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An Ant Colony Approach to the Orienteering Problem 

 

 

Abstract 

This paper develops an ant colony optimization approach to the orienteering 

problem, a general version of the well-known traveling salesman problem with 

many relevant applications in industry.  Based on mainstream ant colony ideas, an 

unusual sequenced local search and a distance based penalty function are added to 

result in a method that is convincingly shown to be the best heuristic published for 

this problem class.  Results on 67 test problems from the literature show that the 

ant colony method performs as well or better in all cases and does so at very 

modest computational cost.  Furthermore, the ant colony method is insensitive to 

seed, problem instance, problem size and degree of constraint. 

 

Keywords:  ant colony, ant system, orienteering problem, traveling salesman 

problem, routing, optimization 

 

1.  Introduction 

The orienteering problem (OP) can be formulated as follows:  given n nodes, each node i 

has a score 0≥iS  and the scores of the starting node denoted by 1 and the ending node denoted 

by n are set to 0; i.e., 01 == nSS .  A score can be considered as sales, customer satisfaction or 

any other measure of profitability.  Each node can be visited at most once.  A path between 

nodes i and j has a cost ijc  associated with it.  This cost can be interpreted as time, money spent 

or distance traveled.  Usually n nodes are considered in the Euclidean plane.  Since the distance 

and travel time between nodes are determined by the geographical measure, they are assumed as 

to be known quantities and distance is used as the representative of cost in the following 

sections.  Therefore, the objective of the OP is to maximize the score of a route that consists of a 

subset of nodes starting from node 1 and finishing at node n without violating the cost 

(time/distance) constraint maxT .  Generally, the mathematical model of the OP is formulated as 
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The OP is NP-hard.  While it was originally modeled for the sport of orienteering, it has 

practical applications in vehicle routing and production scheduling, as discussed in Golden et al. 

[28] and Keller [33].  It should also be noted that the OP is equivalent to the Traveling Salesman 

Problem (TSP) when the time is relaxed just enough to cover all nodes and where start and end 

nodes are not specified. 

2.  Previous Approaches to the Orienteering Problem 

There has been work on exact methods for the OP.  In Laporte and Martello [36], a linear 

programming (LP) relaxation of a 0-1 integer programming model within a branch-and-bound 

scheme is presented.  The algorithm starts by relaxing the constraints, and the resulting problem 

is then solved through LP and the violated conditions are gradually solved through a branch-and-

bound process.  Upper and lower bounds are derived to fathom nodes of the search tree.  Leifer 

and Rosenwein [38] relax the 0-1 constraints and drop the connectivity constraints.  Thereafter, 

certain valid inequalities are added to the model.  After solving the LP relaxation, a cutting plane 

algorithm is added and the LP is solved again.  Fischetti, et al. [24] propose a branch-and-cut 

algorithm by adding inequalities such as the matching inequality, the cover inequality, and the 

path inequality.  Then, the overall branch-and-cut algorithm is used to find the optimal solution.  

Hayes and Norman [31] are the first to use dynamic programming to solve the OP.  There are no 

scores associated with nodes in this paper, thus, the authors define the objective as minimizing 

the total travel time given the constraint that the competitors must visit some pre-specified 

control nodes.  The travel time between nodes depends on distance and geographical factors, 
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such as uphill takes more time than downhill.  Ramesh, et al. [50] use Lagrange relaxation along 

with improvement procedures within a branch-and-bound method.  The solution procedure 

consists of two phases.  In the first phase, starting with an initial set of Lagrange multipliers, the 

relaxed problem is solved by improving the multipliers at each iteration.  If the optimal solution 

is found, the algorithm is terminated; otherwise, a second phase, branch-and-bound search, is 

conducted.  Although these approaches have yielded solutions to smaller sized problems, as in 

other NP-hard problems, the computational limitations of exact algorithms encourage the 

exploration of heuristic procedures. 

The first heuristics, the S-algorithm and the D-algorithm, were proposed by Tsiligirides 

in 1984 [54].  The S-algorithm uses the Monte Carlo method to construct routes using 

probabilities correlated to the ratio of node score to node distance from the current node.  The D-

algorithm is built based upon the vehicle scheduling method proposed by Wren and Holiday 

[58].  This approach operates by dividing the search area into sectors that are determined by two 

concentric circles and an arc of known length.  Sectors are varied by changing the two radii of 

the circles and by rotating the arcs.  A route is built when all nodes in a particular sector have 

been visited, or it is impossible to visit any other node of the same circle without violating the 

maxT  constraint.  In these papers, Tsiligirides also devises the most well known test problems for 

the OP, which have 21, 32 and 33 nodes.  

Golden, Levy and Vohra [28] propose an iterative heuristic for the OP which consists of 

three steps:  route construction using a greedy method, route improvement using a 2-opt swap, 

and center-of-gravity which guides the next search step.  Golden, Wang and Liu [29] combine 

Tsiligirides’s S-algorithm concept (randomness), the center of gravity, and learning capabilities 

into another approach to solve the OP.  To provide probabilities for node selection, the score of 

neighboring nodes are also considered.  Keller [33] uses his algorithm for the multi-objective 

vending problem (MVP) to solve the OP.  A path construction phase uses a measure identical to 

that of the S-algorithm.  This is followed by a three step improvement phase that uses node 

insertion and identification of node clusters.  Wang, et al. [56] propose an artificial neural 

network approach to solve the OP.  A Hopfield-like neural network is formulated and a fourth 

order convex energy function is devised.  Ramesh and Brown [49] propose a four-phase heuristic 

for the generalized orienteering problem, i.e., the cost function is not limited to a Euclidean 
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function.  The four phases consist of node insertion, cost improvement, node deletion and 

maximal insertions.  The route is improved by a 2-opt procedure followed by a 3-opt procedure 

in the second phase.  In the third phase, one node is removed from the current route and one node 

is then inserted in an attempt to decrease the length of the route.  Finally, as many unassigned 

nodes as possible are inserted onto the current route in order to increase the total score.  

Chao, et al. [8] introduce a two-step heuristic to solve the OP.  In the first step, 

initialization, by using the starting and ending nodes as the two foci of an ellipse and the maxT  

constraint as the length of the major axis, several routes are generated and the one with the 

highest score is the initial solution.  The initial route is then improved by a 2-node exchange in 

the cheapest-cost way, and then improved by a 1-node improvement that tries to increase the 

total score.  They apply this algorithm to Tsiligirides’s [54] problems and 40 new test problems.  

The authors also point out a mistake in Tsiligirides’s data set and suggest the correction.  

Tasgetiren and Smith [53] propose a genetic algorithm (GA) to solve the orienteering 

problem.  A permutation representation is used and a penalty function is employed to help search 

the infeasible region.  Four test sets, the three originally from Tsiligirides [54] and the one 

corrected by Chao, et al. [8], are used.  Tasgetiren’s results are competitive to the best known 

heuristics, though the computational time is relatively high. 

3.  An Ant Colony Approach 

3.1  Background of the Ant Colony Method 

Because of the route structure and the lack of dominant heuristic for the OP, this problem 

class appears to be a good candidate for ant colony optimization (ACO) methods.  The Ant 

System (AS) was first introduced by Dorigo and his colleagues [18, 19, 20, 23].  Since then, 

ACO algorithms have been applied to different problems such as the traveling salesman problem 

(TSP) [4, 6, 9, 10, 11, 21, 22, 23, 25, 30, 46], the quadratic assignment problem (QAP) [40, 52], 

the generalized assignment problem [48], the vehicle routing problem [5, 7, 16, 17, 27], 

telecommunication networks [15], graph coloring [13, 34, 35], scheduling [1, 12, 14, 32, 42, 43], 

the shortest supersequence problem [44, 45], the Hamiltonian graph problem [55], the multiple 

knapsack problem [37], the sequential ordering problem [26], the redundancy allocation problem 

[39], water distribution network design [41], the constraint satisfaction problem [51], and 

continuous function problems [2, 3, 57].  In an ACO algorithm, after setting parameter values 
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and initializing pheromone trails, the ant colony constructs solutions by applying a state 

transition rule.  Local search, if applicable, and a pheromone update rule are employed during 

each iteration, and the process continues until a stopping criterion is reached.  The ACO 

procedure can be summarized as follows: 

Set all parameters and initialize pheromone trails 

Loop 

 Sub-Loop 

  Construct solutions based on the state transition rule 

  Apply the online pheromone update rule (optional) 

 Continue until all ants have been generated 

  Apply local search (optional) 

  Evaluate all solutions and record the best solution so far 

  Apply the offline pheromone update rule 

 Continue until the stopping criterion is reached 

A local heuristic, ijη , is a key component of the state transition rule.  It is problem-

dependent, such as 
ij

ij d
1=η  in TSP, 

ij
ij s

1=η  in QAP, or 
ij

ij MDD
1=η  in a scheduling problem.  

Local search plays an important role in improving the solution quality of ACO algorithms.  

Problem-dependent local search methods are used in different applications, such as the 2-opt for 

the symmetric TSP and the 3-opt for the asymmetric TSP [21, 22], the 2-opt and tabu search for 

the QAP [52], descent local search and tabu search for the generalized assignment problem [48], 

and adjacent pairwise interchange for the single machine total tardiness problem [1].  

3.2  An ACO for the OP 

3.2.1  Representation 

Since the orienteering problem can be translated to a Generalized Traveling Salesman 

Problem (GTSP), the graphic representation can easily correspond to the underlying 

topographical graph as in the TSP. The main difference of the graphic representations between 

these two problems is that the OP does not necessarily visit all control nodes except the starting 

and ending ones while the TSP is required to visit all.  The graph representation consists of a set 

of nodes denoted by N representing different control nodes, and a set of arcs denoted by E 
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representing transitions between nodes in N.  Then { }ENG ,=  is a graph.  While constructing 

solutions, ants move from one node to another using the connecting arcs and laying down their 

pheromone trails on these arcs.  Thus, arcs represent adding a specific node to the tour in the OP 

and each arc has an associated score with it.  Therefore the OP may be represented by a weighted 

acyclic, directed graph with exactly one starting node and one ending node.  The starting node is 

denoted by 1 and a tour always starts from here; the ending node is denoted by n and a tour is 

required to end here.  Given the total number of n nodes, including the starting and ending nodes, 

the starting node has 1−n  outgoing arcs and each arc represents a choice of an unvisited node.  

The ending node has 1−n  incoming arcs and no outgoing arcs.  Before the tour construction 

starts, all nodes except the starting and ending nodes have 2−n  outgoing arcs and 2−n  

incoming arcs.  In each transition exactly one node is added to the tour.  After a node is chosen, 

the rest of the incoming arcs to this specific node will be prohibited in order to satisfy the 

constraint that each node can be only visited at most once.  During the construction process, the 

total distance of current tour is updated with time.  Any path from the starting node to the ending 

node represents an initial solution for the ACO-OP algorithm.  

Figure 1 shows an example of the OP graphic representation with five nodes, i.e., 5=n .  

Node 1 represents the starting node and the node 5 denotes the ending one.  Nodes 2, 3 and 4 are 

the remaining control nodes.  Therefore, node 1 has four outgoing arcs and no incoming arcs 

while node 5 has four incoming arcs and no outgoing arcs.  Nodes 2, 3 and 4 each have three 

outgoing arcs and three incoming arcs.  Figure 2 shows an example of the tour construction 

process.  This process starts from the starting node, i.e., node 1, and node 2 is selected as the next 

node to visit.  Thereafter, all other outgoing arcs from node 1, which are represented by dashed 

lines, are prohibited.  In next transition, node 3 is chosen, so the rest of node 2’s outgoing and 

incoming arcs are forbidden as shown in Figure 2(b).  The final transition assumes that the 

ending node has to be selected, and the tour construction is completed, with the path 1-2-3-5 

formed.   
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Figure 1. A 5-node example of an initial OP graphic representation. 
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Figure 2. Solution construction process. (a) node 2 is chosen as the next node to visit, (b) node 3 

is selected as the next node to visit, (c) the ending node is chosen to complete the tour. 

3.2.2  The State Transition Rule 

The Ant Colony System (ACS) algorithm proposed by Dorigo and Gambardella [21] is 

used as the main structure of the ACO-OP algorithm here.  To construct a solution the ants 

successively choose nodes to be appended to the current tour.  If the sum of current total distance 

at a node and the distance from this node to the ending node has reached or exceeded the 

constraint maxT , the tour will be terminated after connecting the path from current node to the 

ending node.  For node selection, the ants use problem specific (local) heuristic information, 

denoted by ijη , as well as pheromone trails, denoted by ijτ , specific to an arc connecting nodes i 

and j.  The former is an indicator of how good the choice of that node seems to be in general, and 

the latter indicates how good the choice of the node was during this specific search so far.  

In order to balance the exploitation of good solutions and the exploration of the search 

space, the state transition rule shown as follows is used for the solution construction process 

where node v is selected to be next node visited with the current position at node i. 
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where α  and β  are parameters that control the relative weight of pheromone (τ) and local 

heuristic (η), respectively, US is the set of unvisited nodes, q  is a random number uniformly 

generated between 0 and 1, and 0q  is a parameter which determines the relative importance of 

exploitation versus exploration.  When 0qq ≤  an exploitation of the knowledge available about 

the problem (the local heuristic knowledge about the choice of nodes) and the learned knowledge 

memorized in the form of pheromone trails are used, whereas 0qq >  favors more (random) 

exploration.  The problem specific heuristic used is 
ij

j
ij c

S
=η  where jS  represents the associated 

score of node j and ijc  denotes the distance associated with the path between nodes i and j. 

3.2.3  The Pheromone Trail Update Rule 

The pheromone update rule consists of two phases – online (step-by-step) updating and 

offline (delayed) updating.  The purpose of online updating is to decay the pheromone intensity 

of the selected move to encourage exploration.  Online updating occurs after an ant makes a 

move by  

o
old
ij

new
ij τρτρτ ⋅−+⋅= )1(                       (8) 

where ]1,0[∈ρ  is a parameter that controls the pheromone persistence, i.e., ρ−1  represents the 

proportion of the pheromone evaporated.  Initial trail intensities ( 0τ ) are set to 
max

1
Tn ⋅

 where n  
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is the total number of nodes and maxT  is the distance constraint.  

After all ants have followed the selection process described above and constructed a tour, 

local search, as described in the next section, is used to improve the solutions.  The objective 

function (1) for each ant, k, is calculated, as is the degree of infeasibility, Tk - Tmax.  Most ACO 

algorithms avoid infeasible solutions during the process of solution construction by means of, for 

example, a tabu list in the TSP application.  However, Ramalhinho and Serra [48] suggest that a 

penalty function can be used in the objective function evaluation.  For a solution violating a 

constraint, a penalty is added to the objective, and during pheromone updating, infeasible ants 

contribute less.  Since the OP is a constrained problem and search can benefit from considering 

mildly infeasible solutions, a penalty function for infeasible solutions is used: 

k
kkp T

T
SS max⋅=             (9) 

where Tk and Sk are the total distance and the total score of ant k, respectively.  If a solution is 

feasible, kkp SS = ; if a solution falls in the infeasible region, the penalized total score, kpS , is 

calculated by multiplying the unpenalized objective, kS , with a penalty factor 
kT

Tmax  that 

correlates with the magnitude of infeasibility.  This penalty function will encourage the ACO-OP 

algorithm to explore the feasible region and infeasible region near the border of the feasible area, 

and discourage, but permit, search further into the infeasible region, since the global optimum 

solution is close to or at maxT .   

Then, the best feasible solution is updated and is used to contribute pheromone in offline 

updating.  At the same time evaporation reduces pheromone trails.  The offline trail update can 

formally be expressed as follows: 

ij
old
ij

new
ij τρτρτ ∆⋅−+⋅= )1(                     (10) 

where ijτ∆  is the amount of pheromone trail added to ijτ  by the ants.  This paper uses the elitist 

approach [22] where only the best ant contributes, i.e., Bij S=∆τ  for all combinations (i,j) 

belonging to the best feasible solution found so far, where BS  is the total score of that solution.  
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3.2.4  The Local Search 

Since the solutions generated in each generation before local search are either on or close 

to the border of the feasible region, local search is very effective in this problem class.  The 

Variable Neighborhood Search (VNS) metaheuristic [47] provides an appropriate idea for local 

search.  VNS does not follow a specified trajectory, but explores increasingly distant 

neighborhoods of the current solution, and jumps to a new one if, and only if, an improvement is 

made.  A VNS algorithm starts by determining a set of neighborhood structures, i.e., a set of 

local search methods.  Beginning with a neighborhood of the set, i.e., using one of the local 

search methods, local search is applied and if the solution obtained is better than the incumbent, 

it replaces the old one and search continues from there.  The VNS algorithm continues until all 

neighborhoods defined have been searched, that is, all local search methods used.  den Besteb, et 

al. used this concept to good effect with an ACO approach to a class of scheduling problems 

[14].  In the ACO-OP method, the concatenation of several iterative descent local search 

methods are used as the VNS: 

•  Eliminate method (ELM): Except the starting and the ending nodes, beginning with the 2nd 

node on a tour, eliminates a node from the tour.  

•  Interchange method (INT): Starting with the 2nd node on a tour, interchanges this node with 

an unvisited node if there is any existing.  

•  Swap method (SWAP): Swaps a pair of nodes existing on a tour, except the starting and the 

ending nodes.  

•  Forward Insert method (FI): Takes a node from its current position and inserts it into a 

position after its current one but before the ending node.  

•  Backward Insert method (BI): Takes a node from its current position and inserts it into a 

position before its current one but after the starting node.  

•  Add method (ADD): Adds an unvisited node, if it exists, to a position between the starting 

node and the ending node of the current tour.  

During the local search, if the penalized total score improves or the total distance decreases, the 

new tour replaces the current solution.  This sequence of local search mechanisms can be 

segregated into three parts: INT-ELM, FI-BI-SWAP and ADD.  The first part aims at reducing 

the magnitude of infeasibility and increasing the total score, the second part tries to decrease the 
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total distance, and the last part of sequence is mainly responsible for increasing the total score of 

a tour.  The iteration-best feasible ant is updated during the local search process above and if it is 

better than the globally best feasible ant, the globally best feasible ant is updated and another 

concatenated local search is applied to the new globally best feasible solution by the sequence of 

INT-ADD-FI-BI-SWAP.  ELM is not used since this ant is, by definition, feasible. 

4.  Computational Experience 

The ACO-OP algorithm is coded in Borland C++ and all experiments are run using an 

Intel Celeron 433 MHz PC with 128 MB RAM.  All computations use real float point precision 

without rounding or truncating values.  The length of the final path and the CPU time (in 

seconds) are rounded to three digits behind the decimal point.  

From preliminary explorations, these parameter values are established:  colony size = 30, 

1=α , 3=β , 2.00 =q  and .9.0=ρ   There is some sensitivity of ACO-OP to changes in these 

parameters, particularly values of qo greater than 0.7.  With β > α and a lower qo there is more 

emphasis on the local heuristic as opposed to the pheromone and more emphasis on exploration 

rather than exploitation.  The stopping criteria are when the total number of iterations reaches 

200, the best ant has not changed for 100 consecutive iterations or the best feasible ant has 

reached the upper bound provided by [38].  The test problems are those most studied in the 

literature [8, 54].  These are three sets of size 32, 21, and 33 nodes with 18, 11, and 20 instances, 

varying by maxT  value, respectively.  Chao et al. [8] found a mistake in the original data set of the 

size 32 problem, corrected the mistake and created a new data set, named data set 4, which is 

different from the old set at node 30.  The search spaces are 17102.1 ×  for the 21 node, 2.7 x 1032 

for the 32 node and 8.2 x 1033 for the 33 node problems. 

The best results of the ACO-OP algorithm over 10 runs on each instance are compared 

with the best results of the other heuristics and the upper bound [38] as follows: 

•  UB: upper bound on score from Leifer and Rosenwein [38] (for data sets 1, 2 and 3 only). 

•  T: Tsiligirides’ S-algorithm [54] (for data sets 2, 3 and 4 only).   

•  TC: Tsiligirides’ S-algorithm coded by Chao et al. [8] (for data sets 1 and 4 only).  

•  MVP: Keller heuristic [33] (for data sets 1, 2 and 3 only).  

•  GLV: Golden, Levy, and Vohra heuristic [28] (for data sets 1, 2 and 3 only). 
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•  GWL: Golden, Wang, and Liu heuristic [29]  (for data sets 1, 2 and 3 only).  

•  ANN: Wang, Sun, Golden and Jia’s neural network [56].  

•  CGW: Chao, Golden, and Wasil heuristic [8].  

•  GA: Tasgetiren and Smith’s genetic algorithm [53]. 

In Tables 1 through 4, the “+” symbol means that ACO-OP produces a better score, the “–” 

symbol means that ACO-OP produces a worse score, and an empty cell means ACO-OP 

generates the same score as the comparing heuristic.  

 For the 49 instances listed in Tables 1 through 3, ACO-OP produces better scores in 10 

instances compared to the ones produced by MVP, in 26 instances by GLV, and in 1 instance by 

GWL.  In Tables 2, 3 and 4, ACO-OP performs better in 34 instances compared to the ones 

produced by T.  ACO-OP also outperforms TC in 19 of 49 instances in Tables 1 and 4.  Over all 

67 instances, ACO-OP is superior in 7 instances compared to ANN, in 1 instance for CGW, and 

in 1 instance for GA.  The most competitive heuristics are CGW and GA, which are improved 

upon by ACO-OP in only one instance each.  Note that in no case does ACO-OP fail to find the 

best known solution. 

Table 1.  Comparison of results on test problem set 1 (32 nodes and 18 instances). 
ACO-OP vs. Previous Heuristic Methods

TMAX UB TC MVP GLV GWL ANN CGW GA ACO-OP TC MVP GLV GWL ANN CGW GA
5 10 10 10 10 10 10 10 10 10

10 20 15 15 15 15 15 15 15 15
15 45 45 45 45 45 45 45 45 45
20 70 65 65 65 65 65 65 65 65
25 95 90 90 90 90 90 90 90 90
30 120 110 110 110 110 110 110 110 110
35 140 135 130 125 135 135 135 135 135 + +
40 160 150 155 140 155 155 155 155 155 + +
46 180 170 175 165 175 175 175 175 175 + +
50 195 185 185 180 190 190 190 190 190 + + +
55 210 195 200 200 205 205 205 205 205 + + +
60 230 220 225 205 225 225 225 225 225 + +
65 245 235 240 220 240 240 240 240 240 + +
70 260 255 260 240 260 260 260 260 260 + +
73 270 260 265 255 265 265 265 265 265 + +
75 270 265 270 260 270 270 270 270 270 + +
80 285 270 280 275 280 280 280 280 280 + +
85 285 280 285 285 285 285 285 285 285 +

Summary of ACO-OP vs. Previous Heuristic Methods + 11 3 11 0 0 0 0
- 0 0 0 0 0 0 0

Heuristic Methods from Literature
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Table 2.  Comparison of results on test problem set 2 (21 nodes and 11 instances). 
ACO-OP vs. Previous Heuristic Methods

TMAX UB T MVP GLV GWL ANN CGW GA ACO-OP T MVP GLV GWL ANN CGW GA
15 145 120 120 120 120 120 120 120 120
20 200 190 200 200 200 200 200 200 200 +
23 215 205 210 210 205 205 210 210 210 + + +
25 240 230 230 230 230 230 230 230 230
27 265 230 230 230 230 230 230 230 230
30 275 250 260 260 265 265 265 265 265 + + +
32 305 275 300 260 300 300 300 300 300 + +
35 350 315 320 300 320 320 320 320 320 + +
38 375 355 360 355 360 360 360 360 360 + +
40 400 395 380 380 395 395 395 395 395 + +
45 450 430 450 450 450 450 450 450 450 +

Summary of ACO-OP vs. Previous Heuristic Methods + 7 2 5 1 1 0 0
- 0 0 0 0 0 0 0

Heuristic Methods from Literature

 
 

Table 3.  Comparison of results on test problem set 3 (33 nodes and 20 instances). 
ACO-OP vs. Previous Heuristic Methods

TMAX UB T MVP GLV GWL ANN CGW GA ACO-OP T MVP GLV GWL ANN CGW GA
15 175 100 170 170 170 170 170 170 170 +
20 210 140 200 200 200 200 200 200 200 +
25 290 190 260 250 260 250 260 260 260 + + +
30 340 240 320 320 320 320 320 320 320 +
35 395 290 370 380 390 390 390 390 390 + + +
40 445 330 430 420 430 420 430 430 430 + + +
45 490 370 460 450 470 470 470 470 470 + + +
50 535 410 520 500 520 520 520 520 520 + +
55 575 450 550 520 550 550 550 550 550 + +
60 605 500 570 580 580 580 580 580 580 + +
65 635 530 610 600 610 610 610 610 610 + +
70 665 560 640 640 640 640 640 640 640 +
75 695 590 670 650 670 670 670 670 670 + +
80 725 640 700 690 710 700 710 710 710 + + + +
85 750 670 740 720 740 740 740 740 740 + +
90 785 690 760 770 770 770 770 770 770 + +
95 800 720 790 790 790 790 790 790 790 +

100 800 760 800 800 800 800 800 800 800 +
105 800 770 800 800 800 800 800 800 800 +
110 800 790 800 800 800 800 800 800 800 +

Summary of ACO-OP vs. Previous Heuristic Methods + 20 5 10 0 3 0 0
- 0 0 0 0 0 0 0

Heuristic Methods from Literature
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Table 4.  Comparison of results on test problem set 4 (32 nodes and 18 instances, corrected). 
ACO-OP vs. Previous Heuristic Methods

TMAX T TC ANN CGW GA ACO-OP T TC ANN CGW GA
5 10 10 10 10 10 10

10 15 15 15 15 15 15
15 45 45 45 45 45 45
20 65 65 65 65 65 65
25 90 85 90 90 90 90 +
30 110 110 110 110 110 110
35 135 135 130 135 135 135 +
40 150 150 155 155 155 155 + +
46 175 175 175 175 175 175
50 190 185 190 190 190 190 +
55 205 200 205 205 205 205 +
60 220 220 220 220 225 225 + + + +
65 240 240 240 240 240 240
70 255 250 260 260 260 260 + +
73 260 265 265 265 265 265 +
75 270 265 270 275 270 275 + + + +
80 275 270 280 280 280 280 + +
85 280 285 285 285 285 285 +

Summary of ACO-OP vs. Previous Heuristic Methods + 7 8 3 1 1
- 0 0 0 0 0

Heuristic Methods from Literature

 
It is difficult to make a solid computational comparison.  CPU seconds will vary 

according to hardware, software and coding.  The CGW heuristic [8] and the GA [53] are used 

here for CPU runtime comparison purposes since they are the primary competitors when 

considering performance.  CGW is coded in FORTRAN and executed on a SUN 4/370 

workstation and GA is coded in Borland C++ and run on a Dell 450 PC.  In Tables 5 through 8, 

CPU time in seconds for CGW, GA and ACO-OP are given, with the quickest method 

highlighted in gray.  The CPU time of ACO-OP is the mean time over those runs reaching the 

best solution and ranges from 0.011 seconds to 25.274 seconds.  The mean CPU time of ACO-

OP is lower than one second in over half of the 67 instances, is lower than CGW in all but 3 of 

the 67 instances and is considerably faster than GA in all instances.  Tables 5 through 8 also 

show the best tour generated by ACO-OP, the T value of the tour, and the maximum, mean and 

standard deviation over the ten runs.  In most instances, the ACO-OP found the optimum in each 

of the ten runs and in no case was the worst performance very bad. 
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Table 5.  CPU time comparison and sequence found by the ACO-OP for problem set 1. 

TMAX CGW GA ACO-OP Max Min Avg SD
5 0.67 5.36 0.013 10 10 10 0.0000 4.143 1 28 32

10 0.80 10.28 0.011 15 15 15 0.0000 6.867 1 28 18 32
15 2.28 14.98 0.207 45 35 43 4.2164 14.264 1 27 31 26 20 19 32
20 17.49 20.47 0.064 65 65 65 0.0000 19.595 1 27 31 26 22 21 20 19 32
25 9.07 25.89 0.733 90 85 89.5 1.5811 24.816 1 27 31 26 22 21 12 11 10 9 32
30 31.92 31.36 0.080 110 110 110 0.0000 29.711 1 27 31 26 25 24 23 22 21 12 19 32
35 25.25 38.48 0.808 135 135 135 0.0000 34.081 1 28 27 31 26 25 23 22 21 12 11 10 8 9 13 32
40 16.76 42.06 6.227 155 155 155 0.0000 38.974 1 28 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 32
46 21.58 48.68 0.677 175 175 175 0.0000 44.512 1 28 27 31 26 25 24 23 22 21 12 11 10 9 8 2 3 7 6 32
50 24.91 58.94 0.795 190 190 190 0.0000 49.534 1 28 27 31 26 25 24 23 22 21 12 11 10 9 8 2 3 7 5 6 13 32
55 24.67 60.39 15.732 205 200 203.5 2.4152 54.797 1 28 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 5 4 14 15 18 32
60 24.28 65.55 11.464 225 220 223.5 2.4152 59.888 1 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 5 4 14 15 16 17 28 32
65 23.26 69.56 0.495 240 240 240 0.0000 63.822 1 27 31 26 25 24 23 22 21 12 11 10 8 2 3 7 6 5 4 14 15 16 17 28 32
70 25.09 73.56 11.781 260 260 260 0.0000 69.127 1 28 29 17 16 15 14 4 5 6 7 3 2 8 10 11 12 21 22 23 24 25 26 31 27 20 19 32
73 25.24 75.29 1.352 265 265 265 0.0000 70.731 1 28 29 17 16 15 14 4 5 6 7 3 2 8 9 10 11 12 21 22 23 24 25 26 31 27 20 19 32
75 28.53 77.72 4.075 270 270 270 0.0000 73.507 1 28 29 17 16 15 14 4 5 6 7 3 2 8 10 11 12 21 22 23 24 25 30 31 26 27 20 19 32
80 26.84 80.58 3.738 280 280 280 0.0000 78.720 1 28 29 17 16 15 14 4 5 6 13 7 3 2 8 9 10 11 12 21 22 23 24 25 30 31 26 27 20 19 32
85 21.71 88.12 2.739 285 285 285 0.0000 81.784 1 19 20 27 26 31 30 25 24 23 22 21 12 11 10 9 8 2 3 7 13 6 5 4 14 15 16 17 29 28 18 32

CPU Time Score
Td ACO-OP Tour

 
 

Table 6.  CPU time comparison and sequence found by the ACO-OP for problem set 2. 

TMAX CGW GA ACO-OP Max Min Avg SD
15 1.29 11.53 0.023 120 120 120 0.0000 14.543 1 7 12 11 8 9 10 14 21
20 2.24 15.35 0.402 200 200 200 0.0000 19.88 1 12 7 6 5 3 2 8 9 10 11 13 14 21
23 4.45 19.04 0.685 210 200 206.5 4.7434 22.648 1 7 6 5 4 3 2 8 9 10 11 14 21
25 5.65 20.53 0.111 230 230 230 0.0000 24.128 1 12 7 6 5 4 3 2 8 9 10 11 13 14 21
27 6.37 22.63 0.152 230 230 230 0.0000 24.895 1 11 10 9 8 2 3 4 5 6 7 12 13 14 21
30 6.18 23.9 0.172 265 250 259.5 3.6893 29.849 1 7 6 2 8 17 16 15 9 10 11 13 14 21
32 7.21 26 0.561 300 300 300 0.0000 31.625 1 7 6 5 3 2 8 17 16 15 9 10 11 13 14 21
35 7.81 27.74 1.344 320 310 312 4.2164 34.989 1 7 6 5 4 20 19 18 17 8 9 10 11 13 14 21
38 6.84 28.74 2.797 360 355 356.5 2.4152 37.842 1 7 6 5 2 3 4 20 19 18 17 8 9 10 11 13 14 21
40 7.14 28.71 3.818 395 385 394 3.1623 39.778 1 7 6 5 3 4 20 19 18 16 15 17 8 9 10 11 13 21
45 0.61 29.01 0.731 450 450 450 0.0000 44.438 1 12 7 6 5 2 3 4 20 19 18 16 15 17 8 9 10 11 13 14 21

CPU Time Score
Td ACO-OP Tour

 
 

Table 7.  CPU time comparison and sequence found by the ACO-OP for problem set 3. 

TMAX CGW GA ACO-OP Max Min Avg SD
15 4.37 25.30 0.036 170 170 170 0.0000 14.573 1 24 22 7 5 28 14 4 23 33
20 5.16 31.87 2.194 200 190 199 3.1623 19.792 1 24 22 7 5 28 14 4 3 27 23 33
25 9.40 39.38 0.209 260 260 260 0.0000 24.458 1 24 22 7 5 14 4 20 13 3 23 33
30 9.96 44.05 0.465 320 310 319 3.1623 28.770 1 24 22 7 5 28 20 17 13 3 4 14 27 23 33
35 15.38 47.68 0.164 390 390 390 0.0000 34.791 1 24 22 7 5 28 14 4 20 17 16 15 13 3 23 33
40 18.65 52.36 0.711 430 430 430 0.0000 38.881 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 32 33
45 26.84 66.89 2.223 470 470 470 0.0000 44.259 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 29 26 33
50 28.74 72.78 1.528 520 520 520 0.0000 48.936 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 29 26 33
55 30.27 75.40 5.377 550 550 550 0.0000 53.546 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 29 30 26 32 33
60 27.68 79.01 0.402 580 580 580 0.0000 59.341 1 24 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 29 30 33
65 25.02 79.20 18.369 610 600 603 4.8304 63.236 1 24 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 29 30 26 32 23 33
70 29.82 84.69 12.888 640 640 640 0.0000 69.139 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 11 10 9 30 29 26 32 33
75 29.25 90.24 0.934 670 670 670 0.0000 74.227 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 11 19 18 10 9 25 33
80 30.14 100.42 9.406 710 710 710 0.0000 79.710 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 29 30 11 19 18 10 9 25 33
85 28.30 103.64 14.800 740 740 740 0.0000 84.862 1 24 22 7 5 28 14 4 20 17 16 15 13 3 6 2 8 31 12 11 19 18 10 9 30 29 26 32 23 27 33
90 24.43 103.91 12.106 770 760 769 3.1623 89.313 1 24 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 11 19 18 10 9 30 29 26 32 33
95 22.33 106.47 1.491 790 790 790 0.0000 92.791 1 24 23 27 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 11 19 18 10 9 30 29 26 32 33

100 0.67 105.55 2.105 800 800 800 0.0000 97.078 1 24 23 27 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 11 19 18 10 9 25 30 29 26 32 33
105 0.60 103.01 0.550 800 800 800 0.0000 97.240 1 24 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 11 19 18 10 9 25 30 29 26 32 23 27 33
110 0.72 102.27 0.403 800 800 800 0.0000 97.078 1 24 23 27 22 7 5 28 14 4 20 17 21 16 15 13 3 6 2 8 31 12 11 19 18 10 9 25 30 29 26 32 33

CPU Time Score
Td ACO-OP Tour
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Table 8.  CPU time comparison and sequence found by the ACO-OP for problem set 4. 

TMAX CGW GA ACO-OP Max Min Avg SD
5 0.22 6 0.014 10 10 10 0.0000 4.143 1 28 32

10 0.27 10.87 0.013 15 15 15 0.0000 6.867 1 28 18 32
15 0.72 16.98 0.752 45 45 45 0.0000 14.264 1 27 31 26 20 19 32
20 4.76 23.42 0.056 65 65 65 0.0000 19.686 1 27 31 26 20 21 12 19 32
25 2.47 29.42 0.119 90 90 90 0.0000 24.816 1 27 31 26 22 21 12 11 10 9 32
30 10.86 35.64 0.081 110 110 110 0.0000 28.797 1 28 27 31 26 22 21 12 11 10 8 9 13 32
35 14.11 44.57 1.239 135 135 135 0.0000 34.081 1 28 27 31 26 25 23 22 21 12 11 10 8 9 13 32
40 21.81 50.51 6.443 155 150 154.5 1.5811 38.974 1 28 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 32
46 21.62 55.58 0.323 175 175 175 0.0000 44.512 1 28 27 31 26 25 24 23 22 21 12 11 10 9 8 2 3 7 6 32
50 22.76 71.78 0.414 190 190 190 0.0000 49.776 1 28 27 31 26 25 24 23 22 21 12 11 10 9 8 2 3 4 5 6 32
55 24.81 90.31 5.902 205 200 203.5 2.4152 54.797 1 28 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 5 4 14 15 18 32
60 20.39 90.74 11.229 225 220 224 2.1081 59.888 1 27 31 26 25 23 22 21 12 11 10 8 2 3 7 6 5 4 14 15 16 17 28 32
65 26.78 96.45 0.811 240 240 240 0.0000 64.311 1 28 17 16 15 14 4 5 7 3 2 8 10 11 12 21 22 23 24 25 26 31 27 19 32
70 25.51 85.44 8.163 260 260 260 0.0000 69.127 1 28 29 17 16 15 14 4 5 6 7 3 2 8 10 11 12 21 22 23 24 25 26 31 27 20 19 32
73 27.04 85.16 2.158 265 265 265 0.0000 71.867 1 28 30 29 17 16 15 14 4 5 7 3 2 8 10 11 12 21 22 23 24 25 26 31 27 20 19 32
75 27.47 89.59 25.274 275 270 272 2.5821 74.661 1 28 30 29 17 16 15 14 4 5 6 7 3 2 8 9 10 11 12 21 22 23 24 25 26 31 27 20 19 32
80 28.17 90.12 5.067 280 280 280 0.0000 77.725 1 19 20 27 31 26 25 24 23 22 21 12 11 10 9 8 2 3 7 6 5 4 14 15 16 17 29 30 28 18 32
85 21.64 87.77 8.005 285 285 285 0.0000 81.482 1 19 20 27 31 26 25 24 23 22 21 12 11 10 8 9 13 2 3 7 6 5 4 14 15 16 17 29 30 28 18 32

CPU Time Score
Td ACO-OP Tour

 
5.  Conclusions 

 This paper presented the first known application of an ant colony optimization method to 

the orienteering problem.  The OP problem has many important parallels in problems found in 

industry, along with its original inspiration of the sport of orienteering.  An ACO that uses both 

on line and off line pheromone updating and employs local search each iteration is effective and 

efficient.  The local search is atypical in that it involves a sequence of simple heuristics rather 

than either a single heuristic or a rotating choice of heuristics.  This variable neighborhood 

concept may be of value in other ACO implementations.  Computational experience shows that 

the ACO approach is dominant to all published heuristics in quality of solution obtained and is 

modest indeed in its computational requirements.  Furthermore, sensitivity to seed is small and 

robustness to problem instance, size and degree of constraint is great.  In summary, as in other 

path based problems such as network routing and TSP, ACO clearly shows its merit in the 

orienteering problem. 
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