis and Y. Chen, “Statistical anomaly detection
with sensor networks,” ACM Transactions on Sensor Networks,
vol. 7, no. 2, article 17, 2010.

[9] M. GhasemiGol and A. Ghaemi-Bafghi, “E-correlator: an
entropy-based alert correlation system,” Security and Commu-
nication Networks, vol. 8, no. 5, pp. 822–836, 2015.

[10] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, Englewood Cli�s, NJ, USA, 1988.

[11] M. Kourki and M. A. Riahi, “Seismic facies analysis from pre-
stack data using self-organizing maps,” Journal of Geophysics
and Engineering, vol. 11, no. 6, Article ID 065005, 2014.

[12] L. Feng and S. LiQuan, “Enhanced dynamic self-organizing
maps for data cluster,” Information Technology Journal, vol. 26,
no. 1, pp. 70–81, 2009.

[13] Z. Zhou, S. Chen, M. Lin, G. Wang, and Q. Yang, “Minimizing
average startup latency of VMs by clustering-based template
caching scheme in an IaaS system,” International Journal of u-
and e- Service, Science and Technology, vol. 6, no. 6, pp. 145–158,
2013.

[14] L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-
means algorithm for subspace clustering of high-dimensional
sparse data,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 19, no. 8, pp. 1026–1041, 2007.

[15] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szy-
manski, “Clustering approaches for anomaly based intrusion
detection,” in Proceedings of Intelligent Engineering Systems
through Arti�cial Neural Networks, pp. 579–584, 2002.

[16] Y. Sani, A. Mohamedou, K. Ali, A. Farjamfar, M. Azman, and S.
Shamsuddin, “An overview of neural networks use in anomaly
intrusion detection systems,” in Proceedings of the IEEE Student
Conference on Research andDevelopment (SCOReD ’09), pp. 89–
92, Serdang, Malaysia, November 2009.

[17] G. P. Zhang, “Neural networks for classi�cation: a survey,”
IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, vol. 30, no. 4, pp. 451–462, 2000.

Mathematical Problems in Engineering 9

[18] W. Tylman, “Anomaly-based intrusion detection using Bayesian
networks,” in Proceedings of the International Conference on
Dependability of Computer Systems, pp. 211–218, Szklarska
Poręba, Poland, 2008.

[19] W. Pedrycz, V. Loia, and S. Senatore, “P-FCM: a proximity-
based fuzzy clustering,” Fuzzy Sets and Systems, vol. 148, no. 1,
pp. 21–41, 2004.

[20] G. Rätsch, S. Mika, B. Schölkopf, and K.-R. Müller, “Construct-
ing boosting algorithms from SVMs: an application to one-
class classi�cation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 9, pp. 1184–1199, 2002.

[21] D.M. J. Tax andR. P.W.Duin, “Support vector data description,”
Machine Learning, vol. 54, no. 1, pp. 45–66, 2004.

[22] B. Schölkopf, R. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Piatt, “Support vector method for novelty detection,” in
Proceedings of the 13th Annual Neural Information Processing
Systems Conference (NIPS ’99), pp. 582–588, December 1999.

[23] G. Wang, S. Chen, Z. Zhou, and M. Lin, “A dependable
monitoringmechanism combining static and dynamic anomaly
detection for network systems,” International Journal of Future
Generation Communication and Networking, vol. 7, no. 1, pp. 1–
18, 2014.

[24] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a
survey,” ACM Computing Surveys, vol. 41, no. 3, article 15, 2009.

[25] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining , Addison-Wesley, Reading, Mass, USA, 2005.

[26] R. O. Duda, E. P. Hart, and D. G. Stork, Pattern Classi�cation,
Wiley-Interscience, New York, NY, USA, 2nd edition, 2000.

[27] D. Shin and S. Kim, “Nearest mean classi�cation via one-class
SVM,” in Proceedings of the International Joint Conference on
Computational Sciences and Optimization (CSO ’09), pp. 593–
596, Sanya, China, April 2009.

[28] T.-S. Li and C.-L. Huang, “Defect spatial pattern recognition
using a hybrid SOM-SVM approach in semiconductor manu-
facturing,” Expert Systems with Applications, vol. 36, no. 1, pp.
374–385, 2009.

[29] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R.
C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471,
2001.

[30] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–167, 1998.

[31] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods,
Cambridge University Press, Cambridge, Mass, USA, 2000.

[32] B. Liu, Y. Xiao, Y. Zhang, and Z. Hao, “An ecient approach
to boost support vector data description,” in Proceedings of the
2012 International Conference on Cybernetics and Informatics,
vol. 163 of Lecture Notes in Electrical Engineering, pp. 2231–2238,
Springer, New York, NY, USA, 2014.

[33] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, New York, NY, USA, 1988.

[34] L. Ertöz, M. Steinbach, and V. Kumar, “Finding topics in
collections of documents: a shared nearest neighbor approach,”
inClustering and Information Retrieval, vol. 11, pp. 83–103, 2003.

[35] S. Guha, R. Rastogi, and K. Shim, “Rock: a robust clustering
algorithm for categorical attributes,” Information Systems, vol.
25, no. 5, pp. 345–366, 2000.

[36] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases

with noise,” in Proceedings of 2nd International Conference on
Knowledge Discovery and DataMining, E. Simoudis, J. Han, and
U. Fayyad, Eds., pp. 226–231, AAAI Press, Portland, Ore, USA,
August 1996.

[37] M. M. Breuniq, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF:
identifying density-based local outliers,”Proceedings of theACM
SIGMOD International Conference onManagement of Data, vol.
29, no. 2, pp. 93–104, 2000.

[38] N. Ye and Q. Chen, “An anomaly detection technique based on
a chi-square statistic for detecting intrusions into information
systems,” Quality and Reliability Engineering International, vol.
17, no. 2, pp. 105–112, 2001.

[39] T. Kohonen, Self-Organizing Maps, Springer, New York, NY,
USA, 1997.

[40] J. M. Alcaraz Calero and J. G. Aguado, “MonPaaS: an adap-
tive monitoring platformas a service for cloud computing
infrastructures and services,” IEEE Transactions on Services
Computing, vol. 8, no. 1, pp. 65–78, 2015.

[41] D. Milojičić, I. M. Llorente, and R. S. Montero, “OpenNebula: a
cloud management tool,” IEEE Internet Computing, vol. 15, no.
2, pp. 11–14, 2011.

[42] H. Jin, H. Qin, S. Wu, and X. Guo, “CCAP: a cache contention-
aware virtual machine placement approach for HPC cloud,”
International Journal of Parallel Programming, vol. 43, no. 3, pp.
403–420, 2015.

[43] B. Egger, E. Gustafsson, C. Jo, and J. Son, “Eciently restoring
virtual machines,” International Journal of Parallel Program-
ming, vol. 43, no. 3, pp. 421–439, 2015.

[44] Y. Cho, J. Choi, J. Choi, and M. Lee, “Towards an integrated
management system based on abstraction of heterogeneous
virtual resources,” Cluster Computing, vol. 17, no. 4, pp. 1215–
1223, 2014.

[45] J. Li, Y. Jia, L. Liu, and T. Wo, “CyberLiveApp: a secure sharing
andmigration approach for live virtual desktop applications in a
cloud environment,” Future Generation Computer Systems, vol.
29, no. 1, pp. 330–340, 2013.

[46] Z. Xu, J. Zhang, and Z. Xu, “Melton: a practical and precise
memory leak detection tool for C programs,” Frontiers of
Computer Science, vol. 9, no. 1, pp. 34–54, 2015.

[47] P. Dollár, C.Wojek, B. Schiele, and P. Perona, “Pedestrian detec-
tion: an evaluation of the state of the art,” IEEE Transactions on
PatternAnalysis andMachine Intelligence, vol. 34, no. 4, pp. 743–
761, 2012.

[48] Y.-J. Chiu and T. Berger, “A so�ware-only videocodec using
pixelwise conditional di�erential replenishment and perceptual
enhancements,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 9, no. 3, pp. 438–450, 1999.

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

