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Abstract. We present an anonymous self-stabilizing algorithm for finding a 1-maximal
matching in trees, and rings of length not divisible by 3. We show that the algorithm
converges in O(n4) moves under an arbitrary central daemon.

1 Introduction

Networks of computers are used to solve a wide variety of problems. Most services for a network
involve maintaining a global predicate over the entire network by using local information at each
participating node. To this end, several paradigms for distributed algorithms have been studied.
Among these are the (fault-tolerant) self-stabilizing algorithms introduced by Dijkstra [2]. The
self-stabilizing property is that a system can start in any configuration and yet is guaranteed to
converge to a desired configuration in finite time and remain so thereafter [3, 4, 10]. In this paper
we provide a self-stabilizing algorithm which produces an improved maximal matching.

1.1 Self-stabilization

In the self-stabilizing algorithmic paradigm, each node maintains and changes its own local variables
based on the current values of its variables and those of its neighbors. The values of the local
variables at a node determine its local state. The global state of a network is the union of all the
local states.

When a node changes its local state, it is said to make a move. The algorithm is presented as a
set of rules. Each rule is of the form “if p(i) then q(i)” where i is a node, p(i) is a boolean predicate
and q(i) a move. A node is said to be privileged if p(i) is true. If a node becomes privileged, it may
execute the corresponding move q(i).

When no node is privileged, we say that the system is in a stable state. For us, an algorithm
is self-stabilizing if: from any initial global state it reaches a legitimate global stable state after a
finite number of moves. (This is sometimes called a silent self-stabilizing algorithm.)
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We do not make use of IDs: the network is anonymous. However, the ability of anonymous,
self-stabilizing algorithms to solve problems is relatively weak, and thus our algorithm works only
for limited networks. Like most matching papers (e.g. [7]), we assume nodes have pointers and a
node can determine whether its neighbor points to it. This can be achieved by every two adjacent
nodes sharing a private register (called the link-register model).

As is standard in deterministic anonymous algorithms, we assume a central daemon [2, 7], which
at each time-step selects one of the privileged nodes to make a move: thus no two nodes move at
the same time. We also assume coarse atomicity : a node can read all its neighbors’ variables and
update its own variables in one move. Because of the indeterminism, it is impossible to simulate
the daemon selection process—self-stabilizing algorithms usually converge rapidly when simulated
with a random daemon, but mathematical techniques are needed to show convergence under all
circumstances.

Anonymous self-stabilizing algorithms for some graph problems have been given in [5, 6, 7, 8, 9].

1.2 Our result

We model a distributed network as a connected, undirected graph G = (V, E). For a node i ∈ V ,
N(i), its open neighborhood, is the set of nodes to which i is adjacent. A matching is a subset M
of edges such that each node in V is incident to at most one edge in M . A matching is maximal if
∀e ∈ E − M it holds that M ∪ {e} is not a matching.

An anonymous self-stabilizing algorithm for maximal matching in any connected network was
presented by Hsu and Huang [7]. Though the algorithm uses pointers and appears to use IDs, a
node only needs to know whether a neighbor points to (a) it, (b) nothing, or (c) another node.
A maximal matching algorithm for a model with fewer assumptions (but using randomness to
generate IDs) was presented by Chattopadhyay, Ligham and Seyffarth [1].

A maximal matching M is 1-maximal if it satisfies the following property: ∀e ∈ M , no matching
can be constructed by removing e from M and adding two edges to M − {e}. Our result is:

Theorem 1 We present an anonymous, self-stabilizing algorithm that:
(a) for any network produces a 1-maximal matching if it stabilizes; and
(b) is guaranteed to stabilize if the underlying graph is a tree or a ring with length not divisible by
3.

We show that the performance guarantee of a 1-maximal matching algorithm is better than
that of a maximal matching algorithm. We also show that for rings of length a multiple of 3, no
deterministic, anonymous, 1-maximal matching algorithm is possible.

2 Description of Algorithm

Our algorithm builds on the maximal matching algorithm of Hsu and Huang [7]. In their algorithm,
every node maintains a pointer. When the system stabilizes, the pointers are in pairs, and an edge
is in the matching precisely when its two ends point to each other. In this case, each matched node
points to its spouse.

To obtain a 1-maximal matching algorithm, we need to provide a mechanism for a 2-for-1
exchange where one edge of the matching is replaced by two. This is achieved by a hand-shaking
mechanism: the two matched nodes signal to each other the availability of alternate spouses, lock
in commitments from these alternates, and then point to their new spouses.

2.1 Rough version

We present first an overview of the algorithm in informal language. Of necessity, certain concepts
will not be defined precisely (or will be inaccurate) until we present the actual rules.



In the algorithm, each node i maintains two variables: (i) a pointer, and (ii) a local variable xi.
The pointer records the neighbor to which i points (its intended spouse). We write i → j if i’s
pointer is set to j, and i → ∅ if i’s pointer is set to null.

The variable xi records the current state of the node i; this is used to indicate progress towards
a 2-for-1 exchange. There are four states, denoted 0, 1, 2 and 3. Informally one may describe the
intent of each state as follows:

• State 0 is a quiet state. Any unmatched node, as well as a matched node that cannot achieve
a 2-for-1 exchange, should be in this state.

• State 1 should mean that a node is matched and has an alternate neighbor available (i.e., an
unmatched, uncommitted neighbor).

• State 2 should mean that a node is matched and its spouse also has an alternate neighbor
available. This state is a signal that beckons the available neighbor to commit to the node
by pointing to it.

• State 3 should mean that a node is matched and has a committed neighbor. This is a signal
to its spouse to break the match if it too has a committed neighbor.

2.2 The actual rules

We start with the intention of the rules, in informal language. We group the rules into three pairs.
The first pair of rules are designed for a node that is not in a match. These two rules echo the

rules of the Hsu–Huang maximal matching algorithm:

1. BackUp: if you are pointing to a node that does not want you to point to it (it is pointing
elsewhere and not beckoning), then set your pointer to null.

2. Point: if your pointer is null and there is a neighbor that wants you to point to it (it is
pointing to you, to null, or is beckoning a commitment), then point to that neighbor.

The second pair of rules are designed for a node that is matched in order for it to implement
the hand-shaking procedure. The state of a node is meant as a signal to its spouse: it indicates
progress in informing nodes and obtaining commitments from nodes to execute a 2-for-1 exchange.

3. StateIncrease: if you see the potential to expand the number of edges in the matching—because
of your spouse’s state or a suitable neighbor—then go to the next higher state.

4. Abort: if your state does not correctly represent the situation—because of changes by your
neighbors or because your data was not initialized—then reset your state.

The final pair of rules are designed to enable a 2-for-1 exchange to occur: the two spouses each
marry a committed neighbor.

5. BreakMatch: if your spouse has agreed to the 2-for-1 exchange, and you have a committed
neighbor, then point to the neighbor (and reset your state).

6. Remarry: if your spouse has already changed, then point to a committed neighbor.

The exact rules of the algorithm are shown in Figure 1.



(1) BackUp: if i → j ∧ j 9 i ∧ j 9 ∅ ∧ xj < 2
then xi = 0 ∧ i → ∅

(2) Point: if i → ∅
∧ ∃ incoming, beckoning or open k ∈ N(i)

then xi = 0 ∧ i → k
(the selection order for k is incoming neighbors in increasing state,
then beckoning neighbors, then open neighbors)

(3) StateIncrease: if xi < 3
∧ i is in a proper match with j with xi ≤ xj

∧ (either ∃ incoming k ∈ N(i), or xi < 2 and ∃ open k ∈ N(i))
then xi ++

(4) Abort: if xi > 0 ∧ not eligible for Rule Remarry ∧
∧ (either i is not in a proper match, or @ incoming nor open k ∈ N(i),

or xi = 3 and @ incoming k ∈ N(i))
then set xi = 2 if xi = 3, i’s spouse is in State 1 and i has an incoming

neighbor; and set xi = 0 otherwise.

(5) BreakMatch: if i is in a proper match with a spouse in State 3
∧ ∃ incoming k ∈ N(i) that is not in State 3

then xi = 0 ∧ i → k

(6) Remarry: if xi = 3 ∧ i 9 ∅ ∧ i is not matched
∧ ∃ incoming k ∈ N(i)

then xi = 0 ∧ i → k

Abbreviations:
i is in proper match with j if i → j, j → i and |xi − xj | ≤ 1.
k ∈ N(i) is beckoning to i if i 9 k and xk = 2.
k ∈ N(i) is incoming if i 9 k and k → i.
k ∈ N(i) is open if i 9 k and k → ∅.

Figure 1: The 1-Maximal Matching Algorithm (the rules for node i)

3 Analysis of Algorithm

We show first that the algorithm is correct for any network: every stable state has the desired global
property. Then we show that in the special networks of trees and cycle of length not a multiple of
3, the algorithm is guaranteed to reach a stable state after polynomially many moves.

3.1 Correctness

In this section we show that every stable state has the desired global property. To show this
correctness, we show that at convergence there is no node in state 2 or 3. Then we show that this
means the pointers represent a 1-maximal matching.

For a value y of the state variable x, we use the notation S(y) to represent the set of nodes i
for which xi = y.

Lemma 3.1 In a stable state produced by this algorithm, S(2) = S(3) = ∅.

Proof. Suppose upon stabilization there is a node u ∈ S(2). Because u is not privileged for
Rule Abort, it must be in a proper match.



Let v be u’s spouse: we know xv ≥ 1. If xv = 1, then v is privileged for either Rule StateIncrease

or Abort. So assume xv ≥ 2. Then the only way u is privileged for neither of those rules, is if it has
an open neighbor, say z. However, then node z is privileged for Rule Point, a contradiction. Thus
in a stable state, S(2) is empty.

Suppose there is a node w ∈ S(3). Since S(2) = ∅, and w cannot execute Rule Abort, w is in a
proper match with a spouse in State 3. Node w cannot have an incoming neighbor in State 3, since
that neighbor would be privileged for Rule Abort. Thus w is privileged either for Rule Abort or for
Rule BreakMatch, depending on whether it has an incoming neighbor. This is a contradiction. ♦

Lemma 3.2 In any network, if the algorithm stabilizes then it produces a 1-maximal matching
given by nodes pointing to each other.

Proof. By Lemma 3.1, in a stable state the network contains nodes only in States 0 and 1. By
Rule BackUp and Rule Point, if i → j then j → i. Thus, an edge of the matching is given by
spouses pointing to each other.

Suppose the resultant matching is not maximal. Then there is a pair of adjacent nodes whose
connecting edge can be added: but they are privileged for Rule Point.

Similarly, if the resultant matching is not 1-maximal, then there is a path of four nodes a, b, c, d
such that neither a nor d is in the matching but the edge bc is. Since every node is in State 0 or 1,
by Rule BackUp both a and d point to ∅. Thus both b and c are privileged for Rule StateIncrease,
a contradiction. ♦

3.2 Convergence and complexity analysis

We need to prove that, in some networks, the algorithm always reaches a stable state after finitely
many moves no matter what the central daemon does. There are two parts to showing convergence.

The first part is to introduce the concept of a progress move. We show that the number of
progress moves is bounded. A useful concept here is the idea of a node being semi-matched. The
set of matched nodes does not monotonically increase—we need the ability to break matches and
remarry. Nevertheless, we show that once a node becomes semi-matched, it remains semi-matched
(and we later show that the node will eventually become matched in the special networks). The
first part holds true in any network.

For the second part, we show that, for the special networks we are interested in, the daemon
cannot cause the network to move indefinitely without a progress move occurring. The idea here
is that if the process goes on forever, there must be nodes which are repeatedly starting the 2-for-1
exchange process and then aborting it. Since there is no overall progress, this abortion is caused
by an available neighbor committing itself to another 2-for-1 exchange. That exchange in turn is
aborted because of another neighbor committing elsewhere, and so on. This process can go on
forever if there is a cycle back to the first exchange. However, we show that an infinite process is
impossible in trees, and in rings whose length is not divisible by 3.

3.2.1 Semi-matched nodes and progress moves

Lemma 3.3 The number of matches never decreases.

Proof. The only move (Rule BreakMatch) that deletes an existing match replaces it with one. ♦

We say that a node is dirty if it has not moved, otherwise it is clean. We say that a node is
semi-matched if: (a) it points to null and is pointed to by a node that is not in state 3; or (b) it is
in state 3 and is pointed to (but not matched).

Let T denote the set of nodes that are matched or semi-matched. The first lemma shows that
one a node actively becomes semi-matched, then it remains so. The easy proof is omitted.



Lemma 3.4 A node u in T remains in T except possibly when u is dirty and in State 3.

We define a progress move as either: (1) a move of a dirty node in State 3; (2) a move that
creates a new match; or (3) a move that changes a null pointer to point to an open neighbor.

Lemma 3.5 There are at most O(n2) progress moves.

Proof Sketch. Clearly there are at most n Type 1 progress moves. By considering all the
possibilities, one can argue that every Type 2 move increases the set T and so there are O(n)
Type 2 moves. A Type 3 move freezes that node and any subsequent move by an open neighbor
creates a match; thus there are at most O(n2) Type 3 moves. ♦

3.2.2 Between progress moves in special networks

In many networks, however, the daemon can cause ensure no progress move occurs and yet the
algorithm does not terminate. So in some networks, including trees and cycles of the appropriate
length, we now argue that the adversarial daemon cannot go forever without causing progress.

We therefore focus on the maximum number of moves that can be made between two progress
moves. During such a period, the set of edges in the matching remains unchanged. Indeed, the
nodes that are matched can execute only Rule StateIncrease or Abort.

A node that is not matched cannot change its pointer to an incoming or open neighbor, since
both are progress moves. We define a u-to-v flip as a move by node u that changes its pointer from
null to point to a beckoning neighbor v. We define a flop as a node executing Rule BackUp. We
define a flopflip as a flop followed by a flip.

Lemma 3.6 Consider a period during which there is no progress move. Assume a node u flopflips
to v three times. Then between the first flop and the final flip, some node x adjacent to v’s spouse
w flopflips to a node other than w.

Proof Sketch. During this time w must oscillate between state 0 and state at least 1, meaning
that it changes from not having an open neighbor to having an open neighbor and back again.
That neighbor is the x we seek. ♦

By iterating the above argument we obtain:

Corollary 3.1 Consider a period during which there is no progress move. If a node u flopflips to
v k times, then one can identify a sequence of k− 2 flopflips f1, . . . , fk−2 as follows. The flopflip fi

is executed by some neighbor xi of v’s spouse (xi 6= v), and points to some node other than v or u,
and the flop part of fi occurs between the ith flop by u and the (i + 2)nd u-to-v flip.

We define the cause of a flopflip as follows. We say the first two u-to-v flopflips are self-caused.
For a later u-to-v flopflip, we assign the cause as another flopflip by some node x, as in the above
lemma. Associated with each cause, other than self-causes, is a directed cause path from u to x.

Now, the flopflip by x in turn, has a cause. We can therefore follow the cause paths until we
reach a self-caused flopflip: that we define as the ultimate cause.

Lemma 3.7 In trees and rings of length not a multiple of 3, there are at most O(n2) flopflip moves
between successive progress moves.

Proof Sketch. If we follow the cause paths, a node can be the ultimate cause of a u-to-v
flopflip at most twice, unless there is a cycle which alternates between two matched nodes and one
unmatched node (and hence has length a multiple of 3). ♦

Since the corresponding state changes by matched nodes must be of the same order as the
number of flopflips, we get:



Theorem 2 The 1-maximal matching algorithm converges in O(n4) moves in trees and rings of
length not a multiple of 3.

4 Performance and Optimality

It is well known that a maximal matching has cardinality at least half that of a maximum matching.
A better bound holds for 1-maximal matchings.

Lemma 4.1 Any 1-maximal matching has at least 2/3 the cardinality of a maximum matching.

Proof Sketch. Consider a 1-maximal matching M and and a maximum matching N . Each
component C of the graph induced by M ∪N is a path or even cycle; one can easily show that the
number of M -edges is at least 2/3 the number of N -edges in C. ♦

We show next that in a ring of length a multiple of 3, no anonymous 1-maximal matching
algorithm is possible. (The maximum matching algorithm for bipartite graphs given in [1] is not
anonymous—the claim in their introduction is incorrect.)

Lemma 4.2 No anonymous self-stabilizing algorithm on a ring of order n a multiple of 3 can
guarantee more than the smallest maximal matching (which has cardinality n/3).

Proof Sketch. Use the standard symmetry argument: the central daemon can ensure that the
ring remains symmetric under rotation through three nodes. ♦
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