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Abstract

The Distributed Constraint Optimization Problem
(DCOP) is a powerful formalism for multiagent co-
ordination problems, including planning and schedul-
ing. This paper presents modifications to a
polynomial-space branch-and-bound based algorithm,
called NCBB, for solving DCOP, that make the algo-
rithm any-space. This enables a continuous tradeoff
between O(bp) space, O(bp™ ™) time complexity and
O(p™ + bp) space and O(bHp“*') time, where p is
variables domain size, H is Depth-First Search (DFS)
traversal depth of constraint graph, b is the branching
factor of DFS tree, and w is the context width of the
tree. This flexibility allows one to apply NCBB to areas,
where the limited amount of available memory prevents
one from using more efficient exponential space algo-
rithms. Sensor networks is an example of such domain.
We demonstrate both theoretically and empirically that
caching does not lead to an increase in complexity even
under assumption that all cache lookups fail. We also
show experimentally that the use of cahing leads to sig-
nificant speedups of problem solving.

I ntroduction

The Distributed Constraint Optimization Problem (DCOP)
is a popular problem formulation for distributed reason-
ing, where multiple agents need to optimize a cost func-
tion expressed as a sum over a set of distributed valued
constraints (Hirayama & Yokoo 1997). Distributed plan-
ning and scheduling is a major application area for DCOP:
meeting scheduling in large organizations (Maheswaran et
al. 2004; Garrido & Sycara 1996; Liu & Sycara 1994), mul-
tiagent plan coordination (Cox, Durfee, & Bartold 2005),
job shop scheduling (Liu & Sycara 1995), and sensors allo-
cation to targets for tracking in distributed sensor networks
(Scerri et al. 2003) are among the examples.

Because DCOP is not an algorithm, but just a problem
formulation, one needs efficient solution techniques to suc-
cessfully apply DCOP to said and other domains. As a re-
sponse to this need, several algorithms have appeared re-
cently, such as ADOPT (Modi et al. 2005), DPOP (Petcu
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& Faltings 2005), OptAPO (Mailler & Lesser 2004) and
NCBB (Chechetka & Sycara 2006). One remaining diffi-
culty, however, is that to choose an appropriate algorithm
for a given task is a problem in itself: algorithms scale dif-
ferently depending on communication cost and constraints
number (Chechetka & Sycara 2006; Davin & Modi 2005).
Also, the memory requirements differ quite drastically, from
polynomial (ADOPT, NCBB) to exponential (DPOP). This
may rule out using high-performance DPOP on nodes with
scarce memory, such as distributed sensor net nodes (Main-
waring et al. 2002) and embedded systems.

We adopt an any-space caching scheme of (Darwiche
2001) with minor modifications and show both theoretically
and empirically that the overhead concerned with caching is
insignificant, so the overall performance of the algorithm is
improved in an overwhelming majority of cases. We demon-
strate on a distributed sensor network dataset that the im-
provements can be significant, up to a factor of 2.

Any-space property of NCBB with caching allows one
to apply this algorithm over a wide range of hardware plat-
forms and extract performance gains from the memory avail-
able in excess of its minimal requirements. This is an advan-
tage over state of the art polynomial-memory algorithms that
do not have this feature.They limit themselves to the mini-
mally necessary memory, even if more space is available.
Denote p the domain size of the variables, H the depth of
Depth-First Search (DFS) traversal of constraint graph, b the
branching factor of DFS tree, and w the context width of the
tree (w < H by definition; more detailed definitions are pre-
sented in later sections). NCBB with caching allows the user
to manually tweak its behavior and asymptotical time com-
plexity from O(bp™+1) (no caching) to O(bHpw 1) (full
caching). The latter option is especially preferable when
context width w of the tree is significantly smaller than H.
Corresponding space requirements are O (bp) to O(p™ +bp).
One can see that it is an example of a time-space tradeoff.

DCOP
A Distributed Constraint Optimization problem consists of
e asetof nvariablesV = {zy,...,2,}

e a set of discrete finite domains for each of the variables
D={Dy,...,D,}



e aset of m constraints f = {f1,..., fm} Where each con-
straint is a function f; : D;,,...,D;; — N Uoo

e asetof kagents A = {ay,...,ax}

e a distribution mapping @ : V' — A. It assigns each vari-
able to exactly one agent. This agent is said to own the
variable. The variable owner has exclusive control over
the variable value and knows all the constraints that in-
volve that variable. An agent is assumed to not know
about the constraints not involving its variable.

The goal of the agents is to collectively find an assignment
for all the variables B* = {d;,...,d,|d; € D;} such that
the global cost is minimized. The global cost is defined as a
sum of all the constraints

F(B)= )" 1(B)

It has been shown (Modi 2003) that DCOP is NP-complete.
In this article we consider a restricted version of DCOP.
Like the majority of the literature (Mailler & Lesser 2004;
Modi et al. 2005), we assume all the constraints to be binary,
that is to depend on exactly two variables, although our ap-
proach can in principle be extended to k-ary constraints. We
also assume that each agent owns exactly one variable. The
terms agent and variable will be used interchangeably.

We will use the term constraint graph to refer to a graph
where variables are nodes and two nodes have an edge be-
tween them if and only if there is a constraint involving these
variables. We assume that two agents have a direct commu-
nicational link if and only if they share a constraint. The link
is lossless and deliveres the messages in the same order that
they were sent.

NCBB Algorithm

NCBB, or no-commitment branch and bound search, is a
polynomial-space algorithm for solving DCOP. It is a con-
ventional branch and bound search (Lawler & Wood 1966)
with modifications to make it efficient for multiagent set-
tings. The main improvements are incremental computa-
tion and communication of lower bounds on solution cost
and concurrent search in non-intersecting areas of the search
space by different agents. We refer the interested reader to
(Chechetka & Sycara 2006) for comprehensive description
of communicaton scheme, data structures organization, and
details of lower bound propagation and pruning. Here we
concentrate on a caching scheme for NCBB.

Variables Prioritization

Before the algorithm can be executed, the agents need to
be prioritized in a depth-first search (DFS) tree, in which
each agent has a single parent (except for the root agent that
has no parents) and multiple children. Formally, each agent
x;’s neighbors in the constraint graph are assigned to the
following sets:

e an ordered set ancestors; such that ancestors;|[k]
is higher in the tree than ancestors;[k + 1] and
ancestors;[last] is the parent of z;.

function NCBBM ainL oop()
1. if (= IAmRoot) updateContext();

2:  while (— “search finished” received)
3 search();

4 if (= IAmRoot) updateContext();
5: elsebreak;

6 end if;

7: end while;

8: recallSolution();

9: for (V¥ x € children)

10: send “search finished” to x;

11: end for;

end NCBBMainL oop;

Figure 1: NCBB main loop

e aset children; of immediate x;’s children in DFS order-
ing

e for each child ¢; € children; a set dscnd;|c;] of descen-
dants belonging to the same subtree of the DFS tree as c;.
Note that ¢; € dscnd;[c;].

A property of these sets is

« U

cjEchildren;

dsend;[c;]) U ancestors; = neighbors;

It is important that constraints are only allowed between
agents that are in an ancestor-descendant relationship in the
DFS tree. One should also note that an agent does not have
information about all its ancestors or descendants in the tree,
but only about those with whom it shares a constraint.

Any constraint graph can be ordered into some DFS tree
using distributed algorithm from (Lynch 1996). Pseudo-tree
ordering (Chechetka & Sycara 2005) can also be used after
minor modifications to the search algorithm. This allows to
apply NCBB to problems without centralizing the informa-
tion about all the constraints.

Auxiliary Definitions and Properties
Definition 1 Agent cost for agent = and assignment B

AgentCost(x,B) = Z fay(B(2), B(y))
yEancestors,

where B(z) is the value of variable = under assignment B,
fay 18 the constraint depending on z and y.

Definition 2 Subtree cost for subtree rooted at agent = and

assignment B

SubtreeCost(x, B) = Z
yExUDF Sdesc(x)

where DF Sdesc(x) is a set of all ’s descendants in the
DFS tree, including the agents that are not x’s neighbors in
the constraint graph.

Definition 3 For incomplete assignments B’, define
AgentCost*(z,B') = éngi}sl’ AgentCost(z, B)

AgentCost(y, B)

SubtreeCost*(z, B') = énig SubtreeCost(x, B)
D ’



function search()
20: add all children to idle set;

21: Vd; € D; : costSoFar(d;) «— > f(di,val(y));
yEancestors;

22: ¥Yd,; € D; Vy € children: visited(y,d;) < false;

23: pending = (;

24:  while (idle U pending # ()

25:  for (Vy € idle)

26: choose my _value(y) : visited(y, my_value(y)) = false;
27: visited(y, my_value(y)) < true;

28: send my_value(y) to Vz € dscnd(y);

29: send “start search, bound - costSoFar(my_value(y))” to y;
30: idle = idle \ y; pending = pending U y;
31:  endfor;

32:  receive cost fromy € pending;

33:  pending = pending \ v;

34:  costSoFar(my_value(y)) < costSoFar(my_value(y)) + cost;
35:  if (3d; € D; : (costSoFar(d;) < bound) A

36: visited(y, d;) = false)
37: idle < (idle U y);

38:  endif;

39: end while

40: result= min costSoFar(d;);

41: send result to parent; return result;
end search;

Figure 2: search() function for agent z;

Because the variables in different subtrees do not share
any constraints, we can write a dynamic programming re-
cursive relation

SubtreeCost*(x;, B'(all_ancestors;)) =
driréilrjli(AgentC’ost(Xi, B'U(z; = d;))+ (1)
+ 3 SubtreeCost*(y, B' U (x; = d;))),

y€Echildren,

where all_ancestors; denotes all ancestors of x; in the DFS
tree, not only those with direct links to x;.

Main Loop

Figure 1 lists the outline of NCBB’s main loop. An agent x;
listens to value announcements form ancestors; until z;’s
parent orders it to start searching. updat eCont ext () up-
dates x;’s knowledge about ancestors; values. It returns
true iff the last message instructed x; to start search. An
instruction to start search includes the new upper bound
on SubtreeCost*(x;, B' (all_ancestors;)), which is also
recorded in a bound variable.

After receiving an instruction to search, agent
x; tries to determine its value d; that achieves
SubtreeCost*(x;, B' (all_ancestors;)).

According to the recursive relation (1), it executes the
sear ch() function, outlined in Figure 2. It tries every
possible value in D; for every subtree rooted in z;’s children.
Then it looks for SubtreeCost*(x;, B'(all_ancestors;)) in
cost SoFar map and returns this value to x;’s parent. By
construction, after all | D;| x |children;| queries have been

answered, cost SoFar isa map
di —
(AgentCost(X;, B' U (z; = d;))+
+ > SubtreeCost*(y, B’ U (x; = d;))).
yEchildren;
As in regular branch and bound algorithm, search space may
be pruned by removing from consideration d;, for which

costSoFar(d;) > bound

This algorithm is complete and requires only polynomial
memory, more precisely, O(|D;| x |neighbors;|) for agent
x;. It is an advantage over exponential memory algorithms,
such as DPOP. The recursive nature of the algorithm leads
one to the time complexity estimate of O(bp 1) (Theo-
rem 1), where p is the size of variables’ domains (assuming
equal domain sizes), b is the branching factor of the DFS
tree, and H is the depth of the DFS tree. However, the fact
that an agent forgets everything about its previous search re-
sult as soon as it gets a new search instruction leads one to
an idea that extra available memory may be used to store the
results of previous searches and reuse them. As was demon-
strated in (Darwiche 2001), this approach results in a contin-
uous time-space tradeoff that can be controlled by the user
to maximize the performance of the algorithm for a given
problem and hardware.

Cachingin NCBB

Motivating Example
To show why it might be beneficial to store the results of
the previous searches, consider a simple example: a prob-
lem with structure depicted on Figure 3(a). Suppose all the
variables have binary domains and variable A is the root of
the DFS tree.

Let us trace the execution of NCBB on this problem. First
A chooses one of its values (supposes it chooses 0) to try on
B’s subtree (note that because A is the root of the tree, it
does not wait for any agents to communicate their values to
it). Upon receiving the messages from A, B consequently
tries both of its values on C’s subtree. For each of the two
B’s values C reports the minimal cost

SubtreeCost™(C, (A =0,B =1b))

to B. B then reports the minimal cost over its subtree to A.
Next A orders B to calculate

SubtreeCost* (B, (A = 1))
and B again queries C' to get
SubtreeCost*(C,(A=1,B =1)).

To calculate these optimal costs, C' in turn queries D. Note,
however, that for the given problem

SubtreeCost*(C,(A=0,B =10)) =

= SubtreeCost*(C,(A=1,B =b))
because no variable in C’s subtree has a constraint with A.
Therefore, if C stored the results of previous searches, it
would be able to answer new B’s queries right away, without
querying D with the same question multiple times . Because
sending a message is usually a lot more expensive than doing
a cache lookup, storing the past results would result in faster
problem solving.



Figure 3: Caching motivating examples

Distinguishing Between Ancestors Assignments

The example presented in the previous section confirms that
caching search results might lead to efficiency gains, but it
also poses an important question: how does an agent x; de-
termine if it has the search result corresponding to the given
assignment to all_ancestors; variables? This is especially
problematic in NCBB, because an agent x; does not have
any information about not just assignments, but even exis-
tance of variables other than its direct neighbors. Another
simple example (Figure 3(b)) demonstrates that knowing
only direct neighbors’ values is not enough to make such
a decision:

SubtreeCost*(C,(A=0,B =10)) #
# SubtreeCost*(C, (A =1,B = 1))

because there is a constraint A— D. On the other hand, agent
C does not observe the difference in A’s assignment. This
means that using caching will require the agents to give up
some of the privacy and announce their assignments to third
parties (by a third party for an agent xz; here we understand
any agent that does not share a constraint with x;).

The question of which variables from all_ancestors;
influence the value SubtreeCost*(x;, B (all_ancestors;))
has been answered in an extensive literature on Bayesian
Networks (Jordan 2004; Jensen 1996): if assignments B
and B, to all variables in all_ancestors; agree on all the
values of variables from set context; such that

Definition 4

context; = {y € all_ancestors; s.t.
3z € {&; UDFSDesc(x;)} : fy.. € [}

then SubtreeCost*(z;, B1) = SubtreeCost*(x;, Bz).
Indeed, let us write SubtreeCost*(x;, B) (B is an as-
signment to all variables in all_ancestors;) explicitly:

SubtreeCost*(x;, B) =
min 2 fy.2(B(y), B(2))

BB yEx;UDFSDesc(x;) z€ancestorsy

The sum being minimized depends only on values of
x;, variables in DFSDesc(x;) and context;. Because
context; C all_ancestors; and

{z; U DFSDesc(z;)} Nall_ancestors; = ),

function discover Context()

50: for V'y € children

51: receive context, fromy;
52: end for;

53: context; «— U
yEchildren

contexty \ i;

54: send context; 10 ancestors;[last];
end discover Context;

function searchCaching()

60: result = lookupCache(val(context;))
61: if result = 0;

62:  result = search();

63:  cachelnsert(val(context;) — result)
64: elsg

65:  send result to parent;

66: endif;

end discover Context;

in search() function (Fig. 2) replace line 29: with:
29: send “start search, bound - costSoFar(my_value(y)),
val(context,)” toy;

Figure 4: Modifications to NCBB (to be executed by agent
x;) that allow caching

we get
SubtreeCost*(x;, B') = SubtreeCost*(x;, B'|context, )

where B’|contert; Means denotes the restriction of B’ to
variables in context;.

A corollary of this fact is that the memory complexity of
NCBB with full caching is O(p™ + bn), where p is the do-
main size of the variables (assuming equal domain sizes for
all variables), and

w = max |context;|
1€l.n
is called the context width of the DFS tree.

Implementation in NCBB

Given that only variables in context; influence
SubtreeCost*(x;, B), we present the modifications to
the original NCBB algorithm that allow the agents to cache
the results of previous searches.

First, every agent x; needs to become aware of what vari-
ables constitute context;. This is achieved by a bottom-up
propagation phase before execution of the main loop. Each
agent executes di scover Cont ext () function listed in
Figure 4.

Second, instead of search() function in the main
loop, agents execute sear chCachi ng() , which first tries
to locate the corresponding result in the cache, and calls
sear ch() if the lookup fails. The value of context; is
communicated by ¢’s parent in a “start search” message.

Finally, in sear ch() function line (29:) is changed to
include the value of context, in a message to child y so that
the child can perform a cache lookup.



Complexity Estimates

Let us estimate the time complexity of NCBB with and with-
out caching. First, if no caching occurs then

Theorem 1 If all variables have domains of size p, the DFS
tree has a branching factor b and depth H, then NCBB with-
out caching has time complexity of O(bp+1).

Proof: Agent x; receives a search request for each possible
assignment to all_ancestors;. If |all_ancestors;| = h and
every variable has domain size n, then

requests(z;) = ph.

For each search request x; sends n requests to each of its
b children. Because the agents perform computations con-
currently, to obtain the time complexity of the algorithm we
need to sum the time over the longest root-leaf path in the
DFS tree:

H H

T~ (" xpb) = (bp"!) = O(bp" 1)
h=0 h=0
If the amount of memory available is enough to cache

all the intermediate results, we get a significant reduction
in time complexity:
Theorem 2 If all variables have domains of size p, the DFS
tree has a branching factor b, depth H and context width
w, cache lookups and inserts take constant time, and every
agent has enough memory to store all the search results then
NCBB with caching has time complexity of O(bHp**1).

Proof: Because intermediate search results are cached, an
agent z; receives pl°®"*¢=t»| search requests, where x,, is
x;’s parent. For each request it either finds the correspond-
ing value in cache and returns it (this takes constant time c)
or processes bp search requests to its children. Therefore,
the worst-case time complexity is

T~ 375 (0! sl s (pb + ) <
Shlo(bp !+ ep®) = O(bHp"*1)

where ij,_; is the index of (h — 1)*" variable along the root-
leaf path. O

It might be the case that an agent does not have sufficient
memory to store optimal subtree cost values for each possi-
ble instantiation of context. This is especially a concern for
applications such sensor nets. Following (Darwiche 2001),
we use the notion of cache factor:

Definition 5 Cache factor cf; of the node «; is the relation
capacity;
cfi=——"—"
F#context;
where capacity; is the number of enties of form

val(context;) — SubtreeCost”™(x;,val(context;))

that x;’s cache can accomodate, and #context; is the num-
ber of all possible instantiations of x;’s context.
If all variables have domains of size p, then #context; =
|contexti|.
We now show that even for ¢f = 0, that is when all cache
lookups fail, the asymptotical time complexity of NCBB
does not increase as compared to no caching case:

Theorem 3 If all variables have domains of size p, the
DFS tree has a branching factor b and depth H, and cache
lookups and inserts take constant time, then NCBB with
caching has time complexity of O(bpI+1).

Proof: Again, as in theorem 1, agent x; that has depth A in
the DFS tree receives p” search requests. For each request
in addition to O(bp) time on requests to its children it needs
to spend a constant amount ¢ of time on cache lookup and
insert. Summing over the longest root-leaf path we get

T~ Yo (P X (pb+ ) = 33l (bp" ! + cph) =
O(bp™* (1 +45)) = O(bp™+1)D

Because Theorem 3 states that even in the worst case of
all cache lookups failing the complexity of NCBB with and
without caching is asymptotically the same, an optimal strat-
egy would be to store as many intermediate results as mem-
ory allows. This behavior makes NCBB with caching an
any-space algorithm and gives user the ability to manually
trade off solution time for the memory available to the algo-
rithm.

Implementing this behavior does not need any modifica-
tions to the NCBB algorithm itself. Instead the implemen-
tation of cachel nsert () function has to be changed so
that inserting a new element into cache may fail. One of the
simplest implementation, suggested in (Darwiche 2001), is
to cache the new results until the memory is exhausted and
do not cache anything after that. However, we found the fol-
lowing heuristic to yield better results: store the most recent
search results. When the cache is exhausted, before insert-
ing the new result remove the least recent result from it. The
experimental results that we report all were obtained using
this heuristic.

Evaluation

Evaluation Metric
The main metric for evaluation was concurrent constraint
checks (CCC) (Meisels et al. 2002). It combines compu-
tational and communicational cost of the problem solving
process and takes parallelism into account. The unit of cost
is time needed to perform one constraint check. The cost of
a message is defined in terms of constraint checks and is as-
sumed to be independent of message size. We also assumed
that the cost of a cache lookup equals to 1 constraint check.

Concurrent constraint checks can be easily added as a
benchmark for a simulated distributed system by adding
a special field to every message being sent. This method
works both for single-processor simulations and for real dis-
tributed systems. To account for dependencies between dif-
ferent agents and the time that some agents wait for mes-
sages from others, every message includes a field with the
local value of the metric at a sender agent. Upon receiv-
ing the message, the receiver updates its local metric value
according to

Ureceiver = max{vreceivera VUsender + COStmessage}a

where v is a “tick counter” for a given agent. v receives an

increment of 1 when its owner performs a constraint evalua-
tion. The cost to find a solution is measured as

max v,
xT
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Figure 5: Target allocation results, 15 targets. X is the
agents’ cache factor, Y is the number of Concurrent Con-
straint Checks needed to find a solution. Horizontal lines
represent algorithms that do not have the ability to vary
cache size.

which is an approximation of the time it would take the sys-
tem to solve the problem if a constraint evaluation took 1
time unit, and message delivery took cost essqge time units.

Datasets and Algorithm Parameters

We have evaluated NCBB on the distributed sensor network
dataset from the University of Southern California (Pearce
2005) and on a randomly generated set of distributed graph
coloring problems.

In sensor network domain 54 sensors were used to track
multiple targets. Every target is visible to 4 sensors and to

track a target successfully 3 sensors are needed. A sensor
can only track one target. The problem is to minimize the
costs of targets that are not tracked successfully. The de-
tails of mapping target allocation to DCOP are presented
in (Modi et al. 2001). Every possible target-sensor combina-
tion in this formulation corresponds to a variable (“possible”
means that the target is within the sensing range of the sen-
sor). Every valid combination of sensors that may be used
for tracking a given target corresponds to a value for every
variable related to this target. The problems in the repository
are already converted to standard DCOP formulation.

The tracking problem does not involve any dynamics of
the targets: the configuration of targets and sensors is as-
sumed to be fixed. One approach for applications with
evolving sensors and targets configuration is to re-solve a
static problem from scratch on every time step. An algo-
rithm that would reuse the solution of the previous time step
to solve the problem of the next time step faster is an impor-
tant direction for future work.

The random graph coloring dataset consisted of problems
with 16 variables and 32 constraints. Every variable has a
domain of size 3, and randomly generated constraints map
pairs of variables values to integers in the range from 0..100.
The distribution of constraint costs was uniform.

In the experiments we varied global cache factor, that is
the value cf, that was the same for all the agents in the prob-
lem.

Results

Target Tracking The experimental results for target track-
ing are shown in Figure 5. On all plots X axis denotes cache
factor (the ratio between the number of entries that fit in the
available memory and the total number of context instantia-
tions). Y axis denotes concurrent constraint checks needed
to solve the problem.

There are also horizontal lines on the plots, that corre-
spond to the performance of algorithms that do not have the
ability to tweak the amount of memory being used. That
is why their value does not depend on cache factor - only
NCBB with caching uses cache factor to determine how
much memory it can use. These results are included for the
reader to be able to compare the efficiency of NCBB and
other available algorithms and to see the impact of caching
more clearly.

Figure 5 presents the performance results on the target
tracking dataset for 3 values of message cost: 0, 100 CCC,
and 10000 CCC. For comparison we also present the perfor-
mance of ADOPT and DPOP under same conditions. One
can conclude that for all communcation costs caching leads
to significant speedups of the problem solving process. Pure
computational cost (that is the results for message cost 0)
of NCBB with caching is significantly better than that of
ADOPT and very close to DPOP (Figure 5(a)). For expen-
sive communication (Figure 5(b), 5(c)) ADOPT and DPOP
are significantly faster than NCBB on this type of problems.
Here and in the rest of the section “faster” means “spend less
concurrent constraint checks to find a solution”.
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Figure 6: Random graph coloring, 16 agents, 32 constraints.
X is cache factor, Y is the number of CCC needed to find a
solution. Horizontal lines represent algorithms that cannot
vary cache size. When a horizontal line is too high or too
low to be plotted, its position is stated in the legend.

Graph Coloring We have also investigated the impact of
caching on solving randomly generated graph coloring prob-
lems (Figure 6). Here one can observe the performance gain
of about 40% due to caching. Note that because the per-
formance of NCBB, ADOPT and DPOP differ dramatically
on this dataset, it was not possible to plot all the results on
the same Y scale. Because of that we have put into the leg-
end information about locations of lines that did not fit on
the plots (ADOPT for all three cases, because its cost is too
high, and DPOP on figure 6(b), 6(c), because its cost is too

low to be displayed).

A major difference with target tracking is that on ran-
dom graph coloring the performance gain is roughly linear
in cache factor, while on target tracking problems varying
cache factor in the range from 0.5 to 1 has little effect on
performance. We believe that this stark difference is due to
the different amount of search space pruning that the algo-
rithm is able to achieve on problems with different structure:
on target allocation problems NCBB prunes much smaller
portion of the search space than on random graph coloring
problems.

One can see that for both sets of problems and for almost
all conditions NCBB with caching has better performance
than without caching, which is in line with theoretical esti-
mates in Theorems 1 and 3. The only exceptions are cases
of free communication, which is an unrealistic assumption
and was included in the experiments to isolate the computa-
tional component of the solution complexity from commu-
nicational one.

Performance Analysis On both problem sets DPOP per-
forms better than NCBB with caching, and one might think
that using DPOP is always preferable to NCBB. However,
DPOP requires each agent to have enough memory to store
all instantiations of context and corresponding cost. The re-
quired memory is exponential in context size. If even one
of the agents does not have enough memory, DPOP cannot
be applied. However, while there may not be enough mem-
ory to run DPOP, there may be more memory available on
the agents, than is required by polynomial time algorithms.
In this intermediate situation using NCBB with caching pro-
vides maximal benefit in terms of performance. Although
the efficiency of DPOP is rarely achieved by NCBB, con-
trollable space-time tradeoff provides a way to exploit the
extra available memory and obtain a performance improve-
ment over purely polynomial-space algorithms.

The difference in performance between NCBB with full
caching and DPOP may seem surprising, especially given
the same asymptotical complexity of the two algorithms.
However, if one considers the communication pattern of the
algorithms, the reason for such a difference is clear. NCBB
sends O(bHp“*1) concurrent! fixed length messages, while
DPOP sends O(bH ) concurrent messages of size O(p<*1).
Because the CCC metric does not take message size into
account, communicational cost of NCBB is O(p~*!) times
greater than that of DPOP under this metric. Therefore,
for large messsage costs, when communicational complexity
dominates, DPOP is O(p“*!) times faster than NCBB. One
can also argue that in reality the communicational protocols
are designed so that information is sent in packets, and if
the message is too large, it is split into several packets, so
the cost of sending a large message is roughly proportional
to its size. This will need to be taken into account when
designing more accurate performance metrics than CCC.

'Here concurrent means that the messages that can be delivered
in parallel, i.e. sent simultaneously and do not have a common
source or destination, are counted as one message, by analogy with
concurrent constraint checks



Conclusions and Future Work

We have presented an algorithm for solving DCOP with con-
trollable time-space and demonstrated experimentally the
performance improvements over the original version. How-
ever, several important issues need to be addressed in the fu-
ture work. First, to make informed decision about the trade-
off point one needs a theoretical complexity estimate not
only for extreme cases of no caching and full caching, but
also for the continuum in between. Note that the estimates
from (Darwiche 2001) do not apply in our case because of
the asynchronous nature of computation by multiple agents.
Second, the algorithm needs to be generalized to efficiently
handle k—ary constraints to avoid overheads of converting
“natural” problem formulations with k—ary constraints to

binary DCOP.
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