
An Antichain Algorithm for LTL Realizability�

Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin

CS, Faculty of Sciences
Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. In this paper, we study the structure of underlying automata based
constructions for solving the LTL realizability and synthesis problem. We show
how to reduce the LTL realizability problem to a game with an observer that
checks that the game visits a bounded number of times accepting states of a uni-
versal co-Büchi word automaton. We show that such an observer can be made
deterministic and that this deterministic observer has a nice structure which can
be exploited by an incremental algorithm that manipulates antichains of game
positions. We have implemented this new algorithm and our first results are very
encouraging.

1 Introduction

Automata theory has revealed very elegant for solving verification and synthesis prob-
lems. A large body of results in computer aided verification can be phrased and solved
in this framework. Tools that use those results have been successfully used in industrial
context, see [16] for an example. Nevertheless, there is still plenty of research to do
and new theory to develop in order to obtain more efficient algorithms able to handle
larger or broader classes of practical examples. Recently, we and other authors have
shown in [4,5,6,14,21] that several automata-based constructions enjoy structural prop-
erties that can be exploited to improve algorithms on automata. For example, in [6] we
show how to solve more efficiently the language inclusion problem for nondeterminis-
tic Büchi automata by exploiting a partial-order that exists on the state spaces of subset
constructions used to solve this problem. Other structural properties have been addi-
tionally exploited in [7]. In this paper, we pursue this line of research and revisit the
automata-based approach to LTL realizability and synthesis. Although LTL realizability
is 2EXPTIME-COMPLETE, we show that there are also automata structures equipped
with adequate partial-orders that can be exploited to obtain a more practical decision
procedure for it.

The realizability problem for an LTL formula φ is best seen as a game between two
players [13]. Each of the players is controlling a subset of the set P of propositions on
which the LTL formula φ is constructed. The set of propositions P is partitioned into
I the set of input signals that are controlled by ”Player input” (the environment, also
called Player I), and O the set of output signals that are controlled by ”Player output”

� Work supported by the projects: (i) Quasimodo: “Quantitative System Properties in
Model-Driven-Design of Embedded Systems”, http://www.quasimodo.aau.dk, (ii)
Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, and (iii) Moves: “Fundamental Issues in
Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Government.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 263–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 E. Filiot, N. Jin, and J.-F. Raskin

(the controller, also called PlayerO). The realizability game is played in turns. PlayerO
is the protagonist, she wants to satisfy the formula φ, while Player I is the antagonist as
he wants to falsify the formula φ. PlayerO starts by giving a subset o0 of propositions1,
Player I responds by giving a subset of propositions i0, then Player O gives o1 and
Player I responds by i1, and so on. This game lasts forever and the outcome of the
game is the infinite word w = (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · ∈ (2P)ω. We say that
Player O wins if the resulting infinite word w is a model of φ. This problem is central
when dealing with specifications for reactive systems. In that context, the signals of
the environment being uncontrollable, unrealizable specifications are useless as they
can not be implemented. The LTL realizability problem has been studied starting from
the end of the eighties with the seminal works by Pnueli and Rosner [13], and Abadi,
Lamport and Wolper [1]. The 2EXPTIME lower bound was established in [15].2

The classical automata-based solution to LTL synthesis can be summarized as fol-
lows. Given an LTL formula φ, construct a nondeterministic Büchi automaton Aφ that
accepts all models of φ, transform Aφ into a deterministic Rabin automaton B using
Safra’s determinization procedure [18], and use B as an observer in a turn-based two-
player game. Unfortunately, this theoretically elegant procedure has turn out to be very
difficult to implement. Indeed, Safra’s determinization procedure generates very com-
plex state spaces: states are colored trees of subsets of states of the original automaton.
No nice symbolic data-structure is known to handle such state spaces. Moreover, the
game to solve as the last step (on a potentially doubly-exponential state-space) is a
Rabin game, and this problem is known to be NP complete3.

This situation has triggered further research for alternative procedures. Most no-
tably, Kupferman and Vardi in [10] have recently proposed procedures that avoid the
determinization step and so the Safra’s construction4. In particular, they reduce the
LTL realizability problem to the emptiness of a Universal Co-Büchi Tree automaton
(UCT). They show how to test emptiness of a UCT by translation to an alternating
weak Büchi tree automaton, again translated into a non-deterministic Büchi tree au-
tomaton for which testing emptiness is easy. All these steps have been implemented
and optimized in several ways by Jobstmann and Bloem in a tool called Lily [9].

In this paper, we propose a different and more direct Safraless decision procedure
for the LTL realizability and synthesis problem and we identify structural properties
that allow us to define an antichain algorithm in the line of our previous works. We
highlight differences with [10,9] in Section 5. Our procedure uses Universal Co-Büchi
Word automaton, UCW. Those automata have the following simple nice property. If a
Moore machineM with m states defines a language included into the language defined
by a UCW with n states, then obviously every run on the words generated by M con-
tains at most 2mn accepting states. As a consequence a Moore machine that enforces a
language defined by a UCW also enforces a stronger requirement defined by the same
automaton where the acceptance condition is strengthened to a so called 2mn-bounded
one: ”a run is accepting if it passes at most 2mn times by an accepting state”. Using the

1 Technically, we could have started with Player I , for modeling reason it is conservative to start
with Player O.

2 Older works also consider the realizability problem but for more expressive and computation-
ally intractable formalisms, see [20].

3 Instead of Rabin automata, Parity automata can also be used [12]. Nevertheless, there are no
known polynomial time algorithm to solve parity games.

4 As a consequence, they call their new procedures Safraless procedures. Nevertheless they use
the result by Safra in their proof of correctness.

An Antichain Algorithm for LTL Realizability 265

result by Safra, we know that the size of a Moore machine that realizes a language de-
fined by a UCW can be bounded. This gives a reduction from the general problem to the
problem of the realizability of a k-bounded UCW specification. Contrarily to general
UCW specifications, k-bounded UCW specifications can easily be made determinis-
tic and, most importantly the underlying deterministic automaton is always equipped
with a partial-order on states that can be used to efficiently manipulate its state space
using our antichain method. We have implemented this new antichain algorithm in a
tool called Acacia and our experiments show promising results. Indeed, even without
further optimizations, Acacia outperforms Lily.

The rest of this paper is organized as follows. In Section 2, we recall definitions.
In Section 3, we show how to reduce the LTL realizability problem to the realizability
of a k-bounded UCW specification. In Section 4, we show structural properties of the
deterministic structure that we obtain from the k-bounded UCW specification and study
antichains for manipulating sets of states of this deterministic structure. In Section 5,
we report on preliminary experiments using our antichain algorithm for synthesis and
compare them to the results obtained by using the tool Lily [9]. In Section 6, we draw
conclusions and identify future works.

2 LTL and Realizability Problem

Linear Temporal Logic (LTL). The formulas of LTL are defined over a set of atomic
propositions P . The syntax is given by the grammar:

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ p ∈ P

The notations true, false, φ1 ∧ φ2, ♦φ and �φ are defined as usual. In particular,
♦φ = trueUφ and �φ = ¬♦¬φ. LTL formulas φ are interpreted on infinite words
w = σ0σ1σ2 · · · ∈ (2P)ω via a satisfaction relation w |= φ inductively defined as
follows: (i) w |= p if p ∈ σ0, (ii) w |= φ1 ∨ φ2 if w |= φ1 or w |= φ2, (iii) w |= ¬φ if
w �|= φ, (iv) w |= Xφ if σ1σ2 . . . |= φ, and (v) w |= φ1 Uφ2 if there is n ≥ 0 such that
σnσn+1 . . . |= φ2 and for all 0 ≤ i < n, σiσi+1 . . . |= φ1.

LTL Realizability and Synthesis. As recalled in the introduction, the realizability prob-
lem for LTL is best seen as a game between two players. Each of the players is con-
trolling a subset of the set P of propositions on which the LTL formula is constructed.
Accordingly, unless otherwise stated, we partition the set of propositions P into I the
set of input signals that are controlled by ”Player input” (the environment, also called
Player I), and O the set of output signals that are controlled by ”Player output” (the
controller, also called Player O). It is also useful to associate this partition of P with
the three following alphabets: Σ = 2P , ΣI = 2I , and ΣO = 2O. We denote by ∅ the
empty set. The realizability game is played in turns. PlayerO starts by giving a subset o0
of propositions, Player I responds by giving a subset of propositions i0, then Player O
gives o1 and Player I responds by i1, and so on. This game lasts forever and the output
of the game is the infinite word (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ Σω. The players play ac-
cording to strategies. A strategy for PlayerO is a (total) mapping λO : (ΣOΣI)∗ → ΣO

while a strategy for Player I is a (total) mapping λI : ΣO(ΣIΣO)∗ → ΣI . The out-
come of the strategies λO and λI is the word outcome(λO, λI) = (o0∪i0)(o1∪i1) . . .
such that for all j ≥ 0, oj = λO(o0i0 . . . oj−1ij−1) and ij = λI(o0i0 . . . oj−1ij−1oj).
In particular, o0 = λO(ε) and i0 = λI(o0).

266 E. Filiot, N. Jin, and J.-F. Raskin

We can now define the realizability problem. Given an LTL formula φ (the specifica-
tion), the realizability problem is to decide whether there exists a strategy λO of Player
O such that for all strategies λI of Player I , outcome(λO, λI) |= φ. If such a strategy
exists, we say that the specification φ is realizable. If an LTL specification is realizable,
there exists a finite-state strategy that realizes it [13]. The synthesis problem is to find a
finite-state strategy that realizes the LTL specification.

E.g., let I = {q}, O = {p} and ψ = pUq. The formula ψ is not realizable. As q is
controlled by the environment, he can decide to leave it always false and the outcome
does not satisfy φ. However ♦q → (pUq) is realizable. The assumption ♦q states that
q will hold at some point, and ensures the controller wins if it always asserts p.

Infinite Word Automata. An infinite word automaton over the finite alphabet Σ is a
tuple A = (Σ,Q, q0, α, δ) where Q is a finite set of states, q0 ∈ Q is the initial state,
α ⊆ Q is a set of final states and δ ⊆ Q×Σ ×Q is a transition relation. For all q ∈ Q
and all σ ∈ Σ, we let δ(q, σ) = {q′ | (q, σ, q′) ∈ δ}. We let |A| = |Q| + |δ| be the size
of A. We say that A is deterministic if ∀q ∈ Q · ∀σ ∈ Σ · |δ(q, σ)| ≤ 1. It is complete
if ∀q ∈ Q · ∀σ ∈ Σ · δ(q, σ) �= ∅. In this paper, unless otherwise stated, the automata
are complete. A run of A on a word w = σ0σ1 · · · ∈ Σω is an infinite sequence of
states ρ = ρ0ρ1 · · · ∈ Qω such that ρ0 = q0 and ∀i ≥ 0 · qi+1 ∈ δ(qi, ρi). We denote
by RunsA(w) the set of runs of A on w. We denote by Visit(ρ, q) the number of times
the state q occurs along the run ρ. We consider three acceptance conditions (a.c.) for
infinite word automata. A word w is accepted by A if (depending on the a.c.):

Non-deterministic Büchi : ∃ρ ∈ RunsA(w) · ∃q ∈ α · Visit(ρ, q) = ∞
Universal Co-Büchi : ∀ρ ∈ RunsA(w) · ∀q ∈ α · Visit(ρ, q) <∞
UniversalK-Co-Büchi : ∀ρ ∈ RunsA(w) · ∀q ∈ α · Visit(ρ, q) ≤ K

The set of words accepted by A with the non-deterministic Büchi a.c. is denoted by
Lb(A), and with this a.c. in mind, we say that A is a non-deterministic Büchi word au-
tomaton, NBW for short. Similarly, we denote respectively byLuc(A) andLuc,K(A) the
set of words accepted by A with the universal co-Büchi and universal K-co-Büchi a.c.
respectively. With those interpretations, we say that A is a universal co-Büchi automa-
ton (UCW) and that (A,K) is a universalK-co-Büchi automaton (UKCW) respectively.
By duality, we have clearly Lb(A) = Luc(A), for any infinite word automaton A. Fi-
nally, note that for any 0 ≤ K1 ≤ K2, we have thatLuc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).

Infinite automata and LTL. It is well-known (see for instance [19]) that NBWs subsume
LTL in the sense that for all LTL formula φ, there is an NBWAφ (possibly exponentially
larger) such that Lb(Aφ) = {w | w |= φ}. Similarly, by duality it is straightforward to
associate an equivalent UCW with any LTL formula φ: take A¬φ with the universal
co-Büchi a.c., so Luc(A¬φ) = Lb(A¬φ) = Lb(Aφ) = {w | w |= φ}.

To reflect the game point of view of the realizability problem, we introduce the notion
of turn-based automata to define the specification. A turn-based automaton A over the
input alphabet ΣI and the output alphabet ΣO is a tuple A = (ΣI , ΣO, QI , QO, q0, α,
δI , δO) where QI , QO are finite sets of input and output states respectively, q0 ∈ QO

is the initial state, α ⊆ QI ∪ QO is the set of final states, and δI ⊆ QI × ΣI × QO,
δO ⊆ QO × ΣO × QI are the input and output transition relations respectively. It is
complete if for all qI ∈ QI , and all σI ∈ ΣI , δI(qI , σI) �= ∅, and for all qO ∈ ΣO and
all σO ∈ ΣO, δO(qO, σO) �= ∅. As for usual automata, in this paper we assume that

An Antichain Algorithm for LTL Realizability 267

1 3 4 5 6¬p ¬q

�

�
q

2 7

� ¬q � �

8
q

q

9

�

�

Fig. 1. tbUCW for ♦q → (pUq) where I = {q} and O = {p}

turn-based automata are always complete. Turn-based automata A still run on words
from Σω as follows: a run on a word w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω is a word ρ =
ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 = q0 and for all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and
(ρ2j+1, ij , ρ2j+2) ∈ δI . All the acceptance conditions considered in this paper carry
over to turn-based automata. Turn-based automata with acceptance conditions C are
denoted by tbC, e.g. tbNBW. Every UCW (resp. NBW) with state set Q and transition
set Δ is equivalent to a tbUCW (resp. tbNBW) with |Q| + |Δ| states: the new set of

states is Q ∪Δ, final states remain the same, and each transition r = q
σo∪σi−−−−→ q′ ∈ Δ

where σo ∈ ΣO and σi ∈ ΣI is split into a transition q
σo−→ r and a transition r

σi−→ q′.

Moore Machines. LTL realizability is equivalent to LTL realizability by a finite-state
strategy [13]. We use Moore machines to represent finite-state strategies. A Moore ma-
chineM with input alphabetΣI and output alphabetΣO is a tuple (ΣI , ΣO, QM , q0, δM ,
gM) where QM is a finite set of states with initial state q0, δM : QM × ΣI → QM

is a (total) transition function, and gM : Q → ΣO is a (total) output function. We
extend δM to δ∗M : Σ∗

I → QM inductively as follows: δ∗M (ε) = q0 and δ∗M (uσ) =
δM (δ∗M (u), σ). The language of M , denoted by L(M), is the set of words w = (o0 ∪
i0)(o1 ∪ i1) · · · ∈ Σω

P such that for all j ≥ 0, δ∗M (i0 . . . ij−1) is defined and oj =
gM (δ∗M (i0 . . . ij−1)). In particular, o0 = gM (δ∗M (ε)) = gM (q0). The size of a Moore
machine is defined similarly as the size of an automaton.

Thanks to previous remarks, the LTL realizability problem reduces to decide, given
a tbUCW A over inputs ΣI and outputs ΣO, whether there is a non-empty Moore
machine M such that L(M) ⊆ Luc(A). In this case we say that A is realizable. In
our implementation, the tbUCW is equivalent to an LTL formula given as input and is
constructed by using Wring [19].

Running example. A tbUCWA equivalent to ♦q → (pUq) is depicted in Fig. 1. Output
statesQO = {1, 4, 6, 8} are depicted by squares and input statesQI = {2, 3, 5, 7, 9} by
circles. In the transitions, � stands for the sets ΣI or ΣO, depending on the context, ¬q
(resp. ¬p) stands for the sets that do not contain q (resp. p), i.e. the empty set. One can
see that starting from state 1, if the controller does not assert p and next the environment
does not assert q, then the run is in state 4. From this state, whatever the controller does,
if the environment asserts q, then the controller loses, as state 6 will be visited infinitely
often. A strategy for the controller is to assert p all the time, therefore the runs will loop
in states 1 and 2 until the environment asserts q. Afterwards the runs will loop in states
8 and 9, which are non-final.

268 E. Filiot, N. Jin, and J.-F. Raskin

3 Reduction to a UKCW Objective

In this section, we reduce the realizability problem with a specification given by a turn-
based universal co-Büchi automaton (tbUCW) to a specification given by a turn-based
universal K-co-Büchi automaton (tbUKCW). Then we reduce this new problem to an
infinite turn-based two-player game with a safety winning condition. This is done via
an easy determinization of tbUKCWs (which produces a deterministic tbUKCW). To
solve this game efficiently, we propose an antichain-based algorithm in Section 4.

Lemma 1. Let A be a tbUCW over inputsΣI and outputsΣO with n states, andM be
a Moore machine over inputsΣI and outputsΣO with m states. Then L(M) ⊆ Luc(A)
iff L(M) ⊆ Luc,2mn(A).

Proof. The back direction is obvious since Luc,k(A) ⊆ Luc(A) for all k ∈ N. We
sketch the forth direction. Informally, the infinite paths of M starting from the initial
state define words that are accepted by A. Therefore in the product of M and A, there
is no cycle visiting an accepting state of A, which allows one to bound the number of
visited final states by the number of states in the product. �

The following result is proved in Th. 4.3 of [10], as a small model property of universal
co-Büchi tree automata. We also prove it here for the sake of self-containdness.

Lemma 2. Given a realizable tbUCWA over inputsΣI and outputsΣO with n states,
there exists a non-empty Moore machine with at most n2n+2 + 1 states that realizes it.

Proof. We sketch the proof. In the first step, we show by using Safra’s determinization of
NBWs thatA is equivalent to a turn-based deterministic and complete parity automaton
Ad. By using a result of [12], we can assume that Ad has at most m := 2n2n+2 + 2
states. We then viewAd has a turn-based two-player parity gameG(Ad) (with at mostm
states) such that Ad (or equivalentlyA) is realizable iff PlayerO has a winning strategy
in G(Ad). It is known that parity games admit memoryless strategies [8]. Therefore if
Ad is realizable, there exists a strategy for Player O in G(Ad) that can be obtained by
removing all but one outgoing edge per Player O’s state. We can finally transform this
strategy into a Moore machine with at most n2n+2 +1 states that realizesAd (andA).�

The following theorem states that we can reduce the realizability of a tbUCW specifi-
cation to the realizability of a tbUKCW specification.

Theorem 1. Let A be a tbUCW over ΣI , ΣO with n states and K = 2n(n2n+2 + 1).
Then A is realizable iff (A,K) is realizable.

Proof. If A is realizable, by Lem. 2, there is a non-empty Moore machine M with
m states (m ≤ n2n+2 + 1) realizing A. Thus L(M) ⊆ Luc(A) and by Lem. 1, it is
equivalent to L(M) ⊆ Luc,2mn(A). We can conclude since Luc,2mn(A) ⊆ Luc,K(A)
(2mn ≤ K). The converse is obvious as Luc,K(A) ⊆ Luc(A). �

In the first part of this section, we reduced the tbUCW realizability problem to the
tbUKCW realizability problem. In the next part, we reduce this new problem to a safety
game. It is based on the determinization of tbUKCWs into complete turn-based deter-
ministic 0-Co-Büchi automata, which can also be viewed as safety games.

An Antichain Algorithm for LTL Realizability 269

Safety Game. Turn-based two-player games are played on game arenas by two players,
Player I and Player O. A game arena is a tuple G = (SO, SI , s0, T) where SI , SO

are disjoint sets of player states (SI for Player I and SO for Player O), s0 ∈ SO is the
initial state, and T ⊆ SO × SI ∪ SI × SO is the transition relation. A finite play on
G of length n is a finite word π = π0π1 . . . πn ∈ (SO ∪ SI)∗ such that π0 = s0 and
for all i = 0, . . . , n − 1, (πi, πi+1) ∈ T . Infinite plays are defined similarly. Note that
all infinite plays belong to (S0SI)ω. A winning condition W is a subset of (SOSI)ω.
A play π is won by Player O if π ∈ W , otherwise it is won by Player I . A strategy λi

for Player i (i ∈ {I,O}) is a mapping that maps any finite play whose last state s is in
Si to a state s′ such that (s, s′) ∈ T . The outcome of a strategy λi of Player i is the set
OutcomeG(λi) of infinite plays π = π0π1π2 · · · ∈ (SOSI)ω such that for all j ≥ 0,
if πj ∈ Si, then πj+1 = λi(π0, . . . , πj). We consider the safety winning condition. It
is given by a subset of states denoted by safe. A strategy λi for Player i is winning
if OutcomeG(λi) ⊆ safeω. We sometimes write (SO, SI , s0, T, safe) to denote the
game G with safety condition safe. Finally, a strategy λi for Player i is winning in the
game G from a state s ∈ SO ∪ SI if it is winning in (SO, SI , s, T).

Determinization of UKCW. Let A be a tbUKCW (ΣO, ΣI , QO, QI , q0, α,ΔO, ΔI)
with K ∈ N. We let Q = QO ∪QI and Δ = ΔO ∪ΔI . It is easy to construct an equiv-
alent complete turn-based deterministic 0-co-Büchi automaton det(A,K). Intuitively,
it suffices to extend the usual subset construction with counters, for all q ∈ Q, that
count (up to K + 1) the maximal number of accepting states which have been visited
by runs ending up in q. We set the counter of a state q to −1 when no run on the prefix
read so far ends up in q. The final states are the sets in which a state has its counter
greater than K . For any n ∈ N, [n] denotes the set {−1, 0, 1, . . . , n}. Formally, we let
det(A,K) = (ΣO, ΣI ,FO,FI , F0, α

′, δO, δI) where:

FO = {F | F is a mapping from QO to [K + 1]}
FI = {F | F is a mapping from QI to [K + 1]}
F0 = q ∈ QO �→

{−1 if q �= q0
(q0 ∈ α) otherwise

α′ = {F ∈ FI ∪ FO| ∃q, F (q) > K}
succ(F, σ) = q �→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ Δ(p, σ), F (p) �= −1}
δO = succ|FO×ΣO δI = succ|FI×ΣI

where max ∅ = −1, and (q ∈ α) = 1 if q is in α, and 0 otherwise. The automaton
det(A,K) has the following properties:

Proposition 1. Let A be a tbUCW andK ∈ N. Then det(A,K) is deterministic, com-
plete, and Luc,0(det(A,K)) = Luc,K(A).

Reduction to a Safety game. Finally, we define the game G(A,K) as follows: it is
det(A,K) where input states are viewed as Player I’s states and output states as Player
O’s states. Transition labels can be ignored since det(A,K) is deterministic. Formally,
G(A,K) = (FO,FI , F0, T, safe) where safe = F\α′ and T = {(F, F ′) | ∃σ ∈
ΣO ∪ΣI , F

′ = succ(F, σ)}. As an obvious consequence of Th. 1 and Prop. 1, we get:.

Theorem 2 (Reduction to a safety game). Let A be a tbUCW over inputs ΣI and
outputs ΣO with n states (n > 0), and let K = 2n(n2n+2 + 1). The specification A is
realizable iff Player O has a winning strategy in the game G(A,K).

270 E. Filiot, N. Jin, and J.-F. Raskin

4 Antichain-Based Symbolic Algorithm

A fixpoint algorithm. In the previous section, we have shown how to reduce the real-
izability problem to a safety game. Symbolic algorithms for solving safety games are
constructed using the so-called controllable predecessor operator, see [8] for details. Let
A = (ΣO, ΣI , Q0, QI , q0, α,ΔO, ΔI) be a tbUCW with n states, K = 2n(n2n+2 +1)
and G(A,K) = (FO,FI , F0, T, safe) be the two-player turn-based safety game de-
fined in the previous section. Remind that Δ = ΔO ∪ ΔI and let F = FO ∪ FI . In
our case, the controllable predecessor operator is based on the two following monotonic
functions over 2F :

PreI : 2FO → 2FI

S �→ {F ∈ FI | ∀F ′ ∈ FO, (F, F ′) ∈ T =⇒ F ′ ∈ S} ∩ safe

PreO : 2FI → 2FO

S �→ {F ∈ FO | ∃F ′ ∈ FI , (F, F ′) ∈ T } ∩ safe

Let CPre = PreO ◦ PreI (CPre stands for “controllable predecessors”). The function
CPre is monotonic over the complete lattice (2FO ,⊆), and so it has a greatest fixed
point that we denote by CPre∗.

Theorem 3. The set of states from which Player O has a winning strategy in G(A,K)
is equal to CPre∗.

In particular, by Th. 2, F0 ∈ CPre∗ iff the specification A is realizable. To compute
CPre∗, we consider the following ⊆-descending chain: S0 = F , and for i ≥ 0 Si+1 =
CPre(Si) ∩ Si, until Sk+1 = Sk.

Ordering of game configurations. We define the relation �⊆ FI × FI ∪ FO × FO by
F � F ′ iff ∀q, F (q) ≤ F ′(q). It is clear that � is a partial order. Intuitively, if Player
O can win from F ′ then she can also win from all F � F ′. Formally, � is a game
simulation relation in the terminology of [3].

Closed sets and antichains. A set S ⊆ F is closed for �, if ∀F ∈ S ·∀F ′ � F ·F ′ ∈ S.
We usually omit references to � if clear from the context. Let S1 and S2 be two closed
sets, then S1 ∩ S2 and S1 ∪ S2 are closed. Furthermore, the image of a closed set S by
the functions PreI , PreO, and CPre are closed sets:

Lemma 3. For all closed sets S1, S2 ⊆ FI , S3 ⊆ FO, the sets PreO(S1), CPre(S2),
and PreI(S3) are closed.

As a consequence, all the sets manipulated by the symbolic algorithm above are closed
sets. We next show how to represent and manipulates those sets efficiently.

The closure of a set S ⊆ F , denoted by ↓S, is the set S′ = {F ′ ∈ F | ∃F ∈
S ·F ′ � F}. Note that for all closed sets S ⊆ F , ↓S = S. A set L ⊆ F is an antichain
if all elements of L are incomparable for �. Let S ⊆ F , we denote by �S� the set of
maximal elements of S, that is �S� = {F ∈ S |� ∃F ′ ∈ S · F ′ �= F ∧ F � F ′}, it is an
antichain. If S is closed then ↓�S� = S, i.e. antichains are canonical representations
for closed sets. Next, we show that antichains are a compact and efficient representation
to manipulate closed sets in F . We start with the algorithms for union, intersection,
inclusion and membership. Since the size of a state F ∈ F is in practice much smaller
than the number of elements in the antichains, we consider that comparing two states is
in constant time.

An Antichain Algorithm for LTL Realizability 271

Proposition 2. Let L1, L2 ⊆ F be two antichains and F ∈ F , then (i) ↓L1 ∪ ↓
L2 = ↓�L1 ∪ L2�, this antichain can be computed in time O((|L1| + |L2|)2) and its
size is bounded by |L1| + |L2|, (ii) ↓L1∩ ↓L2 = ↓�L1 � L2�, where F1 � F2 : q �→
min(F1(q), F2(q)), this antichain can be computed in time O(|L1|2 × |L2|2) and its
size is bounded by |L1| × |L2|, (iii) ↓L1 ⊆↓L2 iff ∀F1 ∈ L1 · ∃F2 ∈ L2 · F1 � F2,
which can be established in time O(|L1| × |L2|), (iv) F ∈↓L1 can be established in
time O(|L1|).
Let us now turn to the computation of controllable predecessors. Let F ∈ F , and σ ∈
ΣI ∪ΣO. We denote by Ω(F, σ) ∈ F the function defined by:

Ω(F, σ) : q ∈ Q �→ min{max(−1, F (q′) − (q′ ∈ α)) | (q, σ, q′) ∈ δ}
Note that since A is complete, the argument of min is a non-empty set. The function
Ω is not the inverse of the function succ, as succ has no inverse in general. Indeed,
it might be the case that a state F ∈ F has no predecessors or has more than one
predecessorH such that succ(H,σ) = F . However, we prove the following:

Proposition 3. For all F, F ′ ∈ F ∩ safe, and all σ ∈ ΣI ∪ΣO ,

(i) F � F ′ =⇒ Ω(F, σ) � Ω(F ′, σ) (iii) F � Ω(succ(F, σ), σ)
(ii) F � F ′ =⇒ succ(F, σ) � succ(F ′, σ) (iv) succ(Ω(F, σ), σ) � F

For all S ⊆ F and σ ∈ ΣI ∪ ΣO, we denote by Pre(S, σ) = {F | succ(F, σ) ∈ S}
the set of predecessors of S. The set of predecessors of a closed set ↓F is closed and
has a unique maximal element Ω(F, σ):

Lemma 4. For all F ∈ F ∩ safe and σ ∈ ΣI ∪ΣO , Pre(↓F, σ) =↓Ω(F, σ).

Proof. Let H ∈ Pre(↓F, σ). Hence succ(H,σ) � F . By Prop. 3(i), we have
Ω(succ(H,σ), σ) � Ω(F, σ), from which we get H � Ω(F, σ), by Prop. 3(iii).
Conversely, let H � Ω(F, σ). By Prop. 3(ii), succ(H,σ) � succ(Ω(F, σ), σ). Since
by Prop. 3(iv), succ(Ω(F, σ), σ) � F , we get succ(H,σ) � F . �

We can now use the previous result to compute the controllable predecessors:

Proposition 4. Let A be a tbUK CW. Given two antichains L1, L2 such that L1 ⊆
FI ∩ safe and L2 ⊆ FO ∩ safe:

PreO(↓L1) =
⋃

σ∈ΣO
Pre(↓L1, σ) =

⋃
σ∈ΣO

↓{Ω(F, σ) | F ∈ L1}
PreI(↓L2) =

⋂
σ∈ΣI

Pre(↓L2, σ) =
⋂

σ∈ΣI
↓{Ω(F, σ) | F ∈ L2}

PreO(↓L1) can be computed in time O(|ΣO| × |A| × |L1|), and PreI(↓L2) can be
computed in time O((|A| × |L2|)|ΣI |).

As stated in the previous proposition, the complexity of our algorithm for computing
the PreI is worst-case exponential. We establish as a corollary of the next proposition
that this is unavoidable unless P=NP . Given a graph G = (V,E), a set of vertices W
is independent iff no pairs of elements in W are linked by an edge in E. We denote by
IND(G) = {W ⊆ V | ∀{v, v′} ∈ E · v �∈ W ∨ v′ �∈ W} the set of independent sets
in G. The problem ”independent set” asks given a graph G = (V,E) and an integer
0 ≤ k ≤ |V |, if there exists an independent set in G of size larger than k. It is known to
be NP -complete.

272 E. Filiot, N. Jin, and J.-F. Raskin

Proposition 5. Given a graph G = (V,E), we can construct in deterministic poly-
nomial time a UK CW A, with K = 0, and an antichain L such that IND(G) =↓
PreI(PreO(PreO((L))).

Corollary 1. There is no polynomial time algorithm to compute the PreI operation on
antichains unless P = NP .

Note that this negative result is not a weakness of antichains. Indeed, it is easy to see
from the proofs of those results that any algorithm based on a data structure that is able
to represent compactly the set of subsets of a given set has this property.

Incremental Algorithm. In practice, for checking the existence of a winning strategy for
Player O in the safety game, we rely on an incremental approach. We use the following
property of UK CWs: for all K1,K2 · 0 ≤ K1 ≤ K2 · Luc,L1(A) ⊆ Luc,K2(A) ⊆
Luc(A). So, the following theorem which is a direct consequence of the previous prop-
erty allows us to test the existence of strategies for increasing values of K:

Theorem 4. For all tbUCWs A, for all K ≥ 0, if Player O has a winning strategy in
the game G(A,K) then the specification defined by A is realizable.

Unrealizable Specifications. The incremental algorithm is not reasonable to test unre-
alizability. Indeed, with this algorithm it is necessary to reach the bound 2n(n2n+2 +1)
to conclude for unrealizability. To obtain a more practical algorithm, we rely on the
determinacy of ω-regular games (a corollary of the general result by Martin [11]).

Theorem 5. For all LTL formulas φ, either (i) there exists a Player O’s strategy λO

s.t. for all Player I’s strategies λI , outcome(λO , λI) |= φ, or there exists a Player I’s
strategy λI s.t. for all Player O’s strategies λO , outcome(λO , λI) |= ¬φ.

So, when an LTL specification φ is not realizable for Player O, it means that ¬φ is
realizable for Player I . To avoid in practice the enumeration of values for K up to
2n(n2n+2 + 1), we propose the following algorithm. First, given the LTL formula φ,
we construct two UCWs: one that accepts all the models of φ, denoted by Aφ, and
one that accepts all the models of ¬φ, denoted by A¬φ. Then we check realizability by
Player O of φ, and in parallel realizability by Player I of ¬φ, incrementing the value of
K . When one of the two processes stops, we know if φ is realizable or not. In practice,
we will see that either φ is realizable for Player O for a small value of K or ¬φ is
realizable for Player I for a small value of K .

Synthesis. If a UCW A is realizable, it is easy to extract from the greatest fixpoint
computation a Moore machine that realizes it. LetΠI ⊆ FI∩safe andΠO ⊆ FO∩safe
be the two sets obtained by the greatest fixpoint computation. In particular,ΠI andΠO

are downward-closed and PreO(ΠI) = ΠO, PreI(ΠO) = ΠI . By definition of PreO,
for all F ∈ �ΠO�, there exists σF ∈ Σ such that succ(F, σF) ∈ ΠI , and this σF can
be computed. From this we can extract a Moore machine whose set of states is �ΠO�,
the output function maps any state F ∈ �ΠO� to σF , and the transition function, when
reading some σ ∈ ΣI , mapsF to a state F ′ ∈ �ΠO� such that succ(succ(F, σF), σ) �
F ′ (it exists by definition of the fixpoint and by monotonicity of succ). The initial state
is some state F ∈ �ΠO� such that F0 � F (it exists if the specification is realizable).
Let M be this Moore machine. For any word w accepted by M , it is clear that w is also
accepted by det(A,K), as succ is monotonic and ΠO ⊆ safe. Therefore L(M) ⊆
Luc,0(det(A,K)) = Luc,K(A) ⊆ Luc(A).

An Antichain Algorithm for LTL Realizability 273

F

{p}

{q}

∅

Fig. 2. Moore machine

Example. We apply the antichain algorithm on the tbUCW
depicted in Fig. 1, with K = 1. Remember that I = {q}
and O = {p}, so that ΣI = {∅, {q}} and ΣO = {∅, {p}}.
For space reasons, we cannot give the whole fixpoint com-
putation. We starts with the safe state in G(A,K) for Player
O, i.e. the constant function from QO to 1 denoted by
F1 = (1 �→ 1, 4 �→ 1, 6 �→ 1, 8 �→ 1). It represents
the set ↓F1. Then we compute �PreI(↓F1)� ∩ safe = �↓
Ω(F1, {q}) ∩ ↓Ω(F1,∅)� ∩ safe. We have Ω(F1, {q}) =
(2 �→ 1, 3 �→ 1, 5 �→ 0, 7 �→ 0, 9 �→ 1) and Ω(F1,∅) =
(2 �→ 1, 3 �→ 1, 5 �→ 1, 7 �→ 0, 9 �→ 1). Therefore �PreI(↓F1)� = {F2 := (2 �→
1, 3 �→ 1, 5 �→ 0, 7 �→ 0, 9 �→ 1)}. Then we have Ω(F2, {p}) = Ω(F2,∅) = (1 �→
1, 4 �→ 0, 6 �→ 0, 8 �→ 1). Therefore �PreO(↓F2)� ∩ safe = �CPre({F1})� ∩ safe =
{(1 �→ 1, 4 �→ 0, 6 �→ 0, 8 �→ 1)}. At the end of the computation, we get the fixpoint
↓{F := (1 �→ 1, 4 �→ −1, 6 �→ −1, 8 �→ 1)}. Since the initial state F0 is in ↓F , Player
O has a winning strategy and the formula is realizable. Fig. 2 shows a Moore machine
obtained from the fixpoint computation.

5 Performance Evaluation

In this section, we briefly present our implementation Acacia and compare it to Lily [9].
More information can be found online [2]. Acacia is a prototype implementation of our
antichain algorithm for LTL realizability and synthesis. To achieve a fair comparison,
Acacia is written in Perl as Lily. Given an LTL formula and a partition of its proposi-
tions into inputs and outputs, Acacia tests realizability of the formula. If it is realizable,
it outputs a Moore machine representing a winning strategy for the output player5, oth-
erwise it outputs a winning strategy for the input player. As Lily, Acacia runs in two
steps. The first step builds a tbUCW for the formula, and the second step checks realiz-
ability of the automaton. As Lily, we borrow the LTL-to-tbUCW construction procedure
from Wring [19] and adopt the automaton optimizations from Lily, so that we can ex-
clude the influence of automata construction to the performance comparison between
Acacia and Lily6.

We carried out experiments on a Linux platform with a 2.1GHz CPU and 2GB of
memory. We compared Acacia and Lily on the test suite included in Lily, and on other
examples derived from Lily’s examples, as detailed in the sequel. As shown in the pre-
vious section (Th. 5), realizability or unrealizability tests are slightly different, as we
test unrealizability by testing the realizability by the environment of the negation of the
specification. In the experiments, depending on whether the formula is realizable or not,
we only report the results for the realizability or unrealizability tests. In practice, those
two tests should be run in parallel.

Results. Tables 1 and 2 report on the results of the tests for unrealizable and realiz-
able examples respectively. In those tables, Column formula size gives the size of the

5 Note that the correctness of this Moore machine can be automatically verified by model-
checking tools if desired.

6 In Lily, this first step produces universal co-Büchi tree automata over ΣO-labeled ΣI -trees,
which can easily be seen as tbUCWs over inputs ΣI and outputs ΣO. Although the two models
are close, we introduced tbUCWs for the sake of clarity (as all our developments are done on
construction for word automata).

274 E. Filiot, N. Jin, and J.-F. Raskin

Table 1. Performance comparison for unrealizability test

Lily Acacia
formula tbUCW tbUCW Check tbUCW tbUCW K No. max{|PreI |}/ Check

size St./Tr. Time(s) Time(s) St./Tr. Time(s) Iter. max{|PreO|} Time(s)
1 28 ∅ 0.17 0.01 6/27 0.24 1 1 1/1 0.00
2 28 ∅ 0.17 0.01 18/101 1.89 3 6 1/1 0.05
4 38 18/56 3.53 1.13 23/121 3.16 2 8 3/4 0.14
11 12 ∅ 1.32 0.04 3/10 0.07 0 1 1/1 0.00

22.1 24 5/9 0.18 0.09 22/126 4.97 1 5 2/2 0.05
22.2 23 4/14 0.32 0.11 23/126 4.85 1 4 1/1 0.04
22.3 29 5/15 0.36 0.11 23/130 6.25 1 5 2/2 0.06
22.4 37 6/34 2.48 0.18 26/137 6.47 1 10 12/10 0.38

formulas (number of atomic propositions and connectives). Column tbUCW St./Tr.
gives the number of states and transitions of the tbUCWs transformed from LTL for-
mula. One may encounter ∅ when Lily’s tbUCW optimization procedure concludes
the language emptiness of the tbUCW. Column tbUCW Time(s) gives the time (in
seconds) spent on building up the tbUCWs. For realizability tests, Lily and Acacia con-
struct the same tbUCW, while for unrealizability tests, they are different (as shown in
Section 4, we use the tbUCW corresponding to the negation of the formula). Column
Rank gives the maximal rank used by Lily when trying to transform the tbUCW to an
alternating weak tree automaton. Rank is a complexity measure for Lily. Column Check
Time(s) gives the time (in seconds) spent in realizability checking. If the language of
a tbUCW is proved to be empty during the optimization stage, Lily will directly con-
clude for unrealizability. Column K reports the minimal K for which Acacia was able
to conclude realizability of the tbUKCW. Usually, K is small for realizable specifica-
tions. Column No. Iter. gives the number of iterations to compute the fixpoint. Column
max{|PreI |}/max{|PreO|} reports on the maximal sizes of the antichains obtained
during the fixpoint computation when applying PreI and PreO respectively.

Comments. Lily’s test suite includes examples 1 to 23. Except examples 1, 2, 4, and 11,
they are all realizable. Table 2 shows, except demo 16, Acacia performs much better
than Lily in realizability tests. For unrealizability tests, if we do not take into account
the time for tbUCW construction, Acacia performs better as well. In the test suite,
demo 3 describes a scheduler. We have taken a scalability test by introducing more
clients. In Table 2, from 3.4 to 3.6, when the number of clients reached 4, Lily ran
over-time (> 3600 seconds). However, Acacia managed in finishing the check within
the time bound. One can weaken/strengthen a specification by removing/appending en-
vironment assumptions and controller assertions. We have carried out a diagnostic test
based on demo 22. In the test cases from 22.3 to 22.9, the environment assumptions
are getting stronger and stronger. The specifications turn out to be realizable after the
case 22.5. A controller with a stronger environment shall be easier to realize. The data
in Table 2, from 22.5 to 22.9, confirm this. For unrealizability check, in Table 1 from
22.1 to 22.4, both tools spent more time on case 22.4 than on case 22.3. However, Aca-
cia turns out to be better for Check Time. Finally, we can see that the bottleneck for
examples 22.1 to 22.9, as well as for examples 20 to 22, is the time spent to construct
the automaton. With regards to this concern, the improvement in time complexity com-
pared to Lily is less impressive. However, it was not expected that this first step of the
algorithm (constructing the NBW for the LTL formula) would have been the bottleneck

An Antichain Algorithm for LTL Realizability 275

Table 2. Performance comparison for realizability test

Lily Acacia
formula tbUCW tbUCW Rank Check K No. max{|PreO|}/ Check

size St./Tr. Time(s) Time(s) Iter. max{|PreI |} Time(s)
3 34 10/28 0.97 1 0.30 0 2 2 /2 0.00
5 44 13/47 1.53 1 0.65 0 2 2 /2 0.01
6 49 19/63 3.19 1 0.91 0 3 3 /3 0.03
7 50 11/34 1.42 1 0.31 0 2 2 /2 0.01
8 7 3/6 0.07 1 0.02 0 1 1 /1 0.00
9 22 5/10 0.33 1 0.03 1 6 3 /2 0.01

10 13 7/21 0.63 1 0.10 0 1 1 /1 0.00
12 14 8/26 0.35 1 0.07 0 1 1 /1 0.00
13 11 3/4 0.02 1 0.01 1 3 2 /1 0.00
14 21 5/13 0.26 1 0.07 1 4 3 /3 0.01
15 31 6/16 0.24 1 0.11 2 9 9 /13 0.08
16 56 8/26 0.57 1 1.45 3 16 64/104 7.89
17 37 6/20 0.40 1 0.31 2 12 8 /7 0.10
18 63 8/31 0.92 1 2.35 2 12 19/19 0.89
19 32 7/17 0.75 3 4.05 2 12 5/5 0.03
20 72 25/198 7.03 1 0.99 0 3 1 /1 0.04
21 119 13/72 15.61 1 1.88 0 4 25/13 0.40
22 62 19/115 25.28 1 1.21 1 7 4 /7 0.10
23 19 7/12 0.47 1 0.04 2 2 2 /1 0.00
3.1 34 10/28 1.09 1 0.31 0 2 2 / 2 0.01
3.2 63 18/80 2.60 1 7.70 0 2 4 / 4 0.07
3.3 92 26/200 2.60 1 554.99 0 2 8 / 8 0.65
3.4 121 34/480 7.59 - > 3600 0 2 16/ 16 8.46
3.5 150 42/1128 12.46 - > 3600 0 2 32/ 32 138.18
3.6 179 50/2608 22.76 - > 3600 1 2 64/64 2080.63

22.5 41 7/38 4.17 1 0.50 2 19 4/6 0.12
22.6 62 19/115 21.20 1 1.52 1 7 4/7 0.11
22.7 56 13/75 7.51 1 0.73 1 6 3/4 0.05
22.8 51 10/50 3.82 1 0.43 1 5 2/3 0.03
22.9 47 7/29 1.46 1 0.33 1 5 2/3 0.02

of the approach. Indeed, the problem is 2EXPTIME-COMPLETE, while the automata
construction is in EXPTIME, and in [13], the forseen bottleneck is clearly the second
step that relies on Safra’s determinization.

As a conclusion, the experiments show that the antichain algorithm is a very promis-
ing approach to LTL synthesis. Although the formulas are still rather small, the results
validate the relevance of the method. Indeed, without any further optimization, the re-
sults outperform Lily. We think that our algorithm is a step towards the realization of a
tool that can handle specifications of practical interest.

Comparison with Kupferman-Vardi’s Approach (implemented in Lily). In [10], the au-
thors give a Safraless procedure for LTL synthesis. It is a three steps algorithm: (i)
transform an LTL formula into a universal co-Büchi tree automaton (UCT) A that ac-
cepts the winning strategies of the controller, (ii) transform A into an alternating weak
tree automatonB (AWT) such that L(B) �= ∅ iff L(A) �= ∅, (iii) transformB into an
equivalent Büchi tree automaton C (NBT) and test its emptiness. This latter problem

276 E. Filiot, N. Jin, and J.-F. Raskin

can be seen as solving a game with a Büchi objective. This approach differs from our
approach in the following points. First, in [10], the author somehow reduce the real-
izability problem to a game with a Büchi objective, while our approach reduces it to
a game with a safety objective. Second, our approach allows one to define a natural
partial order on states that can be exploited by an antichain algorithm, which is not ob-
vious in the approach of [10]. Finally, in [10], states of AWT are equipped with unique
ranks that partition the set of states into layers. States which share the same rank are
either all accepting or all non-accepting. The transition function allows one to stay in
the same layer or to go in a layer with lower rank. A run is accepting if it gets stuck
in a non-accepting layer. While our notion of counters looks similar to ranks, it is dif-
ferent. Indeed, the notion of rank does not constraint the runs to visit accepting states
a bounded number of times (bounded by a constant). This is why a Büchi acceptance
condition is needed, while counting the number of visited accepting states allows us to
define a safety acceptance condition. However, we conjecture that when our approach
concludes for realizability with bound k, the algorithm of [10] can conclude for real-
izability with a maximal rank linearly bounded by k. The converse is not true, we can
define a class of examples where the maximal rank needed by [10] is 1 while our ap-
proach necessarily needs to visit at least an exponential number of accepting states. This
is because the ranks does not count the number of accepting states, but counts somehow
the number of finite sequences of accepting states of a certain type. We think that it is
an interesting question for future research to see how the two methods can benefit from
each other, and to formally prove the conjecture above.

6 Summary

This paper described a novel Safraless approach to LTL realizability and synthesis,
based on universal K-Co-Büchi word automata. These automata can be easily deter-
minized, and enjoy a structure that allowed us to define an antichain algorithm for
LTL realizability, implemented in the tool Acacia. The results are very promising, as
Acacia outperforms the existing tool Lily without any further optimizations (apart from
antichains) while Lily uses clever optimizations to make the Vardi and Kupferman algo-
rithm practical. Note that our approach also applies to any logic which can be translated
into a UCW, and in particular, any logic closed by negation which can be translated
into an NBW7.

We plan to optimize Acacia in several ways. First, as the construction of the nonde-
terministic automaton from the LTL formula is currently the bottleneck of our approach,
we would like to translate LTL formulas (in linear time) into alternating word automata,
and then to UCW by applying the Miyano-Hayashi (MH) construction [17] implicitely
as in [6,21]. The difficulty here is to find an adequate symbolic representation of count-
ing functions for the implicit MH state space. Second, we would like to study how a
compositional approach to realizability could apply to specifications which are large
conjunctions of (small) sub-specifications.

Acknowledgments. We are grateful to the referees for their valuable comments and we
warmly thank Laurent Doyen for his helpful remarks.

7 Note also that any ω-regular specification can be expressed as a UCW, as a consequence our
method is applicable to all such objective.

An Antichain Algorithm for LTL Realizability 277

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive
systems. In: Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Acacia (2009), http://www.antichains.be
3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations.

In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178.
Springer, Heidelberg (1998)

4. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based universality
and inclusion testing over nondeterministic finite tree automata. In: CIAA, pp. 57–67 (2008)

5. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for
checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

6. Doyen, L., Raskin, J.-F.: Improved algorithms for the automata-based approach to model-
checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465.
Springer, Heidelberg (2007)

7. Fogarty, S., Vardi, M.: Buechi complementation and size-change termination. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30. Springer,
Heidelberg (2009)

8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

9. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124. IEEE
Computer Society, Los Alamitos (2006)

10. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS: IEEE Symposium on
Foundations of Computer Science (FOCS) (2005)

11. Martin, D.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
12. Piterman, N.: From nondeterministic büchi and streett automata to deterministic parity au-

tomata. Logical Methods in Computer Science 3(3) (2007)
13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symposium on Prin-

ciples of Programming Languages (POPL). ACM, New York (1989)
14. Raskin, J.-F., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for omega-regular

games with imperfect information. Logical Methods in Computer Science 3(3) (2007)
15. Rosner, R.: Modular synthesis of reactive systems. Ph.d. dissertation, Weizmann Institute of

Science (1992)
16. Ruys, T.C., Holzmann, G.J.: Advanced SPIN Tutorial. In: Graf, S., Mounier, L. (eds.) SPIN

2004. LNCS, vol. 2989, pp. 304–305. Springer, Heidelberg (2004)
17. Miyano, S., Hayashi, T.: Alternating automata on ω-words. Theoretical Computer Sci-

ence 32, 321–330 (1984)
18. Safra, S.: On the complexity of ω automata. In: FOCS, pp. 319–327 (1988)
19. Somenzi, F., Bloem, R.: Efficient büchi automata from LTL formulae. In: Emerson, E.A.,

Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)
20. Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Der-

showitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–
655. Springer, Heidelberg (2008)

21. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algorithms for
LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

http://www.antichains.be

	An Antichain Algorithm for LTL Realizability
	Introduction
	LTL and Realizability Problem
	Reduction to a UKCW Objective
	Antichain-Based Symbolic Algorithm
	Performance Evaluation
	Summary
	References

