
J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 413–424, 2012.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

An Ant-Colony Algorithm to Transform Jobshops

into Flowshops: A Case

of Shortest-Common-Supersequence Stringology Problem

Suchithra Rajendran
1
, Chandrasekharan Rajendran

2
, and Hans Ziegler

3

1 Department of Industrial Engineering, College of Engineering, Guindy,

Anna University, Chennai 600025, India
2 Department of Management Studies, Indian Institute of Technology Madras,

Chennai 600036, India
3 Department of Production and Logistics, University of Passau, 94032 Passau, Germany

snowy_410@yahoo.co.in, craj@iitm.ac.in, ziegler@uni-passau.de

Abstract. In this work we address the problem of transforming a jobshop layout

into a flowshop layout with the objective of minimizing the length of the

resulting flowline. This problem is a special case of the well-known classical

Shortest Common Supersequence (SCS) stringology problem. In view of the

problem being NP-hard, an ant-colony algorithm, called PACO-SFR, is

proposed. A new scheme of forming an initial supersequence of machines (i.e.,

flowline) is derived from a permutation of jobs, followed by the reduction in the

length of the flowline by using a concatenation of forward reduction and

inverse reduction techniques, machine elimination technique and finally an

adjacent pair-wise interchange of machines in the flowline. The proposed ant-

colony algorithm’s performance is relatively evaluated against the best known

results from the existing methods by considering many benchmark jobshop

scheduling problem instances.

Keywords: Jobshop, Flowshop, Shortest Common Supersequence, Ant-colony

algorithm.

1 Introduction

A jobshop is a manufacturing system that has a process layout with machines capable

of performing similar operations located together, while a flowshop is a manufacturing

system that has a flowline-based (i.e., product-based) layout such that products or jobs

move in the shop with a uni-directional flow in the order of their processes. In other

words, the flow of all jobs through the shop for processing on machines is in the same

forward direction with no back-tracking, but it is possible that a job may skip some

machines for its processing in the flowline. According to Knolmayer et al. [1], a

jobshop layout is a common configuration in many manufacturing systems, and the

transformation of jobshops into flowshops is vital and relevant in the context of an

efficient supply chain management. Kimms [2] observed that while transforming a

jobshop layout into a flowshop, the key objective is to minimize the length of the

414 S. Rajendran, C. Rajendran, and H. Ziegler

resultant flowshop because the minimization of the length of the flowshop serves to

minimize the lead times of production of jobs in the resultant flowshop, thereby

leading to reduced inventory levels.

The problem of minimizing the length of the resultant flowline is a special case of

the well-known classical Shortest Common Supersequence (SCS) stringology

problem [2-4]. Framinan [4] observed that even though the SCS problem and the

problem of transforming a jobshop into a flowshop appear identical in terms of

complexity and problem statement, they are not, in general, equivalent with respect to

some of the assumptions in jobshop problems (e.g. in a jobshop it is assumed that the

consecutive operations of a job are not performed on the same machine; mostly it is

assumed that each job is processed on each machine only once and a job is processed

on all machines, and the sequence of processing a job is independent of the sequence

of processing another job). The general SCS problem is known to be NP-hard [5-6]

and so is the problem under consideration [2]. Some attempts towards transforming a

jobshop into a resultant flowshop are due to Kimms [2], Framinan and Ruiz-Usano

[3] and Framinan [4, 7]. Framinan [4] made a thorough analysis of the existing

algorithms for the SCS problem (e.g. genetic algorithms by Branke et al. [8]), ant

colony algorithm by Michel and Middendorf [9] and beam search by Framinan and

Ruiz-Usano [3] adapted to the jobshop-transformation problem under consideration

and the proposed tabu search by considering seventy well-known jobshop problem

instances, and reported the findings (see Table 6 of that paper) in order to be used as a

benchmark for future researchers. To our knowledge, the work by Framinan [4] is the

most exhaustive study till date.

In the present work we propose an ant-colony algorithm with some new features for

transforming a jobshop into a flowshop. First we construct an initial supersequence of

machines on the basis of a sequence of jobs and the associated machine ordering,

followed by two concatenations of forward and inverse reduction procedures, machine

elimination technique and finally a local search scheme involving an adjacent pair-wise

interchange of machines in the flowline, applied twice. Our work employs an approach

of obtaining the initial supersequence of machines that is different from the previous

attempts (e.g. Framinan and Ruiz-Usano [3]; Framinan [4]) and it also differs by

employing two concatenations of forward and inverse reduction techniques and finally

the local search involving an adjacent pair-wise interchange of machines. As for the

generation of sequences of jobs for obtaining the supersequences of machines, we

employ the PACO, the ant-colony algorithm proposed by Rajendran and Ziegler [10]

for the permutation flowshop scheduling problem. This ant-colony algorithm is found to

be one of the best algorithms for permutation flowshop scheduling (see Ruiz et al. [11]

and Ruiz and Stuetzle [12]). It is to be noted that our proposed ant-colony algorithm

constructs a sequence of jobs from which a feasible supersequence of machines is

generated, whereas the ant-colony algorithm by Michel and Middendorf [9] and the

genetic algorithm by Branke et al. [8] construct a full feasible supersequence of

machines. Hence we find our ant-colony algorithm computationally simple; moreover,

our string reduction techniques are also computationally simple in the sense that every

reduced supersequence is checked for feasibility with respect to the machine routing of

every job and this check is computationally straightforward and simple.

 An Ant-Colony Algorithm to Transform Jobshops into Flowshops 415

2 Proposed Ant-Colony Algorithm Integrated with String

Formation and Reduction Techniques (PACO-SFR)

The salient features of the proposed ant-colony algorithm integrated with the novel

features of string formation and reduction techniques (called PACO-SFR) are now

presented, followed by a detailed discussion of the algorithm. The PACO-SFR first

generates a sequence or string of jobs by following the procedure related to the

generation of an ant-sequence described in the PACO (see Rajendran and Ziegler

[10]) that uses the pheromone intensity or trail matrix [τij] and hence a supersequence

of machines is formed; on this supersequence or flowline of machines, it then

employs two concatenations of forward and inverse reduction procedures, a machine

reduction technique, and finally a local search involving an adjacent pair-wise

interchange of machines in the flowline. The resultant flowline thus obtained and its

length constitute the solution corresponding to the ant-sequence or string of jobs

generated. The PACO-SFR employs the job-index based insertion scheme (called

JIS) as a local search scheme to generate improved job sequences. The job sequence

thus obtained with respect to the resultant supersequence of machines with the

minimum string or flowline length is used to update the pheromone intensity or trail

matrix [τij]. This algorithm is carried out over 40 times or iterations, and the best job

sequence thus obtained (in terms of the minimum flowline length) is returned.

We discuss the complete algorithm with numerical illustrations through which we

explain the mechanism of the PACO-SFR. The following jobshop problem with n = 6

jobs and with m = 4 machines, and with the following sequence of machine-routings

is considered throughout in this paper (note that the sequence of visits of jobs on

machines is as per the order given below):

 job 1 : 1-2-3-4

 job 2 : 1-3-2-4

 job 3 : 1-4-2-3

 job 4 : 2-3-1-4

 job 5 : 2-4-1-3

 job 6 : 3-4-1-2

2.1 Generation of a Supersequence or String of Machines

In our study we obtain a supersequence of machines by ordering jobs in a specific

order and thereafter laying out machines in that order. For example, if we order the

jobs in the order {1-2-3-4-5-6}, the corresponding initial supersequence of machines

or flowline is {1-2-3-4-1-3-2-4-1-4-2-3-2-3-1-4-2-4-1-3-3-4-1-2} obtained by

arranging machines for processing jobs in the given order {1-2-3-4-5-6}. This

supersequence of machines is then reduced by employing the string reduction

techniques presented in this study. Note that previous research attempts (e.g. those by

Framinan and Ruiz-Usano [3]; Framinan, [4]) obtained the initial supersequence of

machines or flowline {1-1-1-2-2-3-2-3-4-3-4-4-3-2-2-1-1-1-4-4-3-4-3-2} by

416 S. Rajendran, C. Rajendran, and H. Ziegler

arranging the machines of the first operations of jobs in the given order {1-2-3-4-5-

6}, then the machines of the second operations of jobs in that order, and so on up to

the machines of the last operations of jobs taken in the given order {1-2-3-4-5-6}.

However, from our computational experiments, we found that our arrangement of

initial supersequence of machines has resulted in yielding flowlines with less lengths

than those obtained from the arrangement of initial supersequence of machines

suggested by previous researchers.

As an example, consider a two-job two-machine SCS problem given by

Framinan [4]:

job 1 : 1-1-1-2-2-2

 job 2 : 2-2-2-1-1-1

When we follow our approach of forming the initial supersequence of machines with

machines laid out as per the job order {1-2}, we have {1-1-1-2-2-2-2-2-2-1-1-1} and

after the application of the forward reduction technique or the inverse reduction

technique (see their details in the text to follow), we have the resultant supersequence

{1-1-1-2-2-2-1-1-1}. However, when the approach by Framinan [4] is followed, we

have the initial supersequence {1-2-1-2-1-2-2-1-2-1-2-1}, and after the application of

the forward reduction technique, we have the supersequence {1-2-1-2-1-2-1-2-1-2-1}

which is longer than that obtained from our approach.

2.2 Implementation of the Set of String Reduction Techniques on a Job

Sequence

The initial job sequence in our PACO-SFR is obtained by ordering jobs as {1-2-3-…-

n} and hence we form a supersequence of machines. We then employ the string

reduction techniques, namely, two concatenations of forward and inverse reduction

techniques, machine elimination technique and a local search involving an adjacent

pair-wise interchange of machines on the job sequence to get a reduced

supersequence of machines. We first present the forward reduction procedure (see

Framinan [4]). Considering one job at a time, we scan the given supersequence of

machines from the left to see what machines are required to process the chosen job

and mark the machines accordingly. After all jobs are considered, the marked

machines survive in the supersequence of machines. For the supersequence of

machines or flowline {1-2-3-4-1-3-2-4-1-4-2-3-2-3-1-4-2-4-1-3-3-4-1-2}, we get the

reduced supersequence or flowline {1-2-3-4-1-3-2-4-3}, after this forward reduction

of scanning from the left to the right of the given supersequence and satisfying the

machine-routings with respect to every job.

As for the inverse reduction (also see Framinan [4]), considering one job at a time,

we scan the supersequence of machines from the right to the left to see what machines

are required to process the chosen job in the reverse sequence of operations and mark

the machines accordingly. After all jobs are considered, the marked machines survive

in the supersequence of machines. For the supersequence of machines {1-2-3-4-1-3-2-

4-1-4-2-3-2-3-1-4-2-4-1-3-3-4-1-2}, we get the reduced flowline {1-2-3-1-4-2-4-1-3-

4-1-2}.

 An Ant-Colony Algorithm to Transform Jobshops into Flowshops 417

It is evident that the forward reduction procedure need not yield the same resultant

reduced supersequence of machines as that from the application of the inverse

reduction. For this reason, Framinan [4] applied the forward reduction on the initial

supersequence, and once again considering the initial supersequence, Framinan

applied the inverse reduction procedure. The better of the two resultant

supersequences is chosen by Framinan. However, according to our proposal, we

explore two concatenations: apply first the forward reduction procedure on the

initial supersequence and then apply the inverse reduction on the resultant reduced

supersequence (called concatenation (forward + inverse)) to possibly reduce

the supersequence of machines; apply first the inverse reduction procedure on the

initial supersequence and then apply the forward reduction on the resultant reduced

supersequence (called concatenation (inverse + forward)) to reduce the supersequence

of machines. Then we take the better of these two reduced supersequences. For

example, when we apply the concatenation (forward + inverse) on the supersequence

{1-2-3-4-1-3-2-4-1-4-2-3-2-3-1-4-2-4-1-3-3-4-1-2}, we get the resultant reduced

supersequence {1-2-3-4-1-3-2-4-3}; when we apply the concatenation (inverse +

forward) on the supersequence {1-2-3-4-1-3-2-4-1-4-2-3-2-3-1-4-2-4-1-3-3-4-1-2},

we get the resultant reduced supersequence {1-2-3-1-4-2-4-1-3-2}. The better of these

two supersequences is chosen by us for possible further reduction, i.e., {1-2-3-4-1-3-

2-4-3}.

It is therefore evident that the two concatenations of forward reduction and inverse

reduction serve to reduce the length of the supersequence of machines than the

application of only one reduction technique. As a further example, we can show the

effectiveness of these two concatenations with the same numerical illustration with

the machine routing of job 4 changed to (2-1-4) (instead of (2-3-1-4)) and that of job

6 changed to (4-1-2) from (3-4-1-2). The concatenation (forward + inverse) yields the

resultant supersequence of machines {1-2-4-1-3-2-4-3} (with the forward reduction

first yielding {1-2-3-4-1-3-2-4-3} and the inverse reduction thereafter yielding {1-2-

4-1-3-2-4-3}) and the concatenation (inverse + forward) yields {1-3-4-2-4-1-3-4-2}

(with the backward reduction first yielding {1-3-1-4-2-4-1-3-4-1-2} and the forward

reduction thereafter yielding {1-3-4-2-4-1-3-4-2}. The two resultant supersequences

obtained by the concatenation of the forward and backward reduction techniques are

of less length than those yielded by the single application of either the forward

reduction technique or the inverse reduction technique. Reverting to our original

example, we consider two supersequences {1-2-3-4-1-3-2-4-3} and {1-2-3-1-4-2-4-1-

3-2} (obtained from two concatenations of forward and inverse reduction techniques),

and choose the supersequence that has less length.

Let us see how we can reduce its string length further. Now we employ the

machine elimination technique (also attempted by Framinan and Ruiz-Usano [3]) on

the supersequence {1-2-3-4-1-3-2-4-3}, called S. We remove only one machine at a

time from S and see if the resultant supersequence is feasible with respect to

satisfying the machine routing of every job; if so, the last such reduced (by one

element) supersequence is chosen. As an example, suppose we remove machine 1

(found first in the supersequence) and we have the supersequence {2-3-4-1-3-2-4-3}.

This supersequence does not satisfy the machine routings of all jobs. Then we remove

418 S. Rajendran, C. Rajendran, and H. Ziegler

machine 2 found in the second position of S with no success. However if we remove

machine 3 found in position 6 in S, we have the resultant supersequence {1-2-3-4-1-2-

4-3} and this supersequence satisfies all machine routings, thereby resulting in a

reduced string length. We continue with this process of removing a machine from S

until the last machine in S is considered for elimination. The last such reduced

supersequence, if it exists, with the string length |S|-1 is chosen; otherwise S is

retained. It is interesting to note that while the machine elimination technique serves

to reduce the supersequence {1-2-3-4-1-3-2-4-3}, it does not reduce the

supersequence {1-2-3-1-4-2-4-1-3-2}.

For the purpose of exploring a further reduction in string length, we employ a local

search involving an adjacent interchange of machines in the supersequence, after the

machine elimination technique. This local search works as follows. We swap the

machines found in positions i and i+1, where i = 1, 2, …, |S|-1. Every such resultant

supersequence is subjected to the concatenation (forward + inverse), and the best

among the resultant feasible supersequences (feasible in terms of all jobs’ machine

routings being present in the supersequence) and S with the least string length is

chosen. In the supersequence {1-2-3-1-4-2-4-1-3-2}, when we swap machines 1 and 4

found in adjacent positions, we have the resultant supersequence reduced to {1-2-3-4-

1-2-4-3} and this is chosen because it is feasible with respect to machine routings of

all jobs being present in it and it has a less string length than the original

supersequence. This local search of adjacent pairwise interchange of machines is

implemented twice successively to possibly reduce the string length to the extent

possible.

Thus we obtain a supersequence of machines or flowline with possibly minimum

string length obtained from the given sequence of jobs, and this string reduction is

achieved through two concatenations of forward and inverse reduction techniques,

followed by a machine elimination technique and a local search involving two-time

application of the adjacent pair-wise interchange of machines in a supersequence.

2.3 Improvement of a Job Sequence Using the JIS

The effectiveness or performance of a job sequence is measured in terms of the length

of the resultant supersequence of machines. The initial job sequence {1-2-….- n} is

taken as the current seed sequence and subjected to the JIS three times successively

for a possible improvement in its performance, and this sequence is taken as the seed

sequence to the PACO-SFR to begin with. Let [k] denote the index of the job in

position k of the current seed sequence of jobs and let i refer to the index of jobs.

Do the following:

for i = 1(1) n:

{

for k = 1(1) n:

{

 if [k] ≠ i

 An Ant-Colony Algorithm to Transform Jobshops into Flowshops 419

then

insert job i in position k of the current seed sequence and adjust the sequence

accordingly by not changing the relative positions of other jobs; determine the

resultant supersequence of machines for this job sequence, apply the proposed set

of string reduction techniques on the supersequence of jobs and hence compute the

performance of the job sequence in terms of the length of the reduced

supersequence of machines.

}

choose the best sequence among the generated (n-1) job sequences;

if the performance of this sequence (in terms of the length of the corresponding

reduced supersequence of machines) is better than or equal to the performance of

the current seed sequence, then the current seed sequence is replaced by the best

sequence found above.

}

The current seed sequence finally returned by the three-time application of the JIS is

in fact the possibly improved job sequence by the JIS in relation to the seed sequence

to the JIS. This final sequence is the seed sequence to the PACO-SFR (called the

best sequence of jobs as of now) and let the string length of this sequence be denoted

by Zbest.

2.4 Initialization of Parameters in the PACO-SFR

We initialize the pheromone intensity or trail matrix as follows:

set τik = (1/Zbest),

if (|position of job i in the seed sequence to the PACO-SFR - k|+1) ≤ n/4;

 (1/(2×Zbest)),

if n/4 < (|position of job i in the seed sequence to the PACO-SFR - k|+1) ≤

n/2;

 (1/(4×Zbest)), otherwise.

The rationale behind this setting of τiks is that the seed solution to the PACO-SFR

being good, those positions that are close to the position of job i in the seed sequence

should be associated with larger values of τiks than those that are away from the

position of job i in the seed sequence. ρ is set to 0.75 in our study.

2.5 Construction of an Ant Sequence and Its Improvement by the JIS

In order to build a complete ant sequence of jobs, the following procedure is used to

choose an unscheduled job i for position k, starting from a null sequence, for k = 1, 2,

…, n.

Set
=

=

k

q

iqikT
1

τ and sample a uniform random number u in the range [0, 1].

420 S. Rajendran, C. Rajendran, and H. Ziegler

If u ≤ 0.4 then the first unscheduled job as present in the best sequence of jobs

obtained so far is chosen;

else

if u ≤ 0.8 then

among the set of the first five unscheduled jobs, as present in the best sequence of

jobs obtained so far, choose the job with the maximum value of Tik ;

else

job i is selected from the same set of five unscheduled jobs for position k as a result

of sampling from the following probability distribution:

=

l

lk

ik

ik
T

T
p ,

where job l belongs to the set of the first five unscheduled jobs, as present in the

best sequence obtained so far (note that when there are less than five jobs

unscheduled, then all such unscheduled jobs are considered).

A complete ant sequence of n jobs is constructed accordingly and thereafter the set of

proposed string reduction techniques is applied for obtaining the reduced

supersequence of machines corresponding to this ant sequence of jobs. This ant

sequence of jobs is then subjected to the JIS three times and the final resultant

sequence of jobs (called the current sequence) with the length of the corresponding

reduced supersequence of machines denoted by Zcurrent. If this current sequence’s

Zcurrent is same as or better than Zbest, then set this sequence and Zcurrent as the best

sequence and Zcurrent respectively.

2.6 Updating of Pheromone Trails or Intensities

In the PACO-SFR, updating of the trail intensities is based not only on the resultant

sequence of jobs obtained after the three-time application of the JIS on the ant

sequence, but also on the relative distance between a given position and the position

of job i in the resultant sequence, and also related to the best sequence obtained so far.

The trails are updated as follows.

Let h be the position of job i in the resultant sequence;

set (τik)updated
 = ρ × (τik)old

 + (1/ (diff × Zcurrent)), if |h - k| ≤ 1;

 ρ × (τik)
old

, otherwise,

where diff = (|position of job i in the best sequence obtained so far – k| + 1)
1/2

. This

differential setting is based on the premise that the jobs occupying positions in the

current sequence closer to their respective positions in the best sequence obtained so

far should get their corresponding trail intensities increased by larger values.

2.7 Termination Condition

The PACO-SFR is terminated after 40 iterations (i.e., after the generation of 40 ant-

sequences followed by the three-time application of the JIS). We use the PACO-SFR

to generate a total of about 123n
2
 job sequences.

 An Ant-Colony Algorithm to Transform Jobshops into Flowshops 421

3 Computational Evaluation of the PACO-SFR

We consider the seventy benchmark jobshop instances considered by Framinan [4]

and execute our ant-colony algorithm to solve the jobshop transformation problem

instances. Framinan had given the best string length achieved with respect to every

problem instance as a result of the implementation of algorithms such as H2 and H3

due to Branke et al. [8], BS due to Framinan and Ruiz-Usano [3] and TS due to

Framinan [4] (see Table 6 in Framinan [4]). It is to be noted that the length of the

resultant flowshop for every jobshop problem instance, as reported by Framinan, is

through a consolidation of all the mentioned algorithms and that Framinan had

reported the CPU time requirements and not the number of transformations or job

sequences enumerated in the process of obtaining the results reported in the paper

before the final transformation was obtained from all algorithms considered. For the

sake of standardizing the computational effort requirement independent of the

computer, its operating system and the programming language, in our work we have

noted the number of job sequences enumerated to get the best flowline-length so that

future researchers would find it easy to relatively evaluate our work. Note that a job

sequence leads to the generation of a supersequence of machines, followed by the

application of string reduction techniques. The computational of string reduction

techniques is quite small and is the same across all job sequences. We have also noted

the final job sequence and the corresponding supersequence of machines obtained

from the PACO-SFR for the sake of completely reporting our results for possible

future reference for researchers, apart from noting the details regarding the

supersequence of machines obtained from the initial job sequence improved by the

three-time application of the JIS and the number of job sequences enumerated to

obtain the best string length for every problem instance in the PACO-SFR. The results

are presented in Table 1.

It is found that the proposed ant-colony algorithm yields better results than those

reported by Framinan [4] for 32 jobshop problem instances (i.e., for 46% of the

problem instances), the best known solutions for 32 problem instances (i.e., for 46%

of the problem instances) and worse solutions only in six problem instances (i.e., in

only 8% of the problem instances). It is also seen from the computational experiments

that the initial supersequences of machines (obtained after the three-time application

of the JIS on the job sequence {1-2-…-n}) are the same as the string lengths reported

by the previous researchers in 25 problem instances, less in 8 problem instances than

those reported so far and quite close in most problem instances, thereby

demonstrating the effectiveness of the proposed string reduction techniques. The best

solutions for the benchmark problem instances are shown in bold in Table 1.

4 Summary

In this work we have dealt with the problem of transforming jobshops into flowshops

with the objective of minimizing the length of the flowshop. An ant-colony algorithm,

422 S. Rajendran, C. Rajendran, and H. Ziegler

Table 1. Computational results

Jobshop

problem

instance

n m String length

derived from the

initial job sequence

Best string length

obtained by the ant-

colony algorithm

Best string length

reported by

Framinan [4]

La01 10 5 13 13 13

La02 10 5 12 12 12

La03 10 5 12 12 12

La04 10 5 13 13 13

La05 10 5 12 12 12

La06 15 5 14 14 14

La07 15 5 14 14 14

La08 15 5 13 13 13

La09 15 5 14 14 14

La10 15 5 14 14 14

La11 20 5 14 14 14

La12 20 5 14 14 14

La13 20 5 15 15 15

La14 20 5 15 15 15

La15 20 5 14 14 14

La16 10 10 35 33 35

La17 10 10 36 34 35

La18 10 10 37 36 38

La19 10 10 36 31 35

La20 10 10 36 34 35

La21 15 10 42 39 42

La22 15 10 44 39 41

La23 15 10 41 40 42

La24 15 10 42 40 43

La25 15 10 43 41 42

La26 20 10 47 44 43

La27 20 10 44 44 44

La28 20 10 49 45 46

La29 20 10 49 45 45

La30 20 10 47 44 45

La31 30 10 51 49 49

La32 30 10 51 49 49

La33 30 10 53 49 49

La34 30 10 52 50 49

La35 30 10 53 50 49

La36 15 15 83 78 79

La37 15 15 80 74 79

La38 15 15 83 77 80

La39 15 15 79 75 80

La40 15 15 81 75 78

Orb01 10 10 29 27 28

Orb02 10 10 33 32 34

Orb03 10 10 20 20 20

Orb04 10 10 34 33 34

Orb05 10 10 28 26 26

 An Ant-Colony Algorithm to Transform Jobshops into Flowshops 423

Table 1. (continued)

Orb06 10 10 29 27 28

Orb07 10 10 33 32 34

Orb08 10 10 20 20 20

Orb09 10 10 34 33 34

Orb10 10 10 28 26 26

swv01 20 10 29 29 29

swv02 20 10 29 27 28

swv03 20 10 28 27 28

swv04 20 10 30 29 29

swv05 20 10 29 29 30

swv06 20 15 62 59 61

swv07 20 15 63 57 59

swv08 20 15 59 56 60

swv09 20 15 62 56 59

swv10 20 15 60 57 57

swv11 50 10 34 32 32

swv12 50 10 34 33 33

swv13 50 10 34 32 32

swv14 50 10 33 32 33

swv15 50 10 34 33 33

swv16 50 10 59 54 52

swv17 50 10 58 53 54

swv18 50 10 58 56 54

swv19 50 10 59 55 53

swv20 50 10 58 55 55

called PACO-SFR, is proposed with the integration of string reduction techniques in

the ant-colony algorithm. The performance of the ant-colony algorithm is relatively

evaluated by considering the best reported work and with the consideration of

benchmark jobshop problem instances. It is found that the proposed ant-colony

algorithm obtains better solutions and the best known solutions in most problem

instances.

Acknowledgments. The first author gratefully acknowledges the support from

DAAD for her research stay in the University of Passau during May-July, 2010. The

second author thanks Alexander von Humboldt Stiftung for the financial support and

C R Chandrasekaran for his initial involvement in this work. The authors thank the

three reviewers for their comments and suggestions to improve the earlier version of

the paper.

References

1. Knolmayer, G., Mertens, P., Zeier, A.: Supply Chain Management based on SAP Systems.

Springer, Berlin (2002)

2. Kimms, A.: Minimal investment budgets for flow line configuration. IIE Transactions 32,

287–298 (2000)

424 S. Rajendran, C. Rajendran, and H. Ziegler

3. Framinan, J.M., Ruiz-Usano, R.: On transforming job-shops into flow-shops. Production

Planning and Control 13, 166–174 (2002)

4. Framinan, J.M.: Efficient heuristic approaches to transform job shops into flow shops. IIE

Transactions 37, 441–451 (2005)

5. Raiha, K.J., Ukkonen, E.: The shortest common supersequence problem over binary

alphabet is NP-complete. Theoretical Computer Science 16, 187–198 (1981)

6. Timkovsky, V.G.: Complexity of common subsequences and supersequences problems

and related problems. Cybernetics 25, 565–580 (1990)

7. Framinan, J.M.: An adaptive branch and bound approach for transforming job shops into

flow shops. Computers & Industrial Engineering 52, 1–10 (2007)

8. Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic algorithm for

finding short supersequences. OR Spektrum 20, 39–46 (1998)

9. Michel, R., Middendorf, M.: An ACO algorithm for the shortest common supersequence

problem. In: New Ideas in Optimization. McGraw-Hill, Maidenhead (1999)

10. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to

minimize makespan/total flowtime of jobs. European Journal of Operational Research 155,

426–438 (2004)

11. Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop

scheduling problem. Omega 34, 461–476 (2006)

12. Ruiz, R., Stuetzle, T.: A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. European Journal of Operations Research 177, 2033–2049

(2007)

	An Ant-Colony Algorithm to Transform Jobshops into Flowshops: A Case of Shortest-Common-Supersequence Stringology Problem
	Introduction
	Proposed Ant-Colony Algorithm Integrated with String Formation and Reduction Techniques (PACO-SFR)
	Generation of a Supersequence or String of Machines
	Implementation of the Set of String Reduction Techniques on a Job Sequence
	Improvement of a Job Sequence Using the JIS
	Initialization of Parameters in the PACO-SFR
	Construction of an Ant Sequence and Its Improvement by the JIS
	Updating of Pheromone Trails or Intensities
	Termination Condition

	Computational Evaluation of the PACO-SFR
	Summary
	References

