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Abstract. In this paper, we use the Malliavin calculus techniques to obtain an
anticipative version of the change of variable formula for Lévy processes. Here the
coefficients are in the domain of the anihilation (gradient) operator in the “future
sense”, which includes the family of all adapted and square-integrable processes.
This domain was introduced on the Wiener space by Alòs and Nualart (1998).
Therefore, our Itô formula is not only an extension of the usual adapted formula
for Lévy processes, but also an extension of the anticipative version on Wiener
space obtained in Alòs and Nualart (1998).

1. Introduction

It is well–known that the Itô formula, or change of variable formula, is one of the
most powerful tools of the stochastic analysis due to its vast range of applications.
So, in the last few years, various researchers have studied extensions of the classical
Itô formula for different interpretations of stochastic integral (see, for instance, Alòs
and Nualart, 1998, Di Nunno et al., 2005, Moret and Nualart, 2001, Nualart and
Taqqu, 2006, and Tudor and Viens, 2006). In particular, several authors have been
interested in finding extensions of this important formula to the case where the
coefficients are not adapted to the underlying filtration (see Di Nunno et al., 2006,
León et al., 2003, Nualart and Pardoux, 1988, or Russo and Vallois, 1995).
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mula, Lévy-Itô representation, Lévy processes, Skorohod and pathwise integrals.

285



286 Elisa Alós, Jorge A. León and Josep Vives

The Malliavin calculus or calculus of variations is another important tool of the
stochastic analysis that allows us to deal with stochastic integrals whose domains
include processes that are not necessarily adapted to the underlying filtration. Re-
cently, the interest of this calculus has increased considerably because of its ap-
plications in finance (see, for example, Alòs, 2006, Alòs et al., 2007, Bally et al.,
2005, Fournié et al., 2001, 1999, Imkeller, 2003, Nualart, 2006 or Øksendal, 1996),
or other theoretical applications (see Alòs and Nualart, 1998, León and Nualart,
1998, Nualart, 1998, 2006 or Sanz-Solé, 2005). This important theory is basically
based on the divergence and gradient operators.

The divergence operator has been interpreted as a stochastic integral because
it has properties similar to those of the Itô stochastic integral. For instance, the
isometry and local properties, the fact that it can be approximated by Riemann
sums, the integration by parts formula, etc. (see Nualart, 2006). Hence, it is
important to count on a change of variable formula for the divergence operator in
order to improve the applications of the Malliavin calculus to different areas of the
human knowledge.

On the Wiener space, the divergence operator was defined by Skorohod (1975)
and it is an extension of the classical Itô integral. In order to analyze the properties
of the Skorohod integral, the adaptability of the integrands (necessary in the Itô’s
calculus) is changed by some analytic properties that are used to define some spaces,
called Sobolev spaces, where a fundamental ingredient is the derivative (gradient)
operator (see Sections 2.3 and 2.4 below). For instance, Alòs and Nualart (1998)
have considered processes with derivatives “in the future sense”.

In this paper the stochastic integral with respect to the continuous part of the
underlying Lévy process is in the Skorohod sense. The Skorohod integral can be
introduced using different approaches. Namely, the first method is via the Wiener
chaos decomposition, and the second one considers the Skorohod integral as the
adjoint of the gradient (derivative) operator.

On the Poisson space, the above two methods produce different definitions of
stochastic integral (see, for example Carlen and Pardoux, 1990, León and Tudor,
1998, Nualart and Vives, 1995, or Picard, 1996a). Moreover, in this space, we can
take advantage of the pathwise characterizations of some stochastic integrals, as
we do in this paper, to deal with applications of the stochastic analysis (see León
et al., 2001, Picard, 1996b or Privault, 1993). In particular, the gradient operator
is a difference one.

Recently, several approaches to develope a calculus of variations for Lévy pro-
cesses have been introduced in some articles (see, for instance, Di Nunno et al.,
2005, Løkka, 2004 and Solé et al., 2007, among others). The gradient and diver-
gence operators are the fundamental tools in this theory again. In this paper, we
restrict ourselves to the canonical Lévy space defined in Solé et al. (2007) because,
in this space, the gradient operator defined utilizing the chaotic decomposition of
a square–integrable random variable is not a “derivative operator” (see Section 2.3
below), but it is the sum of a derivative and an increment quotient operators. This
fact is important because we can obtain and use the relation between the stochastic
integral introduced via the chaos decomposition and the pathwise stochastic inte-
gral, both with respect to the jump part of the involved Lévy process (see Lemma
2.7 below).
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The purpose of this paper is to use the Malliavin calculus on the canonical
Lévy space given in Solé et al. (2007) to prove an anticipating Itô formula for
Lévy processes. Here, the stochastic integrals with respect to the continuous and
jump parts of the underlying Lévy process are in the Skorohod and pathwise sense,
respectively. The coefficients in this formula have two “derivatives in the future
sense”. It means, they are in a class of square-integrable processes u such that ut

is in the domain of the gradient operator D at time r for r > t, and Drut is also in
the domain of D (see Section 2.4). An example of processes satisfying this property
is the square-integrable and adapted processes, whose “derivative” is equal to zero.

The paper is organized as follows. In Section 2 we present the framework that
we use in this paper. Namely, we introduce some basic facts of the canonical Lévy
space and of the Malliavin calculus on this space. Finally, the anticipating Itô
formula is studied in Section 3.

2. Preliminaries

In this section we give the framework that will be used in this article. That
is, we introduce briefly the Itô multiple integrals with respect to a Lévy process,
and the canonical Lévy process considered by Solé et al. (2007). Then we present
some basic facts on the Malliavin calculus for this process. We need to study the
anihilation and creation operators corresponding to the Fock space associated with
the chaos decomposition on Lévy space, and analyze the Sobolev spaces associated
with these operators. Althoug some of these facts are known, we give them for the
convenience of the reader.

Throughout, we set R0 = R − {0} and T > 0. Let ν be a Lévy measure on R

such that ν({0}) = 0 and
∫
R

x2dν(x) < ∞ (see Sato, 1999). The Borel σ–algebra of

a set A ⊂ R is denoted by B(A). The jump of a cádlág process Z at time t ∈ [0, T ]
is represented by ∆Zt (i.e., ∆Zt := Zt − Zt−).

2.1. Itô multiple integrals. The construction of multiple integrals with respect to
Lévy processes is quite similar to that of multiple integrals with respect to the
Brownian motion. The reader can consult Itô (1956) for a complete survey on this
topic.

Let X = {Xt : t ∈ [0, T ]} be a Lévy process with triplet (γ, σ2, ν). It is well–
known that X has the Lévy–Itô representation (see Sato, 1999)

Xt = γt + σWt +

∫

(0,t]×{|x|>1}

xdJ(s, x) + lim
ε↓0

∫

(0,t]×{ε<|x|≤1}

xdJ̃(s, x). (2.1)

Here the convergence is with probability 1, uniformly on t ∈ [0, T ], W = {Wt : t ∈
[0, T ]} is a standard Brownian motion,

J(B) = #{t : (t, ∆Xt) ∈ B}, B ∈ B([0, T ]× R0),

is a Poisson measure with parameter dt ⊗ dν and dJ̃(t, x) = dJ(t, x) − dtdν(x).
For E1, . . . , En ∈ B([0, T ]× R) such that Ei ∩ Ej = ∅, i 6= j, and

µ(Ei) := σ2

∫

{t∈[0,T ]:(t,0)∈Ei}

dt +

∫

Ei−(Ei∩([0,T ]×{0}))

x2dtdν(x) < ∞,
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we define the multiple integral In(1E1×···×En
) of order n with respect to M by

In(1E1×···×En
) = M(E1) · · ·M(En), (2.2)

with

M(Ei) = σ

∫

{t∈[0,T ]:(t,0)∈Ei}

dWt + lim
m→∞

∫

{(t,x)∈Ei:
1
m

<|x|<m}

xdJ̃(t, x),

where the limit is in the L2(Ω) sense. By linearity, we can define the multiple
integral of order n of an elementary function f of the form

f(·) =

N∑

i1,...,in=1

ai1,...,in
1Ai1×...×Ain

(·),

where A1, . . . , AN are pairwise disjoint sets of B([0, T ]×R) and ai1,...,in
= 0 if two

of the indices i1, . . . , in are equal.
The multiple integral In is extended to L2

n := L2(([0, T ] × R)n; B(([0, T ] ×
R)n); µ⊗n) due to the fact that the space of all the elementary functions is dense
in L2

n and the property

E[In(1E1×···×En
)Im(1F1×···×Fm

)]

= δn(m)n!

∫

([0,T ]×R)n

1̃E1×···×En
1̃F1×···×Fm

dµ⊗n, (2.3)

where f̃ is the symmetrization of the function f and δn is the Dirac measure con-
centrated at n.

It is well–known that if F is a square–integrable random variable, measurable
with respect to the filtration generated by X , then F has the unique representation

F =

∞∑

n=0

In(fn), (2.4)

where I0(f0) = f0 = E(F ) and fn is a symmetric function in L2
n. This is the so

called chaotic representation property for Lévy processes.

2.2. Canonical Lévy space. The purpose of this subsection is to present some basic
elements of the structure of the canonical Lévy space on the interval [0, T ]. For a
more detailed account of this subject, we refer to Solé et al. (2007).

The construction of the canonical Lévy space is divided in three steps, as follows:

Step 1. Here we introduce the canonical space for a compound Poisson process.
Toward this end, let Q be a probability measure on R, supported on S ∈ B(R0),
and λ > 0. Set

ΩT =
⋃

n≥0

([0, T ] × S)n,

with ([0, T ] × S)0 = {α}, where α is an arbitrary point. The set ΩT is equipped
with the σ–algebra

FT = {B ⊂ ΩT : B ∩ ([0, T ] × S)n ∈ B(([0, T ]× S)n), for all n ≥ 1}.

The probability PT on (ΩT ,FT ) is given by

PT (B ∩ ([0, T ] × S)n) = e−λT λn(dt ⊗ Q)⊗n(B ∩ ([0, T ] × S)n)

n!
,
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with (dt ⊗ Q)0 = δα. Here δα is the Dirac measure concentrated at α.
The space (ΩT ,FT , PT ) is called the canonical space for the compound Poisson

process with Lévy measure λQ. A similar definition for the Poisson process was
given in Neveu (1977), and in Nualart and Vives (1995). In (ΩT ,FT , PT ) the process

Xt(ω) =





n∑
j=1

xj1[0,t](tj), if ω = ((t1, x1), · · · , (tn, xn)),

0, if ω = α,

is a compound Poisson process with intensity λ and jump law given by the proba-
bility measure Q.

Step 2. Now we consider the canonical space for a pure jump Lévy process with
Lévy measure ν.

Let S1 = {x ∈ R : ε1 < |x|} and Sk = {x ∈ R : εk < |x| ≤ εk−1} for k > 1. Here
{εk : k ≥ 1} is a strictly decreasing sequence of positive numbers such that ε1 = 1,
lim

k→∞
εk = 0 and ν(Sk) 6= 0. Note that the fact that ν is a Lévy measure implies

that ν(Sk) < ∞ for every k ≥ 1. Now, the canonical Lévy space with measure ν is
defined as

(ΩJ ,FJ ,PJ) =
⊗

k≥1

(Ω(k),F (k), P (k)),

where (Ω(k),F (k), P (k)) is the canonical space for the canonical compound Poisson

process {X
(k)
t : t ∈ [0, T ]} with intensity λk = ν(Sk) and probability measure

Qk = ν(·∩Sk)
ν(Sk) . In this case, for ω = (ωk)k≥1 ∈ ΩJ and t ∈ [0, T ], the limit

Jt(ω) = lim
n→∞

n∑

k=2

(X
(k)
t (ωk) − t

∫

Sk

xdν(x)) + X
(1)
t (ω1)

exists with probability 1 and it is a pure jump Lévy process with Lévy measure ν.

Step 3. The canonical Lévy space on [0, T ] with Lévy measure ν is

(Ω,F , P ) = (ΩW ⊗ ΩJ ,FW ⊗FJ , PW ⊗ PJ),

where (ΩW ,FW , PW ) is the canonical Wiener space. Here, for ω = (ω′, ω
′′

) ∈
ΩW ⊗ ΩJ , the process

Xt(ω) = γt + σω′(t) + Jt(ω
′′

) (2.5)

is a Lévy process with triplet (γ, σ2, ν). For this fact we refer to Sato (1999).

2.3. The anihilation and creation operators. Henceforth we suppose that the un-
derlying probability space (Ω,F , P ) is the canonical Lévy space with Lévy measure
ν and that X is the Lévy process defined in (2.5).

We say that the square-integrable random variable F given by (2.4) belongs to

the domain of the anihilation operator D (F ∈ D
1,2

for short) if and only if
∞∑

n=1

nn!||fn||
2
L2

n
< ∞. (2.6)

In this case we define the random field DF = {DzF : z ∈ [0, T ]× R} as

DzF =
∞∑

n=1

nIn−1(fn(z, ·)).
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Note that (2.6) yields that the last series converges in L2(Ω × [0, T ] × R; P ⊗ µ)
by (2.3). Thus, in this case, we have that

∑m

n=0 In(fn) and
∑m

n=1 nIn−1(fn(z, ·))
converge to F and DF in L2(Ω) and in L2(Ω × [0, T ] × R; P ⊗ µ) as m → ∞,
respectively. D is a closed operator from L2(Ω) into L2(Ω × [0, T ] × R; P ⊗ µ),
with dense domain. Similarly we can define the iterated derivative Dn

z1,...,zn
=

Dz1 · · ·Dzn
and its domain D

n,2
.

The following result is due to Solé et al. (2007) and it establishes how we can
figure out the random field DF without using the chaos decomposition (2.4). In
order to state it, we need the following:

Henceforth W = {Wt : t ∈ [0, T ]} is the canonical Wiener process and D
1,2
W (L2(ΩJ ))

denotes the family of L2(ΩJ ,FJ , PJ)–valued random variables that are in the do-
main of the derivative operator DW with respect to W . The reader can consult
Nualart (2006) for the basic definitions and properties of this operator. The space

D
1,2
W (L2(ΩJ)) is constructed as follows. We say that a random variable F is an

L2(ΩJ )-valued smooth random variable if it has the form

F = f(Wt1 , . . . , Wtn
)Z,

with ti ∈ [0, T ], f ∈ C∞
b (R

n
) (i.e., f and all its partial derivatives are bounded),

and Z ∈ L2(ΩJ ,FJ , PJ). The derivative of F with respect to W , in the Malliavin
calculus sense, is defined as

DW F =

n∑

i=1

∂f

∂xi

(Wt1 , . . . , Wtn
)Z1[0,ti].

It is easy to see that DW is a closeable operator from L2(ΩW ; L2(ΩJ )) into L2(ΩW ×

[0, T ]; L2(ΩJ)). Thus we can introduce the space D
1,2
W (L2(ΩJ )) as the completion

of the L2(ΩJ)-valued smooth random variables with respect to the seminorm

||F ||21,2,W = E
[
|F |2 + |DF |2L2([0,T ])

]
.

For ω = (ω′, (ωk)k≥1) ∈ Ω, with ωk = ((tk1 , xk
1), . . . , (tknk

, xk
nk

)), F ∈ L2(Ω) and
z = (t, x) ∈ (0, T ]× Sk0 , for some positive integer k0, we define

(Ψt,xF )(ω) =
F (ωz) − F (ω)

x
,

with ωz = (ω′, (ωk
z )k≥1) and

ωk
z =

{
((t, x), (tk0

1 , xk0
1 ), . . . , (tk0

nk0
, xk0

nk0
)), if k = k0,

ωk, otherwise.

Lemma 2.1. Let F ∈ L2(Ω) be a random variable such that:

i) F ∈ D
1,2
W (L2(ΩJ)).

ii) ΨF ∈ L2(Ω × [0, T ]× R0; P ⊗ µ).

Then F ∈ D
1,2

and

Dt,xF = 1{0}(x)σ−1DW
t F + 1R0

(x)Ψt,xF.

Proof. The proof of this result is an immediate consequence of Solé et al. (2007)
(Propositions 3.5 and 5.5).

Now we establish an auxiliary tool needed for our results.
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Lemma 2.2. Let F ∈ D
1,2

. Then there exists a sequence {Fn : n ≥ 1} of the form

Fn =
N∑

i=1

Hi,nZi,n (2.7)

such that:

i) Hi,n is a smooth functional in L2(ΩW ) and Zi,n ∈ D
2,2

∩ L∞(ΩJ ).
ii) Fn (resp. DFn) converges to F (resp. DF ) in L2(Ω) (resp. L2(Ω× [0, T ]×

R; P ⊗ µ)) as n → ∞.

Remarks

i) Observe that N in equality (2.7) is a positive integer depending only on n.
ii) By Solé et al. (2007) (Proposition 5.4), ΨZi,n ∈ L2(Ω× [0, T ]×R0; P ⊗µ).

Proof. Note that it is enough to show the result holds for a multiple integral of
the form (2.2). That is

F = M(E1) · · ·M(Ek),

where E1, · · · , Ek are pairwise disjoint borel subsets of [0, T ] × R. Indeed, in this
case, the result is also true for a random variable G with a finite chaos decomposition
because, by the definition of the multiple integrals, there exists a sequence {Gm :
m ≥ 1} of linear combinations of multiple integrals of the form (2.2) such that
Gm → G in L2(Ω) and DGm → DG in L2(Ω × [0, T ] × R; P ⊗ µ), as m → ∞.
Therefore, (2.6) implies that the result is satisfied.

Let ϕ ∈ C∞(R) be a function such that

ϕ(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2.

Set ρn(x) = xϕ( x
n
) and

Fn =

k∏

i=1

(
ρn

(∫

{s:(s,0)∈Ei}

σdWs

)
+ ρn

(
lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

))
.

Then,

Ψt,x

(
ρn

(
lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

))

=
1

x

(
ρn

(
x1Ei

(t, x) + lim
m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

)

−ρn

(
lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

))
,
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and

Ψr,zΨt,x

(
ρn

(
lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

))

=
1

xz

(
ρn

(
x1Ei

(t, x) + z1Ei
(r, z) + lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

)

−ρn

(
x1Ei

(t, x) + lim
m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

)

−ρn

(
z1Ei

(r, z) + lim
m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

)

+ρn

(
lim

m→∞

∫

{(s,y)∈Ei:
1
m

<|y|<m}

ydJ̃(s, y)

))
.

Hence, ρn

(
limm→∞

∫
{(s,y)∈Ei:

1
m

<|y|<m}
ydJ̃(s, y)

)
is in D

2,2
due to Solé et al.

(2007) (Lemma 5.2) or Lemma 2.1.
Now the result follows from the facts that Fn → F in L2(Ω) as n → ∞, |ρn(x)| ≤

|x| and that there is a constant C independent of n such that |ρ′n(x)|+ |ρ
′′

n(x)| ≤ C.

An immediate consequence of the last two lemmas is the following:

Corollary 2.3. Let F be a random variable in L2(Ω). Then F ∈ D
1,2

if and only

if F ∈ D
1,2
W (L2(ΩJ)) and ΨF ∈ L2(Ω × [0, T ]× R0; P ⊗ µ).

Proof. The proof follows from Lemmas 2.1 and 2.2, and from Solé et al. (2007)
(Proposition 4.8).

We will also need the following result.

Lemma 2.4. Let F ∈ D
1,2

be a bounded random variable. Then (FG) ∈ D
1,2

for
every G of the form (2.7).

Proof. We first observe that FG ∈ D
1,2
W (L2(ΩJ )) due to Corollary 2.3.

Finally, we have

Ψt,x(FG) = (Ψt,xF )G + FΨt,xG + (F (ω(t,x)) − F )Ψt,xG.

Therefore Ψ(FG) ∈ L2(Ω× [0, T ]×R0; P ⊗µ). Consequently the proof is complete
by Lemma 2.1.

The creation operator δ is the adjoint of D : D
1,2

⊂ L2(Ω) → L2(Ω × [0, T ] ×
R; P ⊗µ). It means, u belongs to Dom δ if and only if u ∈ L2(Ω× [0, T ]×R; P ⊗µ)
is such that there exists a square–integrable random variable δ(u) satisfying the
duality relation

E

[∫

[0,T ]×R

u(z)(DzF )dµ(z)

]
= E[δ(u)F ], for every F ∈ D

1,2
. (2.8)

It is not difficult to show that this duality relation gives that if u has the chaos
decomposition

u(z) =
∞∑

n=0

In(un(z, ·)), z ∈ [0, T ]× R,
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where un ∈ L2
n+1 is a symmetric function in the last n variables, then δ(u) has the

chaos decomposition (see Nualart, 2006)

δ(u) =

∞∑

n=0

In+1(ũn).

The creation operator of a process multiplied by a random variable can be calculated
via the following two results, which have been considered by Di Nunno et al. (2005)
for pure jump Lévy processes.

Proposition 2.5. Let F be a random variable as in Lemma 2.4 and u ∈ Dom δ

such that

E

[∫

[0,T ]×R

(u(t, x)(F + xDt,xF ))2dµ(t, x)

]
< ∞.

Then (t, x) 7→ u(t, x)(F + xDt,xF ) belongs to Dom δ if and only if
(

Fδ(u) −

∫

[0,T ]×R

u(t, x)Dt,xFdµ(t, x)

)
∈ L2(Ω).

In this case

δ(u(t, x)F + xu(t, x)Dt,xF ) = Fδ(u) −

∫

[0,T ]×R

u(t, x)Dt,xFdµ(t, x).

Proof. Let G be a random variable as in the right-hand side of (2.7). Then
Lemma 2.4 and its proof give

E[GFδ(u)]

= E

[∫

[0,T ]×R

u(t, x)Dt,x(FG)dµ(t, x)

]

= E

[
σ2

∫ T

0

u(t, 0)Dt,0(FG)dt +

∫

[0,T ]×R0

u(t, x)Dt,x(FG)dµ(t, x)

]

= E

[
σ2

∫ T

0

u(t, 0)(Dt,0F )Gdt + σ2

∫ T

0

u(t, 0)FDt,0Gdt

]

+E

[∫

[0,T ]×R0

u(t, x)((Dt,xF )G + FDt,xG + x(Dt,xF )Dt,xG)dµ(t, x)

]

= E

[
G

∫

[0,T ]×R

u(t, x)Dt,xFdµ(t, x)

]

+E

[∫

[0,T ]×R

(u(t, x)F + u(t, x)xDt,xF )Dt,xGdµ(t, x)

]
.

Therefore the proof is complete by Lemma 2.2 and by the duality relation (2.8).
The following result is an immediate consequence of the proof of Proposition 2.5.

Corollary 2.6. Let u and F be as in Proposition 2.5. Moreover assume that
(t, x) 7→ u(t, x)xDt,xF belongs to Dom δ. Then Fu ∈ Dom δ if and only if

Fδ(u) − δ(u(t, x)xDt,xF ) −

∫

[0,T ]×R

u(t, x)Dt,xFdµ(t, x) (2.9)

is a square–integrable random variable. In this case δ(Fu) is equal to (2.9).
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2.4. Sobolev spaces. In this subsection we proceed as in Alòs and Nualart (1998) in
order to define the spaces that contain the integrands in our Itô formula.

Let ST be the family of processes of the form u(·) =
∑n

j=1 Fjhj(·), where Fj is a

random variable of the form (2.7) and h : [0, T ]×R → R is a bounded measurable
function. Note that the fact that

∫
R

x2dν(x) < ∞ implies that h ∈ L2([0, T ]×R; µ).

Denote by L
1,2,f

the closure of ST with respect to the seminorm

||u||21,2,f = E

∫

[0,T ]×R

u(z)2dµ(z) + E

∫

∆T
1

(Ds,yu(t, x))2dµ(s, y)dµ(t, x),

where

∆T
1 =

{
((s, y), (t, x)) ∈ ([0, T ] × R)2 : s ≥ t

}
.

A random field u = {u(s, y) : (s, y) ∈ [0, T ] × R} in L
1,2,f

belongs to the space

L
1,2,f

− if there is D−u ∈ L2(Ω × [0, T ]× R; P ⊗ µ) such that

lim
n→∞

∫ T

0

∫

R

sup
(s− 1

n
)∨0≤r<s,y≤x≤y+ 1

n

E[|Ds,yu(r, x) − D−u(s, y)|2]dµ(s, y) = 0.

The random field D−u has been introduced in Nualart (2006) for the Wiener case,
and in Di Nunno et al. (2005) for the pure jump case.

The next result will be a useful tool to state the Itô formula for the operator δ.
Remember that we are using the notation ∆Xs = Xs − Xs−.

Lemma 2.7. Let u = {u(s, x) : (s, x) ∈ [0, T ] × R} be a measurable random field
and ε1 > ε > 0 such that:

i) There exists a constant c > 0 such that |u(s, y)| < c, for all (s, y) ∈ [0, T ]×
{ε < |x| ≤ ε1}.

ii) For any sequences {sn ∈ [0, s) : n ∈ N} and {yn ∈ {ε < |x| ≤ ε1} : n ∈ N}
that converge to s ∈ [0, T ] and y ∈ {ε < |x| ≤ ε1}, respectively, we have
that the limit

u(s−, y) = lim
n,m→∞

u(sn, ym)

is well–defined.

iii) u(·−, ·) ∈ L
1,2,f

− .

Then
∑

0<s≤t

u(s−, ∆Xs)∆Xs1{ε<|∆Xs|≤ε1}

= δ((u(s−, y) + yD−u(s−, y))1{ε<|y|≤ε1}1[0,t](s))

+

∫ t

0

∫

{ε<|y|≤ε1}

u(s−, y)ydν(y)ds

+

∫ t

0

∫

{ε<|y|≤ε1}

D−u(s−, y)dµ(s, y), t ∈ [0, T ].
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Proof. The definition of the space L
1,2,f

implies that there exists a sequence
{u(m) ∈ ST : m ∈ N} such that

E
[
(u(t−, y) − u(m)(t, y))2

+

∫ T

t

∫

R

(Ds,x(u(t−, y) − u(m)(t, y)))2dµ(s, x)

]
→ 0, (2.10)

as m → ∞, for µ-a.a. (t, y) ∈ [0, T ] × R. Hence we can choose a sequence An =

{(s
(n)
i , y

(n)
j ) : i, j ∈ {1, . . . , N}} such that:

• N is a positive integer that depends on n and goes to ∞ as n → ∞.

• 0 ≤ s
(n)
1 < · · · < s

(n)
N ≤ T, −ε1 ≤ y

(n)
1 < y

(n)
2 < · · · < y

(n)
N ≤ ε1.

• 0 = lim
n→∞

s
(n)
1 , T = lim s

(n)
N ,−ε1 = lim

n→∞
y
(n)
1 and ε1 = lim

n→∞
y
(n)
N ·

• max
i

(s
(n)
i+1 − s

(n)
i ) → 0 and max

i
(y

(n)
i+1 − y

(n)
i ) → 0 as n → ∞.

• Property (2.10) holds when we write (s
(n)
i , y

(n)
j+1) instead of (t, y).

Thus, from the duality relation (2.8), Proposition 2.5, (2.10) and Solé et al.
(2007) (Theorem 6.1), we obtain

N−1∑

i,j=1

u(s
(n)
i −, y

(n)
j+1)

∫

]s
(n)
i

,s
(n)
i+1]

∫ y
(n)
j+1

y
(n)
j

y1{ε<|y|≤ε1}1[0,t](s)dJ̃(s, y)

=
N−1∑

i,j=1

u(s
(n)
i −, y

(n)
j+1)δ

(
1{ε<|y|≤ε1}1]s

(n)
i

,s
(n)
i+1]

(s)1
]y

(n)
j

,y
(n)
j+1]

(y)1[0,t](s)
)

=

N−1∑

i,j=1

{
δ
(
1[0,t](s)1{ε<|y|≤ε1}1]s

(n)
i

,s
(n)
i+1]

(s)1
]y

(n)
j

,y
(n)
j+1]

(y)

×(u(s
(n)
i −, y

(n)
j+1) + yDs,yu(s

(n)
i −, y

(n)
j+1))

)

+

∫ s
(n)
i+1

s
(n)
i

∫ y
(n)
j+1

y
(n)
j

1[0,t](s)1{ε<|y|≤ε1}Ds,yu(s
(n)
i −, y

(n)
j+1)dµ(s, y)

}
.

Indeed, by Proposition 2.5 we have that the last equality holds when we change

u(s
(n)
i −, y

(n)
j+1) by u(m)(s

(n)
i , y

(n)
j+1). Consequently, we prove that our claim is true

using (2.8) with a random variable as in the right-hand side of (2.7) and letting
m go to ∞. So, we can conclude the proof because of the dominated convergence
theorem, the hypotheses of this lemma and the fact that δ is a closed operator.

The space LF is the closure of ST with respect to the norm

||u||2F = ||u||21,2,f + E

∫

∆T
2

(Dr,xDs,yu(t, z))2dµ(r, x)dµ(s, y)dµ(t, z),

with ∆T
2 = {((r, x), (s, y), (t, z)) ∈ ([0, T ]× R)3 : r ∨ s ≥ t}.

The following result was stated on the Wiener space by Alòs and Nualart (1998).

Lemma 2.8. Let u ∈ LF . Then u ∈ Dom δ and

E[δ(u)2] ≤ 2||u||2F . (2.11)
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Proof. We first observe that it is enough to show that (2.11) is true for u ∈ ST

because δ is a closed operator. In this case, we have by Solé et al. (2007) (Section
6) or by Alòs and Nualart (1998),

E[δ(u)2] = E

[∫ T

0

∫

R

u(t, x)2dµ(t, x)

+

∫ T

0

∫

R

∫ T

0

∫

R

Ds,yu(t, x)Dt,xu(s, y)dµ(t, x)dµ(s, y)

]
. (2.12)

Observe that

E

[∫ T

0

∫

R

∫ T

0

∫

R

Ds,yu(t, x)Dt,xu(s, y)dµ(t, x)dµ(s, y)

]

= 2E

[∫ T

0

∫

R

u(s, y)δ(1[0,s]Ds,yu)dµ(s, y)

]

≤ E

[∫ T

0

∫

R

u(s, y)2dµ(s, y)

]
+ E

[∫ T

0

∫

R

[δ(1[0,s]Ds,yu)]2dµ(s, y)

]

≤ E

[∫ T

0

∫

R

u(s, y)2dµ(s, y)

]

+E

[∫ T

0

∫

R

∫ s

0

∫

R

(Ds,yu(t, x))2dµ(t, x)dµ(s, y)

]

+E

[∫ T

0

∫

R

∫

([0,s]×R)2
Dt,xDs,yu(r, z)dµ(r, z)dµ(t, x)dµ(s, y)

]
.

Thus (2.12) yields that (2.11) holds.
Inequality (2.11) allows us to consider Lemma 2.7 with ε = 0 or ε1 = ∞ to

obtain the relation between the pathwise integral and the operator δ.

Corollary 2.9. Let u satisfy the hypotheses of Lemma 2.7 for each ε, ε1 ∈ (a, b),
0 ≤ a < b ≤ ∞. Moreover assume that the random fields (s, y) 7→ u(s−, y),
yD−u(s−, y) belong to LF and (s, y) 7→ u(s−, y)y is pathwise integrable with respect

to J̃ on [0, T ]× {a < |y| < b}. Then

∫

]0,t]

∫

{a<|y|<b}

u(s−, y)ydJ̃(s, y)

= δ
(
(u(s−, y) + yD−u(s−, y))1[0,t](s)1{a<|y|<b}(y)

)

+

∫ t

0

∫

{a<|y|<b}

D−u(s−, y)dµ(s, y), t ∈ [0, T ].

Proof. The result is an immediate consequence of Lemmas 2.7 and 2.8.



An anticipating Itô formula 297

3. The Itô formula

Here we assume that, for i ∈ {1, . . . , n},

Y
(i)
t = Y

(i)
0 +

∫ t

0

ui(s)dWs +

∫ t

0

σ(i)
s ds +

∫

]0,t]

∫

{|x|>1}

vi1(s−, x)xdJ(s, x)

+

∫

]0,t]

∫

{0<|x|≤1}

vi2(s−, x)xdJ̃ (s, x), t ∈ [0, T ].

The stochastic integrals with respect to W and J are in the Skorohod and pathwise
sense, respectively, and

(H1) Y
(i)
0 ∈ D

1,2
.

(H2) ui ∈ LF is such that {
∫ t

0 ui(s)dWs : t ∈ [0, T ]} has continuous paths and

there is a constant M > 0 such that
∫ T

0 ui(s)
2ds ≤ M with probability 1.

(H3) σ(i) ∈ L
1,2,f

and
∫ T

0 (σ
(i)
s )2ds ≤ M with probability 1, for some positive

constant M .
(H4) vi1 satisfies the assumptions of Corollary 2.9 for a = 1 and b = ∞. Moreover

assume that there is a positive constant M such that |vi1| < M for (s, y) ∈
[0, T ]× {1 < |x| < ∞}.

(H5) The hypotheses of Corollary 2.9 hold for vi2 with a = 0 and b = 1, and
there is a positive constant M such that |vi2(s−, y)| ≤ M , for (s, y) ∈

[0, T ]× {0 ≤ |x| ≤ 1}. Moreover assume that D−vi2 ∈ L
1,2,f

.

Observe that by Lemma 2.8 and Corollary 2.9, we have that

∫

]0,t]

∫

{0<|x|≤1}

vi2(s−, x)xdJ̃ (s, x)

belongs to L2(Ω), for all t ∈ [0, T ]. Also observe that in Alòs and Nualart (1998)
(Theorem 1) we can find sufficient conditions that guarantee the continuity of the

stochastic integral {
∫ t

0
ui(s)dWs : t ∈ [0, T ]}.

To show our Itô formula, we first need to assume that our Lévy process defined
in (2.5) has no small side jumps. So, for ε > 0, we need to use the notation

Y
(i),ε
t = Y

(i)
0 +

∫ t

0

ui(s)dWs +

∫ t

0

σ(i)
s ds +

∫

]0,t]

∫

{|x|>1}

vi1(s−, x)xdJ(s, x)

+

∫

]0,t]

∫

{ε<|x|≤1}

vi2(s−, x)xdJ̃(s, x), t ∈ [0, T ]. (3.1)

The i–th jump time of the compound Poisson process {
∫
]0,t]

∫
{ε<|x|}

xdJ(s, x) : t ∈

[0, T ]} is denoted by T ε
i . We also use the notation T ε

0 = 0.

Theorem 3.1. Assume that (H1)–(H5) hold, for i ∈ {1, . . . , n}, and that F ∈
C2

b (R
n
). Then, the processes

(
∂iF (Ys−)(ui(s)1{y=0} + vi2(s−, y)1{0<|y|≤1})

+y1{0<|y|<1}D
−(vi2∂iF (Y·−))(s, y)

)
1[0,t](s)
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belong to Dom δ and

F (Yt) − F (Y0)

= δ
([

∂iF (Ys−)(ui(s)1{y=0} + vi2(s−, y)1{0<|y|≤1})

+y1{0<|y|≤1}D
−(vi2∂iF (Y·−))(s, y)

]
1[0,t](s)

)

+
1

2

∫ t

0

∂i∂jF (Ys)ui(s)uj(s)ds +

∫ t

0

∂iF (Ys)σ
(i)
s ds

+

∫ t

0

∂i∂jF (Ys)(D
−Y (j))(s, 0)ui(s)ds

+

∫ t

0

∫

{0<|y|≤1}

D−(∂iF (Y·−)vi2)(s, y)dµ(s, y)

+
∑

0≤s≤t

{F (Ys− + ∆Ys) − F (Ys−) − ∂iF (Ys−)vi2(s−, ∆Xs)∆Xs}1{0<|∆Xs|≤1}

+
∑

0≤s≤t

(F (Ys− + ∆Ys) − F (Ys−))1{1<|∆Xs|}, t ∈ [0, T ].

Here we use the convention of summation over repeated indexes.

Remark By (2.1), we have ∆Ys1{0<|∆Xs|≤1} = vi2(s−, ∆Xs)∆Xs1{0<|∆Xs|≤1}.

Proof. We first observe that the process Y (i),ε given by (3.1) evolves as

Y
(i),ε
t = Y

(i),ε
T ε

j
+

∫ t

T ε
j

ui(s)dWs +

∫ t

T ε
j

σ(i)
s ds −

∫

]T ε
j

,t]

∫

{ε<|x|≤1}

vi2(s−, x)xν(dx)ds

on the stochastic interval ]T ε
j , T ε

j+1[. Consequently, proceeding as in Alòs and Nu-

alart (1998) and using that W and J are independent, and Corollary 2.9, we have
that 1[0,t]∂iF (Y )ui belongs to Dom δW , for i ∈ {1, . . . , n} and

F (Y ε
t ) − F (Y0) =

∞∑

i=1

(
F (Y ε

t∧T ε
i
−) − F (Y ε

t∧T ε
i−1

)
)

+

∞∑

i=1

(
F (Y ε

t∧T ε
i
) − F (Y ε

t∧T ε
i
−)
)

=

∫ t

0

∂iF (Y ε
s )ui(s)dWs +

∫ t

0

∂iF (Y ε
s )σ(i)

s ds

−

∫ t

0

∂iF (Y ε
s )

∫

{ε<|x|≤1}

vi2(s−, x)xdν(x)ds

+
1

2

∫ t

0

∂i∂jF (Y ε
s )ui(s)uj(s)ds

+

∫ t

0

∂i∂jF (Y ε
s )(D−Y (j),ε)(s, 0)ui(s)ds

+
∑

0≤s≤t

(F (Y ε
s− + ∆Y ε

s ) − F (Y ε
s−)), t ∈ [0, T ], (3.2)
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with

D−Y (j),ε(s, 0) = Ds,0Y
(j)
0 +

∫ s

0

Ds,0uj(r)dWr +

∫ s

0

Ds,0σ
(j)
r dr

+δ(Ds,0(vj2(r−, y) + yD−vj2(r−, y))1{ε<|y|≤1}1[0,s](r))

+δ(Ds,0(vj1(r−, y) + yD−vj1(r−, y))1{1<|y|}1[0,s](r))

+

∫ s

0

∫

{ε<|y|≤1}

Ds,0(D
−vj2(r−, y))dµ(r, y)

+

∫ s

0

∫

{1<|y|}

Ds,0(D
−vj1(r−, y))dµ(r, y)

+

∫ s

0

∫

{1<|y|}

yDs,0vj1(r−, y)dν(y)dr. (3.3)

Now we divide the proof in several steps.

Step 1. Here we see that Y
(i),ε
t → Y

(i)
t in L2(Ω) as ε ↓ 0, for every t ∈ [0, T ].

It follows, from (3.1) and Lemma 2.7,

Y
(i),ε
t

= Y
(i)
0 +

∫ t

0

ui(s)dWs +

∫ t

0

σ(i)
s ds

+δ

(
(vi1(s−, y) + yD−vi1(s−, y))1{1<|y|}1[0,t](s)

)

+δ

(
(vi2(s−, y) + yD−vi2(s−, y))1{ε<|y|≤1}1[0,t](s)

)

+

∫ t

0

∫

{ε<|y|≤1}

D−vi2(s−, y)dµ(s, y)

+

∫ t

0

∫

{1<|y|}

vi1(s−, y)ydν(y)ds

+

∫ t

0

∫

{1<|y|}

D−vi1(s−, y)dµ(s, y). (3.4)

Thus our claim follows by Corollary 2.9. Indeed, by Lemma 2.8, we have that

δ

„

(vi2(s−, y) + yD
−

vi2(s−, y))1{ε<|y|≤1}1[0,t](s)

«

+

Z t

0

Z

{ε<|y|≤1}

D
−

vi2(s−, y)dµ(s, y)

converges in L2(Ω) to the pathwise integral

∫ t

0

∫

{0<|y|≤1}

vi2(s−, y)dJ̃(s, y).

Step 2. Now we show that ∂iF (Y ε
·−)vi2(·−, ·) is in L

1,2,f

− .

We first observe that (2.11), (3.4) and Solé et al. (2007) (Section 6) yield Y (i),ε ∈

L
1,2,f

− , i ∈ {1, . . . , n}. Hence, Y
(i),ε
·− ∈ L

1,2,f

− due to E[|Y
(i),ε
t − Y

(i),ε
t− |] = 0, for
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t ∈ [0, T ], which follows from (3.1). Thus, D−Y (i),ε = D−Y
(i),ε
·− . Therefore, it is

clear the fact that F (Y ε) and vi2 are bounded implies that

D−(∂iF (Y ε
·−)vi2(·−, ·))(s, 0) = ∂i∂jF (Y ε

s−)vi2(s−, 0)D−Y (j),ε(s, 0)

+∂iF (Y ε
s−)D−vi2(s−, 0). (3.5)

On the other hand, the definition of the operator Ψ leads to write, for r > t,

Ψr,x(∂iF (Y ε
t−)vi2(t−, y))

= (Ψr,x∂iF (Y ε
t−))vi2(t−, y) + ∂iF (Y ε

t−)Ψr,xvi2(t−, y)

+x(Ψr,xvi,2(t−, y))Ψr,x∂iF (Y ε
t−)

= vi2(t−, y)
∂iF (Y ε

t− + xDr,xY ε
t ) − ∂iF (Y ε

t−)

x
+ ∂iF (Y ε

t−)Dr,xvi2(t−, y)

+(∂iF (Y ε
t− + xDr,xY ε

t ) − ∂iF (Y ε
t−))Dr,xvi2(t−, y),

which, together with (3.5) and Corollary 2.3, gives that ∂iF (Y ε)vi2 ∈ L
1,2,f

− , with

D−(∂iF (Y ε
·−)vi2(·−, ·))(s, y)

=
(
∂i∂jF (Y ε

s−)vi2(s−, 0)D−Y (j),ε(s, 0) + ∂iF (Y ε
s−)D−vi2(s−, 0)

)
1{y=0}

+

(
vi2(s−, y)

∂iF (Y ε
s− + yD−Y ε(s, y)) − ∂iF (Y ε

s−)

y
+ ∂iF (Y ε

s−)D−vi2(s, y)

+(∂iF (Y ε
s− + yD−Y ε(s, y)) − ∂iF (Y ε

s−))D−vi2(s, y)

)
1R0

(y).

Step 3. From Step 2, Lemma 2.7 and (3.2), we get

F (Y ε
t ) =F (Y0) +

∫ t

0

∂iF (Y ε
s )ui(s)dWs +

∫ t

0

∂iF (Y ε
s )σ(i)

s ds

+ δ
(
(∂iF (Y ε

s−)vi2(s−, y) + y(D−∂iF (Y ε
·−)vi2)(s, y))1{ε<|y|≤1}1[0,t](s)

)

+

∫ t

0

∫

{ε<|y|≤1}

D−(∂iF (Y ε
·−)vi2)(s, y)dµ(s, y)

+
1

2

∫ t

0

∂i∂jF (Y ε
s )ui(s)uj(s)ds

+

∫ t

0

∂i∂jF (Y ε
s )(D−Y (j),ε)(s, 0)ui(s)ds

+
∑

0≤s≤t

(
F (Y ε

s− + ∆Y ε
s ) − F (Y ε

s−) − ∂iF (Y ε
s−)vi2(s−, ∆Xs)∆Xs

)

× 1{ε<|∆Xs|≤1}

+
∑

0≤s≤t

(F (Y ε
s− + ∆Y ε

s ) − F (Y ε
s−))1{1<|∆Xs|}.

(3.6)
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Step 4. Now we analyze the convergence in L2(Ω) of the terms in (3.6).

E

[
|
∑

0≤s≤t

(F (Y ε
s− + ∆Y ε

s ) − F (Y ε
s−))1{1<|∆Xs|}|

2

]

= E


|
∑

0≤s≤t

(F (Ys− + ∆Ys) − F (Ys−))1{1<|∆Xs|}|
2




≤ CE







n∑

i=1

∑

0≤s≤t

|vi1(s−, ∆Xs)∆Xs|1{1<|∆Xs|}




2



≤ n2CE






∑

0≤s≤t

|∆Xs|1{1<|∆Xs|}




2



≤ CE



(∫

]0,t]

∫

{|x|>1}

|x|dJ̃(s, x) +

∫

]0,t]

∫

{|x|>1}

|x|dν(x)ds

)2



≤ C

∫

]0,t]

∫

{|x|>1}

x2dν(x)ds +

(∫

]0,t]

∫

{|x|>1}

xdν(x)ds

)2

≤ C

∫

]0,t]

∫

R0

x2dν(x)ds < ∞.

Also

E

[( ∑

0≤s≤t

(F (Ys− + ∆Ys) − F (Ys−) − ∂iF (Ys−)vi2(s, ∆Xs)∆Xs)1{0<|∆Xs|≤ε}

)2]

≤ E

[( n∑

i=1

∑

0≤s≤t

|∆Y (i)
s |21{0<|∆Xs|≤ε}

)2]

= E

[( n∑

i=1

∑

0≤s≤t

|vi2(s−, ∆Xs)∆Xs|
21{0<|∆Xs|≤ε}

)2]

≤ CE

[( ∑

0≤s≤t

|∆Xs|
21{0<|∆Xs|≤ε}

)2]

≤ CE

[(∫

]0,t]

∫

{0<|x|≤ε}

x2dJ̃(s, x)

)2]
+ C

(∫

]0,t]

∫

{0<|x|≤ε}

x2dν(x)ds

)2

≤ C

∫

]0,t]

∫

{0<|x|≤ε}

x2dν(x)ds → 0 as ε → 0.

It is not difficult to deduce, from Step 1,

E

[∫ t

0

|∂iF (Ys)ui(s) − ∂iF (Y ε
s )ui(s)|

2ds

]
→ 0
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and, from Step 2, (2.11) and the dominated convergence theorem,

E

[∫

]0,t]

∫

{0<|y|≤1}

∣∣∣∣
(

∂iF (Y ε
s )vi2(s−, y) + yD−(∂iF (Y ε)vi2)(s, y)

)

×1{ε<|y|≤1} − ∂iF (Ys)vi2(s−, y) + yD−(∂iF (Y )vi2)(s, y)

∣∣∣∣
2

dµ(s, y)

]

→ 0 as ε ↓ 0.

The missing terms can be analyzed similarly.

Step 5. Finally the result follows from the fact that δ is a closed operator and
from Steps 1-4.

Theorem 3.2. Assume that

∫

R0

|x|dν(x) < ∞.

Then the hypotheses of Theorem 3.1 imply that

F (Yt) = F (Y0) +

∫ t

0

∂iF (Ys)ui(s)dWs +

∫ t

0

∂iF (Ys)σ
(i)
s ds

−

∫ t

0

∂iF (Ys)

∫

{0<|x|≤1}

vi2(s−, x)xdν(x)ds

+
1

2

∫ t

0

∂i∂jF (Ys)ui(s)uj(s)ds

+

∫ t

0

∂i∂jF (Ys)(D
−Y (j))(s, 0)ui(s)ds

+
∑

0≤s≤t

(F (Ys− + ∆Ys) − F (Ys−)), t ∈ [0, T ].

Proof. The fact that
∫
R0

|x|dν(x) < ∞ yields

E

[(∫ t

0

∫

{0<|x|≤1}

|vi2(s−, x)x|dν(x)ds

)2]
≤ C

(∫ t

0

∫

{0<|x|≤1}

|x|dν(x)ds

)
,

which implies

E

[(∫ t

0

∂iF (Y ε
s )

∫

{ε<|x|≤1}

vi2(s−, x)xdν(x)ds

−

∫ t

0

∂iF (Ys)

∫

{0<|x|≤1}

vi2(s−, x)xdν(x)ds

)2]
→ 0.
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Also we have

E

[( ∑

0≤s≤t

(F (Ys− + ∆Ys) − F (Ys−))1{0<|∆Xs|≤ε}

)2]

≤ CE

[( n∑

i=1

∑

0≤s≤t

|vi2(s−, ∆Xs)∆Xs|1{0<|∆Xs|≤ε}

)2]

≤ CE

[( ∑

0≤s≤t

|∆Xs|1{0<|∆Xs|≤ε}

)2]

≤ CE

[(∫

]0,t]

∫

{0<|x|≤ε}

|x|dJ̃(s, x) +

∫

]0,t]

∫

{0<|x|≤ε}

|x|dν(x)ds

)2]

≤ C

∫

]0,t]

∫

{0<|x|≤ε}

x2dν(x)ds + C

(∫

]0,t]

∫

{0<|x|≤ε}

|x|dν(x)ds

)2

.

Thus the result is a consequence of the proof of Theorem 3.1.
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