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Abstract: We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we

show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles

or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by

Wang in 1961.

Wang tiles are square tiles with colored edges. A tiling of the plane by Wang tiles consists of placing

a Wang tile in each cell of the grid Z
2 so that contiguous edges share the same color. The formalism of

Wang tiles was introduced by Wang [44] to study decision procedures for a specific fragment of logic

(see Section 1.1 for details).

Wang posed the question of whether an aperiodic tileset exists: a set of Wang tiles which tiles the

plane but cannot do so periodically. His student Berger quickly gave an example of such an aperiodic

tileset, but it consisted of a very large number of tiles. The number of tiles needed was eventually reduced

by Berger himself and then by others, to achieve an aperiodic set of only 13 Wang tiles in 1996 (see

Section 1.2 for an overview of previous aperiodic sets of Wang tiles). Their work in this apparently tedious

exercise introduced several novel techniques to build aperiodic tilesets, and also to prove aperiodicity.

Other work has established that it is impossible to obtain an aperiodic tileset with 4 tiles or less [15],

and that it is also impossible to obtain aperiodic set of Wang tiles with fewer than 4 colors [7].

In this article, we fill all the gaps: we prove that there is an aperiodic tileset with 11 Wang tiles and 4

colors, and we also prove that there is no aperiodic tileset with fewer than 11 Wang tiles.

The discovery of this tileset, and the proof that there is no smaller aperiodic tileset, was achieved by a

computer search, which generated all possible candidates with 11 tiles or less.

We proved that they were not aperiodic with 10 tiles or fewer. Surprisingly, it was somewhat easy to

do so for all of them except one. The situation is different for 11 tiles: while we have found an aperiodic

tileset, we also have a short list of tilesets which we are yet to characterize. This computer search is

described in Section 3, along with a result of independent interest: we show that the tileset by Culik does

not tile the plane if one tile is omitted. This section can be skipped by a reader who is only interested in

our tileset itself. The tileset is presented in Section 4, and the remaining sections prove that it is indeed an

aperiodic tileset.
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1 Aperiodic sets of Wang tiles

The following is a brief summary of the known aperiodic Wang tilesets, for which further detail can be

found in [15].

1.1 Wang tiles and the ∀∃∀ problem

Wang tiles were introduced by Wang in 1961 [44], to study the decidability of the ∀∃∀ fragment of first

order logic. In his article, Wang showed how to build a tileset τ and a subset τ ′ ⊆ τ so that there exists a

tiling by τ of the upper quadrant, with tiles in the first row in τ ′ if and only if φ is satisfiable. He builds

this tileset starting from a ∀∃∀ formula φ . In his development, the decidability of this particular tiling

problem would imply that the satisfiability of ∀∃∀ formulas was decidable.

More generally, Wang asked whether the more general tiling problem (with no particular tiles in the

first row) is decidable. He posed the fundamental conjecture: every tileset either admits a periodic tiling

or it does not tile.

The following year, without having proven the conjecture above, Kahr, Moore and Wang [22] proved

that the ∀∃∀ problem is indeed undecidable. They did so by reducing it to another tiling problem: we fix

a subset τ ′ of tiles so that every tile on the diagonal of the first quadrant is in τ ′. This proof was later

simplified by Hermes [17, 16]. From the point of view of first order logic, the problem is therefore solved.

Formally speaking, the tiling problem with this diagonal constraint is reduced to a formula of the form

∀x∃y∀zφ(x,y,z) where φ contains a binary predicate P and occurrences of the subformula P(x,x), which

code the diagonal constraint. If we look at ∀∃∀ formulas that do not contain the subformula P(x,x) and

P(z,z), the decidability of this particular fragment remained open.

However, Berger proved a few years later [3] both that the domino problem is undecidable, and that

an aperiodic tileset exists. This implies that the fragment of ∀x∃y∀z where the only occurrence of the

binary predicates P are of the form P(x,z),P(y,z),P(z,y),P(z,x) is undecidable.

Over the years, other subcases of ∀∃∀ were described. In 1975, Aanderaa and Lewis [1] proved

the undecidability of the fragment of ∀∃∀ where the binary predicates P can only appear in the form

P(x,z) and P(z,y). Their proof has the consequence that: the domino problem for deterministic tilesets is

undecidable.

1.2 Aperiodic tilesets

The first set of Wang tiles was provided by Berger in 1964. The set contained in the 1966 AMS

publication [4], has 20426 tiles, but Berger’s original PhD Thesis [3] also contains a simplified version

with 104 tiles. It should be noted that there is a mistake in Berger’s paper: namely that 3 tiles are missing

and 4 tiles are unneeded, bringing the actual tileset to 103 tiles. This tileset is of a substitutive nature.

Knuth [27] gave another simplified version of Berger’s original set, with 92 tiles (6 of which are actually

unneeded, bringing the number 86).

In 1966, Lauchli obtained an aperiodic set of 40 Wang tiles, which is published in a 1975 paper by

Wang [45].

In 1967, Robinson found an aperiodic set of 104 tiles, which was mentioned only in a Notice of

the AMS summary [40]. Two simplifications of this tileset exist: first, Poizat describes a tileset of 52
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tiles [37]. Second, a tileset of 56 tiles was published by Robinson in 1971 [39] and is probably his most

well-known tileset. In that paper, he hints at a set of 35 Wang tiles.

Later, Robinson managed to lower the number of tiles again to 32 using an idea by Roger Penrose.

The same idea is used by Grunbaum and Shephard to obtain an aperiodic set of 24 tiles [15]. In 1977,

Robinson obtained a set of 24 tiles from a tiling method by Ammann. For a long time the record was held

by Ammann, who obtained, in 1978, a set of 16 Wang tiles. When available, details on these tilesets are

provided in [15].

In 1975, Aanderaa and Lewis [1] build the first aperiodic deterministic tileset. No details about the

tileset are provided but it is possible to extract one from the exposition by Lewis [30]. This construction

was somehow forgotten in the literature, and the first aperiodic deterministic tileset is usually attributed to

Kari in 1992 [24].

In 1989, Mozes showed a general method that can be used to translate any substitution tiling into a set

of Wang tiles [34], which will be, of course, aperiodic. There are multiple generalizations of this result

(depending on the exact definition of “substitution tiling”), of which we cite only a few [14, 12, 28]. For

a specific example, Socolar built such a representation [42] of the chair tiling, which, in our vocabulary,

can be done using 64 tiles.

The story stopped until 1996, when Kari invented a new method to build aperiodic tileset, obtaining

an aperiodic set of 14 tiles [25]. This was reduced to 13 tiles by Culik [8] using the same method. There

was speculation that one of the 13 tiles was unnecessary, and an unpublished manuscript by Kari and

Culik hints at a method to show it. However, this is not true: the method developed in the present article

will show this is not the case.

In 1999, Kari and Papasoglu [26] presented the first 4-way deterministic aperiodic set. The con-

struction was later adapted by Lukkarilla to provide a proof of undecidability of the 4-way domino

problem [32].

The construction by Robinson was later analyzed [41, 2, 21, 13] and simplified. In 2004, Durand,

Levin, and Shen presented [9] a way to simplify exposition of proofs of aperiodicity of such tilesets.

Ollinger used this method in 2008 to obtain an aperiodic tileset with 104 tiles [35], which is likely a

rediscovery of the unpublished tileset by Robinson. Other simplifications of Robinson constructions were

given by Levin in 2005 [29] and Poupet in 2010 [38], using ideas similar to Robinson.

In 2008, Durand, Romashchenko, and Shen provided a new construction based on the classical fixed

point construction from computability theory [11, 10].

2 Preliminaries

2.1 Wang tiles

A Wang tile is a unit square with colored edges. Formally, let H,V be two finite sets (the horizontal and

vertical colors, respectively). A wang tile t = (tw, te, ts, tn) (for west, east, south and north) is an element

of H2 ×V 2. Thus, the horizontal colors are used on west and east sides (that is, horizontal edges of the

square), and vertical colors are used in north and south side (that is, vertical edges).

A Wang set is a set of Wang tiles, formally viewed as a tuple (H,V,T ), where T ⊆ H2 ×V 2 is the set

of tiles. Figure 1 presents a well-known example of a Wang set. A Wang set is said to be empty if T = /0.
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Let T = (H,V,T ) be a Wang set. Let X ⊆ Z
2. A tiling of X by T is a mapping from X to T so that

contiguous edges have the same color; that is, it is a function f : X → T such that f (x,y)e = f (x+1,y)w

and f (x,y)n = f (x,y+1)s for every (x,y) ∈ Z
2 when the function is defined. We are especially interested

in the tilings of Z2 by a Wang set T. When we say a tiling of the plane by T, or simply a tiling by T, we

mean a tiling of Z2 by T.

A tiling f is periodic if there is a (u,v) ∈ Z
2 \ (0,0) such that f (x,y) = f (x+ u,y+ v) for every

(x,y) ∈ Z
2. A tiling is aperiodic if it is not periodic.

A Wang set tiles X (resp. tiles the plane) if there exists a tiling of X (resp. the plane) by T. A Wang

set is finite if there is no tiling of the plane by T. A Wang set is periodic if there is a tiling t by T which is

periodic. A Wang set is aperiodic if it tiles the plane, and every tiling by T is not periodic.

To quote a few well-known folklore results:

Lemma 1. If T is periodic, then there is a tiling t by T with two linearly independent translation vectors

(in particular a tiling t with vertical and horizontal translation vectors).

Lemma 2. If, for every k ∈ N, there exists a tiling of [0, . . . ,k]× [0, . . . ,k] by T, then T tiles the plane.

2.2 Transducers

One of the simplest but most crucial observations we will use in this article is that a Wang set may be

viewed as a finite state transducer: a finite state automata with an input tape and an output tape. In

the entire paper, we use the same notation for Wang sets and for transducers, that is, a transducer is a

triplet (H,V,T ), where H is the set of states, V is the (input and output) alphabet, and T is the set of

transitions. Each t = (w,e,s,n) ∈ T is a transition (in other words, a tile in the Wang set formalism), and

the transducer authorizes the transition from the state w to the state e, reading the letter s on the input

tape and writing n on the output state. It should be noted that, unlike usual automata and finite state

transducers, we do not have either initial or final states: we work on biinfinite words.

Figure 1 presents the popular set of Wang tiles introduced by Culik from both points of view. Note

that we choose to label transitions with s|n instead of, for example, n
s
. This choice is intended to adhere

to the classical way of depicting finite state transducers.

A biinfinite word (or biinfinite sequence) on the alphabet A is a sequence (wi)i∈Z such that, for every

i ∈ Z, wi ∈ A. If w and w′ are biinfinite words over the alphabet V , we will write wTw′ if w′ is the image

of w by the transducer. More formally, wTw′ if there is a biinfinite sequence (qi)i∈Z of states such that

for every i ∈ Z, (qi,qi+1,wi,w
′
i) ∈ T . In Wang tile formalism, wTw′ if one can tile a row such that w

are the sequence of colors on south edges, and w′ the color on north edges. The transducer is usually

nondeterministic, so this is indeed a partial relation, not a function.

A run of a transducer T is a (possibly infinite or biinfinite) sequence of biinfinite words (wi)i∈I (where

I is an interval of Z) such that, for all {i, i+ 1} ⊂ I, wiTwi+1. In this formalism, tilings of the plane

correspond exactly to biinfinite runs of the transducer, and (H,V,T ) tiles the plane if and only if there

exists a biinfinite run of (H,V,T ). Note also that, by compactness, there exists a biinfinite run of (H,V,T )
if and only if there exists an infinite run of (H,V,T ).

The composition of Wang sets, seen as transducers, is straightforward: let T = (H,V,T ) and T′ =
(H,V ′,T ′) be two Wang sets. Then T ◦T′ is the Wang set (H ×H ′,V,T ′′), where

T ′′ = {((w,w′),(e,e′),s,n′) : (w,e,s,n) ∈ T,(w′,e′,s′,n′) ∈ T ′ and n = s′}.
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Figure 1: The aperiodic set of 13 tiles obtained by Culik from an idea by Kari: the transducer view and

the tile view.

Let Tk, k ∈ N\{0} be T if k = 1, Tk−1 ◦T otherwise.

A reformulation of the original question is as follows:

Lemma 3. A Wang set T is finite if there is no infinite run of the transducer T: there is no biinfinite

sequence (wk)k∈N so that wkTwk+1 for all k.

A Wang set T is periodic if and only if there exists a biinfinite word w and a positive integer k so that

wTkw.

We will also use the following operations on tilesets (or transducers):

rotation Let Ttr be (V,H,T ′) where T ′ = {(s,n,e,w) : (w,e,s,n) ∈ T}. This operation corresponds to a

rotation of the tileset by 90 degrees.

simplification Let s(T) be the operation that deletes from T any tile that cannot be used in a tiling of a

(biinfinite) line row by T. From the point of view of transducers, this corresponds to eliminating

sources and sinks from T. In particular, s(T) is empty if and only if there are no biinfinite words

w,w′ s.t. wTw′.

union T∪T′ is the disjoint union of transducers T and T′: we first rename the states of both transducers

so that they are all different, and then we take the union of the transitions of both transducers. Thus

w(T∪T′)w′ if and only if wTw′ or wT′w′.

Equivalence of Wang sets. Once Wang sets are seen as transducers, it is easy to see that the problems

under consideration do not actually depend on T, but only on the relation induced by T: We say that two

Wang sets T = (H,V,T ) and T′ = (H ′,V,T ′) are equivalent if they are equivalent as relations. In other

words: for every pair of biinfinite words (w,w′) over V , wTw′ ⇔ wT′w′.

In the course of the following proofs and algorithms, it will be useful to switch between equivalent

Wang sets (transducers), in particular by trying to simplify the sets as much as possible. For example,
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we can apply the operator s(T) to trim the colors/states (and thus the tiles/transitions) that cannot appear

in a biinfinite row (e.g., sources/terminals of the transducer seen as a graph), or reduce the size of the

transducer by coalescing “equivalent” states.

There are a few algorithms to simplify Wang sets. First, as our transducers are nothing but (nondeter-

ministic) finite automata over the alphabet V ×V , it is tempting to try to minimize them. However, state

(or transition) minimization of nondeterministic automata is PSPACE-complete [33]. Another plausible

strategy, building the minimal deterministic automaton, has also proven to be inefficient in practice. The

algorithm we use is based on the notion of strong bisimulation equivalence (or bisimulation, for short) of

labeled transitions systems [23, 36, 43, 31].

A simulation on the transducer (H,V,T ) is a relation R ⊆ H2 such that for every u,u′,v ∈ H and

a,b ∈ V such that (u,u′) ∈ R and (u,v,a,b) ∈ T , there exists v′ ∈ V such that (u′,v′,a,b) ∈ T . A

bisimulation is a relation R such that R and R−1 are simulations. The bisimilarity relation, which

is the largest possible bisimulation, is an equivalence relation, can be computed in linear time [36].

The computation of the bisimilarity relation can be thought of as the non-deterministic equivalent of

Hopcroft’s [18] classical minimization algorithm for deterministic automata. Note that if we collapse

equivalence classes in the transducer, we obtain a new transducer which is equivalent to the previous one.

Another interesting option to simplify a transducer is the simulation relation, but the best known

algorithm to compute it is in O(n′m) time [6], with n′ the number of equivalence classes, and m the

number of transitions, which makes it impractical to use on large transducers. More so in our case, which

sees transducers of up to several billions of transitions.

3 There is no aperiodic Wang sets with 10 tiles or less

In this section, we present a computer-assisted proof that there is no aperiodic Wang set with 10 tiles or

less. The computer program can be found here: [19].

The general idea of the algorithm is straightforward: generate all Wang sets with 10 tiles or less,

and test each one to see whether it is aperiodic. This method presents two difficulties here: first, there

are a large number of Wang sets with 10 tiles: for maximum efficiency, we have to discard as soon as

possible Wang sets that are provably not aperiodic. We then have to test the remaining sets for aperiodicity.

Because aperiodicity is an undecidable problem, our algorithm will not succeed on all Wang sets; the

remaining sets will have to be examined by hand.

3.1 Generating all Wang sets with 10 tiles or less

According to the general principle above, we do not actually have to generate all Wang sets: we can

refrain from generating sets that we know to be aperiodic.

Let T be a Wang set. We say that T is minimally aperiodic if T is aperiodic and no proper subset of T

is aperiodic (that is no proper subset of T tiles the plane). We will introduce criteria proving that some

Wang sets are not minimally aperiodic, and thus that we do not need to test them.

The key idea is to look at the graph G underlying the transducer, that is, the transducer in which we

neglect the labels of transitions. Note that this is actually a multigraph: there might be multiple edges

(transitions) joining two given vertices (states), and there might also be self-loops.
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This approach was introduced in [20], and the following lemma is more or less implicit in this article:

Lemma 4. Let T be a Wang set, and G the corresponding graph.

• Suppose there exist two vertices/states/colors u,v∈G so that there is an edge (hence a tile/transition)

from u to v and no path from v to u. Then T is not minimal aperiodic.

• Suppose G contains a strongly connected component which is a cycle. Then T is not minimal

aperiodic.

• If G has only one vertex, then T is not aperiodic.

• If the difference between the number of edges and the number of vertices in G is less than 2, then T

is not minimal aperiodic.

Proof. In terms of tiles, the first case corresponds to a tile t which can appear at most once in each row.

If T tiles the plane, T tiles arbitrarily large regions without using the tile t. By compactness (Lemma 2),

T \{t} tiles the plane.

For the second case, suppose such a component exists. This means there exist some tiles S ⊆ T so

that every time one of the tiles in S appears, then the whole row is periodic (of period the size of the

cycle). If T is aperiodic, we cannot have a tiling where tiles of S appear in two different rows, as we could

deduce from it a periodic tiling. As a consequence, tiles from S appear in at most one row, and using the

same compactness argument as before we deduce that T \S tiles the plane.

For the third case, if G has only one vertex and the Wang set tiles the plane, then one can construct a

periodic tiling of the plane such that every column is the same column.

The proof of the fourth case can be found in [20].

We also suppose w.l.o.g. that there are no isolated vertices. The number of graphs with the property

of Lemma 4 are: 6 for 4 edges, 26 for 5 edges, 122 for 6 edges, 516 for 7 edges, 2517 for 8 edges, 13276

for 9 edges and 77809 for 10 edges. The computer program gengraphs__N generates the set of such

graphs with N edges.

This lemma gives a bird’s-eye view of the program: for a given n ≤ 10, generate the set G of all

graphs with n edges and at most n−2 vertices satisfying the hypotheses of the lemma. Then for every

G1 and G2 in G, we test all Wang sets for which the first underlying graph (in west/east sides) is G1, and

the underlying graph of Ttr (that is, the north/south sides of T) is G2. To do so, we test every bijection

between the edges of G1 and the edges of G2. In terms of Wang tiles, a graph corresponds to a specific

assignment of colors to the east/west side: for this particular assignment, we test all possible assignments

of colors to the north/south side. The exact approach used in the software follows this principle, trying as

much as possible not to generate isomorphic tilesets.
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3.2 Testing Wang sets for aperiodicity

In the previous section, we described how we generated Wang sets to test. We now describe how we

tested them for aperiodicity.

3.2.1 Main program

Recall that a Wang set is not aperiodic if

• either there exists k so that s(Tk) is empty: there are no word w,w′ so that wTkw′,

• or there exists k so that Tk is periodic: there exists a word w so that wTkw.

The general algorithm to test for aperiodicity is therefore clear: for each k, generate Tk, and then test

whether one of the two cases occurs. If it does, the set is not aperiodic. Otherwise, we go to the next k.

The algorithm stops when the computer program runs out of memory. In that case, the algorithm was

not able to decide if the Wang set was aperiodic (it is after all an undecidable problem), and we have to

examine the Wang set carefully.

This approach works quite well in practice: when launched on a computer with a reasonable amount

of memory, it eliminates a very large number of tilesets. Of course, the key idea is to simplify Tk as much

as possible, before computing Tk+1. Note that this should be done as fast as possible, as this will be done

for all Wang sets. It turns out that the easy simplification of deleting at each step the tiles that cannot

appear in a tiling of a row (i.e., vertices that are sources/terminals) is already sufficient.

It is important to note that this approach, relying on transducers (test whether the Wang set tiles k

consecutive rows, and whether it does so periodically) turned out in practice to be much more efficient

than the naive approach of using tilings of squares (test whether the Wang set tiles a square of size k, and

whether it does so periodically).

At this point, several possible improvements become apparent. For example, the simplification of the

transducers by bisimulation can be significant.

However, we have to be careful about a few things. Firstly, some techniques can paradoxically waste

more time than they save: the large majority of tilesets are quickly discarded by a simple and naive

algorithm, and the time spent on non-trivial cases represents only a tiny part of the overall time, even

with this simple algorithm. Secondly, these optimizations can make the program more difficult to read, to

understand, and to check.

Where this is the case, we have chosen to opt for program clarity rather than computational efficiency:

without other improvements, one can show, in a reasonable time, that there is no aperiodic set of Wang

tiles with at most 10 tiles. For example, we do not even try to remove duplicate tiles, since this operation

would require sorting the tiles.

3.3 Computation

Two independent programs [19] are available in the folder src, and another in the folder alternative. The

result from both programs is the same: we find only one hard case up to isomorphism, which is discussed

in Section 3.3.1.
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We now give some details on the computation for the first program (the second is quite similar). The

computation for 10 tiles was done using the PSMN cluster (Pôle Scientifique de Modélisation Numérique)

of the ENS de Lyon, and the computing resources of the LIP (Laboratoire d’Informatique du Parallélisme)

of the ENS de Lyon, and required approximately 23 CPU years, that is roughly one week on 1000 cores.

For 9 tiles and less, the computations required approximately 38 CPU days.

For 10 tiles, there are (77809× 77810)/2 ∼ 3× 109 cases. (By a case, we mean the test of all

possible bijections between the edges of two graphs.) Most of the cases (99.8%) take less than 1 second:

the average time is 242ms and the median time is 155ms. Except for the hardest case discussed below, the

largest power we have to compute is T126, and the largest transducer has ∼ 18×106 transitions – recall,

however, that the program does not try to keep the transducer small.

It is difficult to recheck the result without substantial computing power. As a kind of certificate, we

provide all the hardest cases for 10 tiles: cases where either we have to compute at least T30, or cases for

which we get a transducer with at least 104 edges. We also give the hardest cases for sets of 5 up to 9 tiles.

3.3.1 The hardest case

Among all Wang sets, only 4 sets cannot be proven to be not aperiodic by the computer program. All

these 4 sets are isomorphic to the set Th presented in Figure 2.

It turned out that this particular Wang set is a special case of a general construction introduced by

Kari [25] of aperiodic Wang sets, save for the fact that a few tiles are missing. At this point, the situation

could have become desperate: it is not known whether Wang sets which were obtained by the method of

Kari less a few tiles actually tile the plane. In fact, the question was open: whether it was possible to

delete a tile from Culik’s [8] 13 tileset to obtain a set that still tiles the plane1. It was conjectured by both

Kari and Culik that it was indeed possible.

We were able to prove that this tileset does not in fact tile the plane. Wang sets belonging to the

family identified by Kari all work in the same way: the biinfinite words that appear on each row can be

thought of as reals, by taking the average of all numbers (between 0 and 3 in our example) that appear on

the row. Then, what the tileset does is apply a given piecewise affine map to the real number. In the case

of our set of 10 tiles, the map f is as follows:

• if 1/2 ≤ x < 3/2, then f (x) = 2x,

• if 3/2 < x ≤ 3, then f (x) = x/3.

As can be seen from the first transducer, there cannot be two consecutive 0 in x. This guarantees that

x ≥ 1/2, therefore x 6= 0, and, in particular, that this tileset has no periodic tiling.

If we used Kari’s method to code this particular tileset, the transducer that divides by 3 would have 8

tiles. However, our particular set of 10 tiles does so with only 4 tiles. There is a way to explain how the

division by 3 works. First, we treat it like a multiplication by 3 by reversing the process. Recall that the

Beatty expansion of a real x is given by βn(x) = ⌈(n+1)x⌉−⌈nx⌉. Then one has

1You will find many experts on tilings that recollect this story wrongly and think that the (13) Wang set by Culik is the (14)

Wang set from Kari with one tile removed. This is not the case. What happened is that there is one tile from the (13) Wang set

by Culik that seemed likely to be unnecessary.
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1 0

1|2 1|2

1|3,0|1

2|3,1|1

2/3 0′

3|1 3|1

1|1

2|0

Figure 2: The set Th of 10 tiles that comes very close, but fails to tile the plane. It tiles a square of size

212×212

Fact 1. Let 0 < x ≤ 1 and define bn(x) = 2βn(2x)− βn(x). Then the second transducer transforms

(βn)n∈N into (bn)n∈N.

Therefore, the second transducer multiplies by 3 by doing 2×2× x− x somehow. It can be seen as

a composition of a transducer that transforms (βn)n∈N into (βn,bn)n∈N (this can be done with only two

states, using Kari’s method) and a transducer mapping each symbol (x,y) into 2y− x, which can be done

using only one state (this is just a relabeling).

There is no reason that doing the transformation this way would work (in particular the equations

given by Kari cannot be applied to this particular transducer and prove that there is a tiling of the plane),

and indeed it doesn’t: we were able to prove that this particular Wang set does not tile the plane.

Once this tileset was identified as belonging to the family of Kari tilesets, it is easy to see that, should

it tile the plane, it tiles a half plane starting from a word consisting only of the symbol 3.

Fact 2. If Th tiles the plane, then it tiles a half plane starting from a word consisting only of the symbol 3.

Proof. If one has a tiling of the plane, there is a biinfinite run (wi) of Th. For i,n ∈ N, let xi,n be

the sum of the letters in wi (considering the letters as real numbers) between the positions −n and

n. The sequence (x0,n/(2n+ 1))n∈N is bounded, thus one can find an increasing function φ : N 7→ N

such that x0,φ(n)/(2φ(n)+ 1) converges. Let y0 = limn→∞ x0,φ(n)/(2φ(n)+ 1). Then (x1,φ(n)/(2φ(n)+
1))n∈N converges, and by induction, for every i ∈ N, (xi,φ(n)/(2φ(n) + 1))n∈N converges. Let yi =
limi→∞ xi,φ(n)/(2φ(n)+1).

Moreover, for every i, one has either yi+1 = 2yi or yi+1 = yi/3. One can suppose w.l.o.g. that for

every k ∈ N, yk 6= 3/2. Otherwise, it is impossible that yk′ = 3/2 with k′ > k, and one can remplace the

initial sequence by (wi+k+1)i).

Thus, yi = f i(y0). Since log(2)/ log(3) is irrationnal, the set {yi} is dense, and for every ε > 0 there
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is an i such that |yi − 3| < ε . That is, for every n ∈ N, the factor 3n appears as a factor if one wi. By

compactness, there is a tiling of the half plane starting from a word consisting only of the symbol 3.

In our approach, we started from a transducer T′ which outputs a configuration with only the symbol

3, and built recursively tk = T′Tk.

It turns out that t31is empty, once reduced, which means that we cannot tile 31 consecutive rows

starting from a word consisting only of 3. This fact is verified by the program hard10. Here, the naive

approach –to remove sources and terminals– takes too long for t31, and we opted to use Tarjan’s algorithm

to find strongly connected components.

Fact 3. Th does not tiles the plane.

Thus, we get:

Theorem 1. There is no aperiodic Wang set with 10 tiles or less.

The fact that everything falls apart for k = 31 can be explained intuitively, if we identify

([0.5,3]0.5∼3,×) with the unit circle ([0,1]0∼1,+). What f is doing is now just an addition (mod-

ulo 1) of log2
log2+log3

. Now 31 log2
log2+log3

= 11.992 is near an integer, which means that T31 is “almost” the

identity map. During the 30 first steps, our map T is able to deceive us, and it appears as if it would

tile the plane by using the degrees of freedom we have in the coding of the reals. For k = 31, this is not

possible anymore.

Before removing unused transitions, t31 contains a path of 212 symbols 3. This means in particular

that there exists a tiling of a rectangle of size 212× 31 where the top and the bottom sides are equal,

thus a tiling of a biinfinite vertical strip of width 212 by this tiling, and thus a tiling of a square of size

212×212.

It turns out that the exact same method can be used for the set of 12 tiles obtained from Culik’s set by

removing one tile. It corresponds to the same rotation, and we observe indeed the same behavior: starting

from a configuration of all 2, it is not possible to tile 31 consecutive rows:

Theorem 2. The set of 13 tiles by Culik is minimal aperiodic: if any tile is removed from this set, it does

not tile the plane anymore.

Note that the situation is still not well understood, and we consider ourselves lucky to have obtained

the result: first, we have to execute the transducers in the right direction: T′T−31 is nonempty. Furthermore,

the next step when Tk returns near an integer is for k = 106, and no computer, using our technique, has

enough memory to hope computing T106.

Conjecture 1. Every aperiodic tileset obtained by Kari’s method is minimal aperiodic.
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4 An aperiodic Wang set of 11 tiles - Proof sketch

Using a similar method to the one presented in the last section, we were able to enumerate and test sets of

11 tiles and find a few potential candidates. This computation took approximately one year on several

hundred cores, using again the PSMN cluster and the LIP cluster.

Of these few candidates, three of them were extremely promising, and we will prove that they are

aperiodic sets. These three sets look very similar, and the core of the proof of their aperiodicity is the

same.

One of these three sets, T′ (Figure 4), uses only four colors, which is also minimal because no

aperiodic set exists with only three colors [7]. To prove that T′ is aperiodic, we first show that T (Figure 3)

is aperiodic, and then show that T′, which is a simple modification of T, is aperiodic. The aperiodicity of

the last set T′′ (Figure 10) is discussed in Section 7.3.

0

1

23

1|0
2|1

2|2

4|2

2|3

1|1

1|1
2|2

3|1
1|4
0|2

0 0
0

1
0 3

1

2
1 0

2

2
1 1

2

4
1 3

3

2
3 0

1

1

3 1
1

1
3 1

2

2
3 3

1

3
2 2

4

1
2 2

2

0

Figure 3: Wang set T.

Theorem 3. The Wang sets of Figure 3, 4 and 10 are aperiodic.

In this section, we sketch the proof of this result for the first set T.

T is the union of two Wang sets, T0 and T1, of 9 and 2 tiles respectively. For w ∈ {0,1}∗ \{ε}, let

Tw = Tw[1] ◦Tw[2] ◦ . . .Tw[|w|].

It can be seen by an easy computer verification that every tiling by T can be decomposed into a tiling

by transducers T1T0T0T0T0 and T1T0T0T0.

The simplifications of these two transducers, called Ta and Tb will be obtained in Section 5.1, and are

depicted in Figure 5.

We then study the transducer TD formed by the two transducers Ta and Tb and prove that there exists

a tiling by TD, and that any tiling by TD is aperiodic.
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0
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1
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1
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0

1
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2
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Figure 4: Wang set T′, obtained from T by collapsing the colors 4 and 0.

We will prove that the tileset is aperiodic, by proving that any tiling is substitutive. Let u−2 = ε ,u−1 =
a, u0 = b,un+2 = unun−1un. For reference, here are the first values of u:

ε,a,b,aa,bab,aabaa,babaabab,aabaababaabaa,babaababaabaababaabab

Let g(n), n ∈ N be the (n+ 1)-th Fibonacci number, that is g(0) = 1, g(1) = 2 and g(n+ 2) =
g(n)+g(n+1) for every n ∈ N. Remark that un is of size g(n). Then we will prove:

Proposition 1. Any tiling of the plane by TD can be divided into strips of vertical width g(n),g(n+1) or

g(n+2) so that each strip is a tiling by Tun
,Tun+1

or Tun+2
.

Remark that, by definition, Tun+3
= Tun+1

◦Tun
◦Tun+1

.

We will prove this by induction on n. For this, we introduce a family of transducers, presented in

Figure 6, and we will prove the following:

• We show in Proposition 2 that for any tiling of the plane by TD, the words in each row avoid the

factors 010 and 101.

• We prove (Section 5.2) that every tiling by TD = Ta∪Tb can be seen as a tiling by Tu0
∪Tu1

∪Tu2
=

Tb∪Taa∪Tbab.

• We prove (Section 5.2) that for words u,v ∈ W , uTui
v ⇐⇒ uTiv. This means that we can

interchangeably replace the Wang sets Tu0
,Tu1

,Tu2
by T0,T1,T2 without changing the tilings of the

plane.

• At this point, it becomes obvious that T is aperiodic if and only if the Wang set T0 ∪T1 ∪T2 is

aperiodic.
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Figure 5: TD, the union of Ta (top) and Tb (bottom).

• We prove (Section 6) that Tn+3 = Tn+1 ◦Tn ◦Tn+1 for all n. As Tun+3
= Tun+1

◦Tun
◦Tun+1

, we obtain

by an easy induction2 that for all u,v ∈W , uTun
v if and only if uTnv.

• We then prove (Section 7) that any tiling by Tn,Tn+1, Tn+2 can be rewritten as a tiling by

Tn+1,Tn+2,Tn+3. As a consequence, any tiling by Tun
,Tun+1

and Tun+2
can be rewritten as a tiling by

Tun+1
,Tun+2

,Tun+3
, by replacing any block Tun+1

Tun
Tun+1

by Tun+3
(the difficulty is to prove that by

doing this, there is no remaining occurrence of Tun
).

This proves the proposition and the theorem.

Finally, we explain in Section 7 how the same proof gives us also the aperiodicity of the set T′.

5 From T to TD then to T0,T1,T2

5.1 From T to TD

Recall that our Wang set T can be seen as the union of two Wang sets, T0 and T1, of 9 and 2 tiles

respectively.

For w ∈ {0,1}∗ \{ε}, let Tw = Tw[1] ◦Tw[2] ◦ . . .Tw[|w|]. The following facts can be easily checked by

computer or by hand:

Fact 4. The transducers s(T11), s(T101), s(T1001) and s(T00000) are empty.

2To be rigorous, one also needs to use that if rTun+1
sTun

tTun+1
v with r,v ∈W , then s, t ∈W which is a clear consequence of

Proposition 2.
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Tn for n odd:

1g(n+2)−3|0g(n+2)−3

1g(n+1)+3 |(110)0g(n+1)

1g(n+3)+3 |0g(n+2)(111)0g(n+1)

1g(n+1)(000)1g(n+2)|0g(n+3)+3

1g(n+1)(100) |0g(n+1)+3

1g(n+3)(100)1g(n+1)|0g(n+1)(110)0g(n+3)

Tn for n even:

0g(n+2)−3|1g(n+2)−3

0g(n+1)+3 |(100)1g(n+1)

0g(n+3)+3 |1g(n+2)(000)1g(n+1)

0g(n+1)(111)0g(n+2)|1g(n+3)+3

0g(n+1)(110) |1g(n+1)+3

0g(n+3)(110)0g(n+1)|1g(n+1)(100)1g(n+3)

Figure 6: The family of transducers Tn
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Thus, if t is a tiling by T, then there exists a biinfinite binary word w ∈ {1000,10000}Z such that

t(x,y) ∈ T (Tw[y]) for every x,y ∈ Z. Let TA = s(T1000 ∪T10000) (see Figure 7a). There is a bijection

between the tilings by T and the tilings by TA, and T is aperiodic if and only if TA is aperiodic.

We see that the transducer TA never reads 2, 3, nor 4. Thus the transitions that write 2, 3, or 4 are

never used in a tiling by T. Let TB (see Figure 7b) be the transducer TA after removing these unused

transitions, and deleting states that cannot appear in a tiling of a row (i.e., sources and sinks). Then t is a

tiling by TA if and only if t is a tiling by TB, and TB is aperiodic if and only if TA is.

Now we use bisimulation to slightly simplify the transducer TB. The states 23300 and 23310 have the

same incoming transitions, and can therefore be coalesced into one state. The same goes for states 21300

and 21310, and for states 2300 and 2310. Once we coalesce all those states, we obtain the Wang set TC

depicted in Figure 7c.

TB and TC are equivalent. Therefore, TB is aperiodic if and only if TC is aperiodic.

Proposition 2. Let W be the set of biinfinite words which do not contain the words 010 and 101 as

factors. Let u,v,w s.t. uTCvTCw. Then v ∈W.

In particular, let (wi)i∈Z be a biinfinite sequence of biinfinite binary words such that wiTCwi+1 for

every i ∈ Z. Then, for every i ∈ Z, wi ∈W.

Proof. A quick inspection shows that the transducer TC does not accept as input a word which contains

101, and it does not produce a word which contains 010 as an output.

In a tiling by TC, the transition from Q to O is never followed by a transition from O to P, otherwise it

writes a 101. Similarly, a transition from M to K is never preceded by a transition from L to M, otherwise

it reads a 010. Thus, there is a bijection between tilings by TC and tilings by TD (Figure 7d).

We therefore have:

Proposition 3. T is aperiodic if and only if TD is aperiodic.

5.2 From TD to T0,T1,T2

Let Ta and Tb be the two connected components of TD. For a word w ∈ {a,b}∗, let Tw = Tw[1] ◦Tw[2] ◦
. . .◦Tw[|w|]. The following fact can be easily checked by computer or by hand:

Fact 5. The transducers s(Tbb), s(Taaa) and s(Tbabab) are empty.

This implies that if t is a tiling by TC, then there exists a biinfinite binary word w ∈ {b,aa,bab}Z

such that t(x,y) ∈ T (Tw[y]) for every y ∈ Z. That is, t is an image of a tiling by Tb∪Taa∪Tbab.

We will now simplify the three transducers.

Case of Tb. In Tb, every path eventually goes to the state “N”. Thus Tb is equivalent to the following

transducer (written in a compact form):
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(a) TA, the union of s(T10000) (left) and s(T1000) (right).
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(b) TB corresponds to TA when unused transitions are deleted.
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(c) TC is the simplification of TB by bisimulation.
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(d) TD is the simplification of TC, using the fact that the successions of symbols 101 and 010 cannot appear. The

transducers to the left and to the right are called Ta and Tb, respectively.

Figure 7: The different steps of simplification of TA.
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ba
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(a) s(Taa)

LaO

MbK

MbR

NeR

NcL

PbN

QcO

RcO
1|1

10|11

000000011|001111111

0000|1100

00000|11111

0|1

0|0

0|1

000000|111111

0|0

0000|1111

1100|1111

(b) s(Tbab)

Figure 8: s(Taa) and s(Tbab).

N

00000 |10011

00000000 |11100011

00111000 |11111111

00110 |11111

0000011000|1110011111

0010 |1011

001000 |111011

0000010 |1110011

0011000 |1011111

In the previous transducer, the last 4 transitions are never used in a tiling of the plane, since they read

010 or write 101. This allows us to simplify the transducer into:

N

00000 |10011

00000000 |11100011

00111000 |11111111

00110 |11111

0000011000|1110011111

This transducer is equivalent to T0, that recalled here for comparison:

ε|ε

05 |(100)12

05+3 |13(000)12

02(111)03|15+3

02(110) |12+3

05(110)02|12(100)15
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Case of Taa. The transducer s(Taa) is depicted in Figure 8a in a compact form. In this transducer, every

path eventually goes to the state “eb”. Then s(Taa) is equivalent to the following transducer (written in a

compact form):

eb

11111111 |11000000

1111111111111 |0000011100000

1110001111111 |0000000000000

11110011 |00000000

1111111110011111|0001100000000000

This transducer is clearly equivalent to T1, recalled here for convenience:

15−3|05−3

13+3 |(110)03

18+3 |05(111)03

13(000)15|08+3)

13(100) |03+3

18(100)13|03(110)08

Case of Tbab. The transducer s(Tbab) is depicted in Figure 8b.

In this transducer, every path eventually goes to the state “NeR”. Then s(Tbab) is equivalent to the

following transducer (written in compact form):

NeR

0000000000000 |1111110011111

000000000000000000000 |111111111111100011111

000000000011100000000 |111111111111111111111

0000000000110 |1111111111111

00000000000000000011000000|11111111111001111111111111

This transducer is clearly equivalent to T2, which we recall here for the reader’s convenience:

08−3|18−3

05+3 |(100)15

013+3 |18(000)15

05(111)08 |113+3

05(110) |15+3

013(110)05|15(100)113
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6 From Tn,Tn+1,Tn+2 to Tn+1,Tn+2,Tn+3

In this section, we prove:

Theorem 4. For all words u,v we have uTn+3v ⇐⇒ uTn+1TnTn+1v.

For the reader’s convenience, we recall the definition of the family of transducers, and we introduce

notations for the transitions.

Tn for n even:

0 5

α : 0g(n+2)−3|1g(n+2)−3

β :0g(n+1)+3 |(100)1g(n+1)

γ :0g(n+3)+3 |1g(n+2)(000)1g(n+1)

δ :0g(n+1)(111)0g(n+2)|1g(n+3)+3

ε :0g(n+1)(110) |1g(n+1)+3

ω :0g(n+3)(110)0g(n+1)|1g(n+1)(100)1g(n+3)

Tn+1 for n even:

0 5

A : 1g(n+3)−3|0g(n+3)−3

B :1g(n+2)+3 |(110)0g(n+2)

C :1g(n+4)+3 |0g(n+3)(111)0g(n+2)

D :1g(n+2)(000)1g(n+3)|0g(n+4)+3

E :1g(n+2)(100) |0g(n+2)+3

O :1g(n+4)(100)1g(n+2)|0g(n+2)(110)0g(n+4)

Before going through the proof, some remarks:

• Tn for n even and n odd are essentially similar. This means it is sufficient to prove the result for n

even.

ADVANCES IN COMBINATORICS, 2021:1, 37pp. 20

http://dx.doi.org/10.19086/aic


AN APERIODIC SET OF 11 WANG TILES

• Apply the following transformations to Tn: exchange input and output, reverse the direction of the

edge, reverse (i.e., take the mirror) the words, and exchange symbols 0 and 1. Then we obtain Tn

again (for n even, with β playing the role of ε , δ the role of γ , and α and ω their own role). This

internal symmetry will be used heavily in the proofs.

• All transitions are symmetric and easy to understand, except the self-symmetric tiles ω and O.

These transitions actually cannot occur in the tiling of the plane, but a transition of shape ω or O

large enough can appear in a large enough finite strip. Therefore, it is not possible to accomplish

the proof without speaking about these transitions, even though they cannot appear in a tiling of the

plane.

We now proceed to prove the result. As said before, we suppose that n is even, and we will look at

the sequence of transducers Tn+1 ◦Tn ◦Tn+1.

Note that the output of Tn consists essentially of long sequences of the symbol 1, and a few occurrences

of 100 and 000 interspersed. We call these two words “markers”. Because the output of Tn should be fed

to Tn+1, the distance between the markers that Tn produces should be within what Tn+1 can read.

The following table represents the possible distance between two consecutive markers (i.e., 000 and

100) as inputs of Tn+1.

First Marker Second Marker Distance

(000) from D (000) from D g(n+5)






















































+ag(n+4)+bg(n+5)
a,b ∈ N

(000) from D (100) from E g(n+5)
(000) from D (100) from O g(n+5)+g(n+3)
(100) from E (000) from D g(n+4)
(100) from E (100) from E g(n+4)
(100) from E (100) from O g(n+5)
(100) from O (000) from D g(n+4)+g(n+2)
(100) from O (100) from E g(n+4)+g(n+2)
(100) from O (100) from O 2g(n+4)

For example, between the marker 000 from D and 100 from O, one has 3 (the size of the first marker)

plus g(n+3) (the letters in D after the marker), plus g(n+3)−3 (the letters in A) plus g(n+4) (the letters

of O before the marker). That is 3+g(n+3)+g(n+3)−3+g(n+4) = g(n+3)+g(n+5).
We mean by distance the absolute value between the positions of the first letter of each marker.

To prove the main result, we will prove that the transitions in the transducer Tn (when surrounded by

transducers Tn+1) must be done in a certain order.

In the following, we deliberately omit the transition α : when we say that γβ cannot appear, we mean

that it is impossible to see the transitions γ , followed by α and then β in a run of the transducer Tn (when

surrounded by transducers Tn+1).

Lemma 5. The following words cannot appear:

• γω ,γγ ,γβ ,βω,ββ ,βεβ ,γεβ , βδεβ , γδεβ

• ωδ ,δδ ,εδ ,ωε,εε,εβε,εβδ , εβγε , εβγδ
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Proof. All the following successions of transitions are impossible due to the input constraints on Tn+1:

Case What it would produce (which cannot be fed to Tn+1)

γω (000) and (100) separated by g(n+1)+g(n+3)
γγ (000) and (000) separated by g(n+4)
γβ (000) and (100) separated by g(n+3)
βω (100) and (100) separated by g(n+1)+g(n+3)
ββ (100) and (100) separated by g(n+3)
βεβ (100) and (100) separated by 2g(n+3)
γεβ (000) and (100) separated by 2g(n+3)
βδεβ (100) and (100) separated by 2g(n+4)+g(n+1)
γδεβ (000) and (100) separated by 2g(n+4)+g(n+1)

All other cases follow by symmetry.

Lemma 6. ω cannot appear.

Proof. Case disjunction on what appears before:

Case What it would produce (which cannot be fed to Tn+1)

βω see above

γω see above

βδω (100) and (100) separated by

g(n+4)+g(n+3)+g(n+1)
γδω (000) and (100) separated by

g(n+4)+g(n+3)+g(n+1)
βεω (100) and (100) separated by

g(n+4)+2g(n+1)
γεω (000) and (100) separated by

g(n+4)+2g(n+1)
βδεω (100), (100) separated by

g(n+5)+g(n+3)+g(n+1) = 2g(n+4)+2g(n+1)
γδεω (000), (100) separated by

g(n+5)+g(n+3)+g(n+1) = 2g(n+4)+2g(n+1)

Lemma 7. O cannot appear.

Proof. Suppose that O appears in the top transducer (i.e., the transducers with input Tn). This means the

(100) marker is generated, the only possibility being by β .

We prove there is no possibility to find transitions after this β .
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Case Why it is impossible to start from O

βγ (100) and (000) separated by g(n+4)
βδβ (100) and (100) separated by g(n+4)+g(n+3)
βδγ (100) and (000) separated by g(n+4)+g(n+1)+g(n+3)

βδεβ (100) and (100) separated by 2g(n+4)+g(n+1)
βδεγ (100) and (000) separated by 2g(n+4)+g(n+3)

βεγ (100) and (000) separated by g(n+5)

By symmetry, O cannot appear in the bottom transducer.

Now that O has disappeared, the possible distances between the markers are greatly simplified.

First Marker Second Marker Distance

(000) (000) g(n+5)














+ag(n+4)+bg(n+5)
a,b ∈ N

(000) (100) g(n+5)
(100) (000) g(n+4)
(100) (100) g(n+4)

Lemma 8. The following words do not appear: βε , εβ βδβ , δγδ , as well as εγε and γδγ

Proof. βε should be followed by γ which leads to (100) and (000) separated by g(n+5).

εβ should be preceded by a δ , which cannot be preceded by anything.

Case Why it is impossible

βδβ (100),(100) separated by g(n+4)+g(n+3)
γδγ (000),(000) separated by g(n+5)+g(n+2)

The last two follow by symmetry.

Lemma 9. Every biinfinite path on the transducer Tn, when it is surrounded by transducers Tn+1, can be

written as paths on the following graph:

γδ

β ,ε,βδγε,βγε,βδε

Proof. Clear: all other words are forbidden by the previous lemmas.

Recall that in this picture, words α have been forgotten. We now rewrite it adding the transitions α .
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γαδ

αβα,αεα,αβαδαγαεα,αβαγαεα,αβαδαεα

All transitions in the picture will be called meta-transitions.

We now have a more accurate description of the behavior of the transducer Tn when surrounded by

transducers Tn+1. This will be sufficient to prove the results. We will see indeed that each of the six

meta-transitions depicted can be completed in only one way by transitions of Tn+1. This will give us six

tiles, which (almost) correspond to the transitions of Tn+3.

We will use drawings to prove the result. Let’s first draw all tiles. The bottom corresponds to the input,

and the top to the output. The colors indicate the markers: the blue (resp. black, red, green) corresponds

to 111 (resp. 110, 100 and 000).

First, the transitions of Tn, seen as tiles:

α β γ

δ

ε

Then the transitions of Tn+1:

A B

C D

E

We now first look at γδ . By necessity, the following transitions of Tn+1 should surround it:

γ α δ

A C

D A
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Note that the three transducers are aligned (up to a shift of ±3) when γαδ is present. As all other meta-

transitions are enclosed by the meta-transition γαδ , this means that in an execution of Tn+1 ◦Tn ◦Tn+1,

every other meta-transition should be surrounded above and below by transitions of Tn+1 that almost

align with it. Moreover, the transitions of Tn+1 below should begin by A and the transitions of Tn+1 above

should end with A. It turns out that there is only one way to do this for any of the other meta-transitions.

This gives for ε and β :

α ε α

A B

B A

α β α

A E

E A

This gives for βγε and βδε:

α β α δ α ε α

A C A B

E A C A

α β α γ α ε α

A D A B

E A D A

And the piece de resistance βδγε:

α β α δ α γ α ε α
A C A E A B

E A B A D A

We now look at the transducer T ′ we obtained with the preceding six pieces. Note that T ′ = Tn ◦Tn+1 ◦
Tn ◦σ3 where σ is the shift:
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1g(n+5)|0g(n+5)

1g(n+4) |(110)0g(n+4)−3

1g(n+4)−3(100) |0g(n+4)

1g(n+6) |0g(n+5)(111)0g(n+4)−3

1g(n+4)−3(111)1g(n+5)|0g(n+6)

1g(n+6)−3(100)1g(n+4)|0g(n+4)(110)0g(n+6)−3

We recognize Tn+3 up to a shift of 3, which proves the Theorem.

7 End of the proof

7.1 Aperiodicity of T

Proposition 4. There are no words u,v s.t. u(Tn+1 ◦Tn ◦Tn+1 ◦Tn ◦Tn+1)v

Proof. By the previous section, Tn, when bordered by Tn+1 on both sides, can be rewritten as concatena-

tions of blocks of the following five types: βγδ , εγδ , βδγεγδ , βγεγδ and βδεγδ .

However, as Tn+1 ◦Tn ◦Tn+1 ◦Tn ◦Tn+1 = Tn+3 ◦Tn ◦Tn+1, the block εγδ (and any block containing

it) cannot appear in the execution of the transducer Tn, as Tn+3 does not produce any input where 100 and

000 are close enough. So the only possible block remaining is βγδ . But Tn+3 does not produce any input

where 000 and 000 are at distance g(n+6).

Proposition 5. Let n ≥ −2. Any tiling of the plane by TD can be divided into strips of vertical width

g(n),g(n+1) or g(n+2) so that each strip is a tiling by Tun
,Tun+1

or Tun+2
.

Proof of the Proposition. The proof is by induction on n. The result is trivial for n =−2,−1, and true

for n = 0 by Section 5.2.

Now suppose the result holds true for n. Consider a tiling of the plane by TD. This tiling can be

divided into strips that correspond to tilings by Tun
,Tun+1

or Tun+2
.

By Proposition 2, the words in each row are elements of W . We can therefore replace each strip

Tui
by Ti to obtain a tiling of the plane by Tn ∪Tn+1 ∪Tn+2. It is easy to see, given the inputs of these

transducers that, in such a tiling, each row corresponding to the transducer Tn is surrounded by rows

corresponding to the transducer Tn+1. As a consequence, each strip corresponding to Tun
is surrounded

by strips corresponding to Tun+1
.

By the previous proposition, there are no words u,v ∈ W s.t. u(Tn+1 ◦Tn ◦Tn+1 ◦Tn ◦Tn+1)v. As

a consequence, there are no words u,v ∈ W s.t. u(Tun+1
◦Tun

◦Tun+1
◦Tun

◦Tun+1
)v. Therefore, in the

dividing of the plane by strips, we do not have 5 consecutive strips of the words Tun+1
,Tun

,Tun+1
,Tun

,Tun+1
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We can therefore replace each occurrence of 3 consecutive strips Tun+1
, Tun

, Tun+1
by Tun+3

as no

occurrences overlap. After doing this, no occurrence of Tun
remains, which ends the proof.

Corollary 1. The Wang set TD = Ta∪Tb is aperiodic.

Furthermore, the set of words u ∈ {a,b}⋆, s.t. the sequence of transducers Tu appears in a tiling of

the plane, is exactly the set of factors of the Fibonacci word, i.e., the set of factors of sturmian words of

slope 1/φ , for φ the golden mean.

Biinfinite words u∈ {a,b}Z, s.t Tu which represents a valid tiling of the plane, are exactly the sturmian

words of slope 1/φ .

See [5] for some references on sturmian words.

Proof. First, note that, for all n, the transducer Tn contains a biinfinite path. In particular, there exists

u,v ∈W s.t uTnv and therefore s.t. uTun
v. We have then, for all n, a tiling of g(n) consecutive rows by TD.

By compactness, there exists a tiling of the plane by TD.

Now consider any tiling by τD. Let v be the word over the alphabet {a,b} s.t. vi = a if the i-th row of

the tiling corresponds to Ta and vi = b otherwise.

By the previous proposition, any tiling by τD can be decomposed into tilings by τun
,τun+1

,τun+2
for all

n, which implies that the word v can be written as a concatenation of un, un+1 and un+2.

The sequence of words un we defined is the sequence of singular factors of the Fibonacci word (see

for example [46]). Thus, v has the same set of factors as the Fibonacci word. In particular, v is not

periodic.

Corollary 2. The Wang set T is aperiodic. Furthermore, the set of words u ∈ {0,1}⋆ s.t. the sequence of

transducers Tu appears in a tiling of the plane is exactly the set of factors of sturmian words of slope

1/(φ +2), for φ the golden mean.

The set of biinfinite words u ∈ {0,1}Z s.t Tu which represents a valid tiling of the plane are exactly

the sturmian words of slope 1/(φ +2).

Proof. Let ψ be the morphism a 7→ 10000,b 7→ 1000. The set of all words u ∈ {0,1}Z that can appear in

a tiling of the whole plane are exactly the image by ψ of the sturmian words over the alphabet {a,b} of

slope 1/φ .

It is well known that the image of a sturmian word by ψ is again a sturmian word, see [5, Corollary

2.2.19], where ψ = G̃3D (with {a,b} instead of {0,1} as input alphabet). The derivation of the slope is

routine.

7.2 Aperiodicity of T′

Recall that T′ is the Wang set from Figure 4. This Wang set is obtained from T, by merging two vertical

colors: 0 and 4 in T become 0 in T′. Thus, every tiling of T can be turned into a tiling of T′, and therefore

T′ tiles the plane. We will show below that every tiling of T′ can be turned into a tiling of T, and thus

every tiling of T′ is aperiodic.

T′ is the union of two Wang sets T′
0 and T′

1 of respectively 9 and 2 tiles. The following facts can be

easily checked by computer. For w ∈ {0,1}∗ \{ε}, let T′
w = T′

w[1] ◦T
′
w[2] ◦ . . .T

′
w[|w|].
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210302

210332

211032

211302

213002

213102

213302

1|2

1|01|2

1|0

1|0

1|2

1|2

1|0 11|00

000|222

00|22

00|20

211301

100|222

00011|22222

Figure 9: T′
100001 (left) and T′

100000 (right).

Fact 6. The transducers s(T′
111), s(T′

101), s(T′
1001), s(T′

1000001), s(T′
10000001), s(T′

100000001), s(T′
000000000),

s(T′
000011), s(T′

110000) and s(T′
1100011) are empty.

Thus, if t is a tiling by T′, then there exists a biinfinite binary word w ∈ {1000,10000,100011000,
100000000}Z such that t(x,y) ∈ T (T′

w[y]) for every x,y ∈ Z.

Let T′
A = s(T′

1000 ∪T′
10000 ∪T′

100000000 ∪T′
100011000). As before, T′

A has unused transitions (those

which write 2 or 3). Once deleted, and then once having deleted states which cannot appear in a tiling

of a row, we obtain T′
B. T′

B has 4 connected components: two were already present in T: Ta and Tb, the

third one Tc is a subset of T′
100000000, and the last one Td is a subset of T′

100011000.

Proposition 6. T′
11 is isomorphic to a subset of T′

01, and T′
100000 is isomorphic to a subset of T′

100001.

Proof. T′
11 is the transducer with one state, which reads 1 and writes 2. T′

01 also has a loop that reads 1

and writes 2: the transition (02,02,1,2). T′
100000 and T′

100001 are depicted in Figure 9 (in a compact form).

T′
100000 is isomorphic to the subset of T′

100001 drawn in bold.

Corollary 3. Tc and Td are both isomorphic to a subset of Ta ◦Tb.

A tiling of T′
B can thus be turned into a tiling of TB, by substituting every tile from Tc (resp. Td) by

two tiles, one from Ta and one from Tb.

Theorem 5. The Wang set T′ is aperiodic.

Proof. The Wang set T′ is aperiodic if and only if T′
B is aperiodic. Suppose that T′

B is not aperiodic. We

know that T′, and thus T′
B tile the plane. Take a periodic tiling by T′

B. This tiling can be turned into a

tiling of TB by the Corollary 3. Thus TB has a periodic tiling, contradiction.

7.3 A third aperiodic set T′′

During our research, we also find a third aperiodic set T′′ of 11 Wang tiles (Figure 10). As for the two

others, T′′ is the union of two Wang sets, T′′
0 and T′′

1 , of respectively 9 and 2 tiles. For w ∈ {0,1}∗ \{ε},

let T′′
w = T′′

w[1] ◦T
′′
w[2] ◦ . . .T

′′
w[|w|].
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0

1

23

1|0
2|1

2|2
2|3

1|1

1|1
2|2

3|1
4|2

1|4
0|2

0 0
0

1
0 3

1

2
1 0

2

2
1 3

3

2
3 0

1

1
3 1

1

1

3 1
2

2
3 3

1

3
3 3

2

4
2 2

4

1
2 2

2

0

Figure 10: The aperiodic Wang set T′′.

Fact 7. The transducers s(T′′
11), s(T′′

101), s(T′′
1001) and s(T′′

00000) are empty. Therefore, if t is a tiling by T′′,

there exists a biinfinite binary word w ∈ {1000,10000}Z such that t(x,y) ∈ T (T′′
w[y]) for every x,y ∈ Z.

T′′
1000 (resp. T′′

10000) does not act exactly as T1000 (resp. T10000). However, if we compose them with

the shift transducer S (Figure 11), we get transducers equivalent to TC. Let T′′
A = s((T′′

1000 ∪T′′
10000)◦S).

It is easy to see that the composition with S does not change the aperiodic status. T′′
A never reads 2, 3 nor

4. Thus the transitions that write 2, 3 or 4 are never used in a tiling by T′′
A. Let T′′

B (Figure 12a) be the

transducer T′′
A after removing these unused transitions, and deleting states that cannot appear in a tiling of

a row (i.e., sources and sinks). Some states are bisimilar in T′′
B. If we contract these states, we got T′′

C

(Figure 12b), which is isomorphic to TC. Thus T′′ is aperiodic.

0 10|0

1|0

0|1

1|1

Figure 11: The shift transducer S.

7.4 Remarks

The reader may regret that our substitutive system starts from Tb∪Taa∪Tbab and not from Ta∪Tb∪Taa,

or even from Ta∪Tb. We do not know if this is possible. Our definition of Tn certainly does not work for

n =−1, and the natural generalization of it is not equivalent to Ta. This is somewhat obvious, as Tn (for

n ≥ 0) cannot be composed with itself, whereas Ta should be composed with itself to obtain Taa.

Ta and Tb both have the property of being time symmetric: if we reverse the directions of all edges,

exchange inputs and outputs, and exchange 0 and 1, we obtain an equivalent transducer (it is obvious
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203300211300

213300

230300

230331

231000

231031

231131231300

233000

233101

233301

0|00|0

0|0

0|1

1|0

1|1

1|0

1|1

1|0

1|0

1|1

0|0

1|1

0|0

1|0

1|1
1|1 20300

20331

2103121131

21300

21331
23000

23031 23101

23131 23301

0|0

0|1

0|0

0|1

0|0

0|1

0|1

0|1

0|0

1|1

0|0

1|1
0|1

1|1

0|1

0|11|1

(a) Wang set T′′
B.

203300211300

213300

230300

231000

231131231300

233000

233101

233301

0|00|0

0|0

0|1

1|0

1|1

1|0

1|1

0|0

1|1

0|0

1|0

1|1
1|1

20300 2103121131

21300 23000 23101

23131 23301

0|0
0|1

0|00|1

0|1

0|0

1|1
0|1

1|1

0|1

0|11|1

(b) Wang set T′′
C, the simplification of T′′

B by bisimulation.

for Tb and becomes obvious for Ta if we write it in a compact form without the states h and g). This

property was used to simplify the proof that the sequence (Tn) is a recursive sequence, but we do not

know whether it can be used to simplify the entire proof.

While we gave a sequence of transducers Tn, it is, of course, possible to give another sequence of

transducers, say Un, which are equivalent to Tn, and have therefore the same properties. Our sequence Tn

has nice properties, in particular the symmetry explained above and its short number of transitions, but it

has the drawback that the substitution, once seen geometrically, has small bumps due to the fact that the

tiles are aligned only up to ±3. It is possible to find a sequence Un for which this does not appear, by

splitting some transitions of Tn into transitions of size g(k) and transitions of size exactly 3. However,

this complicates the proof that the sequence is recursive. We think our sequence Tn reaches an acceptable

compromise.

We do not know whether it is possible to obtain the result directly on the original tileset T rather than

TD. A difficulty for this approach would be that T is not purely substitutive (due in part to the fact that

no sturmian word of slope 1/(φ +2) is purely morphic). At best, we could obtain that tilings by T are

images by some map φ of some substitutive tilings (which is more or less what we obtain in our proof).

8 Conclusion

We have shown that there is an aperiodic set of 11 Wang tiles, and that it is the smallest possible. Moreover,

the set uses only 4 colors, and this is also the minimum possible among all aperiodic Wang sets.

During our research, we also obtained a large number of Wang sets with 11 tiles which are candidates

for aperiodicity. These candidates are available on the repository. The reader might ask why we choose to

investigate this particular set, T. The reason is that it is very easy for a computer to produce the transducer

for Tk, even for large values of k (k ∼ 1000). In contrast, for almost all other tilesets, we were not able to
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reach even k = 30. This suggested this tileset had some particular structure. We will not give here more

details on all our candidates, but we will say that a large number of them are tilesets corresponding to

Kari’s method, with one or more tiles omitted. With the method we described, we were able to prove

that some of them do not tile the plane, but the method did not work on all of them. For now, we have

found only three tilesets: the ones presented in this article, which were likely to be substitutive or nearly

substitutive.

Experimental results tend to support the following conjecture

Conjecture 2. Let f (n) be the smallest k s.t. every Wang set of size n that does not tile the plane does

not tile a square of size k. Let g(n) be the smallest k s.t. every Wang set of size n that tiles the plane

periodically does so with a period p ≤ k.

Then g(n)≤ f (n) for all n.
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Figure 13: Representation of the meta-tile γ (resp. C if n is odd) of Tn as tiles of T0 ⊎ T1 ⊎ T2 for

n = 0,1,2,3,4,5,6,7.

ADVANCES IN COMBINATORICS, 2021:1, 37pp. 32

http://dx.doi.org/10.19086/aic


AN APERIODIC SET OF 11 WANG TILES

Figure 14: A fragment of a tiling by the transducers T0,T1,T2.
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Figure 15: A fragment of a tiling by T′, with (0,1,2,3)=(white,red,blue,green).
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