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A B S T R A C T

Background

The constellation of human inflammatory bowel disease (IBD) includes ulcerative colitis and
Crohn’s disease, which both display a wide spectrum in the severity of pathology. One theory is
that multiple genetic hits to the host immune system may contribute to the susceptibility and
severity of IBD. However, experimental proof of this concept is still lacking. Several genetic
mouse models that each recapitulate some aspects of human IBD have utilized a single gene
defect to induce colitis. However, none have produced pathology clearly distinguishable as
either ulcerative colitis or Crohn’s disease, in part because none of them reproduce the most
severe forms of disease that are observed in human patients. This lack of severe IBD models has
posed a challenge for research into pathogenic mechanisms and development of new
treatments. We hypothesized that multiple genetic hits to the regulatory machinery that
normally inhibits immune activation in the intestine would generate more severe, reproducible
pathology that would mimic either ulcerative colitis or Crohn’s disease.

Methods and Findings

We generated a novel mouse line (dnKO) that possessed defects in both TGFbRII and IL-10R2
signaling. These mice rapidly and reproducibly developed a disease resembling fulminant
human ulcerative colitis that was quite distinct from the much longer and more variable course
of pathology observed previously in mice possessing only single defects. Pathogenesis was
driven by uncontrolled production of proinflammatory cytokines resulting in large part from T
cell activation. The disease process could be significantly ameliorated by administration of
antibodies against IFNc and TNFa and was completely inhibited by a combination of broad-
spectrum antibiotics.

Conclusions

Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by
combining multiple genetic hits in immune regulation and demonstrate that the resulting
disease is sensitive to both anticytokine therapy and broad-spectrum antibiotics. These findings
indicated the IL-10 and TGFb pathways synergize to inhibit microbially induced production of
proinflammatory cytokines, including IFNc and TNFa, which are known to play a role in the
pathogenesis of human ulcerative colitis. Our findings also provide evidence that broad-
spectrum antibiotics may have an application in the treatment of patients with ulcerative
colitis. This model system will be useful in the future to explore the microbial factors that
induce immune activation and characterize how these interactions produce disease.

The Editors’ Summary of this article follows the references.
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Introduction

Inflammatory bowel disease (IBD) is an idiopathic disease
of the intestinal tract with the hallmark features of mucosal
inflammation and loss of barrier function. Although the exact
mechanisms for IBD induction and progression are not
completely understood, unchecked immune responses to
enteric bacteria are critical for pathogenesis (reviewed in
[1]). The clinical presentation of IBD occurs over a wide
spectrum from chronic indolent to acute fulminant disease. A
recent hypothesis is that susceptibility to disease, including
the variation in presentation, may be a result of alterations of
multiple pathways that control intestinal mucosal homeo-
stasis [2].

At least ten different murine models of IBD involving
single gene manipulations have been developed and demon-
strate the role for proper development/maintenance of
specific subsets of T cells and control of inflammatory
cytokine production in regulation of disease (reviewed in
[1,2]), as well as revealing a crucial role for enteric bacteria in
inducing disease (e.g., [3–6]). While a variety of existing
models recapitulate aspects of human IBD, many are limited
by variable penetrance, delayed development of character-
istic disease pathology, and, in some cases, induction of
nonspecific severe multiorgan autoimmunity [3–5,7–9]. Addi-
tionally, none of these models consistently and predictably
mimics the most severe and acute presentation of either
ulcerative colitis or Crohn’s disease. This animal-to-animal
variability in disease penetrance and severity poses a
significant challenge for efforts to experimentally manipulate
the course of disease in these models.

Because the current number of known genetic manipu-
lations that can produce a partial IBD phenotype is at least
ten, and the minimum number of multiple genetic hits is two,
the resulting number of possible two-hit combinations is 45.
We chose to utilize a model involving the loss of the IL-10
signaling pathway because uncharacterized loci that in-
creased the severity of colitis in IL-10�/� mice have been
defined using a genetic approach [10,11]. These findings
support the hypothesis that alterations of multiple loci can
exacerbate pathology both in mouse models and human IBD.
Because both IL-10 and TGFb signaling pathways have been
demonstrated to be anti-inflammatory, in part through
control of proinflammatory cytokines such as IFNc and
TNFa [12–16], we hypothesized that genetic ablation of these
two pathways would synergize to elicit more acute pathology
than loss of either pathway alone.

Materials and Methods

Mice
All female or male C57BL/6 (WT) (The Jackson Laboratory),

dominant negative TGFbRII mice (supplied by RAF) [8], and
CRF2–4-deficient (IL-10R2�/�) mice (Genentech) [9] were on
the C57BL/6 background. Importantly, all mice used in these
experiments were bred and housed in a specific pathogen-
free barrier facility at Washington University. Animal
protocols were reviewed and approved by the Washington
University animal studies committee. Animals were used
between 3–6 wk of age for this study, with the exception of
long-term measurements that were taken out to approx-
imately 3–3.5 mo of age. The CRF2–4�/�mice lack the IL-10R2

receptor protein and are referred to as IL-10R2�/� in this
report. The dominant negative TGFbRII mice (referred to as
dnTGFbRII), express a dominant negative TGFbRII solely in
the CD4 and CD8 compartment. Mice that were unresponsive
to IL-10R2 signaling in all compartments and TGFb signaling
specifically in the T cell compartment were generated by
breeding dnTGFbRII mice with IL-10R2�/� to yield a novel
strain of mouse, dnTGFbRII 3 IL-10R2�/�, referred to as
dnKO mice. The breeding scheme involved mating
dnTGFbRII 3 IL-10R2þ/� mice with IL-10R2�/� mice to
generate four genotypes of littermates: dnKO, IL-10R2�/�,
dnTGFbRII3 IL-10R2þ/� (referred to as dnTGFbRII), and IL-
10R2þ/� (referred to as WT) mice.

Weight Loss Measurements
Mice were weighed every day or every other day using a

portable electronic Ohaus scale (VWR International). Weights
were recorded to a tenth of a gram.

Harvesting and Preparation of Intestines for Hematoxlyin
and Eosin Staining
Mice were humanely killed and large intestines were

harvested, flushed with PBS, and fixed with Bouin’s fixative
(70% picric acid/25% formaldehyde [37%]/5% glacial acetic
acid). Intestines were cut from cecum to rectum, splayed out,
and pinned with insect pins (Carolina Biological) onto a
square Petri dish filled with wax (Carolina Biological).
Intestines were incubated in Bouin’s fix for 4–8 h and then
placed in 70% ethanol overnight. Pictures of the whole view
or whole mounts of the intestines were taken using either a
digital camera or an Olympus 52 3 12 whole mount camera
(Diagnostic Instruments), respectively. Intestines were paraf-
fin embedded, cut in 5-lm sections, and stained with
hematoxylin and eosin (HE) at the histology core (Wash-
ington University, St. Louis, Missouri, United States).

Gross Morphologic and Microscopic Parameters for
Scoring the Severity of Mucosal Damage
Images of the rectal mucosal surface were obtained using a

dissecting stereoscope and were scored in a blinded fashion
by an anatomic pathologist (TSS) using the following scoring
system: 0, normal; 1, focal ulcers present; 2, ulcers and diffuse,
mild mucosal thickening; and 3, ulcers and diffuse, severe
mucosal thickening. Blinded microscopic analysis of histo-
logic HE-stained sections was performed using an Olympus
B351 microscope at 2003 magnification to determine rectal
crypt heights, crypt widths, and goblet cell number and 4003
to determine surface epithelial heights and the number of
mitotic and apoptotic bodies. Only crypt-surface units that
were well oriented (i.e., the entire length of the crypt could be
discerned) were evaluated.

Isolation of Cells from the Lamina Propria/Mucosally
Associated Lymphoid Tissue
Intestines were harvested and flushed with PBS. The cecum,

descending colon, and rectum were cut into small pieces and
washed six times with CMF-HEPES solution (0.015 M HEPES/
Ca2þ and Mg2þ free HBSS [pH 7.2]). Intestines were incubated
with CMF/BGS/EDTA (10% bovine growth serum/0.015 M
HEPES/5 mM EDTA/Ca2þ and Mg2þ free HBSS [pH 7.2])
solution at 37 8C for 15 min, shaking at ;275 rpm. After
removing the supernatants, the process was repeated three
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more times with CMF/BGS/EDTA. The remaining intestinal
tissue pieces were shaken for 5 min at 37 8C in RPMI/10%
BGS. After removal of the media, the tissue was incubated
with RPMI/10% BGS containing 1 mg/ml collagenase type IV
(Sigma) for 1 h at 37 8C, shaking at ;275 rpm. This process
was repeated two more times and supernatants containing
the lamina propria/mucosally associated lymphoid tissue
(MALT) cells were collected, centrifuged, and resuspended
in CMF-HEPES at each step. For cytokine analysis, a 40%–
100% Percoll gradient was also run to remove any dead cells
or debris.

Flow Cytometric Analysis
Cells were surface stained at 4 8C for 10–15 min with

antibodies against CD4 FITC/PE or /PE-Cy5, CD8 FITC/PE or /
PECy5, Gr1 FITC, CD25PE, CD45.2 FITC or PE, CD62L PE,
B220 FITC, and DX5 biotin-conjugated antibodies (BD
Pharmingen or Biolegend). For biotinylated antibodies,
streptavidin PE or streptavidin APC conjugated secondaries
(Caltag) were added to the cells in a second incubation step.
Cells were analyzed by flow cytometry on a FACScan or a
FACsCaliber (BD Biosciences) using CellQuest analysis soft-
ware. For studies of live cells, 7AAD (Sigma) was added prior
to analysis.

Intracellular Cytokine Staining
Cells were harvested, centrifuged, and then resuspended in

RPMI 1640 supplemented with 10% FCS (HyClone), 2 mM
Glutamax (Life Technologies), 0.5 lM 2-ME (Sigma), and 50
lg/ml gentamicin (Invitrogen Life Technologies) containing
50 ng/ml PMA and 500 ng/ml ionomycin (Sigma) and
incubated for 4 h at 37 8C. Brefeldin A (Sigma) was added
during the last 2 h of culture at 10 lg/ml. Cells were surface
stained for CD4 or CD8 for 15 min at 4 8C (BD Pharmingen).
Stained cells were fixed in 2%–4% paraformaldehyde for 20
min at RT prior to permeabilization with 0.5% saponin/1%
BSA/PBS. Intracellular staining for the cells was conducted at
RT for 30 min using anti-IL-17 PE (4 lg/ml) (Biolegend), anti-
IFNc FITC (2.5 lg/ml), and anti-TNFa PE (4 lg/ml),
conjugated antibodies.

Serum Cytokine Concentrations
Blood from mice was clotted on ice for 1 h. The samples

were then centrifuged at 10,000 rpm for 5 min, and the serum
was removed. All serum samples were stored at 20 8C prior to
analysis. The concentrations of IFNc, TNFa, and IL-6 was
determined using an inflammatory cytokine cytometric bead
analysis (CBA) kit (BD Pharmingen) and analyzed on a
FACScan (BD biosciences) using CBA analysis software. The
lower limit of detection for all cytokines was set to 20 pg/ml,
the minimum quantifiable value, as described in the kit
manual.

CD4þ T Cell Transfer
CD4þ T cells were purified from the lymph nodes of 3-wk-

old WT B6, IL-10R2�/�, dnTGFbRII, and dnKO mice by
positive selection using Miltenyi CD4 beads according to the
manufacturer’s protocol. 2 3 106 purified CD4þ T cells were
transferred into B6.RAG1�/� mice by IP injection, and the
weights of the mice were determined every other day. Five
weeks post-T cell transfer, mice were humanely killed and the
intestines were harvested, flushed with PBS, fixed with

Bouin’s fixative, and prepared according to the methods
discussed above.

Cytokine Neutralization
dnKO mice were injected IP with either 1 mg of a hamster

anti-PIP isotype control, hamster anti-IFNc (H22) [17],
hamster anti-TNFa (TN3–19.12) [18], or a combination of
anti-IFNc and anti-TNFa at 2 wk and 3 wk of age. All
neutralizing antibodies were a generous gift from Robert
Schreiber. Intestines were harvested from mice at 4 wk of age,
fixed in Bouin’s solution, paraffin embedded, and HE stained.

Antibiotic Experiments
Mice received drinking water containing 0.66 mg/ml

ciprofloxacin [19] and 2.5 mg/ml metronidazole (Sigma) [20]
beginning at 24 d of age. Previous reports (e.g., [21]) have
suggested occasional refusal of mice to drink water that
contains antibiotics, so we included 20 mg/ml sugar-sweet-
ened grape Kool-Aid Mix (Kraft Foods) in the water to
encourage consumption. The antibiotic solution was passed
through a sterilizing, 0.22-lm, nonpyrogenic cellulose acetate
filter (Corning) before delivery to mice and was replaced with
freshly prepared solution two to three times per week. For
analysis of weight gain on antibiotics, mice were tracked over
a 3-wk treatment period from 24 to 45 d of age.

Statistical Analysis
Statistical analysis was performed using Prism v4.03

(GraphPad Software) and Stata10 (StataCorp) software. To
compare data obtained from the analysis of WT, dnTGFbRII,
IL-10R2�/�, and dnKO mice, a one-way analysis of variance (F
test) was used to determine if statistically significant differ-
ences existed between groups; the degrees of freedom for
each F test were indicated in brackets (treatment, residual). In
cases where the F test revealed such differences (p , 0.05), a
Bonferroni’s multiple comparison post-test was used to
determine statistical significance between any two groups (p
, 0.05 was considered statically significant). Similar analysis
was employed for T cell transfer experiments and anti-
cytokine treatments. The Kaplan-Meier method was used to
analyze survival of T cell transfer recipient and antibiotic-
treated mice. Statistical significance of survival differences
between groups was calculated in GraphPad Prism using the
log-rank test. To analyze and compare growth data, general-
ized estimating equations were generated using Stata10
software.

Results

Failure to Thrive Followed by Rapid Weight Loss and Early
Mortality in dnKO Mice
Intestinal homeostasis is partially maintained through the

actions of inhibitory cytokines that regulate mucosal inflam-
mation. A single defect in either T cell TGFbRII or global IL-
10R2 signaling results in spontaneous colitis induction.
However, the ability to further study pathogenesis and
treatments for IBD in these systems is limited because of
the variability in penetrance of pathology and delayed onset
of disease (typically up to 3–4 mo) observed in both models
[8,9]. Human IBD shows a spectrum of disease severity that
includes a population of patients who present with acute,
fulminant, and life-threatening disease. The basis for this
more severe form of disease is unclear, and we hypothesized
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that it may reflect a culmination of impairments to multiple
genes. Therefore, we wanted to establish whether combining
multiple genetic defects in immune regulation would be
sufficient to significantly exacerbate colitis.

We bred dnTGFbRII mice with IL-10R2�/�mice to generate
a novel mouse strain, the dnTGFbRII 3 IL-10R2�/� (dnKO),
which has impaired TGFbRII and IL-10R2 signaling in the T
cell compartment and deficiencies in IL-10R2 dependent
signaling in all cells. Total body weights of dnKO and controls
(consisting of WT, dnTGFbRII, and IL-10R2�/� mice) showed
that dnKO mice failed to thrive by 3–4 wk and demonstrated
rapid weight loss culminating in death as compared to all
controls by 4–6 wk (Figure 1A). This phenotype was 100%
penetrant in dnKO mice, and no apparent gender difference
in weight loss was observed (unpublished data). These data
indicate that the kinetics of disease induction was signifi-
cantly accelerated through the combination of two separate
genetic deficiencies.

Development of Spontaneous Fulminant Ulcerative Colitis
upon Loss of TGFbRII and IL-10R2 Signaling

Because individually both dnTGFbRII and IL-10R2�/� mice
spontaneously develop colitis, we wanted to establish whether
the colon was the primary target and cause of the wasting
phenotype detected in dnKO mice. Gross and histological
surveys of dnKO mice �4 wk of age revealed only small,
occasional clusters of lymphocytes located in the portal triads
of the liver and around bronchi of the lungs, without any
tissue destruction (unpublished data). No abnormalities were

observed in the heart, kidney, stomach, and small intestine of

dnKO mice.

However, at this time, striking disruptions in the gross

morphology of the entire cecum, descending colon, and

rectum in dnKO mice were observed, with the overall

architecture of the ascending colon being relatively spared.

The cecum (unpublished data) and descending colon/rectum

areas (Figure 1B) of dnKO mice showed a diffuse and marked

thickening of the mucosa accompanied by areas of focal

ulceration (Figure 1B). This phenotype was severe, confluent,

regionally consistent, and 100% penetrant in all dnKO mice.

Analysis of WT, dnTGFbRII, and IL-10R2�/� control mice at

4–5 wk of age revealed that the cecum and colons were

generally unaffected. We detected colonic pathology in only

dnTGFbRII and IL-10R2�/�mice that were considerably older

(3–4 mo). In contrast to the diffuse mucosal thickening that is

the hallmark of dnKO mice, dnTGFbRII and IL-10R2�/� mice

colons contained a focal and variable disease process that

typically resulted in ulcerations found near junctions,

including the ileal-cecal junction, ascending-to-descending

colon transition and the anal-rectal junction (Figure S1).

Histological examination ofWT, dnTGFbRII, and IL-10R2�/�

colons revealed relatively normal intestinal architecture at 4–5

wk of age (Figure 2A–2C). In contrast, dnKO mice had severe

and diffuse alterations in mucosal structure that correlated

with the gross findings described above and included marked

extensive epithelial hyperplasia, diminished goblet cell and

crypt number, erosion of surface epithelial cells, numerous

Figure 1. dnKO Mice Fail to Thrive and Waste Rapidly Because of a Fatal, 100% Penetrant Disease Process Localized to the Cecum and Colon

(A) Plot of the average weight/group versus time for WT (n¼ 4), dnTGFbRII (n¼ 4), IL-10R2�/� (n¼ 5), and dnKO (n¼ 11) mice. All mice were weighed
two or three times per week from 3 to 18 wk of age. Error bars were omitted for the sake of clarity. In all cases the experimental error was � 8% of the
mean value. Individual mice died or were humanely killed when their weight reached � 70% of their maximal weight. The line representing dnKO
average weight terminates with the death of the final dnKO mouse.
(B) Whole-mount images of the mucosal surface of the descending colon from 4- to 5-wk-old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice. The cecum and
entire colons were harvested, dissected, opened, pinned in Bouin’s fixative, and examined for gross morphology. The dnKO mice all contained major
pathologic alterations including severe ulceration (e.g., red arrow) and mucosal thickening in the cecum, descending colon, and rectum (**), as well as
minor alterations (*) in the ascending colon.
doi:10.1371/journal.pmed.0050041.g001
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crypt abscesses, and mixed leukocytic infiltrates localized in
both the mucosa and submucosa of the cecum, descending
colon, and rectum (Figure 2D and unpublished data). Although
leukocytic infiltrates were detected in the ascending colon, the
epithelium and goblets cells in this region were relatively
spared (unpublished data).

Because the pathology of dnKO mice was diffuse and
consistent, we were able to objectively quantify specific
features of the histopathology that reflect disease severity
instead of utilizing histology scores that are generally more

effective for focal and variable disease processes. For
example, in the rectums of dnKO mice, we found a statisti-
cally significant loss of crypts, as demonstrated by decreased
numbers of crypts per field (each field, 870 lm) and increased
crypt width as compared to all controls (Figure 3A and 3B).
Additionally, dnKO mice showed significant epithelial hyper-
plasia indicated by increased crypt height (Figure 3C) and
elevated M-phase bodies per crypt ratios (Figure 3D), a
response that is typical of injury in this organ [22]. We also
noted an increased number of apoptotic bodies per crypt

Figure 2. dnKO Mice Develop Diffuse Fulminant Ulcerative Colitis That Is Not Detected in Age-matched Controls

Colons from WT, dnTGFbRII, IL-10R2�/�, and dnKO mice were isolated at 4–5 wk of age as in Figure 1. Images from HE stained sections of rectums from
(A) WT, (B) dnTGFbRII, (C) IL-10R2�/�, and (D) dnKO mice are shown at low power (1003). One higher power image (4003) is shown for (A–C, right
images) and four higher-power images (I–IV) for (D). The boxed region on the lower power image indicates the location of the higher magnification(s).
The four highlighted regions in the dnKO image (D) reflect (I) epithelial hyperplasia, presence of increased M-phase cells, and goblet cell loss in crypts;
(II) eroded surface epithelium; (III) mucosal and submucosal leukocytic inflammation; and (IV) the presence of a crypt abscess. Bars, 200 lm for 1003
images and 30 lm for 4003 images.
doi:10.1371/journal.pmed.0050041.g002
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(Figure 3E) and decreased surface epithelial cell heights

(Figure 3F) in dnKO mice. All of these parameters are
indicative of a mucosal response to inflammatory stimulus
(e.g., [22]).

In accordance with the histological data reflecting intesti-
nal inflammation, isolation of lamina propria and MALT

infiltrates in the cecum, descending colon, and rectal regions
of dnKO and control mice demonstrated a 10-fold increase in

cell numbers in the dnKO mice (Figure 4). The cellular
composition consisted mainly of T cells, immature myeloid/

monocytes (CD11bþGr1lo), neutrophils (CD11bþGr1hi), NK/
NKT (DX5þ), and B cells (B220þ) (Figure 4). The increase in

the cell number by this method correlates with that seen in
tissue sections from control and dnKO mice stained with
antibodies for markers of each immune cell type (unpub-

lished data).

Taken together, the findings of a severe inflammatory

process in the dnKO mouse colon, which show (i) localization
to the cecum and colon (the distal small intestine is not

involved; Figures 1B, S1B and unpublished data); (ii) primarily
mucosal damage (the muscularis is relatively spared; Figure

2D); (iii) diffuse distribution (no skip areas; Figures 1B and
S1B); (iv) numerous crypt abscesses (Figure 2D); (v) marked
mucosal regenerative response (Figures 2D and 3D); (vi) loss

of goblet cell mucin (Figure 2D); (vii) focal punctate ulcers (no
longitudinal ulcers or fissures; Figures 1B and S1B); (viii) lack

of prominence of granulomas (Figure 1B); and (ix) no colonic
fistulas or strictures, all indicate that the disease process is

most representative of ulcerative colitis and not Crohn’s

disease [23].

Elevated Circulating Proinflammatory Cytokines and Early
in Vivo Activation of T Cells in dnKO Mice
Human IBD has been associated with elevated proinflam-

matory cytokines, including IFNc and TNFa [24–26], and

regulation of these types of cytokines is often mediated via

signals received through TGFbRII and IL-10R2. Therefore, we

wanted to determine whether proinflammatory cytokines

were significantly altered in dnKO mice during disease.

Analysis of circulating IFNc, TNFa, and IL-6 levels in the

serum obtained from 4- to 5-wk-old dnKO mice revealed a

striking increase in the concentrations of all three cytokines

in comparison to control mice (Figure 5A). Serum from

dnKO mice had mean levels of 1,268.5 pg/ml of IFNc, 390.9

pg/ml of TNFa, and 516.1 pg/ml of IL-6, which respectively

represented at least an 18-fold, 6-fold, and 19-fold induction

over the highest levels seen in controls.

We hypothesized that T cells might be responsible for the

observed increases in proinflammatory cytokine production.

To assess whether the combined loss of both IL-10R2 and

TGFbRII signaling resulted in a more dramatic alteration in

activation status, the phenotypes of WT, dnTGFbRII, IL-

10R2�/�, and dnKO T cells were examined. At 4–5 wk of age,

decreases in the percentages of CD62Lhi CD44lo naive cells

were accompanied by increased percentages of CD62Llo

CD44hi effector/memory cells in both CD4þ and CD8þ T cell

Figure 3. dnKO Histopathology Shares Features of Inflammation Detected in Human Ulcerative Colitis

Objective, quantitative morphometric analysis of the rectal histopathology was conducted on 4–5-wk-old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice.
(A–D) Using well-oriented sections, we measured crypt loss/drop out by examining (A) the number of crypts per field (a field, 870 lm) and (B) crypt
width. Epithelial hyperplasia was assayed by measuring (C) crypt height (from the base of the crypt to the basal side of the surface epithelial cells) and
(D) the ratio of M-phase cells/crypt.
(E) The ratio of apoptotic bodies/crypt and (F) surface epithelial heights were quantified to determine effects on cell death and barrier epithelial
changes. All measurements are the averages 6 SEM from n¼ 5–8 mice per group. The F test results are (A) F(3,23)¼ 26.74, p , 0.0001; (B) F(3,23)¼
21.17, p , 0.0001; (C) F(3,23)¼ 53.53, p , 0.0001; (D) F(3,25)¼ 89.47, p , 0.0001; (E) F(3,24)¼ 7.574, p¼ 0.001; (F) F(3,23)¼ 41.35, p , 0.0001. Where F
testing revealed statistically significant differences within groups (p , 0.05), individual means were compared by Bonferroni’s multiple comparison test.
All statistically significant comparisons (p , 0.05) between any two groups were indicated with a bracket. The exact p-value is listed unless p , 0.001
(indicated by ***).
doi:10.1371/journal.pmed.0050041.g003
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compartments of the mesenteric lymph nodes of dnKO mice

as compared to all controls (Figure 5B and unpublished data).

Increases in activated and effector/memory cells in

dnTGFbRII mice as compared to WT controls were also

detected, consistent with a previous study by Gorelik et al. [8].

At 3 wk, overtly healthy dnKO mice had similar levels of

naive, activated, and effector/memory CD4þ and CD8þ T cells

as compared to controls (unpublished data). T cell develop-

ment in dnKO mice also appeared grossly normal prior to

disease as similar CD4 and CD8 profiles were seen in the

thymus of overtly healthy dnKO mice. In contrast, disease in

dnKOmice was accompanied by thymic involution because of

the loss of CD4þCD8þ thymocytes (Figure S2). Additionally,

similar percentages of CD4þCD25þFoxp3þ regulatory T cells

were detected in the draining lymph node and in the

intestines of dnKO mice as compared to controls (Figure

S3). Thymic regulatory T cells from these mice also displayed

intact inhibitory function in vitro (Figure S3). Together, these

data suggest that the T cell compartment in dnKO mice was

initially normal, but became rapidly activated during disease.

Next we determined if T cell effector function was altered

in dnKO mice by examination of cytokine production. At �4

wk of age, dnKO mice had significantly higher percentages

(Figure 5C) of IFNcþ CD4þ T cells over all controls and

enhanced percentages of IL-17þ CD4þ T cells compared to

WT and dnTGFbRII, but not IL-10R2�/� mice, in the

mesenteric lymph nodes. Additionally, the percentage of

TNFaþ CD4þ cells was elevated in both dnTGFbRII (32.6 6

2.4%) and dnKO (36.2 6 3.4%) mice as compared to WT

(23.8% 6 2.5%) and IL-10R2�/� (22.4% 6 4.1%) controls.

Increases in IFNcþCD8þT cells were also seen in dnTGFbRII,

IL-10R2�/�, and dnKO mice in comparison to WT mice

(unpublished data). Isolation of T cells from the lamina

propria/MALT of the cecum and colon revealed a signifi-

cantly elevated percentage of IFNcþ CD4þ T cells in dnKO

mice at the site of inflammation. In contrast, the percentages

of TNFaþ and IL-17þCD4þT cells in the colons of dnKO mice

were similar or lower than controls (Figure 5D and

unpublished data). Elevated levels of IFNc and TNFa were

also detected in colon explants from dnKO mice as compared

to controls (unpublished data). Because TNFa was increased

in both the serum and colon explants but the percentages of

TNFaþ T cells were similar to dnTGFbRII mice, this suggests

that other cells (e.g., macrophages) are generating more of

this particular cytokine. Together these data showed that

multiple genetic hits to immune regulation signaling path-

ways resulted in significant exacerbation of T cell activation

and effector function.

dnKO CD4þ T Cells Transfer Disease in RAG�/� Mice
To examine directly the role of T cells in the induction of

ulcerative colitis in the dnKO mice, we utilized the

Figure 4. Diseased dnKO Mice Have Diverse Leukocytic Infiltrates Located in the Cecum and Colon

Lamina propria/MALT cells from the pooled cecum, descending colon, and rectum were isolated from 4–5-wk-old WT, dnTGFbRII, IL-10R2�/�, and dnKO
mice. Shown are the averages 6SEM for the total number of CD45.2þ (hematopoietic) cells located within the tissue as well as for each subset of
CD45.2þ cells stained for T cells (CD4þ or CD8þ), immature myeloid/monocytes (CD11bþGr1lo), neutrophils (CD11bþGr1hi), NK/NKT (DX5þ), and B cells
(B220þ) from seven separate experiments with n ¼ 6–15 mice per group. Results were consistent with observations using immunofluorescence
microscopy (not shown). The F test results are: total immune cells, F(3,32)¼ 69.76, p , 0.0001; CD4þ T cells, F(3,32)¼ 23.16, p , 0.0001; CD8þ T cells,
F(3,32)¼9.779, p, 0.0001; monocytes/immature myeloid cells, F(3,16)¼11.57, p¼0.0003; neutrophils, F(3,16)¼16.59, p, 0.0001; NK/NKT cells, F(3,16)
¼ 10.93, p¼ 0.0005; B cells, F(3,27)¼ 27.47, p , 0.0001. All statistically significant comparisons (p , 0.05) between any two groups are indicated with a
bracket. The exact p-value is listed unless p , 0.001 (indicated by ***).
doi:10.1371/journal.pmed.0050041.g004
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established model of CD4þ T cell transfer into immunodefi-

cient recipients [27]. CD4þ T cells were isolated from WT,

dnTGFbRII, IL-10R2�/�, and dnKO mice and transferred to

B6.RAG1�/� mice. Recipient mice were humanely killed and

their colons analyzed at either 5 wk post-transfer or upon loss

of .20% of their initial body weight, whichever occurred

first. Weight loss of .20% within 5 wk of transfer was
observed in four of six mice in the dnKO T cell recipient

group but none of the animals in the other groups (p , 0.001;

Figure 6A).

Gross and histologic examination of colons from recipient

mice showed a trend whereby transfer of T cells from dnKO

donors produced more severe colitis as compared to transfer

of T cells from either dnTGFbRII, IL-10R2�/� or WT donors

(Figure 6B and 6C). Transfer of dnKO CD4þ T cells induced a

significant increase in the crypt height and width in the

rectum as well as crypt height in the descending colon as
compared to mice that received CD4þ T cells from the WT,

dnTGFbRII, or IL-10R2�/� control groups (Figure 6C).

Because crypt height and width reflected the amount of

Figure 5. Colitis in dnKO Mice Is Associated with Elevated Proinflammatory Cytokine Levels and Increased T Cell Activation

(A) Plot of average serum concentrations of IFNc, TNFa, and IL-6 of 4–5-wk-old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice. Shown are the average 6

SEM from n¼ 10–12 mice/group. The F test results are: INFc, F(3,38)¼ 11.73, p , 0.0001; TNFa, F(3,38)¼ 48.32, p , 0.0001; IL-6, F(3,38)¼ 18.41, p ,

0.0001. Brackets denote all statistically significant differences between two groups; ***p � 0.0001 as described in Materials and Methods.
(B) A representative example of CD62L versus CD44 profile of CD4þ T cells from the mesenteric (draining) lymph nodes depicting decreased
percentages of naive (CD62LhiCD44lo) cells accompanied by increased percentages of effector/memory cells (CD62LloCD44hi) in dnKO mice compared to
controls. Similar results were observed in five to seven separate experiments from n¼ 6–12 mice/group.
(C and D) The percentages of CD4þ IFNcþ or IL-17þ cells were determined in the (C) mesenteric (draining) lymph nodes and (D) lamina propria/MALT of
4–5-wk-old mice WT, dnTGFbRII, IL-10R2�/�, and dnKO mice. Shown is the average 6 SEM from n ¼ 6–11 mice per group. The F test results are:
mesenteric lymph node INFc, F(3,33)¼37.52, p , 0.0001; mesenteric lymph node IL-17, F(3,33)¼21.16, p , 0.0001; lamina propria INFc, F(3,23)¼20.34,
p , 0.0001; lamina propria IL-17, F(3,23)¼ 7.119, p , 0.0001.
All statistically significant comparisons (p , 0.05) between any two groups are indicated with a bracket. The exact p-value is listed unless p , 0.001
(indicated by ***).
doi:10.1371/journal.pmed.0050041.g005
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Figure 6. Transferred CD4þ T Cells from dnKO Mice Induce Fulminant Ulcerative Colitis in RAG1�/� Mice

CD4þ T cells were purified from ;3-wk-old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice and 23 106 cells were transferred IP into B6.RAG1�/� hosts.
(A) Weights were recorded for mice that had received CD4þ T cells from WT (black, n¼4), dnTGFbRII (blue, n¼6), IL-10R2�/� (green, n¼6), or dnKO (red,
n ¼ 6) mice. Shown for each group is the percent initial weight of individual mice from three separate experiments. The upward arrow indicates
individual mice that were humanely killed for analysis when their weight reached � 80% of their maximal weight (dashed lines). Analysis using the
Kaplan-Meier method showed the difference between groups of mice reaching this endpoint of weight loss was statistically significant (p , 0.001, df¼
3, log-rank test).
(B) Whole mount photographs of the cecum, ascending colon, descending colon, and rectum were scored in a blinded fashion on a 0–3 scale. 0, normal;
1, focal ulcers present; 2, ulcers and diffuse, mild mucosal thickening; and 3, ulcers and diffuse, severe mucosal thickening. The bars represent the
average whole-mount score, with each circle representing an individual mouse described in (A). The F test results are: cecum, F(3,18)¼ 8.07, p¼ 0.0013;
ascending colon, F(3,18)¼17.93, p, 0.0001; descending colon, F(3,18)¼7.720, p¼0.0016; rectum, F(3,18)¼14.39, p, 0.0001. All statistically significant
differences (using Bonferroni’s multiple comparison test; p , 0.05) between any two groups were indicated with a bracket. The exact p-value is listed
unless p , 0.001 (indicated by ***). Scores for recipients receiving dnKO CD4þ T cells were significantly higher than those receiving either WT or
dnTGFbRII CD4þ T cells in the ascending colon, descending colon, and rectum.
(C) The height and width of the crypts in the descending colon and rectum of HE stained tissue samples were analyzed to measure epithelial
hyperplasia and crypt drop out of the mice described in (A). The bar graphs represent the average crypt height or width6 SEM in the descending colon
or rectum from B6RAG1�/�mice that received CD4þ T cells from the indicated donors. The F test results are: DC crypt width, F(3,18)¼ 5.061, p¼ 0.0102;
DC crypt height, F(3,18) ¼ 20.23, p , 0.0001; rectum crypt width, F(3,18) ¼ 13.82, p , 0.0001; rectum crypt height, F(3,18) ¼ 23.58, p , 0.0001. All
statistically significant differences (using Bonferroni’s multiple comparison test; p , 0.05) between any two groups are indicated with a bracket. The
exact p-value is listed unless p , 0.001 (indicated by ***). Mice that received dnKO CD4þ T cells had statistically significant increases in crypt height in
the descending colon and rectum compared to all controls and wider crypts in the rectum compared to all controls. Significant increases in the width of
descending colon crypts in recipients receiving dnKO CD4þ T cells as compared to recipients receiving WT or dnTGFbRII were also observed.
doi:10.1371/journal.pmed.0050041.g006
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Figure 7. Amelioration of Colitis in dnKO Mice Through Simultaneous Neutralization of IFNc and TNFa

(A) HE-stained sections of the rectums of dnKO mice treated with neutralizing antibodies to inflammatory cytokines. Colons from dnKO mice injected IP
with 1 mg of neutralizing antibodies against IFNc, TNFa, IFNcþ TNFa, or an isotype control (anti-PIP) at 2 and 3 wk of age were harvested at 4 wk of
age.
(B–F) Quantitative morphometric analysis of the histopathology from dnKO mice treated with anti-PIP (isotype control), anti-IFNc, anti-TNFa, or a
combination of anti-IFNc and anti-TNFa is shown. Crypt loss/dropout was measured by examining (B) the number of crypts per field (a field, 870 lm)
and (C) crypt width. Epithelial proliferation was measured by (D) crypt height taken from the base of the crypt to the basal side of the surface epithelial
cells.
(E and F) The ratio of goblet cells/epithelial cells per crypt (E) and surface epithelial heights (F) were quantified to examine goblet cell loss and barrier
changes.
Shown for all measurements are the averages6 SEM from n¼5 mice per group. The F test results are (B) F(3,17)¼7.627, p¼0.0019; (C) F(3,17)¼7.467,
p¼ 0.0021; (D) F(3,17)¼ 4.326, p¼ 0.0194; (E) F(3,17)¼ 11.45, p¼ 0.0002; and (F) F(3,17)¼ 3.664, p¼ 0.0334. All statistically significant differences (using
Bonferroni’s multiple comparison test; p , 0.05) between any two groups were indicated with a bracket. The exact p-value is listed unless p , 0.001
(indicated by ***).
doi:10.1371/journal.pmed.0050041.g007
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hyperplasia and crypt dropout that had occurred within the

colon, these measurements were indicative of severe colitis

induced by the dnKO CD4þ T cells. These studies demon-

strate that CD4þ T cells were directly involved in the

induction of colitis in the dnKO mice.

Neutralization of IFNc and TNFa Significantly Ameliorates
Disease in dnKO Mice
Since IFNc and TNFa are present at elevated levels in

dnKO mice during disease, we neutralized these cytokines
either singly or in combination to determine if doing so

Figure 8. Inhibition of Colitis in dnKO Mice by Broad-spectrum Antibiotic Treatment

(A) 45-d survival of untreated dnKO mice (n ¼ 19; 45-d survival ¼ 10.5%; median survival ¼ 35 d) and dnKO mice receiving metronidazole and
ciprofloxacin in drinking water (n¼8; 45-d survival¼100%). Individual mice died or were humanely killed when their weight reached � 70% of maximal
weight. Survival was analyzed by the Kaplan-Meier method, and statistical significance of difference between groups is p , 0.0001, by log-rank test.
Upward arrow, antibiotic treatment begun at age 24 d.
(B and C) Weight gain of antibiotic-treated mice (n¼2 WT, n¼3 IL-10R�/�, n¼ 4 dnTGFbRII, and n¼7 dnKO) plotted individually (B) or as mean weights
(C) of treated dnKO mice (n¼ 7) and treated controls (n¼ 9; WT, IL-10R�/�, and dnTGFbRII combined) 6 SEM. Data were pooled from three separate
experiments using dnKO and littermate controls. To account for the longitudinal nature of the data, analysis of weight change over the course of
treatment was performed using generalized estimating equations. The mice gained weight over the course of the experiment (p , 0.001), and the
dnKO and control groups did not differ significantly (p¼ 0.105).
(D) Representative images of HE stained sections of rectums from an untreated dnKO mouse humanely killed at � 4 wk, an antibiotic-treated dnKO
mouse, and an antibiotic-treated WT mice killed at 45 d of age are shown at low power (bars in [C–E], 200 lm).
(E) Serum concentrations of IFNc, TNFa, and IL-6 in individual untreated WT (n¼3) mice and antibiotic-treated WT (n¼1), dnTGFbRII (n¼2), IL-10R�/� (n
¼ 2), and dnKO (n¼ 5) mice measured at 5–6 wk. All concentrations were below the limit of detection (,20 pg/ml) except for low levels of IFNc in one
antibiotic-treated dnKO mouse (54.8 pg/ml). 1Ranges of cytokine concentrations from the experiment depicted in Figure 5A are shown for comparison.
2Indicates exclusion of outlier values: one mouse had 4,493 pg/ml IFNc, and one had 75 pg/ml IL-6.
doi:10.1371/journal.pmed.0050041.g008
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would limit disease. Well-characterized antibodies against
IFNc, TNFa, or both were administered at 2 and 3 wk of age
in dnKO mice prior to disease assessment at 4 wk. Anti-IFNc

treatment alone significantly diminished loss of crypts, goblet
cells, and surface epithelial cell height, but did not affect
epithelial hyperplasia as compared to isotype control (Figure
7). In contrast, mice given anti-TNFa treatment alone did not
have any significant alterations in colitis induction. Interest-
ingly, neutralization of both IFNc and TNFa resulted in even
greater amelioration of pathology in dnKO mice than single
therapy alone, including significantly decreased epithelial
hyperplasia. Therefore, colitis in dnKO mice is partly
mediated by excessive IFNc and TNFa production, and
combination therapy to neutralize these cytokines signifi-
cantly diminished most aspects of pathology.

Treatment with Broad-Spectrum Antibiotics Completely
Inhibits Disease in dnKO Mice

Studies in a variety of murine models have shown an
important role for intestinal bacteria in inducing colitic
disease [28]. At 2 wk of age, the intestines of dnKO mice
appeared normal both macroscopically and microscopically
(unpublished data). This observation indicated that general
intestinal architecture development in these mice was not
perturbed at this time. Disease induction was rapid and could
be detected by 3 wk of age, a time commensurate with known
changes in the microbial ecology of the mammalian intestine
that occur at the weaning–suckling transition [29]. To
examine whether bacteria influence disease development in
the dnKO model, we treated mice with broad-spectrum
antibiotics in drinking water. Beginning at 24 d of age, mice
received drinking water containing high-dose ciprofloxacin
and metronidazole, two commonly used antibiotics that are
broadly active against aerobic and anaerobic bacterial
species, respectively [30]. In striking contrast to untreated
animals, antibiotic-treated dnKO mice exhibited 100% 45-d
survival (Figure 8A; p , 0.0001). We were thus able to
compare the growth of treated dnKO mice with treated
littermate controls (WT, dnTGFbRII, and IL-10R2�/� com-
bined) over a 3-wk treatment period (Figure 8B). Both groups
of mice showed weight gain over the course of the experi-
ment. No statistically significant difference in weight gain was
observed between the dnKO and control groups (p ¼ 0.105;
Figure 8C).

Consistent with survival and growth observations, gross and
histologic examination of intestines from all antibiotic-
treated dnKO mice aged 45–48 d revealed no inflammation,
mucosal thickening, or ulceration throughout the cecum and
colon, with dnKO intestines appearing essentially identical to
controls (Figure 8D and unpublished data). The quantitative
morphometric measures of inflammation described previ-
ously did not differ significantly between treated dnKO mice
and controls (unpublished data).

In accordance with the absence of inflammation and
mucosal barrier damage, analysis of serum from antibiotic-
treated mice revealed near-complete abrogation of proin-
flammatory cytokine production. In contrast to untreated
dnKO mice (Figure 5A), mice on antibiotics had undetectable
levels of TNFa and IL-6, and IFNc was detectable at low levels
in only one of five animals assayed (Figure 8E). Antibiotics also
decreased cytokine production in dnTGFbRII and IL-10R2�/�

mice to undetectable levels (Figures 5A and 8E). Collectively,

these results demonstrate that broad-spectrum antibiotic
treatment completely inhibits ulcerative colitis in dnKO mice.

Discussion

In this report, we demonstrate multiple genetic deficiencies
in immune regulation result in fulminant ulcerative colitis
that is distinct from and more severe than the disease
induced by either of the single deficiencies alone. In addition
to documenting these pathologic findings, we further show
that disease in dnKO mice is characterized by elevated
proinflammatory cytokines, can be induced in recipient
animals by transfer of dnKO CD4þ T cells, is responsive to
combined neutralization of IFNc and TNFa, and can be
completely inhibited through treatment with high-dose oral
ciprofloxacin and metronidazole.
Previous work has shown that the inhibitory cytokines IL-

10 and TGFb, both known to control immune homeostasis,
are associated with protection from colitis in murine models
of IBD [7–9,31–35]. We crossed dnTGFbRII mice, which have
significantly attenuated TGFbRII signaling in T cells, with
IL-10R2�/� mice. The resulting dnKO mice showed a highly
reproducible, diffuse, and severe ulcerative colitis that
occurred in a predictable time frame. At the same time
point at which dnKO mice developed severe disease and
died, all controls including WT, dnTGFbRII, and IL-10R2�/�

mice demonstrated little to no pathology. Similarly, work in
IL-10�/� mice has demonstrated differential colitis severity
in a C3H/HeJBir versus a C57BL/6J background and linked
the differences to a region on Chromosome 3, referred to as
the cytokine deficiency-induced colitis susceptibility 1
(Cdcs1) [10,11]. These findings all support the idea that
IBD is a complex disease influenced by multiple interacting
host genetic factors.
Because both dnTGFbRII and IL-10R2 signaling are

important for various aspects of immune regulation, the
disease observed in dnKO mice was likely due to a
culmination of several dysregulated parameters. The recent
generation of T cell specific TGFbRII knockout mice
revealed that this defect alone was sufficient to induce rapid,
multiorgan autoimmunity. These mice demonstrated alter-
ations in Th1 T cell differentiation, NKT cell development,
and impaired maintenance, but not generation, of Foxp3
regulatory T cells [36,37]. Similarly, in dnKO mice, regu-
latory T cells were present at similar percentages to controls,
suggesting that regulatory T cell development was also intact
in these mice. Furthermore, dnKO T regulatory cells were
able to inhibit naive T cell proliferation in vitro, suggesting
that they still are able to function in this context. Regulation
of a T cell transfer model of colitis has previously been
demonstrated to depend on TGFb responsiveness by
pathogenic naive T cells [31], emphasizing the importance
of this cytokine in disease inhibition. We showed that CD4þ

T cells from dnTGFbRII mice could also transfer disease, but
found that the additional loss of IL-10R2 signaling increased
the severity of disease above that conferred by cells in which
only TGFbRII signaling was disrupted. These studies, how-
ever, did not address whether the loss of IL-10R2 and
TGFbRII signaling caused dysregulation of the naive or
regulatory T cell subsets found within the CD4þ population
[38].
In addition to impaired TGFbRII signaling, IL-10R2
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signaling was completely absent in dnKO mice. As a result,
these mice were unresponsive to IL-10, which normally
inhibits antigen-presenting cell function and may play a role
in converting naive CD4þ T cells to those with regulatory
potential [12,14,39–42]. The importance of IL-10 in regula-
tion of colitis was initially demonstrated in IL-10�/�mice that
developed spontaneous enterocolitis marked by crypt abnor-
malities, epithelial hyperplasia, and leukocytic infiltrates [7].
The generation of IL-10R2�/� mice recapitulated data from
IL-10�/� mice in that they also spontaneously developed
colitis marked by epithelial hyperplasia and leukocytic
infiltrates. Interestingly, IL-10 has also been implicated in
contributing to epithelial barrier integrity [43], which would
be a critical aspect in limiting intestinal mucosal inflamma-
tion.

Because the IL-10R2 is also a redundant receptor for other
cytokines, including IL-22, IL-26, IL-28, and IL-29 [44], the
effects of these cytokines on colitis development in dnKO
mice could not be ruled out. While little is known about the
relevance of most of these cytokines in the context of
intestinal immunity, increased levels of IL-22 have been
noted in human IBD patients, and IL-22 has also been
demonstrated to induce IL-10 expression by colon epithelial
cell lines [45,46]. However, abrogation of signaling in these
cells may be beneficial, as IL-22 has also been shown to induce
production of proinflammatory cytokines by colonic sub-
epithelial myofibroblasts and intestinal epithelial cells [45,47].
Additionally, previous characterization of IL-10R2�/� mice
did not reveal an increased disease severity compared to what
was described for IL-10�/� mice [7,9]. With the given caveat
that there may have been differences in enteric flora, the data
from these studies suggest that IL-10, but not the other
redundant IL-10R2 cytokines, plays the predominant role in
colitis induction and exacerbation.

In addition to potential alterations in APC function,
epithelial barrier integrity, and T regulatory-mediated
suppression, a major function attributed to both IL-10 and
TGFb is the inhibition of proinflammatory cytokine produc-
tion [12–16]. Excessive production of proinflammatory
cytokines has been implicated as a potential factor in human
IBD [24–26]. For example, CD4þ lamina propria cells from
patients with Crohn’s disease produced increased levels of
IFNc and TNFa [24]. Furthermore, neutralization of TNFa via
administration of infliximab resulted in clinical benefits for
IBD patients and a variety of other such biologic agents are in
various stages of development and clinical testing [48].
Studies in murine colitis models have also shown reduced
pathology upon neutralization of IFNc or TNFa [49–52]. In
dnKO mice, impairment or loss of both TGFbRII and IL-10R2
signaling resulted in intestinal pathology that was associated
with dramatic increases in both T cell activation and IFNc,
TNFa, and IL-6 levels. Depletion of IFNc and TNFa decreased
the extent of pathology seen in 4-wk-old dnKO mice as
compared to controls. While anti-IFNc treatment alone
partially ameliorated disease, anti-TNFa treatment alone
had little to no impact on intestinal pathology. Interestingly,
significant reductions in epithelial hyperplasia were only
detected when the two treatments were combined, suggesting
that in the dnKO model these two cytokines have redundant
roles in inducing hyperplasia. Our data therefore suggest that
treatment regimens that effectively neutralize multiple

proinflammatory cytokines could result in more successful
clinical responses.
In recent years the role of IL-12 versus IL-23 in chronic

inflammation has been reevaluated upon the realization that
both cytokines share the IL-12p40 subunit [53–55]. In both
human trials and murine models of colitis, neutralization of
the IL-12p40 subunit resulted in decreased pathology [56,57].
Recently, a mutation in the IL-23R has been negatively linked
with human IBD, suggesting that reduced signaling through
this receptor protects against disease [58]. Additionally, a
study by Yen et al. has indicated a role for IL-23, rather than
IL-12, in the induction of colitis due to its ability to promote
IL-17 production [59]. However, the proinflammatory effects
of IL-23 are not necessarily restricted to its effects on IL-17
producing cells as IL-23 can increase proliferation and IFNc

production by effector/memory T cells [55] and has been
demonstrated to also increase Th1 responses in colitis models
[60,61]. Because IL-17 secretion was detected in the super-
natants of colon explants (unpublished data) from dnKO
mice, albeit at lower levels compared to IFNc and TNFa
production, IL-17 and/or IL-23 may account for the residual
pathology observed in dnKO mice after neutralization of
both IFNc and TNFa. Regardless, results from our study and
others would suggest that large perturbations in immune
homeostasis through production of excessive Th1, Th17, or
Th2 cytokines all have the ability to cause intestinal
pathology.
Several overlapping lines of evidence, primarily from

murine models, point to involvement of enteric bacteria in
inducing IBD (reviewed in [28]). For example, intestinal
pathology in a number of models including IL-10�/� mice was
diminished in germ-free settings [62]. Similarly, colonic
inflammation due to DSS-induced injury has been shown to
be reduced in germ-free and antibiotic-treated mice [22,63].
Experiments employing antibiotics to treat murine models of
spontaneous colitis have demonstrated variable degrees of
success depending on the animal model and the antibiotics
used (e.g., [64,65]). We chose to employ two orally delivered
antibiotics at high dosages: ciprofloxacin, which broadly
targets aerobic bacteria, and metronidazole, which is active
against anaerobic organisms. Antibiotic treatment resulted in
complete inhibition of disease in dnKOmice as demonstrated
by survival, weight gain equivalent to controls, absence of
macroscopic and microscopic signs of colitis, and near-
complete abrogation of proinflammatory cytokine produc-
tion. These findings dramatically demonstrate that intestinal
microbes are required for disease induction in this model of
ulcerative colitis.
As discussed previously, current efforts at developing

treatments for various forms of IBD, particularly ulcerative
colitis, have focused extensively on devising costly new
biologic agents, many of which act by specifically targeting
cytokines including TNFa and IFNc [48]. Our results
demonstrate that neutralization of these cytokines, partic-
ularly in combination, also produced significant amelioration
of colitis in dnKO mice. Although antibiotics, including
ciprofloxacin and metronidazole, are sometimes used to treat
patients with IBD, research regarding their efficacy remains
inadequate. Current clinical consensus holds that they are
useful in managing septic complications of IBD and certain
aspects of Crohn’s disease. However, their utility in ulcerative
colitis has not been adequately assessed [30,66,67], and
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recommendations vary regarding usage in patients with
fulminant ulcerative colitis [48,68,69]. We know of no large,
blinded, controlled clinical studies examining combined
metronidazole and ciprofloxacin treatment in ulcerative
colitis. Our results suggest that carefully controlled studies
examining the benefits of combined ciprofloxacin and
metronidazole in ulcerative colitis may be appropriate.

Overall, our studies support the hypothesis that multiple
genetic hits to immune regulation have the ability to produce
the most severe forms of IBD. While impairment of either
TGFbRII or IL-10R2 signaling alone was sufficient to cause
some aspects of disease, the extent of pathology was
significantly increased once these deficiencies were com-
pounded. Our data demonstrate that the mechanism was at
least in part due to uncontrolled T cell activation resulting in
increased proinflammatory cytokine production. We further
show that the inciting stimulus for this immune activation is
microbial in origin. We propose that this model will be useful
in the future to evaluate the mechanism of loss/attenuation of
specific mucosal barrier components (e.g., goblet cells,
surface enterocyte maturation, and epithelial stem cells) that
also occurs in human ulcerative colitis, to evaluate combina-
torial therapies directed against the numerous proinflamma-
tory cytokines that are elicited by disregulated leukocytes,
and to elucidate the mechanisms by which enteric microbes
trigger disease.

Supporting Information

Figure S1. Intestinal Pathology in dnTGFbRII and IL-10R2�/� Mice
Develops More Slowly and Has a More Variable and Focal Pattern
Than the Rapid, Diffuse Disease Seen in dnKO Mice

Ceca and colons from dnTGFbRII and IL-10R2�/� mice were isolated
at 3–4 mo of age. (A) Mucosal whole-mount photomicrographs of the
gross morphology of the descending colon/rectum region of two
dnTGFbRII and IL-10R2�/� mice are shown. Yellow dashed line
outlines focal ulcerations.
(B) The cecum and entire colon of four individual 3- to 3.5-mo-old
IL-10R2�/� mice and two 4–5-wk-old dnKO mice are shown. Yellow
dashed line outlines focal ulcerations; red dashed line outlines diffuse
mucosal thickening; pink asterisk indicates ileal-cecal junction.

Found at doi:10.1371/journal.pmed.0050041.sg001 (8.2 MB TIF).

Figure S2. Thymic T Cell Development Is Not Obviously Perturbed
in Overtly Healthy dnKO Mice

(A) Representative CD4 versus CD8 thymic profiles of 3-wk-old WT,
dnTGFbRII, IL-10R2�/�, and dnKO mice, which were overtly healthy,
are shown. This is representative of three to four separate experi-
ments with four to eight mice per group.
(B) Depletion of thymic CD4þCD8þ cells is shown in �4-wk-old
diseased dnKO mice. The average 6 standard error of the mean
(SEM) of the thymic cellularity for �4-wk-old WT, dnTGFbRII, IL-
10R2�/�, and dnKO is shown.
These results are generated from three to seven separate experi-
ments, with n¼7–8 mice per group. The F test result for (B) is: F(3,26)
¼43.14, p¼0.0001. Brackets denote statistically significant differences
between the two groups; ***p � 0.0001.

Found at doi:10.1371/journal.pmed.0050041.sg002 (591 KB TIF).

Figure S3. Regulatory T cells Are Present in dnKO Mice

(A) Cells frommesenteric lymph nodes of WT, dnTGFbRII, IL-10R2�/�,
and dnKO mice were isolated and stained for CD4, CD25, and Foxp3
expression. Shown are representative plots of CD25 versus Foxp3
staining, gated on CD4þ T cells.
(B) The percentages of CD4þ CD25þ Foxp3þ found in the lamina
propria of the pooled cecum, descending colon, and rectum of 4-wk-
old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice is shown. Each bar
represents the average 6 SEM from three separate experiments.
(C) CD4þCD8� CD25þ regulatory T cells derived from thymi of 3-wk-

old WT, dnTGFbRII, IL-10R2�/�, and dnKO mice, which were overtly
healthy, were incubated with naive CD4þCD45RBhi T cells at a 1:1
ratio and stimulated with irradiated antigen-presenting cells and
anti-CD3.
Shown is the average 6 SEM of the percent inhibition of
proliferation induced by T regulatory cells derived from the
indicated source. The results are generated from �3 separate
experiments. The F test results are (B), F(3,16) ¼ 2.104, p ¼ 0.14 (ns);
(C), F(3,14) ¼ 2.15, p ¼ 0.14 (ns).

Found at doi:10.1371/journal.pmed.0050041.sg003 (1.4 MB TIF).
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Editors’ Summary

Background. Inflammatory bowel disease (IBD), a group of disorders
characterized by inflammation (swelling) of the digestive tract (the tube
that runs from the mouth to the anus), affects about 1.4 million people in
the US. There are two main types of IBD. In Crohn’s disease, which can
affect any area of the digestive tract but most commonly involves the
lower part of the small intestine (small bowel), all the layers of the
intestine become inflamed. In ulcerative colitis, which primarily affects
the colon (large bowel) and the rectum (the part of the bowel closest to
the anus), only the lining of the bowel becomes inflamed, the cells in this
lining die, and sores or ulcers form. Both types of IBD most commonly
develop between the ages of 15 and 35 years, often run in families, and
carry an increased risk of cancer. Symptoms—usually diarrhea and
abdominal cramps—can be mild or severe and the disorder can develop
slowly or suddenly. There is no medical cure for IBD, but drugs that
modulate the immune system (for example, corticosteroids) can help
some people. Some people benefit from treatment with drugs that
specifically inhibit ‘‘proinflammatory cytokines,’’ proteins made by the
immune system that stimulate inflammation (for example, TNFa and
INFc). When medical therapy fails, surgery to remove the affected part of
the bowel may be necessary.

Why Was This Study Done? Exactly what causes IBD is not clear, but
people with IBD seem to have an overactive immune system. The
immune system normally protects the body from harmful substances but
in IBD it mistakenly recognizes the food substances and ‘‘good’’ bacteria
that are normally present in the human gut as foreign and hence reacts
against them. As a result, immune system cells accumulate in the lining
of the bowel and cause inflammation. Several different pathways usually
prevent inappropriate immune activation, so could IBD be caused by
alterations in one or several of these immune regulatory pathways? In
previous studies, mice with a defect in just one pathway have developed
mild intestinal abnormalities but not the problems seen in the most
severe forms of IBD. In this study, therefore, the researchers have
generated and characterized a new mouse line with defects in two
immune regulatory pathways to see whether this might be a better
animal model of human IBD.

What Did the Researchers Do and Find? To make their new mouse
line, the researchers mated mice that had a defective TGFb signaling
pathway in their T lymphocytes with mice that had a defective IL-10
signaling pathway. Both these pathways are anti-inflammatory, and mice
with defects in either pathway develop mild and variable inflammation
of the colon (colitis) by age 3–4 months. By contrast, the doubly

defective mice (dnKO mice) failed to thrive, lost weight, and died by 4–6
weeks of age. The colons of 4- to 5-week old dnKO mice were inflamed
and ulcerated (some changes were visible in 3-week-old mice) and
contained many immune system cells. Mice with a single defective
signaling pathway had no gut abnormalities at this age. The dnKO mice,
just like people with IBD, had higher than normal blood levels of IFNc,
TNFa, and other proinflammatory cytokines; these raised levels were the
result of abnormal lymphocyte activation. Treatment of the dnKO mice
with a combination of agents that neutralize IFNc and TNFa (anti-
cytokine therapy) greatly reduced the colitis seen in these mice;
neutralization of IFNc alone had some beneficial effects, but neutraliza-
tion of TNFa alone had no effect. Finally, early treatment of the dnKO
mice with broad-spectrum antibiotics completely inhibited colitis.

What Do These Findings Mean? These findings suggest that dnKO
mice are a good model for fulminant (severe and rapidly progressing)
ulcerative colitis and support the idea that IBD involves multiple genetic
defects in immune regulation. They also indicate that the IL-10 and the
TGFb signaling pathways normally cooperate to inhibit the inappropriate
immune responses to intestinal bacteria seen in IBD. This new mouse
model should help researchers unravel what goes wrong in IBD and
should also help them develop new treatments for ulcerative colitis.
More immediately, these findings suggest that combined anti-cytokine
therapy may be a better treatment for ulcerative colitis than single
therapy. In addition, they suggest that clinical studies should be started
to test whether broad-spectrum antibiotics can ameliorate ulcerative
colitis in people.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050041.

� The Medline Plus Encyclopedia has pages on Crohn’s disease and on
ulcerative colitis (in English and Spanish)

� Information is available from the UK National Health Service Direct
Health Encyclopedia about Crohn’s disease and ulcerative colitis

� The US National Institute of Diabetes and Digestive and Kidney
Diseases provides information on Crohn’s disease and ulcerative colitis

� Information and support for patients with inflammatory bowel disease
and their caregivers is provided by the Crohn’s and Colitis Foundation
of America and by the UK National Association for Colitis and Crohn’s
Disease
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