
Journal of Artificial Intelligence Research 34 (2009) 521–567 Submitted 09/08; published 04/09

An Anytime Algorithm for Optimal Coalition Structure Generation

Talal Rahwan TR@ECS.SOTON.AC.UK

Sarvapali D. Ramchurn SDR@ECS.SOTON.AC.UK

Nicholas R. Jennings NRJ@ECS.SOTON.AC.UK

School of Electronics and Computer Science,

University of Southampton, Southampton, SO17 1BJ, U.K.

Andrea Giovannucci AGIOVANNUCCI@IUA.UPF.EDU

SPECS Laboratory, Pompeu Fabra University, Barcelona, Spain.

Abstract

Coalition formation is a fundamental type of interaction that involves the creation of coherent

groupings of distinct, autonomous, agents in order to efficiently achieve their individual or col-

lective goals. Forming effective coalitions is a major research challenge in the field of multi-agent

systems. Central to this endeavour is the problem of determining which of the many possible

coalitions to form in order to achieve some goal. This usually requires calculating a value for ev-

ery possible coalition, known as the coalition value, which indicates how beneficial that coalition

would be if it was formed. Once these values are calculated, the agents usually need to find a

combination of coalitions, in which every agent belongs to exactly one coalition, and by which the

overall outcome of the system is maximized. However, this coalition structure generation problem

is extremely challenging due to the number of possible solutions that need to be examined, which

grows exponentially with the number of agents involved. To date, therefore, many algorithms have

been proposed to solve this problem using different techniques — ranging from dynamic program-

ming, to integer programming, to stochastic search — all of which suffer from major limitations

relating to execution time, solution quality, and memory requirements.

With this in mind, we develop an anytime algorithm to solve the coalition structure genera-

tion problem. Specifically, the algorithm uses a novel representation of the search space, which

partitions the space of possible solutions into sub-spaces such that it is possible to compute upper

and lower bounds on the values of the best coalition structures in them. These bounds are then

used to identify the sub-spaces that have no potential of containing the optimal solution so that they

can be pruned. The algorithm, then, searches through the remaining sub-spaces very efficiently

using a branch-and-bound technique to avoid examining all the solutions within the searched sub-

space(s). In this setting, we prove that our algorithm enumerates all coalition structures efficiently

by avoiding redundant and invalid solutions automatically. Moreover, in order to effectively test

our algorithm we develop a new type of input distribution which allows us to generate more reli-

able benchmarks compared to the input distributions previously used in the field. Given this new

distribution, we show that for 27 agents our algorithm is able to find solutions that are optimal in

0.175% of the time required by the fastest available algorithm in the literature. The algorithm is

anytime, and if interrupted before it would have normally terminated, it can still provide a solution

that is guaranteed to be within a bound from the optimal one. Moreover, the guarantees we provide

on the quality of the solution are significantly better than those provided by the previous state of

the art algorithms designed for this purpose. For example, for the worst case distribution given 25

agents, our algorithm is able to find a 90% efficient solution in around 10% of time it takes to find

the optimal solution.

c©2009 AI Access Foundation. All rights reserved.

521

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

1. Introduction

Multi-agent systems are considered an important and rapidly expanding area of research in artificial

intelligence. This is due to its natural fit to many real-world scenarios, and its wide variety of ap-

plications (Jennings, 2001). Now, typically, the agents in a multi-agent system need to be organized

such that the roles, relationships, and authority structures that govern their behaviour are clearly

defined (Horling & Lesser, 2005). Different organizational paradigms include hierarchies, teams,

federations, and many others, each with its own strengths and weaknesses, making it more suit-

able for some problems, and less suitable for others. Among the organizational paradigms that are

becoming increasingly important is that of coalitions. Coalitions can be distinguished from other

organizations by being goal-directed and short-lived; i.e. the coalitions are formed with a purpose

in mind, and are dissolved when that purpose no longer exists, or when they cease to suit their

designed purpose, or when the profitability is lost as agents depart (Horling & Lesser, 2005). An-

other defining feature is that within each coalition, the agents coordinate their activities in order to

achieve the coalition’s goal(s), but no coordination takes place among agents belonging to different

coalitions (except if the coalitions’ goals interact). Moreover, the organizational structure within

each coalition is usually flat (although there could be a coalition leader acting as a representative for

the group as a whole).

The area of coalition formation has received considerable attention in recent research, and has

proved to be useful in a number of real-world scenarios and multi-agent systems. For example, in

e-commerce, buyers can form coalitions to purchase a product in bulk and take advantage of price

discounts (Tsvetovat, Sycara, Chen, & Ying, 2000). In e-business, groups of agents can be formed

in order to satisfy particular market niches (Norman, Preece, Chalmers, Jennings, Luck, Dang,

Nguyen, V. Deora, Gray, & Fiddian, 2004). In distributed sensor networks, coalitions of sensors can

work together to track targets of interest (Dang, Dash, Rogers, & Jennings, 2006). In distributed

vehicle routing, coalitions of delivery companies can be formed to reduce the transportation costs by

sharing deliveries (Sandholm & Lesser, 1997). Coalition formation can also be used for information

gathering, where several information servers form coalitions to answer queries (Klusch & Shehory,

1996).

Generally speaking, the coalition formation process can be viewed as being composed of the

three main activities that are outlined below (Sandholm, Larson, Andersson, Shehory, & Tohme,

1999):

1. Coalition Value Calculation: In this context, a number of coalition formation algorithms

have been developed to determine which of the potential coalitions should actually be formed.

To do so, they typically calculate a value for each coalition, known as the coalition value,

which provides an indication of the expected outcome that could be derived if that coalition

was formed. Then, having computed all the coalition values, the decision about the optimal

coalition(s) to form can be taken. The way this value is calculated depends on the problem

under investigation.

In an electronic marketplace, for example, the value of a coalition of buyers can be calculated

as the difference between the sum of the reservation costs of the coalition members and the

minimum cost needed to satisfy the requests of all the members (Li & Sycara, 2002). In

information gathering, the coalition value can be designed to represent a measure of how

closely the information agents’ domains are related (Klusch & Shehory, 1996). In cases where

the agents’ rationality is bounded due to computational complexity, the value of a coalition

522

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

may represent the best outcome it can achieve given limited computational resources for

solving the problem (Sandholm & Lesser, 1997).

2. Coalition Structure Generation: Having computed the coalition values, the coalition struc-

ture generation (CSG) problem involves partitioning the set of agents into exhaustive and

disjoint coalitions so as to maximize social welfare. Such a partition is called a coalition

structure. For example, given a set of agents A = {a1, a2, a3}, there exist five possible coali-

tion structures: {{a1} , {a2} , {a3}}, {{a1} , {a2, a3}}, {{a2} , {a1, a3}}, {{a3} , {a1, a2}},

{{a1, a2, a3}}.

It is usually assumed that every coalition performs equally well, given any coalition structure

containing it (i.e. the value of a coalition does not depend on the actions of non-members).

Such settings are known as characteristic function games (CFGs), where the value of a coali-

tion is given by a characteristic function. Many, but clearly not all, real-world multi-agent

problems happen to be CFGs (Sandholm et al., 1999).

Note that an optimal solution to the CSG problem is one that maximizes the social welfare.

Now, unlike a cooperative environment where the agents are mainly concerned with maximiz-

ing the social welfare, the agents in a selfish environment are only concerned with maximizing

their own utility. This, however, does not mean that a CSG algorithm cannot be applied in

selfish multi-agent systems. This is because the designer of such systems is usually con-

cerned with raising the overall efficiency of the system and, in many cases, this corresponds

to maximizing the social welfare. To this end, the designer needs to design an enforcement

mechanism that motivates the agents to join the optimal coalition structure and, in order to do

so, he first needs to know what that structure is. Moreover, knowing the value of the optimal

coalition structure, or knowing a value that is within a bound from that optimal, allows the

designer to evaluate the relative effectiveness of the coalition structure currently formed in

the system.

3. Pay-off Distribution: Having determined which coalitions should be formed, it is important

to determine the rewards that each agent should get in order for the coalitions to be stable.

Here, stability refers to the state where the agents have no incentive to deviate from the coali-

tions to which they belong (or little incentive in weaker types of stability). This is desirable

because it ensures that the agents will devote their resources to their chosen coalition rather

than negotiating with, and moving to, other coalitions. This ensures that the coalitions can

last long enough to actually achieve their goals. The analysis of such incentives has long

been studied within the realm of cooperative game theory. In this context, many solutions

have been proposed based on different stability concepts. These include the Core, the Shap-

ley value, and the Kernel (more details can be found in the paper by Osborne & Rubinstein,

1994). Moreover, schemes have been developed to transfer non-stable pay-off distributions

to stable ones while keeping the coalition structure unchanged (Kahan & Rapoport, 1984,

provide a comprehensive review on stability concepts and transfer schemes in game theory).

Note, however, that the agents in a cooperative environment have no incentive to dissolve a

coalition that improves the performance of the system as a whole. Therefore, pay-off dis-

tribution is less important, and the main concern is generating a coalition structure so as to

maximize the social welfare.

523

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

One of the most challenging of all of these activities is that of coalition structure generation, and this

is due to the number of possible solutions which grows exponentially (in O(nn) and ω(n
n
2) with

the number of agents involved (n)). More specifically, it has been proved that finding an optimal

coalition structure is NP-complete (Sandholm et al., 1999). To combat this complexity, a number

of algorithms have been developed in the past few years, using different search techniques (e.g.

dynamic programming, integer programming, and stochastic search). These algorithms, however,

suffer from major limitations that make them either inefficient or inapplicable, particularly given

larger numbers of agents (see Section 2 for more details).

This motivates our aim to develop an efficient algorithm for searching the space of possible

coalition structures. In more detail, given a CFG setting, we wish to develop an algorithm that

satisfies the following properties:

1. Optimality: When run to completion, the algorithm must always be able return a solution that

maximizes the social welfare.

2. Ability to prune: the algorithm must be able to identify the sub-spaces that have no potential

of containing an optimal solution so that they can be pruned from the search space. This

property is critical given the exponential nature of the problem (e.g. given 20 agents, the

number of possible coalition structures is 51,724,158,235,372).

3. Discrimination: the algorithm must be able to verify, during the search, that it has found an

optimal solution, instead of proceeding with the search in the hope that a better solution can

be found.

4. Anytime: the algorithm should be able to quickly return an initial solution, and then improve

on the quality of this solution as it searches more of the space, until it finds an optimal one.

This is particularly important since the agents might not always have sufficient time to run the

algorithm to completion, especially given the exponential size of the search space. Moreover,

being anytime makes the algorithm more robust against failure; if the execution is stopped

before the algorithm would have normally terminated, then it would still provide the agents

with a solution that is better than the initial solution, or any other intermediate one.

5. Worst Case Guarantees: the algorithm should be able to provide worst-case guarantees on the

quality of its solution. Otherwise, the generated solution could always be arbitrarily worse

than the optimal one. Such guarantees are important when trading off between the solution

quality and the search time. For example, if the quality of the current solution is known to

be no worse than, say, 95% of the optimal one, and if there is still a significant portion of the

space left to be searched, then the agents might decide that it is not worthwhile to carry on

with the search. Obviously, the better the guarantees, the more likely it is that the agents will

decide to stop searching for a better solution.

Against the research aims outlined above, this paper makes the following contributions to the state

of the art in coalition structure generation:

1. We provide a new representation of the space of possible coalition structures. This repre-

sentation partitions the space into much smaller, disjoint sub-spaces that can be explored

524

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

independently to find an optimal solution. As opposed to the other widely-used representa-

tion (Sandholm et al., 1999; Dang & Jennings, 2004), by which the coalition structures are

categorized based on the number of coalitions they contain, our representation categorizes the

coalition structures into sub-spaces based on the sizes of the coalitions they contain. A key

advantage of this representation is that, immediately after scanning the input to the algorithm

(i.e. the coalition values), we can compute the average value of the coalition structures within

each sub-space. Moreover, by scanning the input, we can also compute an upper and a lower

bound on the value of the best coalition structure that could be found in each of these sub-

spaces. Then, by comparing these bounds, it is possible to identify the sub-spaces that have

no potential of containing an optimal solution so that they can be pruned. A second major

advantage of this representation is that it allows the agents to analyse the trade-off between

the size of (i.e. the number of coalition structures within) a sub-space and the improvement

it may bring to the current solution by virtue of its bounds. Hence, rather than constraining

the solution to fixed sizes, as Shehory and Kraus (1998) do, agents using our representation

can make a more informed decision about the sizes of coalitions to choose (since each of the

sub-spaces are defined by the sizes of coalitions within the coalition structures).

2. We develop a novel, anytime, integer-partition based algorithm (called IP) for coalitions struc-

ture generation which uses the representation discussed above, and provides very high guar-

antees on the quality of its solutions very quickly. Moreover, IP is guaranteed to return an

optimal solution when run to completion.

3. We prove that our algorithm is able to enumerate coalition structures efficiently by avoiding

redundant and invalid solutions. Our enumeration technique also allows us to apply branch-

and-bound to reduce the amount of search needed.

4. While many CSG algorithms in the literature have been evaluated using the input distributions

that were defined by Larson and Sandholm (2000), we prove that these distributions are biased

as far as the CSG problem is concerned. Moreover, we propose a new distribution and prove

that it tackles this problem, making it much more suitable for evaluating CSG algorithms in

general.

5. When evaluating the time required to return an optimal solution, we compare IP with the

fastest algorithm guaranteed to return an optimal solution (i.e. the Improved Dynamic Pro-

gramming (IDP) algorithm by Rahwan & Jennings, 2008b). This comparison shows that IP

is significantly faster. In more detail, IP is empirically shown to find an optimal solution in

0.175% of the time taken by IDP given 27 agents.

6. We benchmark IP against previous anytime algorithms (Sandholm et al., 1999; Dang & Jen-

nings, 2004), and show that it provides significantly better guarantees on the quality of the

solutions it generates over time. In more detail, we empirically show that, for various num-

bers of agents, the quality of its initial solution (i.e. the solution found after scanning the

input) is usually guaranteed to be at least 40% of the optimal, as opposed to 2
n

(which means

for example, 10% for 20 agents and 8% for 25 agents) for both Sandholm et al.’s algorithm

and Dang and Jennings’s algorithm. For the standard distributions with which we evaluate

our algorithm, we also find that it usually terminates by searching only minute portions of the

525

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

search space and generates near-optimal solutions (i.e. > 90% of the optimal) by searching

even smaller portions of the search space (i.e. on average around 0.0000002% of the search

space). This is a tremendous improvement over the aforementioned algorithms which could

guarantee solutions higher than 50% of the optimal only after searching the whole space.

Note that this is a significantly revised and extended version of previous papers (Rahwan, Ram-

churn, Dang, & Jennings, 2007a; Rahwan, Ramchurn, Giovannucci, Dang, & Jennings, 2007b).

Specifically, we provide in this paper a more comprehensive review of the available algorithms in

the CSG literature. We also provide a detailed analysis of our IP algorithm, describe the pseudo code

of all the functions used in IP, and prove the correctness of the function that searches the different

sub-spaces. A mathematical proof is also provided regarding the way the size of a sub-space is com-

puted. Moreover, we question the validity of the standard value distributions that are used in the

literature, and propose a new value distribution (called NDCS) that is more suitable for evaluating

CSG algorithms. Finally, we benchmark our algorithm against the improved dynamic programming

algorithm (IDP) by Rahwan and Jennings (2008b) (instead of the standard DP algorithm).

The remainder of the paper is organized as follows. In Section 2, we describe the algorithms

that are currently available for solving the coalition structure generation problem, and discuss their

relative advantages and limitations. In Section 3, we present our novel representation of the search

space and, in Section 4, we present our integer-partition based algorithm (IP), showing how it iden-

tifies the sub-spaces that can be pruned, and how it searches through the remaining ones without

going through invalid or redundant coalition structures, using a branch-and-bound technique. Sec-

tion 5 provides an empirical evaluation of the algorithm, and benchmarks it against the current state

of the art in the CSG literature. Section 6 concludes the paper and outlines future work. We also

provide, in the appendices, a summary of the main notations employed, as well as detailed proofs

of the theorems provided in the paper.

2. Related Work

Previous algorithms that have been designed for the coalition structure generation problem can be

classified into two main categories:

• Exact algorithms1 – using heuristics, integer programming, or dynamic programming.

• Non-exact algorithms – using genetic algorithms, or limiting the search space in some way.

Next, we discuss both the advantages and the limitations of the algorithms that fall within each

of these classes. Throughout the paper, we denote by n the number of agents, and by A =
{a1, a2, · · · , an} the set of agents. Moreover, we define an order over the agents in A as follows:

∀ai, aj ∈ A, ai < aj iff i < j, and ai = aj iff i = j. In other words, we have: a1 < a2 < · · · < an.

Finally, we denote by v(C) the value of coalition C, and V (CS) the value of coalition structure CS.

2.1 Exact Algorithms for Coalition Structure Generation

There are very few exact algorithms for coalition structure generation. Those that have been devel-

oped can be distinguished based on whether they use dynamic programming or heuristics. In what

1. Recall that an exact algorithm is one that always returns an optimal solution if it exists (Evans & Minieka, 1992).

526

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

follows, we outline their features and discuss how they relate to our ultimate goal of developing an

efficient, anytime, optimal coalition structure generation algorithm.

2.1.1 DYNAMIC PROGRAMMING

Here we consider computationally efficient algorithms designed to return an optimal solution. Note

that the emphasis, here, is on providing a guarantee on the performance of the algorithm in worst-

case scenarios. In this context, Yeh (1986) developed a dynamic programming algorithm to solve

the complete set partitioning problem. A very similar algorithm was later developed by Rothkopf,

Pekec, and Harstad (1995) to solve the winner determination problem in combinatorial auctions.

These algorithms can be directly applied to find optimal coalition structures, since the problems

they were originally designed to solve are very similar to the CSG problem.2 Also note that both

of these algorithms use basically the same technique and, therefore, have the same computational

complexity. Thus, throughout this paper, we do not distinguish between them, and refer to both as

the dynamic programming (DP) algorithm. The biggest advantage of this algorithm is that it runs

in O(3n) time (Rothkopf et al., 1995). This is significantly less than exhaustive enumeration of all

coalition structures (which is O(nn)). In fact, DP is polynomial in the size of the input. This is

because the input includes 2n − 1 values, and the following holds:

O(3n) = O(2(log23)n) = O((2n)log23)

Therefore, the computational complexity of the algorithm is O(ylog23), where y is the number

of values in the input. While, on the one hand, no other algorithm in the literature is guaranteed to

find an optimal coalition structure in polynomial time (in the size of the input), on the other hand,

the main limitation of DP is that it does not generate solutions anytime, and has a large memory

requirement. Specifically, it requires maintaining three tables in memory containing 2n entries

each.

More recently, Rahwan and Jennings (2008b) developed an Improved Dynamic Programming

algorithm (called IDP) that performs fewer operations and requires less memory than DP (e.g. given

25 agents, it performs only 38.7% of the operations, and requires 66.6% of the memory in the worst

case, and 33.3% in the best). However, IDP does not return solutions anytime. As mentioned earlier,

this is undesirable, especially given large numbers of agents, because the time required to return the

optimal solution might be longer than the time available to the agents.

2.1.2 ANYTIME ALGORITHMS WITH WORST CASE GUARANTEES

Sandholm et al. (1999) were the first to introduce an anytime algorithm for coalition structure gen-

eration that establishes bounds on the quality of the solution found so far. They view the coalition

structure generation process as a search in what they call the coalition structure graph (see Figure

1). In this undirected graph, every node represents a possible coalition structure. The nodes are

categorized into n levels, noted as LV1, · · · , LVn where level LVi contains the coalition structures

that contain i coalitions. The arcs represent mergers of two coalitions when followed upwards, and

splits of a coalition into two coalitions when followed downwards.

2. This is because they both involve partitioning a set of elements into subsets based on the weights that are associated

to every possible subset.

527

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Figure 1: The coalition structure graph for 4 agents.

Sandholm et al. (1999) have proved that, in order to establish a bound on the quality of a coali-

tion structure, it is sufficient to search through the first two levels of the coalition structure graph. In

this case, the bound β would be equal to n, and the number of searched coalition structures would

be 2n−1. They have also proved that this bound is tight; meaning that no better bound exists for

this search. Moreover, they have proved that no other search algorithm (other than the one that

searches the first two levels) can establish any bound while searching only 2n−1 coalition structures

or fewer. This is because, in order to establish a bound, one needs to go through a subset of coali-

tion structures in which every coalition appears at least once.3 This implies that the smallest subset

of coalition structures to be searched before a bound can be established is the one in which every

coalition appears exactly once, and the only subset in which this occurs is the one containing all the

coalition structures that belong to the first two levels of the graph.

If the first two levels have been searched, and additional time remains, then it would be desirable

to lower the bound with further search. Sandholm et al. (1999) have developed an algorithm for this

purpose. Basically, the algorithm searches the remaining levels one by one, starting from the bottom

level, and moving upwards in the graph. Moreover, Sandholm et al. have also proved that the bound

β is improved whenever the algorithm finishes searching a particular level. What is interesting here

is that, by searching the bottom level (which only contains one coalition structure) the bound drops

in half (i.e. β = n
2). Then, roughly speaking, the divisor in the bound increases by one every time

3. Otherwise, if a coalition did not appear in any of these coalition structures, and if the value of this coalition hap-

pened to be arbitrarily better than the value of other coalitions, then every coalition structure containing it would be

arbitrarily better than those that do not.

528

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

two more levels are searched, but seeing only one more level helps very little (Sandholm et al.,

1999).4

This algorithm has the advantage of being anytime, and being able to provide worst case guar-

antees on the quality of the solution found so far. However, the algorithm has two major limitations:

• The algorithm needs to search through the entire search space in order for the bound to

become 1. In other words, to return a solution that is guaranteed to be optimal, the algorithm

simply performs a brute-force search. As discussed in Section 1, this is intractable even for

small numbers of agents.

• The bounds provided by the algorithm might be too large for practical use. For example,

given n = 24, and given that the algorithm has finished searching levels LV1, LV2, and LV24

(which contain 8,388,609 coalition structures) the bound would be β = n/2 = 12. This

means that, in the worst case, the optimal solution can be 12 times better than the current

solution. In other words, the value of the current solution is only guaranteed to be no worse

than 8.33% of the value of the optimal solution. After that, in order to reduce the bound to

β = n/4, four more levels need to be searched, namely LV23, LV22, LV21, and LV20. In

other words, after searching an additional 119,461,563 coalition structures, the value of the

solution is only guaranteed to be no worse than 16.66% of the optimal value. Similarly, to

reduce the bound to β = n/6, the algorithm needs to search an additional 22,384,498,067,085

coalition structures only to guarantee that the value of the solution is no worse than 25% of

the optimal value. Moreover, the guarantee does not go beyond 50% until the entire space has

been searched.

Given the limitations of Sandholm et al.’s (1999) algorithm, Dang and Jennings (2004) developed

an anytime algorithm that can also establish a bound on the quality of the solution found so far, but

that uses a different search method. In more detail, the algorithm starts by searching the top two

levels, as well as the bottom one (as Sandholm et al.’s algorithm does). After that, however, instead

of searching through the remaining levels one by one (as Sandholm et al. do), the algorithm searches

through specific subsets of the remaining levels. Figure 2 compares the performance of both algo-

rithms, and, by looking at this figure, we can see that neither of the two algorithms significantly

outperforms the other.

Note, however, that both algorithms were not meant for the case where the entire space will

eventually be searched. This is because if we had enough time to perform this search, then we

would have used the dynamic programming algorithm, which performs this search much quicker.

Instead, these algorithms were mainly developed for the cases where the space is too large to be

fully searched, even when the dynamic programming algorithm is being used.

Having discussed two algorithms that use similar techniques (i.e. by Sandholm et al., 1999 and

Dang & Jennings, 2004), we now discuss a different approach that can also provide solutions any-

time, and can establish worst-case guarantees on the quality of its solution. This involves the use of

standard problem solving techniques that rely on general purpose solvers. In more detail, the coali-

tion structure generation problem can be formulated as a binary integer programming problem (or

4. To be more precise, depending on the number of agents and the level searched, the bound will either be
⌈

n
m

⌉
or
⌊

n
m

⌋

where m = 2, 3, · · · , n. However, to ease the discussion and without loss of generality, we will assume throughout

the paper that the bound is simply n
m

.

529

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Figure 2: Given 24 agents, the figure shows, on a log scale, a comparison between the bound pro-

vided by Sandholm et al. (1999) and that provided by Dang and Jennings (2004), given

different numbers of searched coalition structures.

a 0-1 integer programming problem), since any variable representing a possible coalition can either

take a value of 1 (indicating that it belongs to the formed coalition structure) or 0 (indicating that it

doesn’t). Specifically, given n agents, the integer model for the CSG problem can be formulated as

follows:

Maximize
2n∑
i=1

v(Ci) · xi

subject to Z · X = eT

X ∈ {1, 0}n

where Z is an n × 2n matrix of zeros and ones, X is a vector containing 2n binary variables,

and eT is the vector of n ones. In more detail, every line in Z represents an agent, and every column

represents a possible coalition. As for X , having an element xi = 1 corresponds to coalition Ci

being selected in the coalition structure. The first constraint ensures that the selected coalitions are

both disjoint and exhaustive.

Such an integer programming problem is typically solved by applying linear relaxation coupled

with branch-and-bound (Hillier & Lieberman, 2005). However, the main disadvantage of this ap-

proach is the huge memory requirement, which make it only applicable for small numbers of agents

(see Section 5 for more details).

530

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

2.2 Non-Exact Algorithms for Coalition Structure Generation

These algorithms do not provide any guarantees on finding an optimal solution, nor do they provide

worst-case guarantees on the quality of their solutions. Instead, they simply return “good” solutions.

However, it is the fact that they can return a solution very quickly, compared to other algorithms, that

often makes this class of algorithms more applicable, particularly given larger numbers of agents.

Generally speaking, as long as there is some regularity in the search space (i.e., the evaluation

function is not arbitrary), genetic algorithms have the potential to detect that regularity and hence

find the coalition structures that perform relatively effectively. To this end, Sen and Dutta (2000)

developed a genetic algorithm for coalition structure generation. The algorithm starts with an initial

set of candidate solutions (i.e. a set of coalition structures) called a population, which then gradu-

ally evolves towards better solutions. This is done in three main steps: evaluation, selection, and

re-combination. In more detail, the algorithm evaluates every member of the current population,

selects members based on their evaluation, and constructs new members from the selected ones by

exchanging and modifying their contents. More details on the implementation can be found in the

paper by Sen and Dutta (2000). The main advantage of this algorithm is that it can return solutions

anytime, and that it scales up well with the increase in the number of agents. However, the main

limitation is that the solutions it provides are not guaranteed to be optimal, or even guaranteed to be

within a finite bound from the optimal. Moreover, even if the algorithm happens to find an optimal

solution, it is not possible to verify this fact.

Another algorithm that belongs to this class of algorithms is the one developed by Shehory and

Kraus (1998). This algorithm is greedy and operates in a decentralized manner. The heuristics

they propose (in order to reduce the complexity of finding an optimal coalition structure) involve

adding constraints on the size of the coalitions that are allowed to be formed. Specifically, only the

coalitions up to a size q < n are taken into consideration. The main advantage of this algorithm is

that it can take into consideration overlapping coalitions.5 Moreover, Shehory and Kraus prove that

the solution they provide is guaranteed to be within a bound from the optimal solution. However,

by optimal, they mean the best possible combination of all permitted coalitions. On the other hand,

the algorithm provides no guarantees on the quality of its solutions compared to the actual optimal

that could be found if all coalitions were taken into consideration.

To summarize, as discussed earlier, the main limitation of these algorithms is that they provide

no guarantees on the solutions they generate while they search or when they terminate. However,

these algorithms scale up well with the increase in the number of agents, making them particularly

suitable for the cases where the number of agents is so large that no algorithm with exponential

complexity can be executed in time.

After discussing the different approaches to the coalition structure generation problem, we can

see that each of these approaches suffers from major limitations, making it either inefficient or

inapplicable. This motivates our aim to develop more efficient CSG algorithms that can be applied

to a wider range of problems, while taking into consideration the objectives outlined in Section

1. With this in mind, we first present in Section 3 a novel representation of the search space, and

then present in Section 4 a novel algorithm that belongs to the first class of the aforementioned

classification. As we will show, this algorithm avoids all the limitations that exist in state-of-the-art

5. A solution containing overlapping coalitions means that the agents may participate in more than one coalition at the

same time.

531

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

algorithms belonging to this class, and meets all of the design objectives placed in Section 1 on CSG

algorithms.

3. Search Space Representation

In this section, we describe our novel representation of the search space (i.e. the space of possible

coalition structures). Recall that the space representation employed by most existing anytime algo-

rithms is an undirected graph (see Figure 1 for an example), where the vertices represent coalition

structures (Sandholm et al., 1999; Dang & Jennings, 2004). This representation, however, forces all

possible solutions to be explored in order to guarantee that the optimal one has been found. Given

this, we believe an ideal representation of the search space should allow the computation of solu-

tions anytime, while establishing bounds on their quality, and should allow the pruning of the space

to speed up the search. With this objective in mind, in this section we describe just such a repre-

sentation. In particular, it supports an efficient search for the following reasons. First, it partitions

the space into smaller, independent, sub-spaces for which we can identify upper and lower bounds,

and thus, compute a bound on the solutions found during the search. Second, we can prune most

of these sub-spaces since we can identify the ones that cannot contain a solution better than the

best one found so far. Third, since the representation pre-determines the size of coalitions present

in each sub-space, agents can balance their preference for certain coalition sizes against the cost

of computing the solution for these sub-spaces. Next, we formally define our representation of the

search space, describe its algebraic properties, and describe how to compute worst case bounds on

the quality of the solution that our representation allows us to generate.

3.1 Partitioning the Search Space

We partition the search space P by defining sub-spaces that contain coalition structures that are

similar according to some criterion. The particular criterion we specify here is based on the integer

partitions of the number of agents.6 Recall that an integer partition of n is a multiset of positive

integers that add up to exactly n (Andrews & Eriksson, 2004). For example, given n = 4, the

five distinct partitions are: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1].7 It can easily be shown that the

different ways to partition a set of n elements can be directly mapped to the integer partitions of

n, where the parts of the integer partition correspond to the cardinalities of the subsets (i.e. the

sizes of the coalitions) within the set partition (i.e. coalition structure). For instance, the coalition

structures {{a1, a2}, {a3}, {a4}} and {{a4, a1}, {a2}, {a3}} can be mapped to the integer partition

[2, 1, 1] since they each contain one coalition of size 2, and two coalitions of size 1. We define the

aforementioned mapping by the function F : P → G, where G is the set of integer partitions of n.

Thus, F defines an equivalence relation ∼ on P such that CS ∼ CS′′ iff F (CS) = F (CS′′) (i.e.

the sizes of the coalitions in CS are the same as those in CS′′). Given this, the pre-image8 of an

integer partition G, noted as PG = F−1[{G}], contains all the coalition structures that correspond

6. Other criteria could be developed to further partition the space into smaller sub-spaces, but the one we develop here

allows us to choose coalition structures with certain properties as we show later.

7. For presentation clarity, square brackets are used throughout the paper (instead of the curly ones) to distinguish

between multisets and sets.

8. Recall that the pre-image or inverse image of G ⊆ G under F : P → G is the subset of P defined by F−1[{G}] =
{CS ∈ P|F (CS) = G}.

532

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

to the same integer partition G. Every such pre-image represents a sub-space in our representation.

This implies that the number of sub-spaces in our representation is the same as the number of

possible integer partitions, which grows exponentially with n. This number, however, remains

insignificant compared to the number of possible coalitions and coalition structures (e.g., given

24 agents, the number of possible integer partitions is only 1575, while the number of possible

coalitions is 16777215, and the number of possible coalition structures is nearly 4.4 × 1017).

We categorize the sub-spaces into levels based on the number of parts within the integer parti-

tions. Specifically, level Pi = {PG : |G| = i} contains all the sub-spaces that correspond to an

integer partition with i parts (see Figure 3 for an example of 4 agents).9 In what follows, we show

how to compute bounds for the sub-spaces (PG : G ∈ G) in our representation.

Figure 3: An example of our representation of the search space given 4 agents.

3.2 Computing Bounds for Sub-spaces

For each sub-space PG, it is possible to compute an upper and a lower bound on the value of the

best10 coalition structure that could be found in it. To this end, let Ls be the list of coalitions

of size s, and let maxs, mins, and avgs, be the maximum, minimum, and average value of the

coalitions in Ls respectively. Moreover, given an integer partition G, let TG be the Cartesian product

of the lists Ls : s ∈ G. That is, TG =
∏

s∈G(Ls)
G(s), where G(s) is the multiplicity of s in

9. Note that the levels in our representation are basically the same as those that appear in the coalition structure graph,

except that the coalition structures within each level are now categorized into sub-spaces. In other words, the coalition

structures that belong to the sub-spaces in Pi are the same as those that belong to LVi.

10. Throughout this paper, a coalition structure is described as being “the best” if it has the highest value.

533

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

G. For example, given G = [5, 4, 4, 4, 1, 1], we have TG = (L5)
1 × (L4)

3 × (L1)
2. Note that

TG contains many combinations of coalitions that are considered invalid coalition structures. This

is because some of the coalitions within these combinations may overlap. For example, T[2,1,1]

contains the following combination, {{a1, a2}, {a1},{a3}}, which is not a valid coalition structure

because agent a1 appears in two coalitions. Now, if we consider the value of each element (i.e.

combination of coalitions) in TG to be the sum of the values of all the coalitions in that element,

then the maximum value that an element in TG can take, denoted MAXG, is computed as follows:

MAXG =
∑

s∈G maxs × G(s). Based on this, it is easy to demonstrate that MAXG is an upper

bound on the value of the best coalition structure in PG (since PG is a subset of TG).

Similarly, the minimum value that an element in TG can take, denoted MING, is computed as

follows: MING =
∑

s∈G mins × G(s). Although this could intuitively be considered a lower

bound on the value of the best coalition structure (i.e. solution) in PG, we show that it is actually

possible to compute a higher (i.e. better) lower bound than MING.

In more detail, let AV GG be the average value of all the coalition structures in PG. Then,

AV GG would be a lower bound on the value of the best coalition structure in PG (since an average

is always greater than, or equal to, a minimum). The key point to note, here, is that we can compute

AV GG without having to go through any of the coalition structures in PG. Instead, we can compute

it by simply summing the averages of the coalition lists (see Theorem 1), and these averages can

be computed immediately after scanning the input, which is significantly smaller than the space of

possible coalition structures.

Theorem 1. Let G = [g1, · · · , gi, · · · , g|G|] be an integer partition, and let AV GG be the average

of the values of all the coalition structures in PG. Also, let avggi
be the average of the values of all

the coalitions in Lgi
. Then, the following holds:

AV GG =

|G|∑

i=1

avggi

Proof. See Appendix B.

Having described our novel representation of the search space, we present (in the following section)

an anytime algorithm that uses this representation to search through the possible coalitions structures

to eventually find an optimal one.

4. Solving the Coalition Structure Generation Problem

Assuming that the value of every coalition C is given by a characteristic function v(C) ∈ R, and

that the value of every coalition structure is given by the function V (CS) =
∑

C∈CS v(C), our goal

is to search through the set of possible coalition structures, noted as P , in order to find an optimal

coalition structure which is computed as:

CS∗ = arg max
CS∈P

V (CS) (1)

given v(C) for all C ∈ 2A\{∅}. Note that, in this section, the terms “coalition structure” and

“solution” will be used interchangeably.

Basically, our novel anytime Integer-Partition based algorithm (which we call IP) consists of the

following two main steps:

534

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

1. Scanning the input in order to compute the bounds (i.e. MAXG and AV GG) for every sub-

space PG — while doing so, we can (at a very small cost):

(a) find the best coalition structures within particular sub-spaces.

(b) prune other sub-spaces based on their upper-bounds.

(c) establish a worst-case bound on the quality of the best solution found so far.

2. Searching within the remaining sub-spaces — the techniques we use allow us to:

(a) avoid making unnecessary comparisons between coalitions to generate valid coalition

structures (i.e. those that contain disjoint coalitions).

(b) avoid computing the same coalition structure more than once.

(c) apply branch-and-bound to further reduce the amount of search to be done.

The following sub-sections describe each of the aforementioned steps in more detail. To this end,

we will use CS′ to denote the best coalition structure found so far, and G′ ⊆ G to denote the integer

partitions that represent the sub-spaces that have not been searched.

4.1 Scanning the Input

The input to the coalition structure generation problem is the value associated to each coalition,

i.e. v(C) for all C ∈ 2A\{∅}. One way of representing this input is to use a table containing

every coalition along with its value. Another way is to agree on an ordering of the coalitions, and

to use a list containing only the values of these ordered coalitions (i.e. the first value in the list

corresponds to the first coalition, the second value corresponds to the second coalition, and so on).

We use the latter representation since it does not require maintaining the coalitions themselves in

memory. In more detail, we assume that the input is given as follows: v(Ls) ∀s ∈ {1, 2, . . . , n},

where v(Ls) is a list containing the values of all the coalitions of size s. Moreover, we assume

that the coalitions in Ls are ordered lexicographically. For example, coalition {a1, a2, a4} has its

elements ordered according to their indices, and the coalition itself is found above {a1, a2, a3} and

below {a1, a3, a4} in the list L3 (this is depicted in Figure 4). This ordering can easily be generated

using the techniques that are used by Rahwan and Jennings (2007). Next, we describe the individual

steps of the algorithm that depicts the scanning process (see Algorithm 1).

At first, we scan the value of the one coalition of size n (i.e. the grand coalition). This would

be the value of the only coalition structure in P[n] (which is the only sub-space in P1). After that,

we scan the values of all the coalitions of size 1 (i.e. singleton coalitions), and by summing these

values, we get the value of the only coalition structure in P[1,1,...,1] (which is the only sub-space in

Pn). At this point (step 1), it is possible to compute the best coalition structure found so far (i.e.

CS′).
Having searched through levels P1 and Pn, we now show how to search through level P2 at

a very low cost while scanning the input. To this end, let G2 = {G ∈ G : |G| = 2} be the set

of integer partitions that contain two parts each. Then, as a result of the assumed ordering of the

input, any two complementary coalitions C and Ĉ in a coalition structure CS = {C, Ĉ} are always

diametrically positioned in the coalition lists L|C| and L|Ĉ|, and that happens even if |C| = |C ′|. For

example, given 6 agents, the coalitions {a1} and {a2, a3, a4, a5, a6} are diametrically positioned in

535

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Algorithm 1 : scanAndSearch() – scan the input, generate initial solutions and bounds.

Require: n, {v(Ls)}s∈{1,2,...,n}
1: CS′ ← arg maxCS∈{ {a1,...,an}, {{a1},...,{an}} } V (CS)
2: for s = 1 to ⌊n

2 ⌋ do

3: ŝ ← n − s
4: if s = ŝ {if cycling through the same list.} then

5: end = ⌊|v(Ls)|/2⌋
6: else

7: end = |v(Ls)|
8: end if

9: Set maxs, maxŝ, vmax to −∞ , and set sums, sumŝ to 0

10: for x = 1 to end {cycle through the lists v(Ls) and v(Lŝ).} do

11: x̂ ← |v(Ls)| − x + 1
12: v ← v(Ls)

x , v̂ ← v(Lŝ)
x̂ {extract element at x, x̂ from v(Ls),v(Lŝ).}

13: if vmax < v + v̂ then

14: vmax ← v + v̂
15: xmax = x {record the index in v(Ls) at which v is located.}

16: end if

17: if maxs < v then

18: maxs ← v {record the maximum value in v(Ls).}

19: end if

20: if maxŝ < v̂ then

21: maxŝ ← v̂ {record the maximum value in v(Lŝ).}

22: end if

23: sums ← sums + v , sumŝ ← sumŝ + v̂
24: end for

25: x̂max ← |v(Ls)| − xmax + 1
26: if V (CS′) < V ({Lxmax

s , Lx̂max

ŝ
}) then

27: CS′ ← {Lxmax
s , Lx̂max

ŝ
} {update the best coalition structure found so far.}

28: end if

29: avgs ← sums/|v(Ls)| , avgŝ ← sumŝ/|v(Lŝ)| {compute averages.}

30: end for

31: G′ ← G \ G2

32: for G ∈ G′ {compute upper and lower bounds for each sub-space in G′
.} do

33: MAXG ← ∑
s∈G maxs · G(s)

34: AV GG ← ∑
s∈G avgs · G(s)

35: end for

36: UB∗ ← max[V (CS′), maxG∈G′ [MAXG]]
37: LB∗ ← max[V (CS′), maxG∈G′ [AV GG]]

38: G′ ← prune(G′, {MAXG}G∈G′ , LB∗) {prune the sub-spaces that have an upper

bound lower than LB∗
.}

39: β ← min[n/2 , UB∗/V (CS′)] {compute a worst-case bound on V (CS′).}

40: return CS′, β, {maxs}s∈{1,...,n},G′, {MAXG}G∈G′ , {AV GG}G∈G′

536

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

the lists L1 and L5 respectively, and the coalitions {a1, a2, a3} and {a4, a5, a6} are diametrically

positioned in the list L3 (see Figure 4 for an example of 6 agents).

Figure 4: An example of the assumed ordering of the coalition lists.

Based on this, for every integer partition G = [g1, g2] ∈ G2, we compute the values of all the

coalition structures in PG by simply summing the values of the coalitions as we scan the lists v(Lg1)
and v(Lg2), starting at different extremities for each list. Once these lists have been scanned (steps

10 to 24), it is possible to obtain the two values of which the sum is maximized. Moreover, it is

possible to obtain the indices in the lists at which these values are located (see how xmax and x̂max

are computed in steps 15 and 25 respectively). Then, by obtaining these indices, we know where

in Lg1 and Lg2 to find the two coalitions that belong to the best coalition structure in P[g1,g2] (this

comes from the fact that the position of any value in v(Ls) : s ∈ {1, ..., n} is exactly the position

of the corresponding coalition in Ls).

Note, however, that the input includes only v(Lg1) and v(Lg2) (i.e. it does not include Lg1 and

Lg2). For this reason, an algorithm is required that can return a coalition C given its position in the

ordered list L|C|. Rahwan and Jennings (2007) have developed a polynomial-time algorithm that

does exactly that. Therefore, we use it to find the required coalitions and compose the best coalition

structure in P{g1,g2} (see steps 26 and 27).11

While scanning v(Lg1) and v(Lg2), we also compute maxg1 and maxg2 (steps 17 to 22), as

well as avgg1 and avgg2 (step 29). Note that, in Algorithm 1, we scan v(Ls) and v(Ln−s) for all

s ∈ {1, . . . , ⌊n
2 ⌋} and this implies that maxs and avgs are computed for all s ∈ {1, . . . , n}. Also

note that this whole process is linear in the size of the input (i.e. O(y) where y = 2n − 1 is the size

of the input).

11. By Lx
s we mean that we extract the element at position x from Ls.

537

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Having computed maxs and avgs for every size s, we can now compute upper and lower bounds

for every sub-space (as in steps 32 to 34). By using these bounds, it is possible to compute an upper

bound UB∗ and a lower bound LB∗ on the value of the optimal coalition structure (see steps 36 and

37). Hence, every sub-space PG that has an upper bound MAXG < LB∗ can be pruned straight

away. The prune function (used in step 38) is implemented as in Algorithm 2.

Algorithm 2 :prune(G′, {MAXG}G∈G′ , υ) – prune sub-spaces.

1: for G ∈ G′ do

2: if MAXG ≤ υ {if the upper bound of PG is lower than υ.} then

3: G′ ← G′ \ G {remove G.}

4: end if

5: end for

6: return G′

Another advantage of our scanning procedure is that it allows us to compute a worst-case bound

β on the value of CS′ as follows: β = min(n
2 , UB∗

V (CS′)) (see step 39). This comes from the fact

Sandholm et al. (1999) have proved that the value of the best coalition structure in levels LV1, LV2

and LVn (corresponding to P1,P2, and Pn respectively) is within a bound n
2 from the optimal.

So far, by only scanning the input, we have calculated maxs and avgs for all s ∈ {1, . . . , n},

we have searched levels P1,P2,Pn, we have calculated MAXG and AV GG for all the sub-spaces

within the remaining levels (i.e. P3, ...,Pn−1), we have pruned some of these sub-spaces, and we

have established a worst-case bound β on the quality of the best solution found so far. Moreover, it

is possible to specify a bound β∗ ≥ 1 within which any solution is acceptable. In more detail, if the

best solution found so far fits within the specified bound (i.e. if β ≤ β∗) then no further search is

required. Otherwise, the sub-spaces that have not been pruned (if there are any) must be searched.

Next, we specify how this search is done.

4.2 Selecting and Searching a Sub-space

Given the set of sub-spaces left after scanning the input, we select a sub-space to be searched, and

we find the best coalition structure in it. After that, we prune all the remaining sub-spaces that have

an upper bound lower than the best value found so far. This process of selecting, searching, and

pruning, is repeated until either of the following termination conditions is reached:

• The best coalition structure found so far fits within the specified bound β∗.

• All the remaining sub-spaces have either been searched or pruned.

This can be seen in Algorithm 3. Basically, the algorithm works as follows. A sub-space PG′′ is

selected to be searched (step 2).12 Once PG′′ has been searched (step 3), it is removed from the set

of remaining sub-spaces (step 4). After that, we check whether CS′ has been modified during the

search (step 5), and, if that is the case, then every sub-space with an upper bound lower than V (CS′)
is pruned (step 6).13 UB∗ and β are then updated in steps 8 and 9 respectively, and if the current

12. In step 2, we actually select an integer partition, but this implies that the corresponding sub-section is to be searched.

13. Checking whether CS′ belongs to PG′′ can easily be done by checking whether the sizes of the coalitions in CS′

match the parts in G′′.

538

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

best solution fits within the specified bound β∗ then it is returned (steps 10 and 11). Otherwise, this

whole process is repeated given the remaining sub-spaces (if there are any). In what follows, we

further elaborate on the sub-space selection strategy and the sub-space search algorithm since these

are the key parts of this algorithm.

Algorithm 3 :searchSpace() – search, or prune, the remaining sub-spaces.

Require: G′, {MAXG}G∈G′ , A, β∗

1: while G′ �= ∅ do

2: Select G′′ {select the integer partition that represents the next sub-space

to be searched.}

3: CS′ ← searchList(G′′, 1, 1, A, CS′,
−→
CS) {search within PG′′ and update CS′

.}

4: G′ ← G′ \ G′′ {remove PG′′ from the list of sub-spaces that are yet to be

searched.}

5: if CS′ ∈ PG′′ {If CS′
has been modified while searching PG′′.} then

6: G′ ← prune(G′, {MAXG}G∈G′ , V (CS′)) {prune the sub-spaces that have

upper bounds lower than V (CS′).}

7: end if

8: UB∗ ← max[V (CS′), maxG∈G′ [MAXG]] {update the upper bound on the value

of the optimal coalition structure(s).}

9: β ← min[UB∗

V (CS′) , β] {update the worst-case bound on V (CS′).}

10: if β ≤ β∗ {if CS′
is within the specified bound from the optimal.} then

11: return CS′

12: end if

13: end while

14: return CS′

4.2.1 SELECTING A SUB-SPACE

It can easily be seen that, unless we search the sub-spaces that have an upper bound greater than

V (CS′), we cannot verify that CS′ is an optimal solution. This implies that β remains greater than

1 until the following sub-spaces are searched: {PG : MAXG ≥ V (CS∗)}. This can be done by

selecting the next sub-space to be searched using the following selection rule:

Select G = arg max
G∈G′

(MAXG)

As a result of this selection strategy, all sub-spaces with an upper bound lower than V (CS∗) will

not be searched and these can constitute a significant portion of the search space (see Section 5.3

for more details). Another result is that it will always be beneficial to search a sub-space, even if

that sub-space does not contain a better solution than the one found so far. This is because the above

selection strategy ensures that UB∗ is reduced whenever a sub-space is searched, and this improves

the worst-case guarantee β on the quality of the current best solution.

Note that this selection rule is mainly for the cases where an optimal solution is sought. In case

we are after a near-optimal solution where a bound β∗ > 1 is specified (e.g., β∗ = 1.05 means

that the solution sought needs to have a value that is at least 95% of the optimal one), then other

539

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

selection rules may be used. For example, one could select to search the smallest sub-space that

could, potentially, give a value greater than or equal to UB∗

β∗ (hoping to find an acceptable solution

in the least amount of search). This can be expressed as:

Select G = arg min
G∈G′:UBG≥UB∗

β∗

(|PG|)

where |PG| is the size of (i.e. the number of coalition structures in) PG. More specifically, |PG| is

computed as follows:

Theorem 2. Let G = [g1, . . . , g|G|] be an integer partition, and let |PG| be the number of coalition

structures in PG. Moreover, let Cn
s be the binomial coefficient,14 and let E(G) be the underlying

set of G.15 Then, the following holds:

|PG| =
Cn

g1
× Cn−g1

g2 × . . . × C
n−(g1+...+g|G|−1)
g|G|∏

s∈E(G) G(s)!

Proof. See Appendix C.

The key point to note is that, given our representation, we can specify β∗ in cases where com-

puting the optimal solution would be too costly and, given this, we can modify the selection rule

accordingly to speed up the search.

Another advantage of being able to control the sub-spaces to be searched is that the agents can

choose what types of coalition structures to build according to their computational resources or

private preferences. For example, it has been argued that the computation time could be reduced if

we limit the size of the coalitions that can be formed (Shehory & Kraus, 1998). However, this is a

very costly, self-imposed constraint since it possibly means neglecting a number of highly efficient

solutions. Instead, by using IP, it is possible to determine, ex-ante (i.e. before performing the

search), which sub-spaces are most promising according to their upper and lower bounds. Therefore

the computation time can be focused on these sub-spaces and the gains can be traded-off against the

computation time.

In some other cases, agents may need to form q coalitions (Shehory & Kraus, 1995). For

example, they may need to perform q tasks and therefore need to divide up into q teams to perform

these tasks separately. Moreover, they may wish to have coalitions with a maximum size of z as

they may have certain constraints on the amount of resources available to each coalition. By using

our representation, such preferences can be naturally expressed and the search can be directed to fit

these preferences transparently. Formally, our search space can easily be redefined as follows:

G′′ = {G ∈ G : |G| = m ∧ ∀g ∈ G : |g| ≤ z}

In all the above cases where agents can express preferences for coalition structures of certain

sizes, they can now, a priori, balance such preferences with the quality of the solutions that can be

14. Recall that the binomial coefficient represents the number of possible combinations of size s taken from n elements,

and is computed as follows: Cn
s = n!

k!(n−k)!
, where n! is the factorial of n.

15. Recall that the underlying set E(G) of a multiset G is a subset of G in which each element in G appears only once

in E(G). For example, {1, 2} is the underlying set of [1, 1, 2].

540

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

obtained. This is because we are able to determine the worst-case bound from the optimal that the

search of a given sub-space will generate (i.e. UB∗

AV GG
). We next describe how we search through the

chosen sub-space.

4.2.2 SEARCHING A SUB-SPACE

Given an integer partition G = [g1, g2, · · · , g|G|] ∈ G, we need to cycle through the coalition

structures that belong to PG in order to find the best one. Here, without loss of generality, we

assume that g1 ≤ g2 ≤ · · · ,≤ g|G|. Perhaps the most obvious way of performing this cyclation

process is shown in Figure 5. Here, a variable
−→
CS =

〈
C1, C2, · · · , C|G|

〉
is used to cycle though

the coalition structures in PG as follows. First, C1 is assigned to one of the coalitions in Lg1 . After

that, C2 is used to cycle through Lg2 until a coalition that does not overlap with C1 is found. After

that, C3 is used to cycle through Lg3 until a coalition that does not overlap with {C1, C2} is found.

This is repeated until every Ck ∈ −→
CS is assigned to a coalition in Lgk

. In this case,
−→
CS would be

a valid coalition structure belonging to PG. The value of this coalition structure is then calculated

and compared with the maximum value found so far. After that, the coalitions in
−→
CS are updated

so as to set
−→
CS to another coalition structure in PG. Here, a coalition Ck is only updated once we

have examined all the possible instances of Ck+1, . . . , , C|G| that do not overlap with {C1, . . . , Ck}.

For example, in Figure 5, we only update C2 (step 5 in the figure) once we have examined all the

possible instances of C3 that do not overlap with {C1, C2} (steps 2, 3, 4 in the figure). This ensures

that
−→
CS is assigned to different coalition structures, and that, eventually, every possible coalition

structure in PG is examined.

Next, we show how this process can be done without storing any of the lists Lg1 , Lg2 , · · · , Lg|G|

in memory. To this end, let LCn
gk

: 1 ≤ gk ≤ n be the list of combinations of size gk that are

taken from the set {1, 2, · · · , n}, where the combinations are ordered lexicographically in the list.

Given this, both LCn
gk

and Lgk
contain the subsets of size gk that are taken from a set of size n. The

only difference is that LCn
gk

is a list of combinations of numbers while Lgk
is a list of coalitions of

agents. Now, Rahwan and Jennings (2007) have shown how to cycle through the combinations in

LCn
gk

without storing the entire list in memory. Instead, only one combination is stored at a time.

This is based on the assumed ordering which implies that the last combination in LCn
gk

is always:

{1, 2, · · · , gk}. This ordering also implies that, given any combination located at index x in the list,

where 1 < x ≤
∣∣LCn

gk

∣∣, it is possible to compute the combination located at index x − 1 (for more

details, see the paper by Rahwan & Jennings, 2007). Hence, in order to go through the coalitions in

Lgk
, we use a variable Mk to cycle16 through the combinations in LCn

gk
and, for every instance of

Mk, we extract the corresponding coalition Ck ∈ Lgk
using the following operation:

Ck = {ai ∈ A | i ∈ Mk} (2)

For example, given that Mk = {2, 4, 5}, the corresponding coalition would be {a2, a4, a5}. Since

there is a direct mapping (as defined by equation 2) from every combination in LCn
gk

to a coalition

in Lgk
, then, by having Mk cycle through every combination in LCn

gk
, we cycle through all the

coalitions in Lgk
.

16. This can be done by initializing Mk to the last combination in LCn
gk

(i.e. to {1, 2, · · · , gk}), and then iteratively

shifting Mk up in the list as in the paper by Rahwan and Jennings (2007), until every combination in LCn
gk

is

examined.

541

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Figure 5: A naı̈ve cyclation process for cycling through the coalition structures in a sub-space.

542

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Intuitively, this naı̈ve cyclation process, which we call NCP, can be viewed as being efficient.

After all, what we need is to find the coalition structure in PG that has the maximum value, and

NCP guarantees to find such a coalition structure. However, it suffers from the following major

limitations:

1. NCP works by searching through the ordered sets in TG — the Cartesian product of the lists

Ls : s ∈ G — in order to find those that belong to PG (i.e. those that contain disjoint

coalitions). This is a major limitation since the space of coalition structures is already ex-

ponentially large, and it would be counter-intuitive to search for it in an even bigger space.

For example, given 28 agents, the number of coalition structures in P[1,2,3,4,5,6,7] is only

7.8 × 10−9% of the number of ordered sets in T[1,2,3,4,5,6,7]. Note that the difference in size

between the two spaces grows exponentially with the number of agents involved.

2. Although NCP does not generate the same ordered set twice, it generates multiple ordered sets

containing the same coalitions, but ordered differently. For example, given A = {a1, · · · , a7}
and G = [2, 2, 3], NCP generates the following ordered sets, 〈{a1, a2}, {a3, a4}, {a5, a6, a7}〉
and 〈{a3, a4}, {a1, a2}, {a5, a6, a7}〉, which correspond to the same coalition structure. Note

that we need to find the best coalition structure and, in order to do so, it is sufficient to examine

the value of every coalition structure once. In other words, any operation that results in the

same coalition structure being generated more than once is considered redundant.

What would be desirable, then, is to find a way to cycle through the lists Lg1 , . . . , Lg|G|
such that

only valid combinations are generated. In other words, it would be desirable if Ck only cycles

through the valid coalitions in Lgk
, rather than going through every coalition in Lgk

and verifying

whether it overlaps with {C1, . . . , Ck−1}. Moreover, in order to avoid performing any redundant

operations, it would be desirable if the cyclation process is guaranteed not to go through the same

coalition structure more than once. Algorithm 4 describes a novel cyclation process that meets these

requirements.

The basic idea is to use the searchList function to cycle through the coalitions in Lg1 . For

each of these coalitions, searchList is called recursively17 to cycle through the coalitions in Lg2

that do not overlap with the first coalition (i.e. the one taken from Lg1). Similarly, while cycling

through Lg2 , searchList is called recursively to cycle through the coalitions in Lg3 that do not

overlap with the first two coalitions, and so on. This is repeated until searchList is called to

cycle through the coalitions in Lg|G|
, in which case we have a valid coalition structure (denoted

−→
CS

in Algorithm 4) that belongs to PG. Then, if
−→
CS has a value that is greater than V (CS′) then CS′

is updated accordingly. The remainder of this section describes how Algorithm 4 avoids generating

invalid or redundant coalition structures without making any comparison between coalitions. It also

describes how the algorithm applies a branch-and-bound technique to speed up the search.

Avoiding invalid coalition structures: Given G = [g1, . . . , g|G|], we define the following ordered

sets of agents: A1, A2, · · · , A|G|, where A1 contains n agents, and Ak : 2 ≤ k ≤ |G| contains

n − ∑k−1
i=1 gi agents. Moreover, we assume that the agents in Ak : 1 ≤ k ≤ |G| are ordered

17. searchList is not actually implemented in our code as a recursive function (due to the inefficiency of recursive

functions in general). However, to make Algorithm 4 easier to understand, the recursive form of the algorithm is

presented in the paper.

543

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Algorithm 4 :searchList(G, k, α, Ak, CS′,
−→
CS) – search a sub-space.

Require: {maxs}s∈{1,··· ,n}, {v(Ls)}s∈{1,··· ,n}, UB∗, β∗

1: if k > 1 and gk �= gk−1 {if the size is not being repeated.} then

2: α ← 1 {reset α.}

3: end if

4: for Mk ∈ LC
|Ak|
gk

such that α ≤ Mk,1 ≤ n + 1 −∑k
i=1(gk × G(gk)) do

5: Ck ← {Ak,i | i ∈ Mk} {extract Ck given Mk and Ak.}

6: if k = |G| and V (CS′) < V (
−→
CS) then

7: CS′ ← −→
CS {update the current best.}

8: else if V (CS′) <
∑

s∈{g1,··· ,gk} v(Cs) +
∑

s∈{gk+1,··· ,gn} maxs {branch only if there

is potential of finding a coalition structure better than CS′
.} then

9: CS′ ← searchList(G, k + 1, Mk,1, A \ C, CS′,
−→
CS) {branch to next

coalition.}

10: end if

11: if UB∗

V (CS′) ≤ β∗ or V (CS′) = MAXG {stop if the required solution has

been found or if the current best is equal to the upper bound of this

sub-space.} then

12: return CS′

13: end if

14: end for

15: return CS′

ascendingly based on their indices in A (e.g. if Ak contains agents a5, a7, and a2, then the order

would be Ak = 〈a2, a5, a7〉). In other words, we assume that: Ak,1 < Ak,2 < · · · < Ak,|Ak|, where

Ak,i is the ith agent in Ak.18 Now, given a number of coalitions C1, C2, · · · , Cgk−1
taken from the

lists Lg1 , Lg2 , · · · , Lgk−1
respectively, we show how to cycle through the coalitions in Lgk

that do

not overlap with any of the aforementioned ones, and that is without storing Lgk
in memory. In

more detail, this can be done using the following modifications over NCP:

• Instead of using Mk to cycle through the combinations in LCn
gk

(as in NCP), we use it to

cycle through the combinations in LC
|Ak|
gk

.

• For any given instance of Mk, we extract the corresponding coalition Ck ∈ Lgk
using the

following operation: Ck = {Ak,i | i ∈ Mk} (see step 5 of Algorithm 4). For example, given

Mk = {1, 3, 5}, the corresponding coalition does not contain agents a1, a3, and a5 (as in

NCP). Instead, it contains the 1st, the 3rd, and the 5th element of Ak.

These differences ensure that Mk cycles through all the possible coalitions of size gk that are taken

from Ak (instead of those taken from A). Based on this, if we set Ak = A\{C1, · · · , Ck−1}, then

we ensure that every instance of Ck does not overlap with any of the coalitions C1, · · · , Ck−1.

Figure 6 shows an example given A = A1 = {a1, a2, a3, a4, a5, a6, a7} and G = [2, 2, 3]. As

can be seen, having M1 = {1, 6} implies that C1 contains the 1st and 6th agents in A1 (i.e. it implies

18. Recall that we define an order over the agents in A such that, for any two agents ai, aj ∈ A, we have ai < aj iff

i < j. For more details, see Section 2.

544

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

that C1 = {a1, a6}). By knowing the agents that belong to C1, we can then assign A2 to those that

do not belong to C1, i.e. A2 = {a2, a3, a4, a5, a7} (see how the agents in A2 are ordered based on

their indices in A). As mentioned earlier, M2 would then cycle through all the possible coalitions of

size 2 out of A2, and none of these coalitions would overlap with C1. Similarly, having M2 = {3, 5}
implies that C2 contains the 3rd and 5th elements of A2 (i.e. it implies that C2 = {a4, a7}), and by

knowing the agents that belong to C2, we can then assign A3 to those that do not belong to C1 or

C2 (i.e. A3 = {a2, a3, a5}), and so on.

Figure 6: Example of our novel cyclation process, given A = {a1, a2, a3, a4, a5, a6, a7} and G =
[2, 2, 3].

The modified cyclation process (MCP), which we describe above, generates all the coalition

structures in PG (see Theorem 3), and that is without performing any comparison between the

coalitions.

Theorem 3. Given an integer partition G ∈ G, every coalition structure in PG is generated by

MCP.

Proof. See Appendix D.

Note, however, that MCP suffers from the same limitation of NCP in that it could generate the

same coalition structure more than once (e.g. given G = [2, 2, 3], both 〈{a1, a2}, {a3, a4}, {a5, a6, a7}〉
and 〈{a3, a4}, {a1, a2}, {a5, a6, a7}〉 are generated by MCP). Next, we show how this can be

avoided.

545

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Avoiding redundant coalition structures: We note that, by using MCP, the same coalition struc-

ture can only be generated twice if there are repeated parts in the integer partition G (e.g. G =
[1, 2, 2, 3] or G = [1, 4, 4, 4, 6]). This is because MCP generates ordered sets

〈
C1, · · · , C|G|

〉
con-

taining disjoint coalitions of which the sizes match the parts in G (i.e. |Ck| = gk ∈ {1, · · · , |G|}).

Based on this, if an ordered set
−→
CS is generated by MCP, then, any other ordered set

−→
CS′ that

contains the same coalitions but with a different order (compared to
−→
CS) will also be generated by

MCP as long as the sizes of the coalitions match the parts in G. This, of course, can only happen if

we have gk = gj : k �= j. Based on this, MCP only needs to be modified for the cases where there

are repeated parts in G.19 This modification is done as follows:

• While cycling through the combinations in LC
|Ak|
gk

, ensure that the first (i.e. smallest) element

in Mk (denoted Mk,1) satisfies: α ≤ Mk,1 ≤ n+1−∑k
i=1(gk ×G(gk)), where α = Mk−1,1

if gk = gk−1, and α = 1 otherwise (see step 4 of Algorithm 4).

This is illustrated in Figure 6 using the connected boxes. In more detail, M1 only cycles through the

combinations in LC7
2 that are contained in boxes (e.g. it does not cycle through combinations {5, 6},

{5, 7}, and {6, 7}). Moreover, M2 only cycles through the combinations in LC5
2 that are contained

in boxes connected to the one in which M1 is currently cycling. This modification ensures that

Mk+1,1 ≥ Mk,1 when gk+1 = gk. For example, while M1 is cycling through the box in LC7
2

containing the combinations in which the smallest element is 3, we have M1,1 = 3. In this case, M2

only cycles through the boxes in LC5
2 containing the combinations in which the smallest element is

3 or 4 (see how these boxes are connected in Figure 6), and this ensures that M2,1 ≥ M1,1.

The final cyclation process (FCP), which we describe above, generates every coalition structure

in PG exactly once.

Theorem 4. Given an integer partition G ∈ G, every coalition structure in PG is generated exactly

once by FCP.

Proof. See Appendix E.

Note, however, that given the exponential size of PG, it would be more desirable if we can avoid

generating any coalition structure with no potential of having a value greater than the maximum one

found so far. Next, we show how this can be done using a branch-and-bound technique.

Applying Branch-and-Bound: As mentioned earlier, when cycling through the coalition structures

in PG, we only update Ck once we have examined all the possible instances of {Ck+1, . . . , C|G|}
that do not overlap with {C1, . . . , Ck}. In other words, we only update Ck once we have examined

all the possible coalition structures that start with {C1, . . . , Ck}. However, if we knew that none of

these coalition structures could have a value greater than the maximum value found so far, then we

could update Ck straight away (i.e. without having to go through any of the possible instances of

{Ck+1, . . . , C|G|}). In order to do so, we calculate an upper bound on the values of the coalitions

that can be added to {C1, . . . , Ck}. Specifically, having computed maxs for every possible coalition

19. Note that most of the coalition structures usually contain repeated coalition sizes (e.g. 99.6% of them given 20
agents).

546

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

of size s ∈ {1, 2, . . . , n}, we can then calculate such an upper bound, denoted MAX[gk+1,...,g|G|],

as follows:

MAX[gk+1,...,g|G|] =

|G|∑

i=k+1

maxgi

Now, if we define V ({C1, · · · , Ck}) as the sum of the values of coalitions C1, · · · , Ck (that is,

V (C1, . . . , Ck) =
∑k

i=1 v(Ci)), then V ({C1, ..., Ck}) + MAX[gk+1,...,g|G|] represents an upper

bound on the value of the coalition structure that could be obtained with a coalition structure starting

with {C1, · · · , Ck} and ending with coalition sizes [gk+1, . . . , g|G|].

Hence, having V (CS′) ≥ V ({C1, ..., Ck}) + MAX[gk+1,...,g|G|] implies that none of the coali-

tion structures that start with {C1, ..., Ck} and end with coalitions of sizes: gk+1, ..., g|G| has a

value greater than V (CS′) (this is checked in step 8 of Algorithm 4). On the other hand, having

V (CS′) < V ({C1, . . . , Ck}) + MAX[gk+1,...,g|G|] implies that there could be a coalition structure

that starts with {C1, · · · , Ck} and is better than the current best coalition. However, this still does

not necessarily imply that all of these coalition structures need to be examined. This is because,

when the algorithm moves to the next list, it may find that there are certain coalition structures that

are not better than the current best. Formally, for every coalition Cj : k < j < |G|, we can still have:

V (CS′) > V ({C1, ..., Cj}) + MAX[gj+1,...,g|G|]. Figure 7 illustrates how this branch-and-bound

technique is applied while searching a sub-space.

Figure 7: Applying branch-and-bound while searching through the coalition structures in a sub-

space.

547

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

5. Performance Evaluation

In this section, we empirically evaluate the IP algorithm, and benchmark it against the state of the

art in the literature. Since IP’s ability to prune the space depends on the closeness of the upper and

lower bounds to the actual optimal value, and since this closeness is determined by the spread of the

distribution of the coalition values, it is crucial that IP is tested against different value distributions.

Moreover, we aim to evaluate the ability of our algorithm to generate solutions anytime and to zoom

in on very high quality solutions rapidly.

In what follows, we first discuss the validity and properties of the different value distributions

that we use to test the algorithm (Section 5.1). Then, we benchmark our algorithm against the fastest

available algorithm in the literature (i.e. IDP) using the aforementioned distributions (Section 5.2).

Finally, we empirically evaluate the efficiency and effectiveness of our algorithm in generating

solutions anytime (Section 5.3).

5.1 Benchmarking

The common practice in benchmarking search heuristics is to choose some standard instances of

the problem and compare the various algorithms that exist without giving them a priori knowledge

of the type of input they are presented with. The standard instances for the coalition structure

generation problems have been defined and used by Larson and Sandholm (2000) namely:20

1. Normal: v(C) ∼ |C| × N(µ, σ2) where µ = 1 and σ = 0.1.

2. Uniform: v(C) ∼ |C| × U(a, b) where a = 0 and b = 1.

While we use the above distributions to benchmark our algorithm, we also question the validity of

these distributions. This is because, in our previous work (Rahwan et al., 2007b), we noted that the

normal and uniform distributions tend to generate solutions with small numbers of coalitions. How-

ever, we now show that, if the coalition values are picked from the Normal or Uniform distributions

(scaled by the size of the coalition), then the resulting distribution of the coalition structure values

is biased (see Theorem 5). Given this, experiments defined according to the Normal and Uniform

distributions could favour some algorithms over others.

Theorem 5. If the coalition values were taken from a normal distribution as follows: ∀C ⊆
A, v(C) ∼ |C| × N(µ, σ2), or if they were taken from a uniform distribution as follows: ∀C ⊆
A, v(C) ∼ |C| × U(a, b), then, given any coalition structure CS′ : |CS′| > 1, there exists another

coalition structure CS′′ : |CS′′| < |CS′| such that:

P
(
V (CS′′) = V (CS∗)

)
> P

(
V (CS′) = V (CS∗)

)

That is, the probability of CS′′ being an optimal coalition structure is greater than that of CS′.

Proof. See Appendix F.

20. Their sub and super-additive distributions are also studied in the literature, but in such cases it is usually known a

priori that the distribution of coalition values is actually of these types (in which case it is known a priori what the

optimal coalition structure is). Moreover, previous results on these distributions have not produced very interesting

insights (Rahwan et al., 2007b) and so we do not experiment with these.

548

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

To remedy this, we propose a new input distribution that is tailored specifically to the CSG prob-

lem. This distribution, which we define as NDCS (Normally Distributed Coalition Structures), is

constructed by generating coalition values in the following way:

NDCS: v(C) ∼ N(µ, σ2), where µ = |C| and σ =
√

|C|.

In this case, it turns out that the value of every possible coalition structure is independently

drawn from the same normal distribution which leads us to the following theorem:

Theorem 6. Iff we have: ∀C ⊆ A, v(C) ∼ N(µ, σ2), where µ = |C| and σ =
√

|C|, then the

following holds:

∀CS ∈ P, V (CS) ∼ N(|A| , |A|)

Proof. See Appendix G.

Since the NDCS distribution ensures that every coalition structure value is drawn from the same

distribution, it ensures that the search space is not biased. Thus, the efficiency of search algorithms

in finding the optimal coalition structure is more strongly tested than in the other cases.

Using the above input distributions, we benchmark our algorithm against the other state-of-the-

art algorithm, namely IDP (see Section 2). Note that we do not experiment with the other anytime

algorithms since they need to search the whole space to find the optimal value and this is generally

not feasible within reasonable time, even for small numbers of agents. Also, it was shown by

Rahwan et al. (2007b) that industrial strength software such as CPLEX cannot handle inputs of

more than 18 agents since it runs out of memory and therefore we do not run experiments with it

here. On all our graphs we plot the 95% confidence interval at every point (given 800 runs for 15 to

20 agents and 100 runs for 21 to 25 agents).21

5.2 Experiment 1: Optimality

In this experiment, we compare the algorithms’ performances given different numbers of agents

(from 15 to 27). The time to find the optimal coalition structure is measured in terms of clock time

(in milliseconds) on an Intel 2.6GHz Quad Core PC with 3Gigabytes of RAM. The algorithms are

coded using JAVA 1.6. The running times are plotted on a log scale in Figure 8.22 We note as IP-X

the application of IP to distribution X, where X can be NDCS, Normal, or Uniform (as described

above). As can be seen, IP finds the optimal coalition structure significantly faster than IDP for all

distributions. In the best case (Uniform for 27 agents) IP is 570 times better than IDP (i.e. it takes

0.175% of the time taken by IDP) and in the worst case (NDCS for 16 agents) it is 1.7 times faster

than IDP. It can also be seen that the performance of IP is the slowest given the NDCS distribution

(compared to IP-Normal and IP-Uniform). To determine the cause for this, we first discuss the two

main problems that can affect the performance of IP:

21. By plotting the 95% confidence interval, we aim to check statistical significance of the difference between the means

taken at each point across different series. Thus, if two points from two different series have overlapping confidence

intervals, it is equivalent to saying that the null hypothesis is validated (i.e. the means are not significantly different)

for a t-test with α = 0.05. If the confidence intervals do not overlap, then the means are significantly different.

22. The running time for IDP is deterministic since it runs in O(3n). Hence, we recorded its running time for up to 25

agents and extrapolated the results to 27 agents.

549

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Figure 8: Time to find the optimal solution for IDP, IP applied to NDCS, Normal, and Uniform

distributions.

1. Pruning sub-spaces: the higher the upper bounds of sub-spaces and the lower the value of the

optimal coalition structure, the harder it is to prune sub-spaces. This can be deduced from

the pruning function we use in Algorithm 2. Moreover, the bigger the sub-spaces with higher

upper bounds, the longer the algorithm will take to find the optimal solution. This is because

the algorithm always has to search the sub-space with the highest upper bound to check that

the solution it has found is optimal.

2. Branch-and-bound: the higher the upper bounds of sub-spaces and the lower the optimal

coalition structure value, the harder it is to prune with branch-and-bound. This can be deduced

from the pruning applied in step 8 of Algorithm 4. This is because, when applying branch-

and-bound within a sub-space P{g1,g2,...,gn}, the current best solution CS′ is compared against

the sum of coalition values and the maximum value of coalitions of the remaining coalition

sizes as follows:

if V (CS′) >
∑

C∈{Lg1 ,··· ,Lgk
}
v(C)+

∑

g∈{gk+1,··· ,gn}
maxg then move to next coalition structure

Now, if the best solution is very low compared to the upper bound, that is:

V (CS′) << UBG =
∑

g∈{g1,··· ,gn}
maxg

then, branch-and-bound has to be applied deeper (i.e. increasing variable k in the condition

above) in the sub-space in order to make sure that the coalition structure being evaluated is

not optimal. Hence, in the worst case it would have to search the whole sub-space (i.e. apply

step 9 in Algorithm 4 on increasing values of k up to n).

550

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

In order to see how these different issues affect the performance of our algorithm with respect to

different distributions, we recorded the value of the optimal coalition structure and the upper bounds

of all the sub-spaces (given 21 agents) and averaged them over 20 runs.23 We also exactly recorded

the size of each sub-space (i.e. in the number of coalition structures per sub-space). The results are

plotted in Figure 9. We note the following for each distribution:

Figure 9: Top: upper bounds and optimal coalition structure value, bottom: size of sub-spaces.

Note that the values in the bottom graph are plotted on a log scale. Points with the

same abscissa on the two graphs correspond to the same sub-space. The arrows show the

direction of the search for each distribution.

• NDCS: The biggest sub-spaces are the ones with the highest upper bounds. Hence, it is

much harder to prune large portions of the search space. Moreover, the average optimal

23. The values of the upper bounds and the average optimal coalition structure were rounded and scaled to ease the

explanation and to have a clearer plot.

551

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

coalition structure value is relatively low compared to the upper bounds of the bigger sub-

spaces. Hence, applying branch-and-bound in this distribution is very hard.

• Normal: The smaller sub-spaces are the ones with the highest upper bounds. Hence, pruning

large portions of the space can easily be done by searching smaller sub-spaces in which good

solutions are. Moreover, the value of the optimal coalition structure tends to be higher than

the upper bounds of most large sub-spaces, and relatively close to the highest upper bounds.

Hence, it is easier for branch-and-bound to prune large portions of the sub-spaces.

• Uniform: The upper bounds of most sub-spaces are relatively high compared to those of other

distributions (i.e. they are close to the highest upper bound). In fact, the upper bounds are

actually nearly equal to the average optimal solution and this allows the algorithm to prune

most of the sub-spaces as soon as it has found an optimal solution, and this happens almost

immediately after scanning the input.

Finally, note that Figure 9 shows the portion of the space that will be avoided given the selection

strategy described earlier in Section 4.2. In more detail, recall that this strategy is guaranteed to

avoid searching the sub-spaces that have an upper bound lower that V (CS∗). As can be seen from

the figure, many of the sub-spaces (in the case of NDCS and Uniform distributions) have an upper

bound lower than V (CS∗), although most of these sub-spaces are relatively small. Moreover, in the

case of the Normal distribution, almost all the sub-spaces have an upper bound lower than V (CS∗),
most of which are among the largest ones!

Having studied the performance of IP in terms of completion time, we next focus on studying

its ability to generate solutions anytime.

5.3 Experiment 2: Anytime Quality

In this experiment, we further evaluate the anytime property of our algorithm, and that is by record-

ing the value of the solutions that were generated before returning the guaranteed optimal one. In

particular, we recorded two indicative measures of the quality of the solutions. First, we computed

the ratio between the value of the current best solution and the optimal solution (obtained at the end

of the run). This ratio is noted as ropt = V (CS′)
V (CS∗) . This measure shows how effective the algorithm

is at zooming on good solutions. Second, we recorded the ratio rbound between the value of the cur-

rent best solution and the upper bound on the optimal value (i.e. rbound = V (CS′)
UB∗). This measure

is the theoretical guarantee that the algorithm places on the quality of the solution (see Section 4.1).

Ideally, the algorithm should be able to minimise the difference between ropt and rbound in minimal

time.

The results are plotted in Figure 10 for the distributions: NDCS, Normal, and Uniform.24 We

discuss the results for each of the distributions in turn.

• NDCS: As can be seen, the algorithm very high quality guarantees (i.e. rbound > 90%) in

less than half of the time required to find the optimal solution. It also produces a very high

quality solutions (i.e. ropt > 90%) within less than 10% of the time required to terminate.

24. The points plotted are averages computed over 500 runs for 19 agents and 22 agents, and 100 runs for 25 agents. The

error bars depict the 95% confidence interval for each of the intervals over which results are recorded.

552

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Figure 10: Quality (ropt) and bound (rbound) for the generated solution. In all cases, the x-axis

represents the time (in milliseconds) and the y-axis represents the ratio of the solution

to the optimal.

553

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

• Normal: In this case, our algorithm is able to come up with guaranteed high quality solutions

much faster than for the NDCS distribution. Moreover, in this case, very high quality solutions

(i.e. ropt > 90%) can be guaranteed (i.e. rbound > 90%) in less than 10% of the time to

find the optimal value. This results from the fact that the upper bounds are not as far from the

optimal value as in the NDCS case.

• Uniform: As expected from earlier results presented in Section 5.2, the algorithm generates

very high quality solutions (i.e. ropt ≈ 100%) faster than for the other distributions (shortly

after scanning the input). Moreover, the solutions can be guaranteed to be near-optimal (i.e.

rbound > 99%) within 15% of the time to find the optimal.

Next, we compare the worst-case guarantees that are provided by IP with those provided by Sand-

holm et al.’s (1999) and Dang and Jennings’s (2004) algorithms (see Figure 11). As can be seen,

our algorithm significantly outperforms both Dang and Jennings’s and Sandholm et al.’s for all dis-

tributions. In particular, after scanning the input, IP is able to guarantee that its solution is nearly

40% (in the worst case) of the optimal compared to below 10% for the other algorithms. Moreover,

our guarantee usually reaches 100% after searching minute portions of the search space (on average

around 0.0000019% for the hardest distribution), while the guarantees provided by other algorithms

do not go beyond 50% until the whole space has been searched. Also note that we generate very

high quality solutions (i.e. > 90%) by searching even smaller portions of the of the search space

(on average around 0.0000002% for the hardest distribution). Thus, in actual computational time,

for 25 agents for example, we are able to return a solution that is guaranteed to be higher than 90%
of the optimal in around 250 seconds in the worst case and 300 milliseconds in the best case.

6. Conclusions and Future Work

Coalition formation, the process by which a group of software agents come together and agree to

coordinate and cooperate in the performance of a set of tasks, is an important form of interaction in

multi-agent systems. Such coalitions can improve the performance of the individual agents and/or

the system as a whole, especially when tasks cannot be performed by a single agent, or when a group

of agents performs the tasks more efficiently. One of the most challenging problems that arise in

the coalition formation process is that of coalition structure generation, which involves partitioning

the set of agents into exhaustive and disjoint coalitions such that the social welfare is maximized.

In this paper, we have developed and evaluated an anytime integer-partition based algorithm (called

IP) that finds optimal solutions much faster than any previous algorithm designed for this purpose.

The strength of our approach is founded upon two main components:

• We use a novel representation of the search space which partitions it into smaller, disjoint

sub-spaces that can be explored independently to find optimal solutions. This representation,

which is based on the integer partitions of the number of agents involved, allows the agents

to balance the trade-offs between their preferences for certain coalition sizes against the com-

putation required to find the solution. Moreover, such trade-offs can be made in an informed

manner since we can compute bounds on sub-spaces of the search space. These bounds al-

low us to prune the search space and guarantee the quality of the solution found during the

search. They may also, depending on the distribution of the input values, allow us to obtain

the optimal solution almost immediately after scanning the input.

554

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Figure 11: Worst case bounds generated by IP using the Normal and NDCS distributions compared

to Sandholm et al.’s (1999) and Dang and Jennings’s (2004) algorithms for 25 agents.

The results for the Uniform distribution are trivial since IP on average finds the optimal

almost immediately after scanning the input. Note that error bars have been omitted

from the IP results for reasons of clarity.

555

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

• We devise a technique that allows us to cycle through the coalition structures within a given

sub-space. Unlike a naı̈ve cyclation technique that generates combinations of coalitions, and

verifies whether each of these combinations is a valid coalition structure, our cyclation tech-

nique only generates valid ones (thus, avoiding the search through the space of possible com-

binations of coalitions, which is exponentially larger than the space of coalition structures).

In addition, the cyclation technique does not perform any redundant operations since it avoids

generating the same coalition structure more than once. Finally, by applying a branch-and-

bound technique, we are able to identify the coalition structures that cannot improve on the

quality of the solution found so far, and thus, avoid generating them.

Altogether, these components allow us to make significant performance gains over other existing

approaches. In more detail, the experiments show that IP avoids searching most of the search space,

and therefore, requires significantly less time, compared to the other algorithms, in order to return

an optimal solution. For example, IP outperforms IDP by orders of magnitude (0.175% of the

time taken by IDP for 27 agents in the best case). Moreover, if IP is interrupted before an optimal

value is found, it can still return solutions that are very close to the optimal (usually above 95% of

the optimal), with very high worst-case guarantees on them (usually above 90%). These solutions

are always better (above 40% of the optimal right after scanning the input) than those returned by

Sandholm et al.’s (1999) and Dang and Jennings’s (2004) algorithms (i.e. less than 10% of the

optimal). These algorithms also have to search a large portion of the search space before being

able to get better guarantees while our algorithm is able to prune and find near-optimal solutions

relatively quickly (above 90% of the optimal within 10% of the time to find the optimal solution for

25 agents).

A number of important extensions to IP could be envisaged. For example, we have recently

combined the IDP algorithm with IP (IP-IDP) (Rahwan & Jennings, 2008a) and will explore other

approaches including linear programming techniques to improve the bounds used in IP. However,

these extensions have to deal with an exponential input (i.e. 2n memory locations at least for n
agents) as we do in IP. Therefore, it is important to develop techniques that will extend our ap-

proach in order to minimise cycling through all coalition values as the number of agents increases.

This will require adapting our cyclation technique and the bound computation. Hence, in future

work, we will need to devise representations for sub-spaces that allow us to cycle more intelligently

over larger inputs and develop new techniques to compute bounds to be used by our branch-and-

bound algorithm. In trying to adapt our approach to other problems, we also aim to determine the

degree to which IP can be used to solve other common incomplete set partitioning problems which

occur in combinatorial auctions (Rothkopf et al., 1995) or crew scheduling (Hoffman & Padberg,

1993). Finally, we aim to see whether the patterns that we exploit in our algorithm also arise in

other combinatorial optimisation problems that have been studied in the area of combinatorics (e.g.,

Kreher & Stinson, 1998; Papadimitriou & Steiglitz, 1998).

7. Acknowledgments

The research in this paper was undertaken as part of the ALADDIN (Autonomous Learning Agents

for Decentralised Data and Information Systems) project and is jointly funded by a BAE Systems

and EPSRC (Engineering and Physical Research Council) strategic partnership (EP/C548051/1).

Andrea Giovannucci was funded by the Juan de la Cierva programme (JCI-2008-03006) and the

EU funded Synthetic Forager project (ICT-217148-SF). We also wish to thank Professor Tuomas

556

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Sandholm for his comments, as well as the anonymous reviewers for their valuable comments on

previous versions of the paper. We are also very grateful to Dr. Viet Dung Dang for his contributions

to earlier versions of the paper. Finally, we wish to thank to Dr. W. T. Luke Teacy for his help with

some of the proofs and the anonymous reviewers for their very constructive comments.

557

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Appendix A. Summary of Notation

A The set of agents.

ai An agent in A.

n The number of agents in A.

C A coalition.

|C| The cardinality of C.

v(C) The value of C.

CS A coalition structure.

V (CS) The value of CS.

CS∗ An optimal coalition structure.

UB∗ The upper bound on V (CS∗).

LB∗ The lower bound on V (CS∗).

CS′
The best coalition structure found so far.

β The bound on the quality of the best solution found so far.

β∗ The bound within which any solution is acceptable.

LCi
s The list of possible combinations of size s taken from the set {1, 2, . . . , i}.

Ls The list of coalitions of size s ordered lexicographically.

v(Ls) A list containing the values of all the coalitions in Ls.

maxs The maximum value of the coalitions in Ls.

mins The minimum value of the coalitions in Ls.

avgs The average value of the coalitions in Ls.

P The set of possible coalition structures.

Pi The ith level in our representation of the space of possible coalition structures.

LVi The ith level of the coalition structure graph.

G An integer partition of n.

G(s) The multiplicity of s in G.

E(G) The underlying set of G.

G The set of possible integer partitions of n.

G2 The set of possible integer partitions of n that contain two parts each.

TG The Cartesian product of the lists Ls : s ∈ G.

PG The sub-space (in our space representation) that corresponds to G (i.e. the pre-image of G under F).

MAXG The maximum value of the elements in TG.

MING The minimum value of the elements in TG.

AV GG The average value of the elements in TG.

F A function that maps a coalition structure CS to an integer partition G such that: ∀C ∈ CS,∃g ∈ G : |C| = g.
−→
CS A variable used to cycle through the coalition structures in PG.

Mk A variable used to cycle through a list of combinations of size gk.

Ak An ordered set containing the agents that are not members of C1, . . . , Ck−1.

Cn
s The binomial coefficient (i.e. the number of possible combinations of size s taken from n elements).

P (x) The probability of x.

IDP The improved dynamic programming algorithm.

N(µ, σ2) Normal distribution with mean µ and variance σ2.

U(a, b) Continuous Uniform distribution on the interval [a, b].

ropt The ratio between the value of the current best solution and the value of the optimal solution.

rbound
The ratio between the value of the current best solution and the upper bound on the value of the optimal
solution.

558

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Appendix B. Proof of Theorem 1.

Let Ḡ = [g1, g2, . . . , g|G|] contain the elements of G with a natural ordering on them, and let PḠ

return all ordered coalition structures
〈
C1, C2, . . . , C|G|

〉
: Ci ∈ Lgi

, where the order of the coali-

tions within the coalition structure is taken into consideration. For example, given n = 4 and G =
[1, 1, 2], we have two ordered coalition structures: 〈{a1}, {a2}, {a3, a4}〉 and 〈{a2}, {a1}, {a3, a4}〉
in PḠ that correspond to one coalition structure: {{a1}, {a2}, {a3, a4}} in PG. Now, since the num-

ber of repetitions of each coalition structure in PḠ is the same25 (e.g., in the above example with

Ḡ = [1, 1, 2], all coalition structures in PG will appear twice in PḠ), then we have:

AV GG = AV GḠ (3)

where AV GḠ is the average value of the coalition structures in PḠ. Now, if we define Nn(g1, g2, . . . , g|G|)
as the number of ordered coalition structures in PḠ, then we have:

AV GḠ =
1

Nn(g1, g2, . . . , g|G|)

∑

CS∈PḠ

V (CS)

=
1

Nn(g1, g2, . . . , g|G|)

∑

CS∈PḠ

∑

C∈CS

v(C)

Moreover, for every coalition C ∈ Lgi
, there are: Nn−gi

(g1, g2, . . . , gi−1, gi+1, . . . , g|G|) ordered

coalition structures where C happens to be the ith coalition. Based on this, we have:

Nn(g1, g2, . . . , g|G|) = |Lgi
| × Nn−gi

(g1, . . . , gi−1, gi+1, . . . , g|G|) (4)

Similarly, the number of times that v(C) occurs in the ith position of the sum of all coalition values

in PḠ is Nn−gi
(g1, . . . , gi−1, gi+1, . . . , g|G|). Given this, we next compute AV GḠ as follows:

AV GḠ =
1

Nn(g1, g2, . . . , g|G|)

|G|∑

i=1

∑

C∈Lgi

Nn−gi
(g1, . . . , gi−1, gi+1, . . . , g|G|) × v(C)

=

|G|∑

i=1

∑

C∈Lgi

Nn−gi
(g1, . . . , gi−1, gi+1, . . . , g|G|)

Nn(g1, g2, . . . , g|G|)
× v(C)

=

|G|∑

i=1

∑

C∈Lgi

1

|Lgi
| × v(C) (following equation (4))

=

|G|∑

i=1

⎛
⎝ 1

|Lgi
|
∑

C∈Lgi

× v(C)

⎞
⎠

=

|G|∑

i=1

avggi

25. Specifically, a coalition structure is repeated x! times if it contains x coalitions of the same size.

559

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Based on this, as well as (3), we find that:

AV GG =

|G|∑

i=1

avggi

�

Appendix C. Proof of Theorem 2.

Generally speaking, given a set B ⊆ A, the number of possible combinations of size s out of

the set B̄ = A\B is equal to C
|A|−|B|
s . Based on this, for every coalition C of size g1, there are

Cn−g1
g2 coalitions of size g2 that do not overlap with it. Similarly, for every i disjoint coalitions

(C1, C2, . . . , Ci) of sizes g1, g2, . . . , gi respectively, there are C
n−(g1+g2+...+gi)
gi+1 coalitions of size

gi+1 that do not overlap with the union C1 ∪ C2 ∪ . . . ∪ Ci.

Based on this, if TG is the cartesian product of the lists Lgi
: gi ∈ G, and T̂G is a subset of TG

that contains only the elements (i.e. the combinations of coalitions) in which no coalitions overlap,

then the number of elements in T̂G can be computed as follows:

∣∣∣T̂G

∣∣∣ = Cn
g1

× Cn−g1
g2

× . . . × C
n−(g1+...+g|G|−1)
g|G|

(5)

Moreover, note that any combination of coalitions {C1, C2, . . . , C|G|}, such that ∀i ∈ {1, 2, . . . , |G|} :
|Ci| = gi, appears exactly once in PG (since it is considered a unique coalition structure) but could

appear more than once in T̂G (since the ordering of the coalitions matters in the elements of T̂G). In

particular, if gi appears x times in G, then every coalition structure in PG corresponds to x! elements

in T̂G, where the coalitions of size gi are ordered differently in each of these elements. For example,

given G = [1, 2, 2, 2, 5], size 2 appears 3 times in G and this means that every coalition structure

{C1, C2, C3, C4, C5} ∈ PG corresponds to 3! elements in T̂G (since 3! is the number of possible

permutations of C2, C3, C4). This can be generalized as follows:

∀G = [g1, g2, . . . , g|G|] ∈ G, |PG| =

∣∣∣T̂G

∣∣∣
G(g1)! × G(g2)! × . . . × G(g|G|)!

(6)

where G(gi) denotes the multiplicity of gi in G. Then, from (5) and (6), we find that:

|PG| =
Cn

g1
× Cn−g1

g2 × . . . × C
n−(g1+...+g|G|−1)
g|G|∏

s∈E(G) G(s)!

where E(G) is the underlying set of G.

�

Appendix D. Proof of Theorem 3.

Given an integer partition G = [g1, . . . , g|G|] ∈ G, we need to prove that all the coalition structures

in PG are generated by MCP. Without loss of generality, we will assume that the parts in G are in

560

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

increasing order. That is:

g1 ≤ g2 ≤ . . . ≤ g|G| (7)

Now, the way MCP works is by generating ordered sets of coalitions such that, for every ordered set,
the first coalition belongs to Lg1 and the second belongs to Lg2 and so on. Moreover, the way these
ordered sets are generated ensures that the coalitions in each of the ordered sets do not overlap. In

other words, MCP generates a subset of TG, denoted T̂G, which is defined as follows:26

T̂G =
{〈

C1, ..., C|G|

〉
| ∀i ∈ {1, ..., |G|}, Ci ⊆ A and |Ci| = gi and ∀j ∈ {1, ..., |G|} : j �= i, Ci ∩ Cj = ∅

}

Then, given a coalition structure CS ∈ PG, let T̂CS
G be a subset of T̂G containing all the ordered

sets that correspond to CS. That is:

T̂
CS
G =

{〈
C1, ..., C|G|

〉
| ∀i ∈ {1, ..., |G|}, Ci ∈ CS and |Ci| = gi and ∀j ∈ {1, ..., |G|} : j �= i, Ci ∩ Cj = ∅

}

(8)

For example, T̂
{{a1},{a2},{a3,a4}}
[1,1,2] = {〈{a1}, {a2}, {a3, a4}〉 , 〈{a2}, {a1}, {a3, a4}〉}. Next, given

any coalition structure CS ∈ PG, we will prove that |T̂CS
G | ≥ 1. To this end, let

〈
C1, C2, . . . , C|G|

〉

be an ordering on the coalitions that belong to CS. Then, from (7) and (8), we can see that:

〈
C1, C2, . . . , C|G|

〉
∈ T̂CS

G iff |C1| ≤ |C2| ≤ . . . ≤
∣∣C|G|

∣∣ (9)

Now since there is at least one way of ordering the coalitions in CS such that |C1| ≤ ... ≤
∣∣C|G|

∣∣,
then there is at least one ordered set in T̂CS

G . In other words, |T̂CS
G | ≥ 1. This, in turn, implies that

every coalition structure in PG is generated by MCP.

�

Appendix E. Proof of Theorem 4.

Given an integer partition G = [g1, . . . , g|G|] ∈ G, let T̃G be the set of ordered sets that are generated

by FCP. Moreover, given a coalition structure CS ∈ PG, let T̃CS
G be a subset of T̃G containing all

the ordered sets that correspond to CS. That is:

T̃CS
G =

{〈
C1, C2, . . . , C|G|

〉
∈ T̃G | ∀i ∈ {1, 2, . . . , |G|}, Ci ∈ CS

}

Next, we will prove that |T̃CS
G | = 1. We define T̂G and T̂CS

G as in Appendix D. We also assume,

without loss of generality, that the order in (7) holds. Note that, if G(gi) = 1 ∀i ∈ {1, . . . , |G|},

then there is no difference between the way FCP works and the way MCP works.27 On the other

hand, if there exists i ∈ {1, ..., |G|} such that G(gi) > 1, then the only difference between FCP and

MCP is that FCP avoids some of the coalition structures that are generated by MCP. This implies

26. Recall that TG is the cartesian product of the lists: Ls : s ∈ G.

27. Recall that G(gi) is the multiplicity of gi in G.

561

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

that:

if G(gi) = 1 ∀i ∈ {1, . . . , |G|} then T̃G = T̂G and ∀CS ∈ PG, T̃CS
G = T̂CS

G (10)

else T̃G ⊆ T̂G and ∀CS ∈ PG, T̃CS
G ⊆ T̂CS

G (11)

Now, given a coalition structure CS ∈ PG, let
〈
C1, C2, . . . , C|G|

〉
be defined as in Appendix D (i.e.

it is an ordering on the coalitions that belong to CS). Then, from (9), we find that the number of

ordered sets in T̂CS
G is equal to the number of possible ways of ordering the coalitions in CS such

that: |C1| ≤ |C2| ≤ ... ≤
∣∣C|G|

∣∣. Based on this, as well as (10) and (11), we distinguish between

two cases:

• If G(gi) = 1 ∀i ∈ {1, ..., |G|}, then there would only be one possible way of ordering the

coalitions in CS such that |C1| ≤ ... ≤
∣∣C|G|

∣∣ (because every coalition in CS has a unique

size). This implies that |T̂CS
G | = 1, and from (10), we find that |T̃CS

G | = 1.

• If ∃i ∈ {1, ..., |G|} : G(gi) > 1, then there would be multiple ways of ordering the coalitions

in CS such that |C1| ≤ ... ≤
∣∣C|G|

∣∣, which implies that |T̂CS
G | > 1. However, from (11),

we know that T̃CS
G is a subset of T̂CS

G . Then, by proving that T̃CS
G contains exactly one of

the ordered sets in T̂CS
G , we prove that |T̃CS

G | = 1. To be more precise, in case we have:

|Cx| = |Cx+1| = ... = |Cx+y|, then every possible permutation of those coalitions will be

generated by MCP, and we need to prove that only one of them will be generated by FCP.

Based on this, if we denote by ck the smallest28 agent in Ck, then it is sufficient to prove that

FCP only generates the one permutation that satisfies: cx < cx+1 < ... < cx+y. Note that the

agents in Ak are ordered such that Ak,1 < Ak,2 < · · · < Ak,|Ak|. Based on this, if ck = Ak,i,

then there are i − 1 agents in Ak that are smaller than ck, and since Ak+1 = Ak\Ck, then

there are i− 1 agents in Ak+1 that are smaller than ck. Therefore, to ensure that ck < ck+1, it

is sufficient to generate Ck+1 such that it does not contain the first (i.e. smallest) i− 1 agents

of Ak+1. For example, given Ak = 〈a1, a4, a5, a7, a8, a9〉 and Mk = {3, 5}, we would have

Ck = {a5, a8} and ck = Ak,3. This implies that Ak+1 contains two agents that are smaller

than ck (namely, agents a1 and a4). Therefore, to ensure that ck < ck+1, it is sufficient to

generate Ck+1 such that it does not contain the first (i.e. smallest) two agents in Ak+1. This

can be done by ensuring that Mk+1 does not contain elements 1 or 2. In other words, it can

be done by ensuring that Mk+1,1 ≥ Mk,1, which is a direct result of the way FCP is modified.

By proving that |T̃CS
G | = 1 for all CS ∈ PG, we prove that FCP generates every coalition structure

in PG exactly once.

�

28. Recall that, for any two agents ai, aj ∈ A, we say that ai is smaller than aj if and only if i < j. This comes from

the assumed ordering over the set of agents (see Section 2 for more detail).

562

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Appendix F. Proof of Theorem 5

We will first prove Theorem 5 for the normal distribution case (i.e. the case where ∀C ⊆ A, v(C) ∼
|C|×N(µ, σ2)). Specifically, we will show how the coalition structures that contain fewer coalitions

are more likely to be optimal. In order to prove this, we will first prove the following lemma which

deals with properties of the normal distribution.

Lemma 1. For any given value r ∈ R, and for any two random variables Xa ∼ N(µ, σa
2) and

Xb ∼ N(µ, σb
2) such that σa < σb, the following holds:

P (Xa > r) < P (Xb > r) (12)

Proof. Given r ∈ R, let Φµ,σ2
a
(r) and Φµ,σ2

b
(r) be the cumulative distribution functions of

N(µ, σa
2) and N(µ, σb

2) respectively. That is,

Φµ,σ2
a
(r) =

1

2

(
1 + erf

(
r − µ

σa

√
2

))

Φµ,σ2
b
(r) =

1

2

(
1 + erf

(
r − µ

σb

√
2

))

where erf(M) = 2√
π

∫M

0 e−t2 is the error function. Then, in order to prove that the inequality in

(12) holds, it is sufficient to prove that:

Φµ,σ2
a
(r) > Φµ,σ2

b
(r) (13)

To this end, given that σa < σb, the following holds, where abs(M) is the absolute value of M :

abs

(
r − µ

σa

√
2

)
> abs

(
r − µ

σb

√
2

)

This, in turn, implies that:

erf

(
r − µ

σa

√
2

)
> erf

(
r − µ

σb

√
2

)

Based on this, as well as the fact that erf(M) ≥ 0, we deduce that (13) holds.

�

Based on the above lemma, and given a coalition structure CS′ : |CS′| > 1, we will prove that

there exists another coalition structure CS′′ : |CS′′| < |CS′| such that:

P
(
V (CS′′) = V (CS∗)

)
> P

(
V (CS′) = V (CS∗)

)

In more detail, let CS′ = {Cx1 , · · · , Cxα , Cy1 , · · · , Cyβ
} and CS′′ = {Cx, Cy1 , · · · , Cyβ

} such

that Cx = Cx1 ∪ · · · ∪ Cxα . Then, based on the properties of the normal distribution, we have:

v(Cx) ∼ N
(
|Cx| × µ, |Cx|2 × σ2

)
(14)

563

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

and:

v(Cx1) + · · · + v(Cxα) ∼ N
(
(|Cx1 | + · · · + |Cxα |) × µ, (|Cx1 |2 + · · · + |Cxα |2) × σ2

)
(15)

Now, given a coalition structure CS, let µCS and σ2
CS denote the mean and variance of the distri-

bution of V (CS). Then, based on (14) and (15), we have:

µCS′′ = (|Cx| × µ) +
∑

C∈CS′′\{Cx}
(|C| × µ)

σ2
CS′′ = (|Cx|2 × σ2) +

∑

C∈CS′′\{Cx}
(|C| × σ)2

and we have:

µCS′ = ((|Cx1 | + · · · + |Cxα |) × µ) +
∑

C∈CS′\{Cx1 ,··· ,Cxα}
(|C| × µ)

σ2
CS′ =

(
(|Cx1 |2 + · · · + |Cxα |2) × σ2

)
+

∑

C∈CS′\{Cx1 ,··· ,Cxα}
(|C| × σ)2

Since |Cx| = |Cx1 |+ · · ·+ |Cxα |, and since CS′′ \{Cx} = CS′ \{Cx1 , · · · , Cxα}, we can see that

the distribution of V (CS′′) and V (CS′) only differ by the way their variances differ. Note that:

|Cx|2 = (|Cx1 | + · · · + |Cxα |)2 > |Cx1 |2 + · · · + |Cxα |2

This implies that σ2
CS′ < σ2

CS′′ . Therefore, based on Lemma 1, we find that for any value r ∈ R:

P (V (CS′) > r) < P (V (CS′′) > r)

In other words, it is more likely for CS′′ to have a value greater than r, which implies that it is more

likely for CS′′ to be the optimal coalition structure.

Having proved Theorem 5 for the normal distribution case, we will now give the intuition behind the

proof for the uniform distribution case (i.e. the case where ∀C ⊆ A, v(C) ∼ |C|×U(a, b)). Specif-

ically, assuming that CS′ and CS′′ are defined as above, we would have v(Cx) ∼ |Cx| × U(a, b)
and, for any coalition C ∈ {Cx1 , · · · , Cxα}, we would have v(C) ∼ |C| ×U(a, b). Then, it is easy

to verify that P (v(Cx) ≤ r) is less than P (v(Cx1) + · · · + v(Cxα) ≤ r) for high values of r. The

intuition behind this difference in probabilities is that the sum of Uniformly distributed variables

(called a Uniform Sum distribution) results in a distribution giving lower probability to low and

high values, and higher probability to middle ranged values. Instead, for a uniformly distributed

variable, all values are equally probable. Therefore, given a Uniform Sum distribution and a Uni-

form distribution with the same minimum and maximum values, the Uniform distribution will give

a higher probability to higher values. Hence, the above proof holds for the Uniform distribution as

well.

�

564

Appendix G. Proof of Theorem 6.

Given the following:

∀C ⊆ A, v(C) ∼ N(|C| , |C|) (16)

we need to prove that the value of every coalition structure is independently drawn from the same

normal distribution. Specifically, we will prove that the following holds:

∀CS ∈ P, V (CS) ∼ N(|A| , |A|) (17)

From the properties of the normal distribution, we know that, for any two independent random

variables, x and y such that x ∼ N(µx, σx
2) and y ∼ N(µy, σy

2), we have:

(x + y) ∼ N(µx + µy, σx
2 + σy

2) (18)

Then, based on (16) and (18), any two coalition values, v(C1) and v(C2), satisfy the following

(since they are independent random variables):

(v(C1) + v(C2)) ∼ N(|C1| + |C2| , |C1| + |C2|)
This implies that the following is true:

∀CS ∈ P,

(
∑

C∈CS

v(C)

)
∼ N

(
∑

C∈CS

|C| ,
∑

C∈CS

|C|
)

(19)

Finally, note that we assume the following:

∀CS ∈ P, V (CS) =
∑

C∈CS

v(C) (20)

∀CS ∈ P, ∀C, C ′ ∈ CS, C ∩ C ′ = ∅ (21)

Then, from (19), (20), and (21), we find that:

∀CS ∈ P, V (CS) ∼ N(|∪C∈CS | , |∪C∈CS |)
which implies that (17) holds since ∪C∈CS = A.

�

References

Andrews, G., & Eriksson, K. (2004). Integer Partitions. Cambridge University Press, Cambridge,

UK.

Dang, V. D., & Jennings, N. R. (2004). Generating coalition structures with finite bound from the op-

timal guarantees. In Proceedings of the Third International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-04), pp. 564–571.

565

RAHWAN, RAMCHURN, GIOVANNUCCI, & JENNINGS

Dang, V. D., Dash, R. K., Rogers, A., & Jennings, N. R. (2006). Overlapping coalition formation for

efficient data fusion in multi-sensor networks. In Proceedings of The Twenty First National

Conference on Artificial Intelligence (AAAI-06), pp. 635–640.

Evans, J., & Minieka, E. (1992). Optimization Algorithms for Networks and Graphs, 2nd edition.

Marcel Dekker, New York, USA.

Hillier, F. S., & Lieberman, G. J. (2005). Introduction to operations research. McGraw-Hill, New

York, USA.

Hoffman, K. L., & Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-

cut. Management Science, 39(6), 657–682.

Horling, B., & Lesser, V. (2005). A survey of multi-agent organizational paradigms. The Knowledge

Engineering Review, 19(4), 281–316.

Jennings, N. R. (2001). An agent-based approach for building complex software systems. Commu-

nications of the ACM, 44(4), 35–41.

Kahan, J., & Rapoport, A. (1984). Theories of Coalition Formation. Lawrence Erlbaum Associates

Publishers, New Jersey, USA.

Klusch, M., & Shehory, O. (1996). A polynomial kernel-oriented coalition formation algorithm for

rational information agents. In Proceedings of Second International Conference on Multi-

Agent Systems (ICMAS-96), pp. 157–164.

Kreher, D. L., & Stinson, D. R. (1998). Combinatorial Algorithms: Generation, Enumeration, and

Search (Discrete Mathematics and its applications). CRC Press.

Larson, K., & Sandholm, T. (2000). Anytime coalition structure generation: an average case study.

Journal of Experimental and Theoretical Artificial Intelligence, 12(1), 23–42.

Li, C., & Sycara, K. P. (2002). Algorithm for combinatorial coalition formation and payoff division

in an electronic marketplace. In Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-02), pp. 120–127.

Norman, T. J., Preece, A. D., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D., Nguyen, T. D.,

V. Deora, J. S., Gray, W. A., & Fiddian, N. J. (2004). Agent-based formation of virtual

organisations. International Journal of Knowledge Based Systems, 17(2–4), 103–111.

Osborne, M. J., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge MA,

USA.

Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Com-

plexity. Dover Publications.

Rahwan, T., & Jennings, N. R. (2007). An algorithm for distributing coalitional value calculations

among cooperative agents. Artificial Intelligence, 171(8–9), 535–567.

Rahwan, T., & Jennings, N. R. (2008a). Coalition structure generation: dynamic programming

meets anytime optimisation. In Proceedings of the Twenty Third Conference on Artificial

Intelligence (AAAI-08), pp. 156–161.

Rahwan, T., & Jennings, N. R. (2008b). An improved dynamic programming algorithm for coalition

structure generation. In Proceedings of the Seventh International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-08), pp. 1417–1420.

566

AN ANYTIME ALGORITHM FOR OPTIMAL COALITION STRUCTURE GENERATION

Rahwan, T., Ramchurn, S. D., Dang, V. D., & Jennings, N. R. (2007a). Near-optimal anytime

coalition structure generation. In Proceedings of the Twentieth International Joint Conference

on Artificial Intelligence (IJCAI-07), pp. 2365–2371.

Rahwan, T., Ramchurn, S. D., Giovannucci, A., Dang, V. D., & Jennings, N. R. (2007b). Anytime

optimal coalition structure generation. In Proceedings of the Twenty Second Conference on

Artificial Intelligence (AAAI-07), pp. 1184–1190.

Rothkopf, M. H., Pekec, A., & Harstad, R. M. (1995). Computationally manageable combinatorial

auctions. Management Science, 44(8), 1131–1147.

Sandholm, T. W., Larson, K., Andersson, M., Shehory, O., & Tohme, F. (1999). Coalition structure

generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.

Sandholm, T. W., & Lesser, V. R. (1997). Coalitions among computationally bounded agents. Arti-

ficial Intelligence, 94(1), 99–137.

Sen, S., & Dutta, P. (2000). Searching for optimal coalition structures. In Proceedings of the Sixth

International Conference on Multi-Agent Systems (ICMAS-00), pp. 286–292.

Shehory, O., & Kraus, S. (1995). Task allocation via coalition formation among autonomous agents.

In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence

(IJCAI-95), pp. 655–661.

Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial

Intelligence, 101(1–2), 165–200.

Tsvetovat, M., Sycara, K. P., Chen, Y., & Ying, J. (2000). Customer coalitions in the electronic

marketplace. In Proceedings of the Fourth International Conference on Autonomous Agents

(AA-01), pp. 263–264.

Yeh, D. Y. (1986). A dynamic programming approach to the complete set partitioning problem. BIT

Numerical Mathematics, 26(4), 467–474.

567

