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Abstract 
We present a post-compiler program manipulation tool called Dyninst which provides a C++ class library for 
program instrumentation. Using this library, it is possible to instrument and modify application programs during 
execution.  A unique feature of this library is that it permits machine-independent binary instrumentation pro-
grams to be written. We describe the interface that a tool sees when using this library.  We also discuss three sim-
ple tools built using this interface: a utility to count the number of times a function is called, a program to capture 
the output of an already running program to a file, and an implementation of conditional break points.  For the 
conditional breakpoint example, we show that by using our interface compared with gdb we are able to execute a 
program with conditional breakpoints up to 900 times faster. 

1. Introduction  
The normal cycle of developing a program is to edit source code, compile it, and then execute the 

resulting binary. However, sometimes this cycle can be too restrictive. We may wish to change the program 
while it is executing, and not have to re-compile, re-link, or even re-execute the program to change the bi-
nary. At first thought, this may seem like a bizarre goal, however there are several practical reasons we 
may wish to have such a system. For example, if we are measuring the performance of a program and dis-
cover a performance bottleneck, it might be necessary to insert additional instrumentation into the program 
to understand the problem. Another application is performance steering; for large simulations, computa-
tional scientists often find it advantageous to be able to make modifications to the code and data while the 
simulation is executing.  

This paper introduces an Application Program Interface (API) to permit the insertion of code into a 
running program. Using this API, a program can attach to a running program, create a new bit of code and 
insert it into the program. The program being modified is able to continue execution and doesn’t need to be 
re-compiled, re-linked, or even re-started. The next time the modified program executes the block of code 
that has been modified, the new code is executed in addition to the original code. The API also permits 
changing subroutine calls or removing them from the application program.  

Runtime code changes are useful to support a variety of applications including debugging, per-
formance monitoring, and supporting the composition of applications out of existing packages. Depending 
on the use, the code can either augment the existing program with ancillary operations such as measuring 
the application performance or adding additional print statements, or alternatively, it can be used to alter 
the semantics of the program by changing the subroutines executed or manipulating application data struc-
tures. The second type of change is most useful for either performance steering, or other debugging 
applications. Our API is designed to support both of these uses. 

Our approach differs from other post-compiler instrumentation tools such as EEL[11], 
ATOM[15], or Etch[14] that permit code to be inserted into a binary before it starts to execute. Often 
times, the specific code to be inserted may not be known until runtime.  If the user is unsure what type of 
instrumentation they will require, they have only two alternatives.  First, they could include all possible 
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instrumentation that might be required.  This approach ensures that the correct information is collected, 
however it might be at such a high cost that it will distort or mask the relevant phenomenon to be measured.  
Second, they could only insert the minimum amount of instrumentation absolutely required.  However, if a 
key bit of instrumentation is omitted, the programmer is forced to re-execute the program to enable that 
code. For short running programs, re-execution is not a problem.  However, for long running applications 
such as large scientific simulations this could require hours or even days of delay.  In addition, some appli-
cations such as database servers can require long periods of “warm-up” before they reach a steady state.  
By using runtime instrumentation, these applications can be instrumented only during the desired intervals. 

We seek to provide a machine independent interface to permit the creation of tools and applications 
that use runtime code patching. Traditionally, post compiler instrumentation tools have provided interfaces 
that allow machine or assembly language level code to be inserted.  Instead, our interface is more analogous 
to a machine independent intermediate representation of the instrumentation as an abstract syntax tree. This 
allows the same instrumentation code to be used on different platforms. For example, consider instrumenta-
tion code to monitor the behavior of a database system (i.e. tracking commit and abort operations). The 
instrumentation code would be specific to the particular database system, but because the instrumentation 
is machine independent, it would work with any machine architecture where the database system was in-
stalled. 

A key feature of this interface is that it insertion and alteration to instrumentation in a running pro-
gram. The underlying work that makes this possible is the dynamic instrumentation technology[8] devel-
oped as part of the Paradyn Parallel Performance Tools project [12]. 

The goal of this API is to keep the interface small and easy to understand. At the same time it 
needs to be sufficiently expressive to be useful for a variety of applications. The way we have done this is 
by providing a set of abstractions for programs and a simple way to specify the code to insert into the ap-
plication. To generate more complex code, extra (initially un-called) subroutines can be linked into the ap-
plication program, and calls to these subroutines can be inserted at runtime via this interface. These rou-
tines can be either statically linked, or loaded at runtime as part of a dynamic library. Although this API 
can be used directly by programmers, it is primarily aimed at tool builders.  As a result, the interface to 
code generation, based on ASTs, is convenient for tool builders, yet somewhat clumsy for hand construc-
tion. 

The rest of this paper is divided as follows. Section 2 introduces the basic abstractions that we 
provide. Section 3 describes the key classes in the API. Section 4 provides an overview of how the API is 
implemented. Section 5 introduces a couple of applications of the API and illustrates the advantages of us-
ing it. Section 6 describes related work, and finally Section 7 contains conclusions and future work.  

2.  Abstractions 
The API is based on abstractions of a program and its state while in execution. The two primary 

abstractions are points and snippets. A point is a location in a program where instrumentation can be in-
serted. A snippet is a representation of a bit of executable code to be inserted into a program at a point. For 
example, if we wished to record the number of times a procedure was invoked, the point would be the first 
instruction in the procedure, and the snippets would be used to create a statement to increment a counter. 
Snippets can include conditionals, function calls, and loops.  

The API is designed so that a single instrumentation process can insert snippets into multiple proc-
esses executing on a single machine. To support multiple processes, two additional abstractions, threads 
and images, are included in the API. A thread refers to a thread of execution. Depending on the program-
ming model, a thread can correspond to either a normal process or a lightweight thread. Images refer to the 
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static representation of a program on disk. Images contain points where their code can be modified. Each 
thread is associated with exactly one image.  

The overall structure of the API and its implementation is shown in Figure 1.  There are two proc-
esses, which we call the mutator and the application.  The left side of the figure shows the code for the mu-
tator process that contains calls into the Dyninst API.  It also contains the code that implements the runtime 
compiler and the utility routines to manipulate the application process (shown below the rectangle labeled 
API).  The right half of the figure shows the application process with the original code of the program 
shown in the top part of the figure.  The bottom two parts of the application are the snippets that are in-
serted into the program, and the runtime library that supports the Dyninst API.  Additional details about 
how the implementation works are given in Section 4. 

Machine
Dependent
Code

Mutator Application

Mutator App

API

Dyninst
Code

ptrace/procfs

Snippets

Run-time Library

doWork(int a, b)
{
  int i;

  for (i=0; i  16 i++) {
bar(a, i);

}

Points

 

Figure 1: Abstractions Used in the API. 

The API includes a simple type system to support integers, strings, and floating point values. Addi-
tionally, support for aggregate types including arrays and structures is provided.  The interface allows ma-
nipulation of user defined types that exist in the target application to be modified.  There is no way to cre-
ate new types using the interface, but a specific tool built using the API can create new types as part of its 
runtime library that is loaded into the application. 

An inherent part of an API to manipulate other processes is the need to react to events of interest 
that take place in the application process. There are two types of events that occur in an application proc-
ess, events caused by the inserted code and events that occur as a result of the normal execution of the ap-
plication such as process termination. To provide a uniform way to handle these events, we have defined a 
variety of callbacks that inform the mutator of events of interest in the application. In addition, there are 
functions to query if an event has happened. 

3. Interface 
In this section we describe the primary classes of the API, and explain their relationship to each other. 

There are three main components to the interface.  First, there are the classes used to manipulate code in 
execution.  This group includes the BPatch class, and the BPatch_thread class.  Second, there are classes 
for accessing the original program and its data structures. These include the BPatch_image, 
BPatch_module, and BPatch_function classes.  Third, there are classes to construct new code snippets and 
insert them.  These include the BPatch_snippet class, and the BPatch_point classes. 

BPatch This class represents the entire Dyninst API library. There can only be one instance of this class at 
a time. This class is used to perform functions and obtain information not specific to a particular 
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thread or image. It is also used to define the callback functions to be invoked for specific applica-
tion events. 

BPatch_thread operates on  (and creates) code in execution. This class can be used to manipulate the 
thread.  For example, a thread may be started, stopped, or terminated by using methods in the 
class.  In addition, the thread class is used to insert the instrumentation code into the program. For 
threaded applications, the interface represents a single thread of execution. The implementation of 
the API ensures that even if the instrumentation code is inserted into a specific thread of a multi-
threaded application that the code is only executed for that thread. For non-threaded code, the 
thread abstraction represents a traditional process. 

BPatch_image is the abstraction that represents the program executable. Images only exist as part of 
threads since two processes that have the same program on disk can load during their execution 
different dynamic libraries, and thus have different modules available for instrumentation. 

BPatch_module represents a program module, which is part of a program’s executable image. Modules 
are provided because they are often a unit of program decomposition that is meaningful. Generally, 
a module refers to a single source file in the original program. However, for many libraries (espe-
cially dynamically loaded libraries), the module abstraction is used to represent the entire library.  

BPatch_function represents a function in the application. A function is often a useful level of abstraction 
for instrumentation, and so there are methods to get the entry and exit of a function and use them 
as instrumentation points. In addition, there are methods of the class to determine the subroutines 
called by a function as well as the loops and code blocks in the function. 

BPatch_point’s are locations in an application’s code at which the library can insert instrumentation. 
Points can either be described symbolically (i.e., the entry point to a function), by descending the 
function hierarchy (i.e. a loop), or by providing a virtual address in the program (i.e., instrumenting 
a specific statement or instruction).   

Bpatch_type defines the interface to the type system. Types can either be pre-defined language types, or 
user defined types that occur somewhere in the application program. The type system is used to al-
locate variables for use in code snippets, and to provide a way for mutator programs or snippets to 
access existing application variables. 

BPatch_snippet is an abstract representation of code to insert into a program. Snippets are defined by cre-
ating a new instance of the appropriate subclass of a snippet. For example, to create a snippet to 
call a function, a new instance of the class BPatch_funcCallExpr is created. Creating a snippet 
does not result in code being inserted into an application. Instead, code is generated when a request 
is made to insert a snippet at a specific point in a program. Sub-snippets may be shared by differ-
ent snippets (i.e., a snippet may be passed as an argument to create two different snippets), but 
whether the generated code is shared (or replicated) between two snippets is implementation de-
pendent. The details of the snippets are presented in the next subsection. 

3.1 Code Snippets 
 In this section, we describe how we represent code to be generated.   A collection of instances of 

the class BPatch_snippet, and specific sub-classes that represent different types of code to be inserted rep-
resent the statements to be added to the application by the mutator. The collection of snippets forms a direct 
a-cyclic graph.  The code is defined by calling the appropriate C++ constructors, and passing previously 
created sub-snippets to each constructor.  In this way, the AST is created from the leaf nodes up to the 
root.  We now briefly describe each of the types of code snippets. 
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BPatch_variableExpr is derived from the snippet class.  It represents a variable or area of memory in a 
thread’s address space.  A BPatch_variableExpr can be obtained from a BPatch_thread using the 
malloc member function, or from a BPatch_image using the findVariable member 
function.  BPatch_variableExpr provides two member functions not provided by other types of 
snippets: readValue and writeValue.  These methods allow the mutator program to read or 
write the value of a variable in the application’s address space. 

BPatch_arithExpr is used for most two operand statements in our code definitions. Arithmetic expressions 
cover a large class of operations including variable assignment, basic mathematical operations, and 
array references. Arithmetic operations are only supported for predefined types. For C++ programs 
that specify overloaded operators, the API user must directly invoke the operator function rather 
than using expression notation.  In addition to the standard unary operations such as negation and 
pointer de-reference, the available binary operators are: 

Operator Description 
BPatch_assign assign the value of rOperand to lOperand  
BPatch_plus add lOperand and rOperand  
BPatch_minus subtract rOperand from lOperand  
BPatch_divide divide rOperand by lOperand 
BPatch_times multiply rOperand by lOperand 
BPatch_mod compute the remainder of dividing rOperand into lOperand 
BPatch_ref Array reference of the form lOperand[rOperand]  
BPatch_seq Define a sequence of two expressions (similar to comma in C)  
BPatch_min Return the smaller of two operands 
BPatch_max Return the larger of two operands. 

 
 
BPatch_boolExpr expression snippets define a set of comparison operations between two variables.  The 

operations are only defined on the base types (i.e., integer).  As with BPatch_arithExpr, C++ op-
erator overload functions must be called manually if they are to be used. 

Operator Function  
BPatch_lt Return lOperand < rOperand  
BPatch_eq Return lOperand == rOperand 
BPatch_gt Return lOperand > rOperand   
BPatch_le Return lOperand <= rOperand   
BPatch_ne Return lOperand != rOperand   
BPatch_ge Return lOperand >= rOperand   
BPatch_and Return lOperand && rOperand (Boolean and)  
BPatch_or Return lOperand || rOperand (Boolean or)  

 
BPatch_gotoExpr provides a simple form of branching within snippets using a goto expression. The goto 

expression permits a snippet to branch back to an earlier part of that snippet. By combining it with 
conditional statements it can be used to construct loops. However, for complex loops it is generally 
better to write the code as a function, and use the API to patch in a call to that function. 

4. Implementation 
In this section, we provide a high level description of the process used to compile instrumentation 

code and patch programs at runtime.  Although the main focus of this paper is on the high-level abstrac-
tions, a bit of information about the implementation is useful to understand the expected performance of the 
runtime generated code. Complete details about the implementation are available in other papers[8, 9]. 
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While there are many tricky details in trying to shoehorn new code into running programs, one of the key 
features of the API is that it elides these details from the tool builder. 

The basic operations on the application process by the mutator process employ the same operating 
system services used by debuggers (e.g., ptrace, /proc filesystem, etc.).  These services provide a way to 
control process execution, and to read and write the address space of the application program. In addition, 
a dynamic linked library that contains utility functions and two large arrays is loaded into the application to 
be instrumented. Both arrays are used for dynamically allocating small regions of memory. One of the ar-
rays is used for instrumentation variables, and the other to hold instrumentation code1.  Both of these arrays 
are managed as heaps by the mutator process to provide dynamically allocated storage for runtime code 
generation. 

In order to generate code, we translate the snippet into machine language code in the memory of the 
mutator process, and then copy it into the array in the application address space.  The most difficult part of 
inserting instrumentation is carefully modifying the original code to branch into the newly generated code.  
To do this, we use short sections of code called trampolines. Figure 2 shows the structure of a trampoline 
and its relationship to the instrumentation point. Trampolines provide a way to get from the point where we 
wish to insert the instrumentation code to our newly generated code.  To do this, we replace one or more 
instructions at the instrumentation point with a branch to the start of a base trampoline. The base trampo-
line code then branches to a mini-trampoline. The mini-trampoline saves the appropriate machine state 
(such as the registers and condition codes), and contains the code for a single snippet.  At the end of the 
snippet, we place code to restore the machine state and to branch back to the base trampoline. The base 
trampoline then executes the instruction(s) that were displaced from the original code.  If the snippet is to 
be inserted after the point executes (i.e., after a function call return), we can also insert a mini-trampoline 
here. 

Multiple snippets can be inserted at a single point, and they are chained together such that the end 
of one snippet branches to the start of the next one, and the final snippet branches back to the trampoline. 

Pre

Relocated
Instruction

Post

Base Tramp

foo()

Program Mini-Tramp App Function

Snippet

Restore
Registers

Set up Args
Save Registers

 

Figure 2: Inserting Code into a Running Program. 

5. Using the Dyninst API 
To provide insight into how our API can be used to build tools, we provide a description (and a 

small amount of sample code) for three applications. The first application shows a simple code snippet to 
increment a variable whenever a selected procedure is invoked. The second application, retee, demonstrates 
a simple standalone utility that can be built using the API. The third example, fast conditional break points, 
shows how the API could be used as part of a larger tool such as a correctness debugger.  

                                                        
1 We use two separate arrays since on many platforms, instructions and data must be in separate regions of memory. 
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Using the API to directly create programs is possible, but somewhat tedious. We anticipate that 
most users of the API will be tool builders who will create higher level languages for specifying instrumen-
tation. For example, the MDL language[9] provides a simple metric scripting language that is suited for a 
specific task, such as defining performance metrics. We anticipate that other “little languages” will be built 
to use the API for specific purposes. 

5.1 Procedure Call Counting 
To illustrate the ideas of the API, we first present a short example that inserts instrumentation into 

a target procedure to count the number of times the procedure is called. Although a trivial example, it is 
useful to illustrate the key features of the API.  

The example code for this tool is shown in Figure 3. The first thing a mutator program must do is 
to create a single instance of the top-level class called BPatch. This object is used to access functions and 
information that are global to the library. Line 1 of the program does this. 

Second, the mutator identifies the application process to be modified. If the process is already in 
execution, this can be done by specifying the executable file name and process id of the application as ar-
guments to create an instance of a thread object. Alternatively, if a new process is to be created, a call can 
be made to the createProcess routine (as shown in line 2).  

Once the application thread has been created, the mutator defines the snippet of code to be inserted 
and the points where they should be inserted. In our example, lines 4 and 5 show the call to lookup the han-
dle to the entry point for our target procedure. The return value is actually a list of points since procedures 
may be cloned in different locations in the program, or may be overloaded.  Lines 6-7 create a new integer 
variable in the address space of the application. The first step in creating a new variable is to lookup the 
type. Once a handle to the type is found, the malloc method is used to create an instance of that type. Line 8 
and 9 show the process of constructing a simple increment of an integer variable. This requires constructing 
an integer constant expression, an addition expression, and then an assignment statement.  Finally, line 10 
shows the insertion of the increment statement at the desired point in the program. 

 
1 Bpatch bpatch; 
 
2 BPatch_thread *appThread->bpatch.createProcess(pathname, argv); 
3 BPatch_image *appImage = appThread->getImage(); 
 
4 BPatch_Vector<BPatch_point*> *points =  
5     appImage->findProcedurePoint("InterestingProcedure", BPatch_entry); 
 
6 BPatch_variableExpr *intCounter =  
7     appThread->malloc(*appImage->findType("int")); 
 
8 BPatch_arithExpr addOne(BPatch_assign, *intCounter, 
9     BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1))); 

 
10 appThread->insertBlock(addOne, *points); 

Figure 3: Code to count the number of occurrences of “Interesting Procedure”. 

5.2 Retee Example 
In this section we show an almost complete program to demonstrate the use of the API. The exam-

ple is a program called “retee.”  We call the application “retee” since it works like the Unix command 
“tee,” passing output to its own standard out while also saving it in a file, but unlike the “tee” command it 
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can be started after the application program has begun execution. The motivation for the example program 
is that a running program starts to print copious amount of output to the screen, and the user wishes to save 
that output in a file without having to re-run the program. Retee takes three arguments: the pathname of an 
executable program, the process id of a running instance of the same program, and a file name. It adds code 
to the running program that copies to the named file all output that the program writes to its standard out-
put file descriptor.  

This tool first uses the one time code feature of the API to force the application to open the file to 
be used for logging. The one time code feature allows the mutator to invoke a snippet once and then have 
control return to the mutator program. This is useful for various types of initialization code.   

The code to open the file in the application is shown in Figure 4. The first line looks up the handle 
for the function “open”. Lines 2-8 construct the parameter list for the open call. The first parameter (lines 
3-4) is a character string that is taken as input via a command line argument to the “retee” application. 
When the snippet containing the string is inserted into the application, the string will also be copied from 
the mutator to the application address space. The second and third parameters (lines 5-8) each contain an 
integer with file mode and protection bits. Line 9 contains a statement that constructs the overall function 
call from the function name and parameter list. Lines 10-11 create a new variable of type integer in the ap-
plication’s address space. Line 12 constructs a statement that assigns the return value of the open system 
call to the new variable created in line 11. Finally, line 13 uses the one-shot code interface to compile, and 
execute the constructed snippet. 

 
1 BPatch_function *openFunc = appImage->findFunction("open"); 

 
2 BPatch_Vector<BPatch_snippet *> openArgs; 
 
3 BPatch_constExpr fileName(argv[3]); 
4 openArgs.push_back(&fileName); 
5 BPatch_constExpr fileFlags(O_WRONLY|O_CREAT); 
6 openArgs.push_back(&fileFlags); 
7 BPatch_constExpr fileMode(0666); 
8 openArgs.push_back(&fileMode); 

 
9 BPatch_funcCallExpr openCall(*openFunc, openArgs); 
 
10 BPatch_variableExpr *fdVar = 
11   appThread->malloc(*appImage->findType("int")); 
 
12 BPatch_arithExpr openExpr(BPatch_assign, *fdVar, openCall); 

 
13 appThread->OneTimeCode(openExpr); 

Figure 4: Code to open the log file in the application. 

The second part of the retee program inserts code at the entry point to the write function in the C 
runtime library and then checks that the write system call is for file descriptor number 1 (i.e. standard out-
put).  If the call meets this test, an additional call to the write function is made to repeat the write statement 
and send the output to a file we have previously opened.  Note, that although our instrumentation snippet is 
recursively invoked, the check for the file descriptor equal to one will fail on the second call and so there is 
no problem with infinite recursion.   

The code to generate and insert this snippet is shown in Figure 5.  Line 1 locates the write system 
call in the application. Lines 2-7 generate a parameter list for the function call to the write system call us-
ing the created file descriptor (from Figure 4). The parameter expression is used on lines 3 and 4 to access 
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the buffer and length parameters of the original call to write.  The statement on line 8 creates the function 
call itself. Lines 9-11 first create a relational expression to check that the file descriptor is zero, and then 
generate an if statement to call the write system call only when the conditional statement is true.  Finally, 
line 12 inserts the constructed snippet into the application program. 

 
1 BPatch_function *writeFunc = appImage->findFunction("write"); 

 
2 BPatch_Vector<BPatch_snippet *> writeArgs; 
3 BPatch_paramExpr paramBuf(1);    
4 BPatch_paramExpr paramNbyte(2);    
5 writeArgs.push_back(fdVar); 
6 writeArgs.push_back(&paramBuf); 
7 writeArgs.push_back(&paramNbyte); 

 
8 BPatch_funcCallExpr writeCall(*writeFunc, writeArgs); 

 
9 BPatch_boolExpr compareFd(BPatch_eq, BPatch_paramExpr(0), 
10            BPatch_constExpr(1)); 
11 BPatch_ifExpr logStdout(compareFd, writeCall); 

 
12 appThread->insertSnippet(logStdout, *points); 

Figure 5: Code snippet to instrument a write system call. 

5.3 Conditional Breakpoints 
As a demonstration of the Dyninst API, we wrote a program that controls an application process 

like a debugger, and allows a user to set conditional breakpoints at any locations that can be instrumented 
by the Dyninst API.  The user can add or remove any number of breakpoints during the running of the ap-
plication.  Conditional breakpoints are very expensive in most debuggers, because they are typically im-
plemented using code that resides in the debugger rather than in the application being debugged. This 
means that the debugger must set an unconditional breakpoint and wait for the process to stop at it.  When 
it does, the debugger makes system calls to look into the address space of the application and check the 
condition, and then automatically continues the application if the condition is not met. 

Our demonstration program takes a different approach.  It compiles the condition for the break-
point into a Dyninst API code snippet (BPatch_snippet) that checks the condition and generates a signal if 
the condition is met. This snippet is then inserted into the application at the location where the breakpoint is 
desired using the insertSnippet member function of BPatch_thread. 

Conditional breakpoints are useful, for instance, when a particular piece of code is called many 
times during the execution of a program, but is known or suspected to behave incorrectly only under certain 
conditions.  Some examples might include when a function is called with certain parameters, or when the 
program reaches a certain point in processing its input. 

The demonstration program was written in an afternoon, and consists of 371 lines of C++ code, 
plus 78 lines of lex specification and 149 lines of yacc, to parse the user supplied conditional expression. 
The whole program totals less than 600 lines of code. 

Because checking of the condition is done by code that has been patched into the application, the 
application can be allowed to run without intervention from the debugger until the breakpoint is reached, 
saving the cost of potentially many context switches and system calls.  To quantify how this can the de-
grade performance when running the application under a debugger, we ran two applications under both our 
tool and the GNU debugger. For each case, we measured the performance when conditional breakpoints 
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were inserted in various locations. The two programs were taken from the SPEC ’95 benchmark suite[1]. 
The first, compress95, is the Unix compress program. The other, li, is a Lisp interpreter.  We performed 
the tests on a 167 Mhz UltraSparc-1 running Solaris 2.5.  

dyninst gdb
application # of operations ops/sec time (sec) time (sec)
compress95 32,513 406,655.7 0.08 74.35
li (xlmatch) 110,209 43,607.7 2.53 221.04
li (compare) 4,475 640.2 6.99 16.39
li (binary) 401 19.4 20.69 21.62

Breakpoints

 

Figure 6: Conditional Breakpoint Performance. 

 
The results of these tests, averaged over 20 runs, are shown in Figure 6. The first column shows 

the application and the function where the breakpoint is inserted. The second column, “# of operations”, is 
a count of the number of times the breakpoint was reached and the condition evaluated during the run, and 
“ops/sec” column shows the number of times the breakpoint condition was evaluated per second when run-
ning using our tool. The fourth column shows the wall clock time required for the breakpoint condition to 
become true using our tool, and “gdb time” refers to the wall clock time under gdb version 4.17.   

In compress95, we inserted a breakpoint in the function “output,” which outputs a code (a token 
representing a string of bytes).  The breakpoint stops the execution of the program the first time the “out-
put” function is called while using 16-bit codes (the size of the codes used by the program increases as the 
program processes the input file).  A breakpoint like this might be useful, for instance, if the program was 
exhibiting a bug only when the code reaches a certain size.  We began timing at the beginning of the “com-
press” function.  The “ouput” function is called often, and as a result the overhead of gdb being involved in 
evaluating the breakpoint is extremely high, as can be seen by the fact that it took the application almost 
930 times longer to reach the breakpoint for the final time. 

In li, we inserted a breakpoint in one of three functions (xlmatch, compare, and binary).  In each 
case, the breakpoint stops the program when the function is called with a certain parameter.  The results 
show how our program’s advantage over gdb decreases as the frequency that the breakpoint condition must 
be evaluated decreases.  With the breakpoint in the least frequently called function that we tried (binary), 
the running time under gdb was still about 4.5% longer than that seen under breakpoint.  Averaging the 
results of all the experiments, gdb appears to slow down the application by approximately 2 milliseconds 
longer than the Dyninst API program for each time the condition must be evaluated. 

5.4 Other Applications of the API 
The three examples above provide a flavor of the types of tools that can be built using the Dyninst 

API. There are several other projects underway that are making use of the API. In addition to the ones de-
scribed below, a few other projects around the world are using the API, but are at too early of a stage to 
report here. 

At the University of Maryland, we have used the API to implement an online version of critical 
path analysis for parallel programs running on SMPs[6]. In this application, instrumentation code to track 
the synchronization events in a shared-memory program is inserted on demand using the API.  

At Maryland, we are also investigating using Dyninst as part of the Harmony project[7]. The Har-
mony project is looking into using runtime observations of applications to automatically tune programs by 
selecting from candidate configurations. Runtime code patching will be used to change which versions of 
procedures and libraries get called at specific locations. A similar use of the Dyninst interface would be to 
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eliminate redundant synchronization during the execution of a parallel program. For example, Diniz and 
Rinard[3] have proposed compiling a program to multiple different binary versions and selecting between 
them at runtime based on performance observations. Our API could be used to provide a mechanism to do 
this type of optimization. 

A team at IBM is building a family of tools based on their version of the API, called DPCL[13].  
These tools include a dynamic trace logger, a tool to gather statistics from hardware performance monitors, 
and a tool to help with understanding the performance of MPI message passing programs. 

6. Related Work 
One area of research that is similar to our Dyninst work is the area of binary editing tools[11, 14, 

15]. Binary editing permits code to be inserted into an application binary either after it has been compiled, 
or sometimes after it has been linked. These tools are useful because they avoid the need to recompile the 
application program.  However, they still require the instrumentation code to remain fixed for the lifetime 
of an execution of the program. One advantage of binary editing tools is that they permit more efficient 
code sequences to be generated because they are able to more aggressively restructure the program since it 
is not executing while being edited. Eel and Etch also differ from our approach in that their programming 
interface is at the level of either assembly language rather than a machine independent level.  

One system that is designed for runtime code generation is ‘C[4]. It allows a program to define a 
set of statements in a C like language, and then have the program call them. This approach is a bit different 
than ours.  First, ‘C lacks any provision to insert code at arbitrary locations in the program, and instead 
requires that application to explicitly call the runtime generated code. This approach is useful for things 
like partial evaluation and some types of runtime optimization, but is not appropriate for instrumentation or 
debugging. 

Another common way to insert instrumentation is by having the compiler directly instrument the 
program as part of the compilation process. The AE[10] tool and the Convex performance tools[5] use this 
approach. An advantage of compiler inserted instrumentation is that the instrumentation code can be fully 
optimized by the compiler. However, this approach also requires that the instrumentation code remain static 
for the duration of the application’s execution. In addition, it of course requires re-compiling the program. 
For small programs, re-compilation is not a problem. However, for a large application or commercial sys-
tems re-compilation can be time consuming or the source code may not even be available.  

The Los Alamos debugger [2] used a form of runtime code generation to create fast conditional 
breakpoints. Our approach is similar to theirs except that we provide a machine independent framework 
that would make it possible to write such a debugger in a portable way. 

7. Summary and Conclusions 
In this paper we have presented a simple API to allow runtime generation and patching of applica-

tion programs.  We also briefly explained how this interface is implemented.  By keeping the abstractions 
at a machine independent level, we have been able to create portable tools. In addition, we showed three 
simple applications that demonstrate the API, the types of tools that can be created using it, and the poten-
tial performance improvements possible compared to alternative approaches. 

We have implemented the API on Intel x86, Sun Sparc, Compaq Alpha, and IBM Power plat-
forms.  The code is freely available for research and evaluation purposes2. Also, the technology is being 
incorporated into the DPCL tool being developed by IBM[13].  

                                                        
2 Please see http://www.cs.umd.edu/projects/dyninstAPI to download a copy. 
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