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An ant colony algorithm for the multi-compartment

vehicle routing problem

Martin Reed, Aliki Yiannakou, Roxanne Evering

Department of Mathematical Sciences, University of Bath, Bath, United Kingdom

Abstract

We demonstrate the use of Ant Colony System (ACS) to solve the capacitated
vehicle routing problem associated with collection of recycling waste from
households, treated as nodes in a spatial network. For networks where the
nodes are concentrated in separate clusters, the use of k-means clustering can
greatly improve the efficiency of the solution. The ACS algorithm is extended
to model the use of multi-compartment vehicles with kerbside sorting of waste
into separate compartments for glass, paper, etc. The algorithm produces
high-quality solutions for two-compartment test problems.

Keywords:
ant colony optimization, capacitated vehicle routing problem, clustering,
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1. Introduction

1.1. Vehicle routing problems

Vehicle routing problems (VRPs) are an extension of the classic Travelling
Salesman Problem (TSP), in which one or more vehicles travel around a
network, leaving from and returning to a depot node. Customers are located
on the network and each customer must be visited by exactly one vehicle.
Customers are usually located at network nodes (although in arc routing
problems they are distributed along arcs of the network). The object is to
find the vehicle routing(s) of minimum cost, e.g. to minimise the total route
length.

An important type of VRP for practical application is the capacitated
vehicle routing problem (CVRP). In this, there is a demand associated with
each customer, representing an amount of goods which must be collected
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(or delivered). Each vehicle has a capacity which cannot be exceeded, and
when the vehicle is full (or empty) it returns to the depot. There are many
variants of CVRP with additional constraints, for example CVRPTW in
which each customer may have a time window during which a visit must be
scheduled. A survey of such variants is given in [1]. The study of CVRPs has
become of increasing practical importance as distribution networks become
more complex, and with the growth of online shopping, leading to a recent
resurgence of research interest [2].

1.2. Waste collection

In this paper we consider a basic CVRP applied to the collection of do-
mestic waste for recycling. Waste collection is becoming an increasingly com-
plicated task for municipal authorities, and growing environmental concerns
are gradually changing the orientation of solid waste management. In the
UK, recyclable waste generated by households is organised by local author-
ities (LAs, for example District Councils), either with their own vehicles or
contracted to private companies. Each LA decides on the nature and level of
service it will provide, taking into account social and economic factors under
the headings of collection, transportation and disposal [3, 4]. Reports have
shown that logistics costs represent up to 95% of the total cost of recycling
[5], so the importance of devising the most cost-efficient routes using the
minimum number of vehicles is crucial. A new factor motivating research in
this area is the imposition of large fines for missing government-set recycling
targets.

1.3. Multi-compartment vehicles

Once a waste collection vehicle is full to capacity, it must move to a waste
disposal site (commonly referred to as a tip) to unload. Frequently the tip is
at the same location as the vehicle depot, but it may be located at a different
node in the network. At the tip, the waste is sorted into its constituent types
(paper, glass, etc) which are disposed of or recycled in different processes.

A recent development is the introduction of multi-compartment stillage
trucks for domestic waste collection. These vehicles typically have four sep-
arate compartments, so that glass can be stored separately from paper, for
example. The vehicle crew must perform kerbside sorting of the waste in
customers’ recycling boxes, and this slows up the collection process. This
disadvantage is hopefully outweighed by the improvement in quantity and
quality of the recyclable material produced. The pros and cons of kerbside
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sorting as against commingled collection in single-compartment vehicles, are
discussed in [5, 6, 7].

2. Previous work

2.1. Solving the CVRP

Standard OR techniques of dynamic programming, or branch and cut,
can be used to produce exact solutions for only small CVRP problems; as
of 2007, the largest problem to be solved exactly had 135 nodes [8]. Start-
ing with the algorithm of Clarke and Wright in 1964, several heuristics have
been proposed, which construct tours and/or improve existing tours [9]. In
particular we mention the improvement of a completed sub-tour (from the
depot through some or all nodes and returning to the depot) by r-optimal
methods [10]; the 2-opt algorithm tests whether a tour length can be short-
ened by crossing two of its non-adjacent arcs, i.e. by replacing arcs (a, b) and
(c, d) by (a, c) and (b, d). Constructive heuristic methods are tailored for
specific problems, which restricts their use in wider applications. This has
led to the development of more versatile metaheuristics, which offer global
search strategies for exploring the solution space. Metaheuristics which have
been applied to the VRP include tabu search [11, 12] and simulated anneal-
ing [13]. More recently, soft computing techniques have proved successful in
solving CVRP instances. Thangiah [14] used genetic algorithms in conjunc-
tion with these two metaheuristics in 1999, and since 2003 several papers
[15, 16, 17, 18, 19, 20] have extended the use of genetic algorithms for the
VRP, including with time windows. Khouadjia et al. [21] have used par-
ticle swarm optimization and variable neighbourhood search for a dynamic
VRP. Adaptive Large Neighbourhood Search [8] uses a variety of heuristic
algorithms (chosen by roulette wheel solution) to destroy and then repair
solutions, and has been shown to solve a range of VRP variants, including
CVRP, CVRPTW and multi-depot CVRP.

Perhaps the most successful soft computing approach for the TSP and
related problems such as job shop scheduling and quadratic assignment, is
ant colony optimization (ACO). The details are given in the next section, but
essentially the algorithm as applied to the VRP is as follows. At the start
of each iteration, ants (autonomous agents) are placed at random nodes of
the network, ready to construct tours; their initial tour length is the distance
from the depot to their starting node. They maintain a tabu list to avoid
returning to already-visited nodes, and decide their next move stochastically,
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with probabilities based on the amount of pheromone present on the possible
arcs. Once all ants have completed their tours they return to the depot node.
They then update the pheromone levels on the arcs they visited (local up-
dating), and the levels on the arcs in the tour with the shortest total length
are further increased (global updating). Over a large number of iterations,
the pheromone levels encourage ants to use high-quality paths through the
network, resulting in shorter-length tours being discovered. The original al-
gorithm is known as Ant System (AS), and a later, more successful variant is
called Ant Colony System (ACS); both are described in Dorigo and Stützle’s
book [22].

Mazzeo and Loiseau [23] used the ACS to solve some benchmark CVRP
problems, and report good performance in comparison with some of the meth-
ods described above. Karadimas et al. [24, 25] applied an ACO algorithm to
the problem of urban solid waste collection, although they avoided the need
to include capacity constraints in the ACO by first breaking the network into
a set of sub-areas, each of which could be serviced by a single vehicle without
unloading, an approach also followed in [26]. ACO was also applied to urban
waste collection in [27], although they model the problem as a capacitated arc
routing problem (CARP) extended to comply with traffic rules. They apply
two versions of the ACO: the Ant System, and a populational AS in which
only a subset of elite solutions update the pheromone trails. They highlight
the benefits of integrating these methods with decision support systems to
aid planners in their decisions. Rizzoli et al. [28] describe a commercial ACO
package and its performance on a number of real-world freight distribution
problems, including dynamic handling of orders. ACO algorithms for the
VRP have been hybridized with scatter search [29], with genetic algorithms
[32], and with savings algorithms and problem decomposition [30, 31].

2.2. Solving the CVRP with multiple compartments

The multi-compartment VRP (MCVRP) was identified already in 1979 as
a variant of VRP which had practical significance; Christofides et al. [9] give
as examples a delivery vehicle which has refrigerated and non-refrigerated
compartments for foodstuffs, and a tanker which distributes different types
of petroleum products. The problem has not however attracted the atten-
tion of researchers until recently. There have been heuristic approaches to the
petroleum distribution problem in [33, 34], and the food distribution problem
in [35], the latter using Lagrangean relaxation. In 2008 El Fallahi et al. [36]
tackled a distribution problem in which a depot stocks m different products
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which must be delivered to customers by a fleet of identical vehicles, each
with m compartments of limited capacities. Unlike in the multi-compartment
waste collection problem, it is permitted for different vehicles to deliver dif-
ferent products to the same customer. The paper demonstrates a memetic
algorithm (a genetic algorithm hybridised with a local search procedure) and
a tabu search procedure for the MCVRP. Most recently, in 2010 Muylder-
mans and Pang [38] addressed the MCVRP applied to distribution. Their
heuristic started by constructing the Clarke and Wright solution, and used
2-opt for improvement, coupled with guided local search. They used this
algorithm to compare the costs of MC-collection against commingled collec-
tion.

3. The ACS algorithm

The two main phases of the ACO algorithm are the ants’ route construc-
tion and the pheromone update. In the tour construction phase, M ants
concurrently build tours beginning from starting nodes randomly chosen in
the network of N customer nodes (plus the depot node). At each construction
step, ant k currently at node i applies a probabilistic random proportional
rule to decide which node to go to next. It selects the move to expand its
tour by taking into account the following two values:

• The heuristic function ηij which represents the attractiveness of the
move, usually calculated as the inverse of the distance/cost on the arc
from node i to node j.

• The level of pheromone on the arc (i, j), denoted τij, which indicates
how useful it has been in the past to traverse this particular arc.

Given these parameters, the probability with which the ant chooses to go
to node n next is

pkin =
(τin)α(ηin)β∑
l∈N k

i
(τil)α(ηil)β

(1)

if node n ∈ N k
i , and pkin = 0 otherwise. Here, N k

i is the feasible neigh-
bourhood (i.e. the nodes which are directly accessible from node i and not
previously visited), and α and β are heuristic parameters. Each ant main-
tains a memory (a tabu list) of the nodes already visited. Once all ants have
completed a tour, the pheromone trails are updated. This is done by first
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lowering the pheromone levels on all arcs (to represent evaporation and in
order to progressively forget bad solutions and encourage exploration of new
arcs) and then adding pheromone to the arcs that have been traversed.

The Ant Colony System improves on the ACO in the following main
aspects:

• Route Construction: During tour construction, ant k, located at
node i, moves to node n chosen according to the following pseudoran-
dom proportional rule. A random variable q uniformly distributed over
[0, 1] is evaluated, and if q > q0 the node n is chosen according to the
standard ACO rule (1), using α = 1. Otherwise, choose n by

n = arg maxj∈N k
i
{(τij)(ηij)β}. (2)

So, with probability q0, the ant makes the best move described by
the pheromone trails and heuristic information (exploiting the learned
knowledge), while with probability (1− q0) it performs a biased explo-
ration of the arcs.

• Pheromone Update: The ACS method uses two types of pheromone
updates: global and local. The local update is performed every time
an ant traverses an arc (i, j) and the pheromone is modified as follows:

τij ← (1− ξ)τij + ξτ0 (3)

where 0 < ξ < 1 and τ0 is the initial pheromone value defined as
τ0 = (NLnn)−1 where Lnn is the length of the nearest neighbour tour
(a tour in which each move is to the nearest unvisited node; this is used
as a baseline tour length). The global update, however, is only carried
out by the ant that produced the best tour so far and is implemented
by the following equation for each arc of the tour:

τij ← (1− ρ)τij + ρ∆τ bsij , ∀(i, j) ∈ T bs (4)

where ∆τ bsij = (Lbs)−1, ρ is a parameter governing decay and T bs is the
best found tour so far with Lbs its length. This enables the algorithm
to converge faster by directly concentrating the search around the best
tour.
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4. An ACS Algorithm incorporating Unloading Trips

We have extended the ACS algorithm by allowing each ant to keep a
record of the amount of waste collected during its tour, and forcing a return
to the depot for unloading whenever it is unable to proceed to a new node
without exceeding its vehicle capacity V . This idea is relatively unexplored;
most reports in the literature tackle the CVRP by implementing an heuristic
savings algorithm, which combines customers into tours following a greedy
strategy [30, 37]. An ACO algorithm with a path scanning heuristic involving
vehicle capacity was described in [27], solving a CARP for waste collection
in an urban environment.

A matrix tour records the nodes visited by each ant, including the depot
node for unloading. Our program uses an additional input vector v(N) giving
the amount of waste or ‘demand’ vi to be collected at node i, and so within
the ants’ memory structure, we include a matrix load recording the vehicle
load volume at each step of each ant’s tour.

4.1. Programming

Let the graph involve N nodes where waste is to be collected, together
with the depot as node 0. The depot node has zero waste demand, and is
not included in the path node selection algorithm in Section 3.1. It is di-
rectly accessible from all nodes. While it is common to use 10 ants, we have
used N ants, placed randomly at each node initially, because of the increased
complexity of the route to be constructed. The tour matrix is expanded to
allow space in the tour for all the collection nodes plus the required num-
ber of unloading trips mtip to the depot node. The latter is estimated by
dividing the total demand by the vehicle capacity and rounding up to the
next largest integer. This is valid provided each pair of nodes is connected
by an arc of finite length. We have worked with volume demand and ca-
pacity, although weight collected could easily be included as an alternative
or additional calculation. The first column of the matrix load storing the
waste volume collected by each ant, is initialised as the demand at the ant’s
starting node.

As an ant moves from node to node, the volume of waste collected by it is
updated in successive columns of load. The ant selects a new node to move
to using (1) or (2), from among the feasible nodes (unvisited and directly
accessible) for which collection from that node will not exceed the vehicle
capacity. If no collection nodes can be chosen without exceeding capacity,
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the ant moves instead to the depot node to unload. In this case the ant’s
waste volume in load is set to zero.

To resume its tour from the depot node, the ant selects at random an
unvisited node to move to; this was found to be better than selecting the
nearest unvisited node, or the furthest. When all nodes have been visited
the ant makes a final move to the depot node to unload. Each ant’s tour
is then improved by applying the 2-opt algorithm separately to each sub-
tour (i.e. each loop from the depot and back to unload), and the resulting
total tour length calculated. Note that a tour consisting of K sub-tours can
equivalently be considered as a solution with K vehicles each making a simple
tour loop from the depot and back. Pheromone updating is not performed
on arcs to or from the depot node.

The algorithm pseudocode is summarised as follows:

INPUT N (no. of nodes), M (no. of ants), miter (no. of iterations)
INPUT parameters α, β, q0, ρ, ξ
INPUT coordinates of nodes 1 to N and of depot node 0
Form matrix of arc lengths dist(N,N) including node 0, and of heuristic
function η(N,N)

5: INPUT vector of nodal demands v(N) and vehicle capacity V
mtip = ceiling(Σvi/V ) {no. of unloading trips required}
mstep = N +mtip {tour length (without depot at start and end)}
Calculate τ0 as in (3) and initialise pheromone matrix τ(N,N)
Store values of τijη

β
ij in separate matrix choice(N,N) {to avoid repeated

recalculation in (2)}
10: Zero tour(M,mstep) {each ant’s tour of nodes}

Zero load(M,mstep) {vehicle load at each step of each ant’s tour}
Allocate ants randomly to starting nodes: ant k starts at node start(k)
for iter = 1 to miter do {iteration loop}

Initialise tabu list {nodes visited so far by ant k}
15: for k = 1 to M do {loop over ants}

i = start(k) {ant starts its tour by moving from depot to node i}
Add node i to tabu list for ant k
tour(k, 1) = i
load(k, 1) = v(i)

20: end for
for istep = 1 to mstep do {loop over each step of tour}
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if istep < mstep then {tour not yet completed}
for k = 1 to M do {loop over each ant}
i = tour(k, istep) {ant k currently at node i}

25: Select next node n in tour as follows:
if i = 0 then {ant is at depot node}

Select n at random from feasible nodes
else

Choose random variable q ∈ [0, 1]
30: Compile list of feasible nodes which can be visited without

exceeding vehicle capacity, i.e. nodes j for which
load(k, istep) + v(j) < V
if N k

i is empty then
n = 0 {return to depot to unload}

else if q > q0 then {use equation (1)}
Calculate probabilities pij for these nodes

35: Choose n by roulette wheel selection
else {use equation (2)}

Choose node n which has the maximum value of choice(i, j)
end if

end if
40: tour(k, istep+ 1) = n

if n = 0 then
load(k, istep+ 1) = 0 {vehicle has unloaded}

else
load(k, istep+ 1) = load(k, istep) + v(n)

45: Add node n to tabu list for ant k
end if
Local pheromone updating using (3)

end for
end if

50: end for
Add depot node to start and (if necessary) end of each ant’s tour
Apply 2-opt improvement to each sub-tour (from depot and back to
depot) of each tour
Find length of each tour using tour and dist
Record shortest tour and apply global pheromone updating (4)

55: Update best tour found so far
end for
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PRINT best tour
RETURN

4.2. Clustering

For networks in which the nodes naturally form clusters (corresponding
to centres of population), performance can be improved by first clustering
the nodes, and then applying the ACS to each cluster in turn. We first deter-
mine the number of clusters by dividing the total demand by vehicle capacity
and rounding up, as in Section 4.1. When there are additional constraints,
a more sophisticated calculation uses an Integer Linear Programming (ILP)
formulation. This model assumes a fixed number K of vehicles, and so the
algorithm is run repeatedly with increasing values of K until a feasible solu-
tion is found. For the cost function we use the total time spent by vehicles
on unloading trips to the depot. This model is based on the Linear Program-
ming (LP) models of [39]; further details including the constraints used are
in [40]. In a solution the program will output the number of unloading trips
to be made, and the number of households to be serviced, by each vehicle.

For the clustering we employed the in-built k-means clustering algorithm
within MATLAB. This uses the geographical coordinates of the nodes, iter-
atively allocating nodes to the cluster whose centroid is closest to that node,
but does not take into account the nodal demands. We therefore need to
adjust the clusters in order to balance the total load of each cluster, so that
each cluster can be serviced by a single vehicle, making unloading trips when
necessary. The load-balancing algorithm first sums the total demand in each
cluster, calculates the average demand per cluster, and identifies the clusters
with excess demand. It then tries to move an outlying node of the cluster
with greatest excess demand to a neighbouring cluster, so that the total ex-
cess demand of the network is reduced. Once a node has been moved, the
algorithm recalculates the centroids and cluster demands, and iterates as in
the k-means algorithm. If load balancing cannot be achieved such that the
total demand of each cluster does not exceed the vehicle capacity, the whole
algorithm is restarted with the number of clusters increased by 1.

The final clustering information was fed into the ACS algorithm, which
was run separately on each cluster. As will be seen in the next Section, the
solution of several smaller ACS problems rather than a single large problem
results in a much reduced processing time.
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4.3. Routing vehicles with multiple compartments

We now seek to use ant colony optimisation to route a multi-compartment
vehicle as described in Section 1. It is straightforward to further extend the
ACS algorithm described at the start of this section, by replacing the matrix
load recording the waste collected by each ant, with a 3D array recording
the waste volume collected in each compartment for each ant at each step of
its tour. The capacities of each compartment are specified, and the demands
at each node are split by waste category, e.g. glass, paper, plastic and metal.
The programming principles are as described above, with each compartment
load being updated as the ant moves from node to node. When it is unable to
make a further move without one or more compartments becoming overfull, it
returns to the depot where all compartments are unloaded, i.e. reset to zero.
The required number of unloading trips is predicted by calculating mtip as
in Section 4.1 for each compartment separately, and the maximum of these is
used in allocating array space. However this may now be an underestimate,
if the unloading trips are driven by one type of waste in one part of the
network, and by another type elsewhere. Allowance should thus be made for
longer tours being necessary (This is also the case for single-compartment
problems where travel is not permitted on some arcs).

The algorithm has the following modifications to Algorithm 4.1:

• Line 1: Also input L (no. of waste compartments on vehicle)

• Line 5: INPUT matrix of nodal demands v(N,L) and compartment
capacities V (L)

• Line 6: mtip is maximum over l of ceiling(Σvil)/Vl

• Line 10: Zero load(M,mstep, L)

• Line 18: load(k, 1, l) = v(i, l) for l = 1 to L

• Line 29: Nodes must satisfy load(k, istep, l) + v(j, l) < V (l) for l = 1
to L

• Line 41: load(k, istep+ 1, l) = 0 for l = 1 to L

• Line 43: load(k, istep+ 1, l) = load(k, istep, l) + v(n, l) for l = 1 to L

While this extension to multiple compartments is straightforward, it is an
open question whether the ACS algorithm will perform acceptably, or indeed
converge at all. The experiments in the next section seek to answer this.
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Table 1: Results on benchmark problems

Published ACS ACS
Problem Best with 2-opt with 2-opt and

Solutions clustering

585 536.24 5 614.66 6
C1 556 524.61 608.10

524.61 546.36 138.63 624.05 17.69
900 907.46 10 1005.79 11

C2 876 877.75 957.55
835.26 933.15 327.07 1041.93 24.18

887 946.29 8 1038.83 8
C3 863 919.67 978.37

826.14 970.45 710.57 1089.68 38.86
1418.03 8 1193.07 8

C11 1372.95 1136.69
1042.11 1448.79 1676.62 1300.49 39.55

1240.49 10 1013.10 10
C12 1147.20 862.03

819.56 1294.59 1077.38 1153.39 37.10

5. Computational results

The ACS and clustering algorithms described in the previous section were
programmed in MATLAB as part of successive MSc projects [40, 41]. The
basic ACS was first tested on a selection of the freely available TSP examples
at TSPLIB
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95)
and in all cases produced the optimal solution, although in the larger exam-
ples (of over 500 nodes) required large numbers of iterations to do so.

The VRP is an NP-hard problem. As an illustration of this, Reimann
et al report [31] that while their ants algorithm could find the best known
solution (BKS) of a 50-node VRP problem in under 3 seconds, for a problem
with 199 nodes it took up to 40 minutes to obtain a solution within 2% of the
BKS. Given this situation, and due to the time and resource limitations of the
projects, the experimentation performed has the limited aim of demonstrat-
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ing proof of concept: that ACS with 2-opt improvement and incorporating
unloading trips can produce good solutions of small and medium-size single-
and multi-compartment CVRP problems in a short time. We also want to
examine the potential of clustering to improve solutions. We note that in
a real-world application the priority is to produce a good-quality — even if
sub-optimal — solution quickly, and that any computer-generated solution
will anyway be reviewed and adjusted manually by schedulers [39].

5.1. Experimental setup

There is a set of 14 CVRP problems, collected by Christofides [9] which
are widely used in the literature as benchmarks. Data files are available on-
line at:
www.rhsmith.umd.edu/faculty/bgolden/Christofides benchmarks.zip.

The data set for each problem consists of:

• nodal coordinates {(xi, yi), i = 1, N}

• depot coordinates (x0, y0)

• nodal demands {vi, i = 1, N}

• vehicle capacity V .

We have selected five of these problems to test our ACS algorithm (Section
5.2) and the effect of clustering (Section 5.3), and have extended the first
of these to generate test problems for the multi-compartment ACS (Section
5.4).

Description of problems: Problems C1, C2, C3 contain 50, 75, 100 nodes
respectively, which are located randomly within the square 0 < x, y < 100.
Each pair of nodes is connected by an arc of length given by the Euclidean
distance between them. Nodal demands are distributed randomly in the
range 0 < vi < 50. For C1/C2/C3 the total demands are 777/1364/1458,
and the vehicle capacities 160/140/200, meaning that the solutions should in-
volve 5/10/8 unloading trips respectively. In the last two problems C11/C12
the dimension is 120/100, with the nodes generally located in well-defined
clusters. Further description is given in Section 5.3.

Published solutions: Problems C1–C3 were solved in the 1960’s by two
methods — the first using the Clarke and Wright savings algorithm and
the other using 3-opt improvement. The best solutions (shortest total tour

13



length) are reported in [9] and are given here as the upper and middle values
in the cells of column 2 of Table 1. In 1993 improved solutions for the
Christofides benchmarks were found by Taillard [11] using a parallel Tabu
Search method, and these are still the best known solutions. These are the
lower values in column 2 (also for C11 and C12).

Parameters used: In all runs the ACS heuristic parameters were set as:
α = 1, β = 2, q0 = 0.9, ξ = ρ = 0.1, as recommended in [22, 42].

We used M = N ants, i.e. one ant is placed at each node of the network.
We set a maximum of 2000 iterations because of the project limitations; the
consequences of this choice are discussed below. For each problem, ten runs
of the program were performed, and we summarise the results in columns
3 and 4 of Table 1. The best, average and worst tour lengths obtained are
in the top left, centre and bottom left of each cell. The CPU time taken
(elapsed seconds, using the MATLAB function) is in the bottom right, and
in the top right of the cell is the number of sub-tours in the best solution.

Fig. 1: Best solution for problem C1

5.2. Unstructured networks (Problems C1–C3)
The 50-node problem C1 was solved extremely well by the ACS algorithm.

As can be seen in Table 1, one run produced the best known solution (BKS)
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Fig. 2: Best solution for problem C12 without clustering

with optimal tour length 524.61 (Figure 1), and did so within 700 iterations.
Even the worst solution found after 2000 iterations was within 4.1% of the
BKS length.

When the algorithm was run without 2-opt improvement, the resulting
solution lengths for problem C1 were in the range 573.21–620.06 (10 runs,
2000 iterations), but even then, in the best solution found, only one node
was allocated to the wrong sub-tour, and all but one sub-tour was correctly
constructed (graphs in [41] Appendix G).

On the larger problems, the algorithm performance worsened: for C2
(75 nodes) the best solution (877.75) was 5.1% away from the BKS, al-
though comparable to the best reported using a 3-opt algorithm. For C3
(100 nodes) the best solution (919.67) was 11.3% from the BKS after 2000
iterations. Given the excellent performance on C1 and the scale-up expe-
rience of Reimann quoted above, we conclude that this degradation with
problem size is due to the NP-hard nature of the CVRP problem, rather
than any fault with the algorithm itself.

Not unsurprisingly, use of the clustering algorithm on these unstructured
networks resulted in much poorer results (column 4 of Table 1). On problem

15



Fig. 3: Best solution for problem C12 with clustering

C1 the clustering algorithm did identify three sub-tours reasonably correctly.
However on this and C2 the load-balancing algorithm forced the creation of
an extra cluster. However, the fact that several small single-subtour problems
were being solved by ACS separately, did result in much shorter run times
(18–39 seconds, compared to 139–711 seconds without clustering) for the
same number of iterations.

5.3. Structured networks (problems C11, C12)

Problem C12 has 100 nodes grouped in ten well-defined clusters, well-
separated from the centrally-placed depot node (Figure 2). Each cluster
is serviceable in a single sub-tour. The standard ACS algorithm is much
slower in converging to a solution as compared to the same-size unstructured
network C3: best solution (1147.20) is 40% away from BKS compared to
11.3% for C3 after 2000 iterations. However, when the k-means clustering
algorithm is used (last cell of column 4 of Table 1) the performance is much
better than for C3 (862.03 is 5.2% from BKS). In the graph of this solution
(Figure 3) only one inter-cluster arc is included, and this arises because the
cluster “at 5 o’clock” has a total demand exactly equal to the vehicle capacity,
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so one or more nodes have been moved by the load-balancing algorithm.
The solution was found about 30 times faster than in the algorithm without
clustering.

Problem C11 is larger (120 nodes) and the clustering is less clear-cut.
There are five well-defined outlying clusters, with the remaining nodes closely
surrounding the depot node located at one edge of the region (graph is in [41]
Appendix G). This means that the clustering algorithm needs to add some
of the surrounding nodes to each outlying cluster, and then form the remain-
ing clusters from an unstructured data-set. Despite this, performance using
clustering is still good (1136.69 is 9.1% from BKS). A more sophisticated
decomposition algorithm, as in [31], would be needed in this situation.

5.4. Multi-compartment problems

To test the ACS algorithm for multi-compartment vehicles, we have con-
structed a pair of two-compartment problems from problem C1. The vehicle
capacity of V = 160 units is split into a larger compartment of V 1 = 120
units and a smaller one of V 2 = 40 units; let us say that these are collecting
glass and paper respectively. For simplicity we assume both compartments
are unloaded at the depot. The demands vi at each node have also been
split into glass v1

i and paper v2
i . Clearly, if these nodal demands were all in

the ratio 3:1 the compartments would fill up at the same rate and the algo-
rithm should perform as in the single-compartment case. In Problem C1A
we have used this demand ratio at all nodes except for those in the lower left
corner of the region (nodes with both coordinates in Figure 1 in the range
0 < x, y < 35). In this region the demands are split in the ratio 2:1. As there
is greater demand for paper collection in this corner region, meaning that
this vehicle compartment will fill up faster, we hope to see shorter sub-tours
appearing there, while the sub-tours in the rest of the graph should resemble
those for the optimal single compartment case (Figure 1).

In Problem C1B we have again used the ratio 2:1 for nodes in the lower
left corner, but a ratio 4:1 for the split at the remaining nodes. Now we hope
to see the paper compartment filling first and triggering an unloading trip
for sub-tours in the corner, while the glass compartment will fill first on the
other sub-tours.

The ACS program was run ten times on each problem, again allowing 2000
iterations, and the best results found for problems C1A and C1B are shown in
Figures 4 and 5 respectively. The total tour lengths were 560.74 and 564.04,
which are within 7.5% of the optimal 524.61 for the single compartment
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problem, despite the increased constraints which have led to an additional
sub-tour being required to service all nodes. In both cases the extra final
sub-tour involves just two nodes, but these are nodes very close to the depot,
so that the extra routing is minimised. Comparing Figure 4 with Figure 1, we
do indeed see that the sub-tours away from the lower left corner in problem
C1A closely resemble the optimal single compartment solution. Table 2 shows
the progress of the filling of the two compartments in problem C1B for each
sub-tour (starting empty from, and ending with unloading at, the depot
at node 51). In the second and fifth sub-tours the smaller compartment
has filled first, while in the first, third and fourth sub-tours it is the larger
compartment which triggers the unloading. In all cases except for the final
sub-tour, the critical compartment is almost completely full before returning
to unload. This demonstrates the efficiency of the solution.

In terms of convergence, the algorithm performs just as efficiently as for
the single compartment problem, with the final tour length being about 70%
of the initial length, and graphs of tour length against iteration number (not
shown here) looking very similar, with the best solution reached after 500–
800 of the permitted 2,000 iterations. More detailed results are given in
[41].

6. Conclusions

While the ACS algorithms’ performance for the larger problems would
have been improved by allowing a larger number of iterations, and by tun-
ing the ACS parameters, the results from this simple feasibility study are
sufficient to demonstrate the effectiveness of the method. The Ant Colony
System incorporating unloading trips is competitive with other metaheuris-
tics for the Capacitated Vehicle Routing Problem, and more significantly,
an extension is able to solve multi-compartment problems with equal effi-
ciency. The MCVRP solutions produced match the sub-tours of the best
known solution in regions where the compartmentalisation has less effect,
and produce efficient sub-tours (i.e. only unloading when the critical com-
partment is almost full) in all regions. Morevoer, the rate of convergence is
the same as with the single-compartment data. Further improvement could
be made by including other constructive heuristics such as the Clarke and
Wright algorithm.

As local authorities and private recycling companies increasingly pur-
chase fleets of multi-compartment vehicles for kerbside sorting, the multi-
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Fig. 4: Best solution for problem C1A

compartment CVRP will grow in importance. There is an immediate need
for further studies of this problem, including the development of benchmark
problems and the use of alternative metaheuristics.

While the clustering algorithm has improved solutions and run times for
structured problems, a more sophisticated algorithm needs to be developed,
which integrates the nodal demands within the clustering process, and which
is itself hybridised with the ACO solution process.

Practical extensions of the simple two-compartment model considered
here include the use of more compartments, and the location of the depot
site separately from the vehicle depot (and possibly separate disposal sites
for the different waste categories). Sensitivity analyses are also important,
as the amounts of waste in the ’green boxes’ set out by households cannot
be accurately predicted, and will vary from one week to the next.
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Fig. 5: Best solution for problem C1B
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