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AN ANTI-SYMMETRIC VERSION OF MALLIAVIN CALCULUS

JIRO AKAHORI*, TOMO MATSUSITA, AND YASUFUMI NITTA

Dedicated to the memory of Professor Hiroshi Kunita

ABSTRACT. In the present paper we will introduce an anti-symmetric ver-
sion of Malliavin calculus which consists of operators with anti-commuting
relations, which actually form an infinite-dimensional Clifford algebra.

1. Introduction

About 40 years ago, H. Kunita [7] pointed out that a solution of a stochastic
differential equation (SDE) on a Lie group can be expressed as an exponentia-
tion of random series in the associated Lie algebra by using the Baker-Campbell-
Hausdorff formula. The observation has been extended in various ways since then.
As a whole, one can now say that a solution of an SDE can be regarded as a
random action of the exponentiation of the Lie algebra generated by the vector
fields associated with the coefficients of the SDE. In the preset paper, aiming to
give a new insight to this observation, we introduce an anti-symmetric version of
Malliavin calculus. Our new calculus consists of operators with anti-commuting
relations, by which we can construct (random) representation of infinite Lie alge-
bras, and its exponentiations as well, though we will not discuss them in detail in
the present paper, which concentrates on the construction of the anti-commuting
operators.

Let W¢ = C(T — R?) and u? be the Wiener measure on W%, where d is a
positive integer and T is a closed interval, say, [0, 1]. We will denote the Lebesgue
measure restricted to a subset K of R, n € N, by Leb(K).

It is well known that L?(W? — R, u?) =: L?(W9) is isomorphic to the symmet-
ric (boson) Fock space of L?(T — RY, Leb(T)) =: L%(T);

L2 (W?) ~ é O"L*(T),
n=0

where ® denotes symmetric tensor product. Here, and later on in a similar situa-
tion, the space of n = 0 is R. The isomorphism between the two can be constructed
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from the Wiener-Ito expansion [4], which is actually claiming

L2(W? = R, u?) GBL? (A, = (RH™® Leb(A @LQ (1.1)
n=0 n=0
where
Ay ={(s1,---,8) €T 181> -+ > s},

by the isomorphism
LQ(Wd) >3X = (fO?fla"' 7fna"') (S @L2(A
n=0
with
X = Z/ <fn(317 s vsn); dWs @ - ® dW51>(Rd)n®. (1.2)

In particular, we have

||XHi2(wd) = Z ||fn||%2(An)-
n=0

It is well known that symmetric (fermion) Fock space is isomorphic to antisym-
metric one and P. A. Meyer pointed out in his book [8, pp71] that

.. boson Fock space over L*(Ry.) is isomorphic with L?((2), where
Q denotes Wiener space, (...) on the other hand, it is also true
for antisymmetric Fock space, a fact whose significance is not gen-
erally appreciated.

Based on the fact, in the present paper we will introduce a “fermionic” calculus
as a variant of Malliavin calculus, which is “bosonic” in our terminology.

The organization of the paper is as follows. In section 2, we introduce the “anti-
gradient” A in a parallel way as we do for the Malliavin -Shigekawa derivative D.
Then in section 3, we introduce directional anti-gradient ¢(h) and its adjoint ¥*(h)
for h € L?(T) and show that they satisfy anti-commuting relations (Theorem 3.2).
In section 4, we point out that ¢ (hy),»*(hy), for a given CONS of L*(T) form a
Clifford algebra, which proves the fact above (Theorem 4.2). In the final section,
we comment on potential applications.

2. Anti-gradient A
Let us recall that the Malliavin-Shigekawa derivative D : Dom (D) — L*(T) can
be defined through the Wiener-Ito expansion (1.2) by
D, X = (DX); = Z/ w(ts1 1), dWs, , ® - @ dWy, ) (Raym-ve,
o (2.1)
where, for each n, f, € L*(T" — (R%)"®) is defined by

fn(sla"' 7571) = fn(so(l)a"' asa(n))a

! (2.2)
with o € &, such that s;1) > -+ > s5(n),
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with the convention that the first term in (2.1) = fi(t). Here, and later on in
a similar situation, the bracket means the coupling of the tensor products; for
example, a € Vi1 ®@Vz and b € Va, (a,b)y, € V1. In (2.1), the set of all permutations
over {1,--- ,n} is denoted by &,,.

Since

DX || 22(r)@ L2 (we) = Z/ /1r|fn(t781, o S Pdtdsy—q - dsy
:Z/ /Zl 51 1,8 |fn(t §1,° asn—1)|2dtdsn—1"'d51
= Z / [fa(s1,--- s 80)dsy - - dsy

we have

Dom(D) = {X € L*(W%) : Y 0|1, X | r2(a, ®a)me) < 0},

n=1

where I,, is the projection from L?(W¢9) to L%(A,,) in the expansion (1.1).
By replacing the symmetrization (2.2) with anti-symmetrization

fn(sla e 7Sn) = Sgn(g)fn(so(l)a o asa(n))v
with o € &,, such that s;q1) >+ > s5(n),

we set

(.AX t = .At Z/ fn t S1°-- 7571—1) dWSn 1 '®dW31>(Rd)(n—1)®,
(2.3)

with the same convention at » =1 as in (2.1). Since

I AX | 22 (1)o@ L2 (we) = Z/ /T|fn(t,81, o Spo1)Pdtdsy—y - dsy
—Z/ /Zl(& 1,8 |fn(t S1y asn—1)|2dtd3n—1"'d51

= ZnA |f’n(817"' 7Sn)|2d8n”'d81 HD‘XVHL2 T)®L2(W2)»
n=1 n

it is defined on the same domain as D.

3. Fermions in Wiener Space

For h € L?(T) and X € Dom(A) define
Y(h)X = (AX, h)r2(m).- (3.1)
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Proposition 3.1. For X € L?>(W?) given by (1.2), define
P (h)X = Z / (WA fr—1(81, -+ ,8n), aWs, & -+, ®dWSl>(Rd)n®, (3.2)
n=1 An

where the operation hA is defined as a map L*(A,) — L*(Ap11) by

n

WA fa(st,e s sngn) = D (1) A(8:) @ falst,- 1 8im1, Sig1 5 Sng1)-

i=1
Then, for Y € Dom(A) and X € L*(W9),
E[Yy*(h)X] = E[X¢(h)Y].

Proof. Suppose that Y is given by

Y:Z/A <gn(817 aSn)7dWsn®®dW51>
n=0 n

By (2.3) we have
E[X(AY, h)r2(1)] = folg1, h) L2 ()

0 1
+ Z <h’(t) X fn(sla e asn)7gn+1(t7 S1, 7SW:)>(Rd)("+1)® dSn e dsldt
n=1 0 An

(3.3)
Since we have, for each n,
<h(t) ® fn(slv e 7571)3 gn-‘rl(ta Sty 75n)>(Rd)(n+1)®
n+1 4
= Z 1(81',81'71)(t>(_1)z+1<h(t) ® frul(s1, 4 8n),
i=1
gn+1(317 Cer 815t 8, ,Sn)>(Rd)(n+1>®,
we have
[e%s} 1 n+1 )
Z/ / > s (=1 ds,, - dsydt
n=070 JAn ;=
X (h(t) ® fu(s1, - 5n), g1 (S1,0 5 Sim1, L, 80,0+, Sn)) (Ray(nt D
= Z/ Z(*l)iH(h(Si) @ fr(s1, s 8im1,Sig1, " s Snt1),
n=0"Bn+1 =1
gn+1(51, T ,Sn+1)>d8n+1 cedsy = E[Yﬁ’* (h)XL
where we used the convention that sg := 1 and s,41 := 0 for s € A,,. [l

The operators 1 (h),*(h), h € L?(T), satisfy the following anti-commuting
relations:



AN ANTI-SYMMETRIC MALLIAVIN CALCULUS

5

Theorem 3.2. (i) The operators 1(h),*(h), h € L*(T) are bounded operators

with

1™ (W)X 72 way + 19X N2 ey = [BI72m) IX I 2qway, (X € L2HWD)),

and in particular || (h)| p(r2way), [V (M) B2 way) < [l L2er)-
(ii) For g, h € L*(T),

V(g)v*(h) +¢*(h)Y(g) = (9. h)r2(m) 1,
and
V(g)Y(h) +v(R)(g) = " (9)v*(h) + ¢ (R)Y"(g9) = 0
in B(L*(W)).

Proof. Let X,Y € L2(W?) be given by
X = Z/ (fals1, -+ 8n),dW, @ -+ @ dWy, ) (Rrayme
n=0 An
and
Y:Z/ <€n(81,"' 7S’n)7dWSn®"'®dW51>(Rd)n®
n=0 An

with fo., g, € L2(A,) forn =1.2,---.
First we shall show
((g)y™(h) + ™ (R)Y(9) X, Y) r2(wa)
= (" (W)X, " (9)Y) 2 (way + (¥(9) X, ¥(h)Y) L2 (wa)
= (h, 9) 21y (X, Y) p2(wa)

for X,Y € Dom(A).
Observe

(W (h) X, 9" (9)Y ) 2 (way

= Z/ <h/\fn,1(81,-" ,sn),g/\en,l(sl,-~- ,Sn)>(Rd)n® dsy -+ - dsy
n=1 An

= Z /A Z Z(_1)2+l,<h(sl) ® fn—l(sl, crt 0 8i—1,Si41, " )Sn_1)7
n=1

ng=14=1

g(sir) @ en—1(51,"++ ,8ir—1,8ir41," " 5n—1)) (R4)n®

(3.4)

= Z/A ZZ(*l)i“/<h(81)79(51")>Rd<fn—1(81,'" i1, 8it1, " 5 Sn—1),

n=1 n o 4=14¢=1

enfl(sla S =1, Si 41, 7Sn71)>(Rd)(n*1)® .

(3.8)
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We divide the rightmost of (3.8) into the two parts: the diagonal

diag := Z:I/A D (50 g(s))ma (151, s sim1, i1, 5 5n1);

n =1
en—1(81,7 ", 8im1, Sig1, 75n—1)>(Rd)(n—1)®-
and the off-diagonal part:
off-diag

oo n

= Z/ S (=0 h(si), g(si))ma (fa-1(s1, -+ 3 Sic1,Sig1,+  Sn1));

n=1"8n 2y
en—1(81,++ Sir—1, 841, 7Sn—1)>(Rd)(n—1)®~

(/T a(s)ds) (/A by, ’snl)d$n1~~~d51>

n
= / Za(si)b(sl, S 81, Sid1, 5 Sp)dSy - dsy,
An =1

Observing

we obtain

diag = (h, g)L2(T) Z<fn717gn71>L2(An) = (h,9)2(n)E[XY].

n=1

On the other hand, by the defining formula (3.1) and the expression (2.3), we
have

W(9) X, ()Y ) 2(way = B[(AX, g) 2 (1) (AY, h) 12(1)]
_;A . dsp_1 -+ - dsydtdt' (g(t), h(t'))ra

X (fu(t, 81, Spe1), En(t, 51, s Sn—1)) (R4)n®

= Z/ /2 dsp_1---dsydtdt’ {g(t), h(t'))ga
n=1Y8n-1JT

n n
X Z Z 1(51',51-,1)(t)l(si/,silfl)(t/)<fn(t7 S1, asn—l)a én(t/; S1,° 7Sn—1)>(Rd)"®

i=14/=1

e . .

=3 [ s S0 ). s
n=1"8nt1 i
X <f’n(817 crtySi—1, S’i’+17 tee Sn)7 en(817 oy Si—1, Si+17 e 7S’n)>(Rd)"®
oo

=- Z/ dspy1- - dsy Z(—l)iH (9(5i) ®en(s1, 1 8im1, 841, »Snt1),
n=1 An+1 i#i’

h(si) @ fa(s1, "+ 8ir—1, 841, Snt1)) (Ra) (D&
= —off-diag.
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Thus we have shown the relation (3.7). By taking X =Y and g = h in (3.7), we

obtain (3.4), which ensures that ¥(h) and ¢*(h) are in B(L*(W%)).
Next, we shall show (3.6). For g,h € L*(T) and X,Y € L?(W%) given as above,

(6" (W)X, 0(9)Y ) 1wy —Z/ (A fus( /< (1), € (t,8))seadt) (oo s

(e n n+1l
- Z/ ds/dtZZus,s, DO (g(0),
n=1 i=114=1
(h(5i) @ fr—1(51, -+, Siz1,Si41," " » 5n),
ent1(81, S _1,t, 8, 73n+1)>(Rd)n®>Rd
n+1
=S [y (e
Ant1 i=1 z<z/
< ( i')®fn—1(51,"' 3 Si—15Si41y" " 5 Si/—1,Si/ 41, " ,Sn+1)7
ent1(S1,7 , Snt1)) (Rayne )R
n+1
_Z 7,+7, Si <9(Si’)®fn71(51a"' y Sil =15 Si/ 15" 3 Si—1,Si41, """ 7S’n+1)7
<1
ent1(s1, 75n+1)>(Rd)"®>Rd>
o n+1
:Z/ ds/dtzl(s“si 1)(2( 1™ h(),
n=1 An T 1<’
(9(54r) @ fro—1(81,- -+, 8r—1, 8141, " ,5n),
en+1(817 e 7Si717t7 Sgyt 7Sn)>(Rd)”®>Rd
72 Z+Z <g($i’)®fn71(81,"' y Si/—15Si/ 41, 7871),
i<t
en+1<sl7 e ,Sifl,t, Sgyt asn)>(Rd)n®>Rd

= — (" (9) X, V(h)Y) L2 (wa)-

4. Clifford Algebras in Wiener Space

Let {hy : k € N} be an orthogonal basis of L?(T), and 2 be the subalgebra of
B(L?(W%)) generator by {t(hy.),v*(ht) : k € N}. The following facts are easy to
verify.

Lemma 4.1. For k,l € N,

[p(hee), o (h)] 4 = [@" (), " (ha) ]+ = 0, [ (i), " (i)l = Ok,
where [E, F|y = EF + FE is the anti-commutator.

Proof. They are direct consequences of anti-commutation relations (3.5) and (3.6).
O
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The following is, in an abstract sense, a well-established fact in quantum field
theory but we state it as a theorem and give a short proof to complete our expo-
sition as a tour in anti-symmetric Malliavin calculus.

Theorem 4.2. The A-module A(1) is dense in L>(W?). In other words, the L?
space of Wiener functionals L*(WY) is a representation space of an irreducible
representation of the Clifford algebra 2.

Proof. As is well-known and easily checked that

A —

span{y” (he, ) - ¥ (b, ) (I1) -+ () < vy v sk lay oSl € Nonym € N
We have

O (hiey ) " (e, )Y (1) - (L) (1) = 0
in the cases where m > 1, and when m = 0, by (3.2),
O (hiy) - " (P, )(1)

= / <hk1 ARERIA hkn(sl, s ,Sn), den X ® dWsl>(Rd)n®,
An

which form an orthogonal basis of L2(W¢9). O

Remark 4.3. In quantum field theory, ¥*(hy,) - - ¢*(hg, )(1) is normally denoted
by ¥*(hg,)---¢¥*(hg, )|vac). The expectation with respect to Wiener measure
plays the role of “vacuum expectation”.

5. Comments on Potential Applications

(1) It is well-recognized that quadratic forms of the elements in a Clifford alge-
bra form a Lie algebra. Its infinite-dimensional versions have rich applica-
tions in various areas of mathematics. Among them, the celebrated theory
by Date-Kashiwara-Jimbo-Miwa states that the orbit of “Lie group” of an
infinite-dimensional Lie algebra form Sato’s Grassmanian, which consists
of “tau-functions” of KP/KdV hierarchy of integrable non-linear partial
differential equations (see [9] and references therein). In fact, the sto-
chastic representations of tau-functions ([2], [10], [11], [5], [3], [1], [6], and
so on) motivated our introduction of anti-symmetric version of Malliavin
calculus.

(2) Though we have not explicitly stated, an anti-symmetric version of Malli-
avin’s integration by parts can be obtained and potentially applicable to
the analysis of stochastic equations.

(3) Applications to stochastic numerical analysis based on the observations by
K. Yoshikawa [12] might also be interesting.
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