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Abstract. The Multiple Traveling Salesman Problem (MTSP) is the extension of the Traveling Salesman 
Problem (TSP) in which the shortest routes of � salesmen all of which start and finish in a single city (depot) 
will be determined. If there is more than one depot and salesmen start from and return to the same depot, then 
the problem is called Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). In this 
paper, MMTSP will be solved using the Ant Colony Optimization (ACO) algorithm. ACO is a metaheuristic 
optimization algorithm which is derived from the behavior of ants in finding the shortest route(s) from the 
anthill to a form of nourishment. In solving the MMTSP, the algorithm is observed with respect to different 
chosen cities as depots and non-randomly three parameters of MMTSP: m, K, L, those represents the number 
of salesmen, the fewest cities that must be visited by a salesman, and the most number of cities that can be 
visited by a salesman, respectively. The implementation is observed with four dataset from TSPLIB. The 
results show that the different chosen cities as depots and the three parameters of MMTSP, in which � is the 
most important parameter, affect the solution. 

INTRODUCTION 

TSP is a problem to find the most efficient means of visiting every node and then returning to the starting node 
[1]. Many works have made concerning TSP both in an exact or metaheuristics way, in which, Branch and Bound 
[2], Genetic Algorithm [3], Ant Colony Optimization [4] and also Simulated Annealing [5].   

The extension of TSP is MTSP. The problem is best described as finding a set of tours for � salesmen who all 
start and finish in a single city (depot) [6]. All of which start and many works have been done concerning MTSP 
both in an exact or metaheuristic way, in which, Lagrangian Relaxation [7], Branch and Bound [8], Particle Swarm 
Optimization [9], Simulated Annealing [10], Genetic Algorithm [11], and Ant Colony Optimization [12]. 

MMTSP has higher complexity since the salesmen depart from multiple depots instead of the same depot. There 
are two types of MMTSP: fixed destination MMTSP, in which every salesman has to end his route at his starting 
point, and non-fixed destination MMTSP otherwise. [13]. Unlike the two previous problems, few works have been 
made on the MMTSP before, so that is the reason why we investigate the problem. Previous works have been made 
before about Integer Linear Programming [14], Branch and Cut [15], Genetic Algorithm [16], Firefly Algorithm 
[17] and Ant Colony Optimization [13]. In this paper we will investigate the fixed destination MMTSP, using Ant 
Colony Optimization (ACO) based on [13] work.  

Ghafurian and Javadian’s previous work concluded that ACO is efficient in solving the MMTSP compared with 
solution produced with Lingo 8.0. They generate the problem, cities as depots, and the MMTSP parameters in 
randomly for four different size problems i.e. � ∈ {10,20,30,40}. In our work, we will further examine the analysis 
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on choosing a non-random parameters of MMTSP and choosing different cities as depots. Since there was no 
benchmark test for the MMTSP, for convenience we use several problems with the dataset taken from TSPLIB. 

FIXED DESTINATION MMTSP 

When multiple salesmen leave several starting cities (depots) then return to the starting city to create a tour 
where every city is visited only by a salesman, the problem is considered to be an MMTSP [13]. The objective of 
MMTSP is to find the shortest path done by m salesmen. Illustration of MMTSP given in Fig. 1. 

In this paper, we adopted a mathematical model MMTSP from [14]. Let a complete graph � = ��, �� represents � cities in which � is a set of nodes, while a set of edges constitutes �. Define � = [���] as a cost matrix for each arc ��, �� ∈ �. Let V be decomposed such that � = �� ∪ �, where a depot set � consists of � first cities of  � and �� ={� + 1, � + 2, … , �}. For each depot, there are �" salesmen such that � is the total of all salesman. For each 
salesman, #�  is the number of cities that have been visited up to the �-th city. Define $ as the maximum number of 
cities that a salesman can visit and % as the minimum number of cities a salesman must visit. The mathematical 
model for MMTSP is given by the following [13]: 

 Min   ∑ ∑ *�"�+"�" + ��"+�"", +�∈-."∈/ ∑ ∑ ∑ ���+��"�∈-.�∈-."∈/  (1) 

This is subject to: 

 ∑ +"�"�∈-. = �"  ,  0 ∈ �  (2) 

 ∑ +"�""∈/ + ∑ ∑ +��"�∈-."∈/ = 1  ,  � ∈ �� (3) 

 +"�" + ∑ +��"�∈-. − +�"" − ∑ +��"�∈-. = 0  ,  0 ∈ �  ,  � ∈ �� (4) 

 ∑ +"�"�∈-. − ∑ +�""�∈-. = 0  ,  0 ∈ � (5) 

 #� + �$ − 2� ∑ +"�""∈/ − ∑ +�"" ≤ $ − 1"∈/   ,  � ∈ �� (6) 

 #� + ∑ +"�""∈/ + �2 − %� ∑ +�""�∈-. ≥ 2  ,  � ∈ �� (7) 

 ∑ +"�""∈/ + ∑ +�"""∈/ ≤ 1  ,  � ∈ �� (8) 

 #� − #� + $ ∑ +��""∈/ + �$ − 2� ∑ +��""∈/ ≤ $ − 1  ,  � ≠ � , �, � ∈ �� (9) 

+��" ∈ {0,1} (10) 

Details about the constraints, see [13]. 

ANT COLONY OPTIMIZATION 

Metaheuristics is a new generation of the heuristic algorithm. This method has been widely developed and used 
respect for increasing the complexity of combinatorial problem. One of many metaheuristic algorithm is ACO which 
is reminiscent of the behavior of ants in finding the shortest route(s) from the anthill to a form of nourishment. ACO 
algorithm was initially developed by [18] to solve TSP by considering the salesmen as artificial ants. In the real  
 

 

 
               (a)                                      (b) 

FIGURE 1. (a) The example of MMTSP with 12 cities and 2 depots. (b) the route formed from 12 cities 
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world, the ants choose the path to the food source randomly. The movement of ants is also influenced by the 
intensity of pheromones contained on the path that will be passed through. To solve MMTSP using ACO algorithm, 
a salesman is represented by an artificial ant who will travel until it returns to the depot [13]. The process of finding 
MMTSP solution by using ACO algorithm consists of three main processes: parameter initialization, transition 
probability, and pheromone update. 

Parameter Initialization 

The process of finding MMTSP solutions begins with parameter initialization based on [13], in which contains 
of d depot and m salesmen. Those salesmen have to visit a minimum number of cities (%�, and at most L cities that 
are determined as follows: 

1. The amount of depot (�) is determined by the number of cities divided by 10, � = �/10. 
2. The minimum number of cities that salesmen must visit (%) is determined by the interval 2 ≤ % ≤ �� −��/�. 
3. The maximum number of cities that salesmen can visit ($) is determined by the interval �� − ��/� ≤ $ ≤� − �. 
4. The number of salesman ��� is determined by the interval � ≤ � ≤ �� − ��/%. 
By considering the problem, all of the criteria are calculated to the greater integer value (ceiling). The initial 

positions of salesmen is distributed evenly on each depot. In this paper, we will choose and observe each parameter 
value at the lower, middle, and upper bounds. For instance with � = 76, the interval for % given by 2 ≤ % ≤ 9. 
Firstly, we choose the lower bound value % = 2 which will give an interval by 8 ≤ � ≤ 34. After that, we choose � = 8 and give the interval for $ given by 9 ≤ $ ≤ 68. When we choose K, it will gives interval and three possible 
value of m and then we choose � which will give an interval and three possible values of $. Therefore, we have 27 
combinations: for K = 2 we have Min = 30, Mid = 83, Max = 135, for K = 6 we have Min = 30, Mid = 38, Max = 45 
and for K = 9 we have Min = 30, Mid = 30, Max = 30. Hence, we consider 27 observations for each problem. 

Transition Probability 

The second process in finding MMTSP solution is transition probability. Determination of next visit for each ant 
(salesman) is done by choosing the cities which have not been visited. As well as [18], we also define the set of :;<#", in which the set of cities that has been visited by the 0-th ant so that the city will only be visited by exactly 
one ant. The ant will choose the next city by using the following equation [13]: 

  
=��" �:� = > ?@AB�C�DE?FABDG

∑ [@AH�C�]E[FAH]GH∈IJJKLMNO , � ∈ ;PPQRS�" ,
0 , others,  (11) 

 
where ;PPQRS�" = {� − :;<#"} is a set of cities that can be visited by the 0-th ant. The Z���:� represents the 
amount of pheromone on arc ��, �� at :th time. The [��  represents heuristic value on each arc ��, �� which 
determined by [�� = 1/��� . The \ and ] parameters represent how the ants will consider the influence of 
pheromone and heuristic value to the next city selections respectively. In order to obtain feasible results, we need to 
employ some conditions on the algorithm for transition probability taken from [13]. This condition is also intended 
to manage the salesmen so they can return to the starting depot.  

Pheromone Updates 

After all cities have been visited and ants have returned to the depot, the next process is updating pheromone 
value based on the ant tours. It aims to provide information about the route that has been done by the previous ants. 
The pheromone update is done using the following equation [13]: 

 Z���: + 1� = �1 − ^�Z���:� + ΔZ��   (12) 

The Z���: + 1� value is the new pheromone value that has been updated and it will be used for the next route 
selection process. The ^ parameter is coefficient of evaporation which has the value ^ ∈ �0,1�, such that �1 − ^� is 
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the evaporation rate. The `Z�� value represents about how much the intensity of pheromone laid by previous ants on 
arc ��, �� and obtained by the equation: 

 ΔZ�� = ∑ ΔZ��"a"bc  (13) 

where ΔZ��"  is  the amount of pheromone laid by the 0Cd on arc ��, ��. In other words, ΔZ�� is the total amount of 

pheromone laid by the ants who have passed arc ��, �� and determined with the following equation:  
ΔZ��" = e fgO , if ant 0 travels on arc ��, �� ,0 , others ,  (14) 

where  m is a constant i.e. m ∈ {1,100,1000}[10] and $" is the 0Cd ant’s total distance upon returning to the depot. 
Based on the explanations before, here is the algorithm to solve MMTSP using ACO: 
 

Initialize the cities’ coordinates, cities as depot, ACO and MMTSP 

parameters. 
Distribute salesman evenly on each depot. 
while the process has not met the termination criteria, do 

for each depot, do 
for each salesman on depot, do 

Transition probability process until return to depot 
end for 

end for 
Compute the salesmen total distance 
for each arc, do 

   Pheromone update 
end for 

end while 
Return the best solution found 

EXPERIMENTAL RESULTS 

In this section, we will show the experimental result based on the algorithm given in the previous section. We 
run the implementation in Core™ i5-4200U CPU @1.6GHz processor with 4096MB RAM and coded with 
MATLAB 2015a. For ACO parameters, we used the same value as the [13] for \, ], ^, and the initial value for 
pheromone Z�� and also we choose m = 1. For every problem, selection of depots will be done in two ways which is 
randomly and with Round Robin scheduling.  

The previous section, we can see that the MMTSP parameters are connected to each other and resulting in 27 
observations for each problem. For each observation, we run 10 trials and for each trial we run the implementation 
for 1000 iterations, and then take the best, average, and worst solutions respectively. The implementation results for % = 2 is given by the following tables (Table 1 to Table 4). The first row denotes a minimum number of parameters 
from the interval, and so on. 

As can be seen from the experimental results, we only show the result for % = 2 since we can see that the best 
solution is given when � is minimum and the worst solution is given when � is maximum. We are not showing the 
other % value because when % is in the middle of the interval, there were no specific trends or patterns of solutions 
so that we cannot take any conclusion that parameter affect the solution. Meanwhile when % is at its maximum, it 
gives 9 repeated observations with the same values of � and $, but resulting in different solution produced for each 
observation. For instance, when % =  9 is maximum, it gives the same value � =  8 for lower, middle, and upper 
bounds. This value results in repeated values for L for lower bound, middle, and upper bounds. For % maximum we 
found the interesting part, in which, even for the same MMTSP parameters, we obtained a different solution. These 
results show that the solution produced for the same MMTSP parameters does not give the same solution.  

For the next implementation, we will choose the depot in a different way by considering our problem as MTSP 
(single depot). Firstly we will use round robin scheduling method to find the set of depots which gives the best 
solution which is inspired by [19]. We use the minimum value of m since it gives the best solution in our previous 
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implementation. We assign K = 9 and L = 10 so that the number of cities that every salesman can visit will be evenly 
distributed. This method will give a set of cities as a candidate of depots for our next implementation. The parameter 
details for this round robin scheduling method is given in Table 5. 

After we obtain a set of cities a candidate for depots by round robin scheduling, we will have a set of cities as 
depots for every problem. As given by previous implementations, by random depot selection, we obtained the best 
solution when m is minimum. We select a different way by round robin scheduling in choosing cities as depots in 
hoping to obtain a better solution. The implementation results with depots produced by round robin scheduling are 
given in Tables 6 through Table 9.  

As we can see from the implementation results given in Tables 6 through Table 9, produce the same 
characteristic solution given from Table 1 to Table 4. But we can see that the best solution is different from previous 
implementations where we can conclude that different cities as depots affect the solution. As well as previous 
implementations, we omit the middle value of K, because it also gives the same characteristics. For the maximum 
value of K gives the same characteristics as the previous implementation, which means we can conclude that the 
MMTSP solution produced by ACO is fluctuating in every iteration. We also find these results occur in TSP at [4].  

 
TABLE 1.  Implementation result of pr76  

by randomly depots selection 
 TABLE 2.  Implementation result of pr152  

by randomly depots selection 

n o Best Worst Average  n o Best Worst Average 

8 
9 151,457 160,989 153,810  

16 
9 176,948 183,704 181,020 

39 150,899 159,999 155,310  73 181,119 192,598 186,640 
68 143,432 157,170 150,660  136 163,359 180,995 172,610 

21 
4 220,282 233,177 225,620  

42 
4 401,256 412,264 407,950 

36 201,434 226,978 216,050  70 329,763 447,777 400,250 
68 208,012 220,556 215,400  136 397,403 439,729 422,890 

34 
2 270,455 288,900  279,201  

69 
2 528,147 539,853 533,550 

35 263,811 283,711 275,450  69 530,031 538,922 534,330 
68 266,357 277,346 272,030  136 532,101 536,994 534,640 

 
TABLE 3.  Implementation result of pr299  

by randomly depots selection 
 TABLE 4.  Implementation result of pr439  

by randomly depots selection 

n o Best Worst Average  n o Best Worst Average 

30 
9 108,658 112,709 110,380  

44 
9 242,470 251,744 247,470 

139 99,665 108,941 102,520  202 260,179 282,743 275,000 
269 90,876 103,274 98,432  395 236,113 267,961 255,580 

83 
4 224,372 232,922 228,970  

121 
4 582,746 595,953 588,530 

137 137,155 148,118 142,070  200 347,960 386,173 366,000 
269 131,240 144,694 139,420  395 351,236 377,362 363,080 

135 
2 277,118 283,015 280,650  

198 
2 717,599 727,821 723,209 

136 278,530 282,524 280,930  199 719,460 727,732 722,610 
269 278,247 282,402 131,240  395 716,459 725,643 722,760 

 

TABLE 5. Details of parameter settings in round robin scheduling to determine the depot candidates 

Problem n p o Number of Cities Taken as Depot Candidates 

Pr76 8 9 10 8 cities as candidates 
Pr152 16 9 10 16 cities as candidates 
Pr299 30 9 10 30 cities as candidates 
Pr439 44 9 10 44 cities as candidates 
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TABLE 6.  Implementation result of pr76  
by selecting the best cities as depots taken from  

Round Robin Scheduling 

 TABLE 7.  Implementation result of pr152  
by selecting the best cities as depots taken from  

Round Robin Scheduling 

n o Best Worst Average  n o Best Worst Average 

8 
9 166,068 172,661 169,242.7  

16 
9 228,258 258,524 247,738.5 

39 160,437 177,868 167,032.5  73 203,825 272,217 230,436 
68 152,557 175,397 162,761  136 186,297 244,418 220,938.7 

21 
4 301,014 310,466 306,407.9  

42 
4 514,095 544,163 528,724.9 

36 275,143 282,676 279,027.3  70 411,441 487,062 458,573.7 
68 272,089 282,415 278,538.8  136 434,128 472,316 454,521 

34 
2 393,644 407,770 402,620.7  

69 
2 739,546 759,073 746,340 

35 401,166 408,456 404,712.3  69 732,952 757,416 748,451.2 
68 402,295 411,418 415,224.6  136 739,291 763,181 752,189 

 
TABLE 8.  Implementation result of pr299  

by selecting the best cities as depots taken from  
Round Robin Scheduling 

 TABLE 9.  Implementation result of pr439  
by selecting the best cities as depots taken from  

Round Robin Scheduling 

n o Best Worst Average  n o Best Worst Average 

30 
9 152,070 155,195 153,640.6  

44 
9 366,588 376,014 371,221.6 

139 111,586 125,731 120,320.2  202 238,632 271,858 255,863.3 
269 102,452 120,168 109,876.3  395 216,701 245,213 231,556.9 

83 
4 373,323 376,895 375,054.4  

121 
4 962,099 972,280 966,482.9 

137 272,434 282,673 278,078.4  200 521,265 556,915 537,433 
269 269,611 284,208 277,650.3  395 523,035 561,571 542,356.9 

135 
2 523,308 528,797 525,837.5  

198 
2 1,275,132 1,285,104 1,279,863.4 

136 524,209 528,614 526,583.7  199 1,276,098 1,283,775 1,281,051.3 
269 524,450 527,741 525,816  395 1,276,008 1,286,387 1,280,420.5 

CONCLUSIONS 

After we implement ACO to solve MMTSP with a non-random parameter and a different selection of depots, we 
can conclude that both the parameter and depot choice in solving MMTSP is very essential in producing a solution. 
As we can see from the implementation results, the best solution occurs when the number of salesmen is at a 
minimum. On the contrary, the worst solution occurs when the number of salesmen is at its maximum. We can also 
see that implementing the problem with different cities as depots by searching the depot candidates using round 
robin scheduling did not give a better solution. From this occurrence, we can conclude that choosing different cities 
as depots also affects the MMTSP solution produced. Hence, both the MMTSP parameter and different cities as 
depots affect the solution produced. 

ACKNOWLEDGMENTS 

Our work is fully granted and supported by Cluster Research 2015 Universitas Indonesia. 

REFERENCES 

1. D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Salesman Problem: A Computational 

Study (Princeton University Press, Princeton, New Jersey, 2006). 
2. R. Wiener, J. Object Technol. 2, 65–86 (2003). 
3. Z. H. Ahmed, Int. J. Biom. Bioinformatics 3, 96–105 (2010). 
4. I. Brezina Jr. and Z. Čičková, Manag. Inf. Syst. 6, 10–14 (2011). 
5. X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, Appl. Soft. Comput. 11, 3680–3689 (2011). 
6. T. Bektas, Omega 34, 209–219 (2006). 

030123-6

http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1016/j.omega.2004.10.004


 

 

7. S. Yadlapalli, W. A. Malik, S. Darbha, and M. Pachter, Nonlinear Anal. Real World Appl. 10, 1990–1999 
(2009). 

8. J. F. Cordeau, M. Iori, G. Laporte, and J. J. S. González, Networks 55, 46–59 (2010). 
9. S. Pang, T. Li, F. Dai, and M. Yu, Appl. Math. Inform. Sci. 7, 2439–2444 (2013). 
10. C. H. Song, K. Lee, and W. D. Lee, “Extended Simulated Annealing for Augmented TSP and Multi-Salesmen 

TSP,” in Proceedings of The International Joint Conference on Neural Networks, Portland, 2003 (IEEE, New 
Jersey, 2003), Vol. 3, pp. 2340–2343. 

11. V. Arya, A. Goyal, and V. Jaiswal, Int. J. Appl. Innov. Eng. Manag. 3, 425–430 (2014). 
12. P. Junjie and W. Dingwei, “An Ant Colony Optimization Algorithm for Multiple Traveling Salesmen 

Problem,” in Proceedings of The First International Conference on Innovative Computing, Information and 

Control, Beijing, 2006 (IEEE, New Jersey, 2006), Vol. 1691778, pp. 210–213. 
13. S. Ghafurian and N. Javadian, Appl. Soft. Comput, 11, 1256–1262 (2011). 
14. I. Kara and T. Bektas, Eur. J. Oper. Res. 174, 1449–1458 (2006). 
15. E. Benavent and A. Martínez, Ann. Oper. Res. 207, 7–25 (2013). 
16. K. Kardel, F. Adbesh, and N. Javadian, “A New Approach to Solving the Fixed Destination Multi-Depot 

Multiple Traveling Salesman Problem using Genetic Algorithms,” in Proceedings of The 7th International 

Conference on Optimization: Techniques and Applications, Kobe, 2007 (German National Library of Science 
and Technology (TIB), Hannover, 2007), Vol. 8, pp. 73–79.  

17. L. Kota and K. Jarmai, Adv. Logist. Syst. 7, 95–102 (2013). 
18. M. Dorigo, V. Maniezzo, and A. Colorni, IEEE Trans. Syst. Man. Cybern. B, Cybern. 26, 1–13 (1996). 
19. Karina, G. F. Hertono, and B. D. Handari, “Algoritma sweep dan elite ant system untuk menyelesaikan 

Multiple Traveling Salesman Problem (MTSP),” in Proceedings of the Seminar Nasional Matematika, 
Bandung, 2016 (Jurusan Matematika Fakultas Teknologi Informasi dan Sains Universitas Katolik 
Parahyangan, Bandung, 2016), Vol. 11, pp. 114–119. 

030123-7

http://dx.doi.org/10.1016/j.nonrwa.2008.03.014
http://dx.doi.org/10.1002/net.20312
http://dx.doi.org/10.12785/amis/070637
http://dx.doi.org/10.1016/j.asoc.2010.03.002
http://dx.doi.org/10.1016/j.ejor.2005.03.008
http://dx.doi.org/10.1007/s10479-011-1024-y
http://dx.doi.org/10.1109/3477.484436

