

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

SLAC- 114
UC-32
(MISC) .

AN A P L MACHINE

PHILIP S. ABRAMS

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U. So A.TONTTC ENERGY

COMMISSION UNDER CONTRACT NO, AT(04-3)-515

February 1970

Reproduced in the USA. Available f rom the Clearinghouse f o r Federa l Scientific
and Technical Information, Springfield, Virginia 2215 1.
Pr i ce : Ful l s i ze copy $3.00; microfiche copy $.65.

- -

/"-
L E G A L N O T I C E I

I I
Thle report m a promred as m necovnt of ~ o ~ ~ ~ ~ ~ ~ : ~ t sponsored work. Noither tho Unlted I
stntes. nor the Commlaalon. nor ony poraon ocung an bsbnll of Iba Commlsalon:

A. onyvnrrnnty or represcatnt~on.cxpressed or ~mpued.vnth respect to the nceu- 1
I ~ C Y . eomo1etonesB. or uaefulne~. of the informnuon conwned In tbls report, or that tho uas I 8 .. .
of any inlormuon. apparatus, m o w , or pmeeaa disclosed i n tbls report may not lnlrlngs

pltvarnly nmd rryhla: v,
D. h.uuuuu jv l l i t l l l t i aa WY VIIPIII 8 , dl c.. sf. em r-r dmmsqen r11111l1lnr lrnm L e

YB. of any LPllormnllon. o p p a r ~ u ~ . method. or procrs, dlaelosed 10 lhls rcporl.

An used In Ibs "tare. ' . p rmo n c u a on behnll of Ibc Cammleafon" Includes any sm-

DIOYC~ or ~ontroetor of B e Commlasmn. o r cmo~orcs of avcb conuaotor, lo Ibs ox ieo l WI
such employee or contractor of ~ b a comm~aalon, or employee of svcb contractor premreo.

dlaumlnntea, or pmvldes oeeoaa to. m y ln formuoa puawr.1 lo Ma e m p l ~ y m ~ n l or controsl

wllb lbu CuuluUddlon, 01 Me emplolmcnL Wth ouch ODmVoOter.

- - -- -- -

DISTRIBUTION O F THIS DOCUMENT IS UNLIMITED
A

ABSTRACT

I

This dissertation proposes a design for a machine structure which is ap-

propriate for APL and which evaluates programs in this language efficiently,

The approach taken is to study the semantics of APL operators and data

structures rigorously and analytically. We exhibit a compactly representable

standard form for select expressions, which are composed of operators which

alter the size and ordering of array structures. In addition, we present a set

of transformations sufficient to derive the equivalent standard form for any

select expression. The standard form and transformations a re then extended

to include expressions containing other APL operators.

By applying the standard form transformations to storage access functions

for arrays, select expressions in the machine can be evaluated without having

to manipulate array values; this process is called beating. Drag-along is a

' . . second fundamental process which defers operations on array expressions,

making possible simplifications of entire expressions through beating and also

leading to more efficient evaluations of array expressions containin; several

operations.

The APL machine consists of two separate sub-machines sharing the same

memory and registers. The D-machine applies beating and drag-along to defer

simplified programs which the E-machine then evaluates. The major machine

registers a re stacks, and programs a re organized into logical segments.

The performance of the entire APL machine is evaluated analytically by

comparing it to a hypothetical naive machine based upon presently-available

implementations for the language. For a variety of problems examined, the

APL machine is the more efficient of the two in that i t uses fewer memory

accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.

ACKNOWLEDGEMENTS

I wish to express my sincere thanks and deep gratitude to my dissertation

advisor, Harold Stone,. whose unselfish good counsel and understanding have been

essential to the successful completion of this work. The other members of my

reading committee, Bill Miller, Bill McKeernan, and Ed Davidson, have each

contributed much appreciated time and energy towards improving the final form

of this thesis. Larry reedp provided valuable help with his detailed readings

and criticisms of the material in Chapter 11. My friend and fellow student

Sheldon Becker has been a kindred spirit during the vicissitudes of graduate

student life. Thanks to Ken Iverson and Adin Falkoff who over the years have

helped to imbue me with the "spirit of APL, " and to Ed McCluskey, whose finan-

cial support enabled me to finish this work.

I dedicate this thesis to Life and Living, which begin anew each day.

\

- iii -

TABLEOFCONTENTS

Chapter Page

I . INTRODUCTION . '1

A . A Programming Language 1

B . The Problem . 2

C . Historical Perspect ive 3

D . Conclusion . 6

I1 . MATHEMATICAL ANALYSIS O F APL OPERATORS 7

A . On Meta-Notation . 7

B . Prel iminary Definitions 8

C . The Standard F o r m for .Select Expressions 17

D . The Relation Between Select Operators and Reduction . . . 25 .

E . The General Dyadic F o r m - . Q Generalization of Inner

and Outer Products 31

F . Conclusion . 37

. , . . .
APPENDIX A: SUMMARY O F ATL 39

APPENDIX B . 42

APPENDIX C : IDENTITY ELEMENTS 63

III. STEPS TOWARD A MACHINE DESIGN 64

A . Drag- Along and Beating 65

B . Beating and Array Representation 68

C . Summary . 70

'APPENDIX A: TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS

INDUCED BY SELECTION OPERATORS 72

IV T H E ' M A C H ~ E . 74 .
A . Data Sti-ucturen nnd Other Objects 75

Chapter Page

. B . Machine Registers 79

. 1 . Value Stack (VS) 8.1

2 . Location Counter Stack (LS) 8 1

3 . Iteration Control Stack (IS) : . . ' . 82

4 . Instruction Buffer (QS) 82

C . Machine Control ; 83

D . The D- Machine . 87

. 0 . A Cluide to the Exc~mplcs 87

1 . Storage Management Instructions 91

2 . Control Instructions 9 4

. E . The E-Machine 116

. 1 . Array Accessing 116

. 2 Instruction Set 120

APPENDM A: SUMMARY O F REGISTERS. ENCODINGS AND TAGS . . 137

APPENDIX B: A FUNCTIONAL DESCRIPTION OF THE E-MACHINE . . 143

APPENDIX C : EXPANSION OF D-MACHINE OPERATOIS

. FOR E - ~ ! U C H - ~ E 15n

. APPENDIX D: POWERS OF 2 162

V . EVALUATION . 163

A . Rationale . 163

B . The Naive Machine 164

C . Analysis of Drag-Along and Beating 167

D . Example - A Simple S u k l a s s of Expressions 173

E . Example - An APL One-Liner ; 176

F . Example - M a t r h Inversion Programs 181

Chapter Page

G. Discussion. 189

VI. CONCLUSIONS. 191

A. Summary . 191

B. Future Research . 195

C. ConcludingRemarks 197

REFERENCES 198

LIST OF TABLES

Pslgc

Chapter IV

1- 1. Storage Management and Control Instructions. 88

1-2. Scalar Arithmetic Operators ,: 89

1- 3. Remaining Operators in D-Machine 90

2. , Interpretation of ASGN and ASGNV in the D-Machine 93

3 . E-Machine Instruction Set , l?2
3-A. E-Machine - Simple Instructions 123

3- B. E-Machine - Control Instructions 124

3-C. E-Machine - Micro-Instruc tions 125

Chapter V

1. Steps in Evaluation of APL Operators 168

2-A. Summary of Effort to Evaluate Operators - NAIVE MACHINE . 170

2-B. Summary of Effort to Evaluate Operators - APL MACHINE . . 171

3. Performance Ratios for P r imes Problem as a Function of N . . 179

4.; r)poro tdnn Cni ln t f n r 0 n o P;LEK T h r n i ~ g h M:~.in T,nnp,

Program K&C. 180

5. Total Operation Count for Main Loop, Program REC 181

6 . Machine Comparison Ratios For Main Loop of REC 183

7. Operation Count for One Pass Through Main Loop,

I Program REC 1 . 187

8. Total Operation Counts for Main Loop, Program RECl 188

9. Machine Comparison Ratios for Main Loop of REC1. 189

LIST OF FIGURES

Page

Chapter IV f

. 1. Structure of M. 80

. 2. Maincycle routine 86

Chapter V

. 1. State of the registers before compress operator. 178

. 2. Example program: REC 182

. 3. 'Optimized1 example program: RECl 186

- viii -

CHAPTER I

INTRODU CTION

an optimist is a guy that has never
had much experience

Don 'Marquis, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an

esoteric curiosity, to i ts present pervasive and indispensable role in modern

society. Over the years, man's uses of computers have become increasingly.

sophisticated. Of particular importance is the use of high-level programming

languages which have made machines more accessible to problem- solvers.

In general, the use of problem- oriented programming languages requires a

relatively complex translation process in order to present them to machines. .

Although this can be done automatically by compilers, there is a wide gap to

bridge between the highly- struc tured concepts in a programming language such

a s ALGOL, PL/I, or APL and the relatively atomic regime of today's computers.

In effect, there exists a mismatch between the kinds of tasks we want to present

to machines and the machines themselves. One possible way to eliminate this

difference i s to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them.

A, A Programming Language

A particular programming language in which this mismatch with contemporary

machines is especially obvious is APL, based on the work of KO E. Iverson

(Iverson [1962]). APL i s a concise, highly mathematical programming language

designed to deal with array-structured data. APL programs generally contain

expressions with arrays as operands and which evaluate to arrays, while most

other languages require that array manipulations be expressed element-by-element.

To complement its use of arrays a s operands, APL is rich in operators which

facilitate array calculations. Also, i t is highly consistent internally both syntac-

tically and semantically, and hence could be called "mathematicalv. Because of

i t s use of structured data and its set of primitives which are quite different from

those of a classical digital computer, APL does not fit well onto ordinary machines.

It is possible to do so, and interpreters have been written for at least three dif-

ferent machines (Abrams [1966] ; Berry [1968] ; Pakin [1968]). Finally, because

of i ts mathematical properties, i t i s possible to discuss the semantic.^ of the

language rigorously and to derive significant formal results about expressions in

the language.
I

B. The Problem

The problem considered in this dissertation is to design a machine structure

which is appropriate to APL. f'Machine structure" here means a general func-

tional scheme and not a detailed.logica1 design. The expected result is not a set

of specifications from which a circuit designer could produce a working device,

but. rather a eujerstsucture into which the features of the . language .. fit cleanly,

Thus, this design must in some sense. be natural for the language. For example,

the primitive operations and data structures should include those of APL, In

addition, the machine should take advantage of dl available informatton in order

to execute programs as efficiently a s possible. We use the word flmachine" in

a very broad sense: what i t really means here i s "algorithm" and not necessarily

any particular physical device. Such a machine could be implemented as a con-

ventional program o r as a hardwired device or a s a microprogram .ill an appropriate

system. For the purposes of this work, i t doesn't really matter.

- 2 -

"APL" means any programming language which includes the semantics of

A P L \ ~ ~ O ' (Pakin [1968]). We shall not be concerned with the particular syntax

of APL, although this currently appears to be the best way to represent the

semantic ideas of the language. In short, the machine should be able to handle

array-structured data with ease and should be able to evaluate functions on such

data using the operators of APL a s basic primitives.

The approach taken is to invest a considerable amount of effort in the analysis

of the mathematical properties of the operators and data structures of APL and

to exploit these results in the design of the machine. Thus, a major part of this
-

work will be dedicated to a rigorous, mathematical investigation of APL expres-

sions. This study is contained in Chapter 11. In Chapter 111, the work of Chapter

II is related to the design of a machine, and the design goals a re set forth in

detail. Chapter IV discusses the proposed machine design, and Chapter V is an

evaluation of the machine with respect to the goals of Chapter III.

It should be emphasized that the goal of designing an APL machine is a rather
,

broad one. Although there are clearly practical applications of such a design,

that is not the major focus of this work. Rather, we hope that by investigating

this language and machine in detail, it will be possible to learn something about

the basic processes in computing and find ways of reflecting these processes in

a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C . H i s torica.1. Perspective

 or the purposes of this dissertation, we are primarily interested in previous

workin the area of language-directed machine design (~ c ~ e e m a n [l967]; Barton [1965]).

To some extent, all machine design can be considered to be language-directed, in

that one wishes to implement some particular (machine) language in a piece of

hardware, However, let us consider only the class of machines which might

better be called "higher language inspired"; that is, machines which are based

in some way on languages capable of expressing concepts at a higher level than

a re normally associated with assembly code.

The f i rs t such machine was reported in 1954, and was a relay device capable

of directly evaluating logical expressions (Burks, Warren, and Wright [1954]). '

In addition, this machine used input in parenthesis-free (Polish) notation, thus

doubling i ts historical interest. 'Yhe logic macldnt! typifiea one major olnss of

language-inspired machine designs In that i ts machine language is identical to the

high-level source language. The other major class of language- inspired designs

is more concerned with the processing o.1 the semantics of thc source language,

rather than direct acceptance of the exact language by the machine. In fact, most

designs fall between the two extremes, as even those which acccpt the source

language directly do some preliminary transformations on i t to produce a simpler

0 ther language-inspired machines accepting source language directly i~~clucle

an ALGOL 60 machine (Anderson [1961]), two FORTRAN machines (Bashkow,

Sasson and Kronfeld [1967]; Melbourne and Pugmire [1965]), the ADAM machine,

based nn x special symbol- oriented language (Mullery, Schauer and Rice [19~3] ;

Meggitt [1964]), and a machine for EULER, a generalization of ALGOL (Weber

[1967]), Of these devices, some were to be implemented in hardware (e.g.,

Bashkow et dl, ; Mullery -- et a14 wlllle others were irnplemenled in microprogram

(Meggitt; Weber).

Machines which are more concerned with semantic processing to the extent

that their machine languages a re significantly different from. a higher-level

language include the Burroughs I35000 (Barton [1961] ; Burroughs [1963]) which is

essentially an ALGOL machine, a PL/1 machine (Sugimoto [1969]) and the Rice

University computer (Iliffe and Jadeit [1962]). Current work in this area includes

a PL/I machine (Wortman [1970]) and a micro-computer capable of emulating

high-level processes easily (Lesser [19 691).

Most of these efforts are not directly relevant to the work in this dissertation

and are thus reported here only for completeness. The common aspect of all these

designs is that they are concerned with the processing of more highly organized

information and programs than are found in the conventional von Neumann

type architectures. 'Most of them include generalized addressing schemes using

some modification of descriptors, a s well as at least one stack.

Although the Burks, Warren, and Wright machine was the f i rs t to use Polish

notation as a machine language, the first commercially produced devices to do so

apparently were the -English Electric KDF9 (Davis [1960]) and the Burroughs B5000.

Both of these machines included stacks. Other related efforts not yet mentioned

are two machines based on lower-level machine languages, but intended to deal

with high-level primitives. One' of these (Iliffe [1968]) is based on extensive use

of descriptor logic for both programs and data, while the other (Myamlin and

Smirnov [1968]) is somewhat more closely oriented toward higher-level languages.

The latter, in particular, does run-time evaluation of infix arithmetic expressions.

Aside from the work of Burks - e t -O al , none of the designs in the literature seem

to be derived from explicit mathematical analysis of their input languages. Further,

except for simulations or actual performance, none of the papers in the Literature

present satisfactory evaluations of their designs. This is not to say that the

designs are not satisfactory: to the contrary, the success of the Burroughs family

of computers and the KDF9 show that language-inspired designs a r e a viable ap-

proach to the development of new machines. On the other hand, nobody seems to

havo o ~ t a b l i ~ h o d oxaotly how viablc ouch dcoigno really are.

- 5 -

Do Conclusion

Having briefly reviewed the developments of language-inspired machine design

to date, they can now be left in the background. The present approach is different

from those in the past in that it is based on a mathematical analysis of the seman-

tics of the source language. Also, the evaluation of the resulting design is analytic,

and gives a clear comparison of this A P L machine to other similar devices. There

are, of course, similarities to the designs of the past. In particuiar, the Use of

program segments, data descriptors, and slacks is not novel in itself, although

the machine developed here is substantidy diuerenl from those nientioned in the

last section.

!'The thing can be done, l 1 said the Butcher, "I think.
The thing must be done, I am sure.

The thing shall be done! Bring me papcr and ink,
The best there is time to procure. l '

Lo Carroll, The Hunting of the Sriark

CHAPTER I1

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter examines the mathematical properties of some of the APL

operators. Mathematical definitions of the operators a re given from which i t is

possible to deduce their properties. We show that there is a standard form for

expressions containing selection operators, and that there is a complete set of

transformations to obtain it. A similar form which generalizes inner and outer

products is introduced with transformations appropriate to obtain it. Finally,

the relation between these operators and others in A P L is discussed.

This kind of analysis is important for several reasons. First, in its own

right i t contributes to the understanding of the operators and data-structures in

APL. Second, and most important for this work, it provides a strong mathematical ..

basis for the design of the machine to be discussed later. In particular, the ideas

discussed here a re reflected in the drag-along and beating processes, which a re

fundamental in the proposed machine design.

A.' On Meta-Notation

APL is a programming language, and a s such is best suited for describing

processes, while mathematics is primarily concerned with discussing relations

rather than processes. Thus, in order to do mathematics with APL, it is neces-

sary to use some notations that a re not available in the language itself. Some of

these meta-notations a re actually extensions of the language which might well be

included in A P L to make i t more powerful, while others a re necessitated by the

analytic approach, and do not reflect shortcomings in APL. In the next section,

definitions of objects - not in APL are clearly noted as such.

B. Preliminary Definitions

The definitions to follow a re given partly in APL and partly in meta-notation.

Hence this and the remaining sections in this chapter assume a minimal "reading

howledge" of APL. The APL summary in Appendix A will be helpful to the reader

not fluent in this language. Also recommended a re the APL\360 Primer (Berry

[1969]) and A P L \ ~ ~ O Reference Manual (Pakin [1968]). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)

APL operators is elliptical. In fact, there is no oiroularity sincc thc definitions

could be given in more primitive forms, but at the cost of less perspicuity, Since

the goal here is not the development of a coherent theory of APL expressions but

rather the illumination of the behavior of these expressions, the current mode of

explication was chosen. The use of "undefined" APL operators is made advisedly

and no special o r esoteric applications of them are made in the following definitions.

The basic problem here is that of using a formalism to describe a formalism.

At some point i t is necessary to assume a previous knowledge of something in

order to avoid an infinite regress, "Nothing can be explained to a stone; the

reader must understand something beforehalid. I t (McCarthy [1964], p. 7)

The definitions will be numbered Dn for easier reference. Theorems and

transformations will be numbered Tn and TRn, respectively. In APL expressions

to follow, the convention that unparenthesized subexpressions associate to the

right will be used wherever this does not lead to confusion. Material which can

be skipped in the first reading is' enclosed in heavy brackets. For the most part,

this includes formal statements in definitions which a re necessary for proving .

theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.

DO. . Identity: (Meta) If ,d and 3 are expressions, then -

means they have identical values,

The sign h' is used for identity because the more traditional equality

sign '= l is reserved for use a s a dyadic scalar operator in APL.

Dl. Conditional Expression: (Meta) The conditonal expression

,
IF B Z I m A ELSE C --

has a s its value the value of A if B * 1, the value of C if B - 0, and is

undefined otherwise.

McCarthy [1963] discusses formal properties of conditional expressions,

some of which a re used in the proofs in this chapter.

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in

APL expressions. It will be referred to a s I a G .

In general, this work attempts to show explicit dependencies on index origin.

However, to do so throughout simply complicates many expressions without adding

insight. Whenever i t is unstated we use 1-origin indexing.

m. Intcrvnl Function: If N is a uun-negative integei. scalar, the interval

function of N,denoted by I N , is a vector of length N whose first element is

GO, and whose successive,elements increase by 1.

[Formally, IN - IF N-0 zgm EMPTY VECTOR E K E (I N - 1) . I+=-1. 1
Thus, one representation for the empty vector is t 0 .

D4. Odometer Function: (Meta) If R i s a vector of non-negative integers, the -

odometer. function of R , denoted by I R , is a matrix with dimension (x / R) , pR

whose rows a r e the mixed-radix representation to base R, of the (x / p R)

consecutive integers, starting with 1UHC;. 'I'hs extension 1s llul a part:

of APL, but is useful for discussing individual subscripts of an array.

Example :

,

D5. Row Membership: &g is a function whose left operand is a vector and -
. . whose right operand is a matrix, defined a s follows:

That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

D6. List:(NTeta) If L is a vector, then the list of 4 denoted by ;/L, is a - -
subscript l ist made up of the elements of L. That is ,

; /L - LCll;LC21;. . . ;LCpLl .

Example : fi ; /151 * MC1;2;3;4;5]

D7. Ravel: The ravel of M, denoted by, M , is a vector contailling the elements -
of M in row-major order. The dimension is

0 ,M x / p M

If M is a scalar, then ,M is a one-element vector.

f i [Otherwise for each I E I X / P M , (,M)CII * MI;/(1pMlC1; 1 1 I
Example : ,1 3

'i; 5 7 * 1,3,5,7,9,11
9 11

D8. Reshape: Let R be a vector of non-negative integers. Then the R reshape -
of M , denoted by R ~ N is an array with dimension R, whose elements a r e

taken from M (possibly with repetition) in row-major order.

for each L E g t R , I (RpM)C ; /LI * (y M) C I m + (x / p M) IRIL-IORGI

Example : (3,2)p16 * 1 2
3 4

5 6

D9. Partial Subscrj.,>ting: (Meta) MC C Kl Sl denotes the partial subscripting
-.

th
of array M along the K - coordinate. In other words,

MCCK] Sl * M C ; ...; S ; ... ;I
.I. . .In 1.

1 K PPM

I and for each L ELT ~ P M C C K] S].

I and if S is a scalar, then

D10. Subscripting: If M is a rankK array, then for any S1 ,S2, . . . ,SKMl ,SK -
MCS1;. ..;SKMl;SK] * (. . .((M[[ppMI SKI)CC(~~M)-IJ SKM~]). ..)LC11 S11

The above simply gives a formal definition for array subscripting. It looks

more complex than it really is because APL uses a different syntax for subscripting

than for other operators. If we write SK XCKI M instead of MC CKI Sl , then the

value of the above expression can be rewritten as:

Sl x[ll . . . SKMl XC(ppM)-g SK XCppMl M ..

Dl 1 , J-Filnction: Let LEI be a non-negative Integer, ORG ali integer, turd 3~ 0 , l . -
T l p ~ l J J Z N , Ol7G.C io an intorval vector of length rtZN whose least element

i s ORG; if S ct 0 then successive elements increase by 1, else they decrease

by 1. Furmnally, .I

- IF S=O'THEN ORGt(1LEN)-IORG ELSE (LEN+ORG-~)-((IL&N)-IORC;).
?

J-vec tors a r e a generalization of the interval function. In particular, J-vec tors

can have any origin, are'iiivarlant under cllarrges of IORG, and can run forward

or hnnlraatard.

Example: J 4 , f , 6 2,3,4,5

J_ 4,2,1 * 5,4,3,2 and these relations are truc for any JB.

U12. Subrrzry: (M c k) Let A4 be any array and Fan assay with dimensinn -
(p p ~ j , ~ Then the aubarray aolooted b y B , denoted P A M , is

FDM -MCJ FC1;l;J FC2;l; ... ;JFCppM;Il
where the elements of Fare assumed to be in the domain of the above

expression.

A subarray selected by this function is compact. The subarray function will be

used to provide a standard representation for all the various ways of selecting

compact subarrays.

Example: Let pM c+ 10~15

and F - 4 3 0

3 5 1

then FAM * M € J 4,3,0' ; J 3,5,11

D13. Whole Array: (Meta) For any array M, the whole array of M, denoted -
by AM, produces a s a result the F such that FAM * M.

[Formally, AM * ~(3,ppM)p(p~) , ((~ P M) P ~ ~) Y (PPM)~o]

Example: If pM* 6,10,32, then AM* 6 1 0

and I m ++ 1 10 1 0 32 1 0

D14. Cross Section: (Meta) Let M be any array, F an array with dimension -
(ppM),2 such that

(i) FC ;11~0,1

(ii) (-FC;lI)/FC;21 * (+/-FC ;ll)pO

(iii) (FC;Il/FC;21) ELT IF[fll/p~

Then the F cross section of M , denoted by FAM , is: * (-FC ;ll)/PM

and for each L E x I ~ F A M , (FAM)C ;/Ll * M I ;/(x/~)t(-~C;ll)\~l

Cross scction is used to formalize the subscripting of arrays by scalars. The

first column of F contains zeros for coordinates to be left intact. Condition (ii)

require's that if FC J; 1 I * 0 then FC J ; 21 - 0 . This is primarily to make some

of the theorems easier to prove. Entries of 1 in FC ; 11 correspond to coordinates

indexed by scalars in the corsesgonding element of FC ;?I .

Example: Let pM c+ 4 ,7 ,13

then F_aM ++ M C 2 ; ;I01

D15. Take: Zf M is any array and A is an integer vector with PA t, p p~ and - -
((A) IM , then A1.M is an array of the same rank of M , as follows: for each

IE ~ppM, if A [I] > o then include the f i rs t A C I] elements along t h e ~ f i coordinate

of M ; otherwise if A L I J <O then take the last I A C I] elelnellls.

D16. Drop: If M and A a re a s above, then^+^ is similar to the take except that -
for each coordinate, the first; (or last)I~C11 elements a re ignored.

Formally, A+M tt GAM r ,
lh D17.. m: If M is any array then ~ [K] M is the reversal of M along' the k- -

coordinate.

If the subscript on the operator is elided, i t is taken to be PPM.

Example: Let M ++ 1 2 3
4 5 6

7 8 9

D18. Transpose: If M is any array and A is an integral vector satisfying -

(i) PA ++ P P M

(ii) A / A E ~ p p ~ ' i. e.,A contains only coordinate numbers of M

(iii) A / (I ~ / A) E A i. e. , A i s dense

then the transpose AQM of M byA is defined a s follows:

1. ppAQM 1+(r/A)-al&?

2. For each I E IPPAQM,

3. For each L E x ~p AQM,

(AQMIC ; / T I] * MC ; / L C A l l

In other words, A permutes the coordinates of M . Transpose can also

specify an arbitrary diagonal slice.

Example: Guppose M is a ~~ratrlx with p M tt 5,6. Then if R tt (2 , l)QM , and

I ~ G - 1 wehave p p ~ tt 1+2-1 ct 2 . Further, (p R) C 1 1 ++ L / (1 = 2 , 1) / 5 , 6 - 6

(pRIC21 - L / (2 - 2 , 1) / 5 , 6 - 5 andforeach L E a 1 6 ~ 5 , Hf ; / L l c+ a;/(, ~) C 2 , 1 1 1

or RCLCl]; LC211 - MCLC21; LC111.
<?\

Thus, R is the ordinary matrix transpose of M .
Now suppose M is same a s above and R - (1, l)QM. .Then, ppR tt i + i - 1 o I .

So the result is a vector. Then (p R) [l] . t t L / (i = 1 , 1) / 5 , 6 ct 5 .

Then for each LE15, We haveRCLl ++ MC ;/(,L)C1,1Il

t-. MCL ; L l

So R is the main diagonal of M .

D19. Compression: If x is any vector and U is a logical vector of the same -

length, thenu/x is the result of suppressing from X al l elements whose

corresponding entry in U is 0 . For an arbitrary array X, U/C I] X compresses

th
X along the I - coordinate.

Formally,forvector X , pU/X - + / U and for e a c h I ~ l ~ U ,

I F - U [I] = 1 THEN(U/X)C+/I+UI * X C I l

This is not a constructive formula for (U / X) C I] ; however, such a

formula is too complex to be useful here. For any arrayx , I U/CIJ x * XCCII ~ / 1 (p X) C I l l .

D20. Expansion: If X is any vector and U iS a logical veul;or with + / U * PX, -
then U \ X ia a vector with (1, elem.ents wherever u has, and whose other

elements a r e taken from X in order.

The definition of expansion is extended to higher-dimensional arrays in

the same way a.s fnr compression.

Formally, p U \X * p U and for each IC I pU,

i u\x>cri ++ IF UCII T= XC+/I+UI E&~E n 1
Example: (1,1,0,1,0)/1,2,3,4,5 ++ l , 2 , 4

C. The Standard Form for Select Expressions

In this section the selection operators considered a r e take, drop, reversal,

transpose, and subscripting by scalars or J-vectors. Because of the similarity

among the selection operators, we might expect that an expression consisting only

of selection operators applied to a single array could be expressed equivalently in

terms of some simpler set of operators. This expectation is fulfilled in the

standard form for select expressions, to be discussed below.

Jf the existence of a standard form is to be a t all useful, there must be a way

to decide whether a particular expression has a standard form representation and

if so, there must be an effective method to obtain it. In the sequel we show that

every select expression has an equivalent standard form, and exhibit a set of

formal transformations which a re sufficient to derive the standard form from an

arbitrary expression.

It may at f irst seem strange to include subscripting in the set of selection

operators, since its parameters a re of a different kind than those for the other

select operators. In the other select operators such a s take or drop, the left

operand is a count, which is independent of ways of accessing the argument array.

On the other hand, in subscripting the arguments act like maps rather than counts.

For example, an expression like A1.M has meaning out of context, a s long a s the

values of A and M are known. Contrariwise the expression MC1; 3 I cannot be

evaluated without knowledge of the index origin. In the theorems and proofs to

follow, the major complications often come from this dichotomy in the way of

specifying select operations, rather than from the actual content of the material,

Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.

D21. Select Expression: Let & be any (well-formed) array-valued expression. -
Then Sis a s a select expression on & if it is a well-formed expression

consisting of an arbitrary number (including 0) of the following operators

applied to 8:

(i) Take

(ii) Drop

(iii) Reversal

(iv) Transpose

(v) Gubooripting by scalars of - J-vectors

By extension, we will also include the subarray and cross section operators

in this class.

Example: Let M be a rank-3 array. Then by W 2 1 ,

(2,1,3>Q(@C21(4,-6,3)+~)C; ; J6,2,11

is a select expression on M , but

- M C ; ; 5,7,3,11

is not because i t contains the scalar operator ' - ' and the subscripti~lg is no2 by

a scalar o r - J-vector. The definition also admits M a s EL select expression on M.

D22. Equivalence rans sf or mat ion: An equivalence transformation on txprssalo~rs -
is a rule of the form:

if set of assertions then E =>S -
where Band H a r e expressions. If the set of assertions is true, then expression

8 may bc rcplaccd by c x p r u s ~ i o r l . ~ x11d lho lrulli 01 tlse assertions guarantees

that 8= >.%

For example &f X is any vector - then @@x=>x) is an equivalence transformation,

since it is always true that i f X i s any vector, @@x tt X.

For any given transformation, i t is necessary to prove that it i s indeed

equivalence-preserving. If this is the case the transformation i s said to be

correct. Note that the notions of expression and transformation and standard

form used here a r e informal ones. It is possible to make them rigorous, so a s

to be acceptable to a logician, but that is irrelevant to the current aims and would

only serve to obfuscate the important mathematical relationships we a r e trying

to explicate. The correctness proof for each transformation will be called

D23. Standard Form: A select expression on an arrayM i s in standard form -
(SF) if i t i s represented a s AQFAGAMwhere A ,F ,G a re a l l of the correct

size and domain.

In the remainder of this section, we introduce a se t of equivalence transfor-

mations sufficient to transform most select expressions into standard form. In

the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If Q is any select expression on an a r ray M,

then 8 can be transformed into an equivalent expression S i n standard form.

In order to obtain an SF representation of an arbitrary select expression, we

must f i rs t be able to eliminate the operators take, drop, reversal and subscripting.

The f i rs t four transformations below #do this.

TR1. If M 1s any array and A is conformable to M for take, then A1.M => FAM -

where F * Q(3 , p p M) p (1.A) , (~ R G + (A < O) x (p M) - I A) , (p p ~) p ~ .

T q . If M is any array and A i s conformable to M for drop, then AJ-M => FAM -
where F t-t Q (3 , p p ~) p ((;MI- I A) , (I ~ + o ~ A) , (P P M) P O .

TR3. If M is any array then +[KIM => FM -
where F Q(3,ppM)p(aM)C;1IY(M)C ;21,K=lppM.

These three transformations a re obviously correct, a s they follow directly from

the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted.

'TR4. - If M 1s any army then WCCK'I J LEN,OEG,SI -> FMl

where FCK;] * LEN,ORG,S and (K t ~ p p M) / [l l ~ - (K t l p p M) / [l] a M

That the above is an equivalence transformation requires a small proof:

Proof of TR4:

We must prove that for any array M,

MCCKI J LEN,ORG,S] c+ FAM

whcrc F is a s given in TR4. In order to prove the identity, we show first that both

quantities have the same dimensions. Then we show that corresponding elements

of each are identical.

Let R c-. NCKI J LEN,ORG,SI.

1. By definition, p d + ((K - l) + p M) , (p d LEN,ORG,S),KJ-pM

. .
i+ ((K - 1) + p M) , LEN ,K.tpM

and ~FAIW*FC;I] .

t+ ((K-l)+(aM)C;11),LEN9KJ-(aM)C;11

,- ((K-l)+pM),LEN,KCpM

- PR

2. For each L EL2 I pR,

RC ;/LI - MC ;/((K-I)+L) ,(J LEN,ORG,S)CLCKII,K+LI

and (FAM)C;/Ll - (MCJ FC1;l ; J FC2;l ;. ... ; J ~CppM;llC;/Ll - MC(J FC1;I)CLClIl; . . . ; (J FCppM;l)CLCMIll
(by L3 in ~ppkndix B) .
But for each I*K, . (J FCI;I)CLCIll c+ (J (p ~) C ~ l , ~ ~ ~ ~ , ~) C ~ ~ I 1 l - LC I I (by L4, Appendix B)

and(J FCK;l)CLCKll c+ (J LEN,ORG',S)CLCKl1. Therefore,

(FAM)C;/Ll - MCLC11 ; LC21 ; . . . ; LCK-11 ; (J _ LEN,ORG,S)CLCKl];

LCK+11; ... ;LCppMIl

-+F MC ;/((K-1)+L), (J LEN,ORG,S)CLCKII ,K+LI

t-. RC;/LI &ED.

The preceding proof of TR4 is reasonably simple, and is representative of

the kind of proof required. Although similar in style, the proofs of the remaining

transformations a re more complex. Since they add little to the exposition, they

are given in Appendix B.

The following transformation makes it possible to reduoe the number of

occurrances of adjacent subarray operators in an expression.

TR5. If M is any array and F and G are conformable for subarrays, then -
FAGAM => HAM

where PH ++ pF and for each Ie~ppM, HCI;] c+ L,OR,S

where J LsORyS ++ (J GCI;I)Cj P C I ~ I I

Transformations TR1 through TR4 a r e used to eliminate instances of the

operators take, drop, reversal, and indexing from select expressions by trans-

forming them into equivalent expressions involving subarray and cross section

ogeratnrs. TR5 shows how to coalesce two adjacent occurrances of subarray into

- 21 -

one. The remaining transformations, TR6 through TRlO are similar in spirit

and a r e used to permute the remaining operations into the order . . required by the

standard form.

TR6. If is any array and FandG areconformable, then FAGAM => GIAFIAM, -

where G' ++ (-~C; i l) /C i l~

and FIC ;I] ++ FC ;11

E " [; z '] 4-b

F[;11x(G[;2]+((~~[;3])x~[;2]-~~)+(~~ ;31x(GL ; l ~ t l ~ + - l - ~ [; ~ ~)))

TR7. If M is any array and F and^ a re conformable toM for cross section, -
then FAGN =r HM

where H[;1] ++ G C ; ~ I V (- G [; ~ I) \ F C ; ~ I

TR8. If M is any array and F,A are conformable to M for suharray and transpose, -
respectively, then

FAAQM => AQFCA;]AM.

TRS. If M is any array, Q a scalar, J E IPPAQM then . .--

TRIO. If M is any array and'B and A are conformable for transpose, then -
BQAQM => CQM

where C t+ BC A I.

Now that we have transformations TR1 through TRlO which a re proved correct

in Appendix B, we can outline a proof of Completeness Theorem 1. First

note that for any array M, M ++ (lppM)Q(AM)A(((p p M) ,2)pO)&V.

1. Let & be any select expression on M which satisfies the hypotheses of the

theorem. Apply TR1, TR2, and TR3 to 8 enough times to eliminate all instances

of the operators take, drop, and reversal. (In order to be absolutely rigorous,

we would have to prove a replacement theorem which says that i f in an expression

A, an occurrance of a subexpression 93 is replaced by an equivalent subexpression

3' (i.e., 33- 3 '), then the resulting expression&? is equivalent t o 4 only

df tjd . Call the result of this operation 8'. Note that &' contains only

subscript, A , and 4 operations. Clearly 8' * &' because we have applied

only equivalence transformations.

2. Now for each instance of an indexed quantity, substitute the equivalent

expression using partial indexing, a s per definition D10. Write this using the

IX notation mentioned there and apply TR4 to eliminate all instances of J-vector

subscripts and call the resulting expression 8". It should be obvious that 8"

has the form S1 81 5 2 02 . . . Sfl ON M , where the S quantities a re left operands

for the operators 8 and the 8 ' s a re A , 4 and IX in arbitrary order. Finally

substitute the expression (I~~M)@(AM)A(((p p ~) ,2)po)&V for and note that t h i s

subexpression, call i t YN, is in standard form. Call the resulting expression gN,

and again note that ZN* 8.

3. Consider the following algorithm: a t each step, the input is

5 * SI 81 S2 82 . . . SK 0K pK, where 9 is in standard form, i. e., K

SjK * AKQFKAGKAM .
(a) If K - 0 then the algorithm is terminated. Otherwise, look a t the operator

OK. Do step 1, 2, or 3 below depending on whether 8K is 4, A or I X , respectively,

and return to @hey (8).

1. BK i s transpose, Q . Apply TRlO to the expressionSKQ3 +-> SKQAKQFKAGKF,

to get the equivalent WFKAGKLIJ, where QK * SKLAKS and call lhis gKK1 .
2. BK is subarray, A . Apply transformations TR8 and TR5 to SKA3 to

get SKA,% - SKMKQFKAGKM = > AKQSKCAK; I AFKAGK-&V => AKQFK AGKLIJ, where FK

is obtained by TR5.

3. BK is indexing by a scalar, IxCJI . Apply transformations TR9, TR6,

and TR7 to SK IXCJI%, getting

SK l ' X C J I AKQPKAGkg! = > Ali QBK~FlfAGIf@l

Jn each of steps 1, 2, 3 above, a set of transformations was applied to the

subexpressionS~ B K ~ ~ of ?TK. Call the resulting subexpression gK - Since all

transformations were equivalence transforms, i t is clear that SK BKS& - 9 K-1'

Let TK;(-l be the resulting expression from plugging LZK - into TKO Clearly

gK-l ++ g7 . Finally observe that each B is in standard form. Hence, in N steps,
K K

the algorithm wil l terminate with result % * 9, ++ . . . ++ * 8, and % - Yu, N

which is in standard form. This is the cleslrecl result. QED.

So far, we have defined a standard form for a subset of select expressions

and exhihitea a complete set of transformations for obtaining the standard form

representalu~l ul ail arbitrary oxpression i n this class. Moreover, the proof of

the completeness theorem gives an algorithm for obtaining the SF of an expressi.on.

Note that there a re alternate ways of formulating U I ~ standard form. For irastn.nno,

an equivalent formulation says that an expression is in standard form if i t is

represented as ACPR+CJ.@CKI DLIJ with R,C non-negative and K a vector of indices

so that the definition of @CKl extends in the obvious way. The choice of using

the meta-notation formulations was made for two major reasons. First, fewer

transformations and therefore fewer proofs a re needed to establish completeness.

Second, this formuhition is closer to the way these results will be used in the

design of the machine.

Another point to note i s that the standard form could be made more general,

by allowing more operators to be included in the set of selection operators. In

particular, compression and expansion might be included, as well a s reshape

and catenation. The general rotation operator at f irst seems to be a possible

candidate for inclusion, but in fact does not fit in cleanly. This is primarily

because rotations involve taking residues of subscripts, which do not compose in

a simple way. A further extension would allow arbitrary indexing of select

expressions and perhaps extend operations on select expressi.ons to operations

on their subscripts, as in the case GVCS] ct V C G S I .

A final point concerns the significance of the SF and completeness results.

These results a re important in that they establish formally some of the relation-

ships between APL-like operators which informally may appear obvious. This

not only provides a useful tool for the programmer, who may make formal trans-

formations on his programs without a.second thought, but i.t also provides a formal

basis for automatic transformation of programs and expressions. This second

property is heavily used in the design of the APL machine. Also important is

that results such a s we have described aid in the understanding of array operators,

which might be used in generalizing them further o r in strengthening the theoretical

foundation for operations on array data.

D. The Relation Between .=- Selcc t Operators anrl Redi~c? tion

Obviously there is more to APL than just selection operators. If the results

of the previous section a re to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of opem.tors

in an array language. One result that has been used implicitly in some of the

proofs in Section C is that selection operators a re distributive with respect to

scalar arithmetic operators. For instance, (A+B)CSI * ACSltBCSl and

-+V tt +-V. This property follows immediately from the definition of scalar

arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem T1 below:

T1. Let A a.nd B be arrays with the sdme dimensions and _M and _D be monadic -
and dyadic scalar arithmetic operators and _T a selection operator; then

(i) if A _D B is defined,

T (A D _ B) * (T A) D_ (T B) - -

(ii) if g A is defined

T M A - M ~ A -

T1 contains the restriction thatA D _ B and M A be defined, in order to deal

with cases like ((1 , I , I)+I , l , o) [i , 23 in which the result is undefined a s written

but is defined after distributing the indexing operator. 'l'h~a result is i11 k c 1 mure

general than as skled. It should bc oloar that the opemtnr T can also be rotation,

cam]3ression, expansion (for some scalar operators) or operators such a s ravel

or reshape. A similar result holds if one of Aor B is a scalar.

One of thc most important constructions in APL is reduction which applies a

dyadic scalar operator between all elements of a veului, Reduction ia not an

operator in the sense we have been using, bul is more Like n funational. A s will

be shown below, i t is possible to change the order of select operators and reductions

a s well a s to permute the coordinates of the reducee. As in the previous section,

these facts w i l l have direct use in the APL machine. Thc renlainder of this section

defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.

D24. Reduction: I f J is a dyadic scalar operator and V is a vector, then the Q -

reduction of V , written - D / v , is a scalar defined a s follows:

D/V * IF (p V) > l K 1 1 D_ I T 2 1 D_ . . . Q VCppVl -

ELSE I F (p V) = 1 VC 1 1 ELSE (IDENTITY OF D_)

In the expression above, the operators Q associate to the right, a s usual.

The identities of the scalar dyadic operators a r e listed in Appendix C.

th
If M is any array and is a s above then the Z, reduction over theK -
coordinate of M is defined a s follows:

pD_/CKl M * ((K - l) + p M) , K + p M

and for each L &_T t pD_/C K l M

(Q/CKl M) C ; / L l * D_/F_aM

where F C ; l l tt KtlppM AND FC;21 ++ FC;II \L

I f the subscript K is elided in the expression D_/[KI M, i t is taken to be

the last coordinate of M , which is p pM in 1-origin and T / I p p M in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators a re defined formally first.

D25. Membership: If A is a scalar and B is any array, then the membership -
relation AEB has value 1 if a t least one of the elements of B is identical to

A , otherwise the value is 0, The dimension of the result is the same a s

that of A, and the definition is extended element-by-element on A.

L ppB TIMES J

D26. Ranking: If B is a vector and A is a scalar, then B t A denotes the index -
of A in B, namely the least subscript I of B such that^ t, B [I] .

\

From the expression above, it is clear that if -AEB then the result is ' ,

l + r / 1pB . The operation is extended to arbitrary arrays A element-by-

element.

if A is any array, then for each L E X I PA, 1
An interesting question about reductions is under what circumstances can the

coordinates of the reducee be permuted, with reduction carried out on a different

coordinate, and still have the result remain the same? It is intuitively ubviuus,

for exsmple, that +/TI 1 M - t / r21 (2.1)QM. when M i s a matrix, since adding

the rows is the same a s adding the columns of the transpose. Theorem T2 shows

that this kind of permuting can be carried out a s long a s the coordinates that a re

left after reduction ace in the same order.

T2, Let Mbe any array, D _ any scalar dyadic operator, K a scalar, and P any -
permutation of 1 p pM. ' Then,

if and only i f

Proof: See Appendix B. -
The complicated condition in T2 is a formal statement of the requirement

that permutation by P does not disturb the ordering of the coordinates in other

than PL

Example: Let M be a rank-4 array. Then, by theorem T2, all of the following

a r e true:

+/[21M ++ +/[I] i2,1,3,4)4M

++ +/C31 (1,3,2,4)QM - +/[41 (1.4,2,3>QM

No other values of P satisfy the condition in T2. For instance if P - 4,2,1,3,

PC21 * 2and PIIPP - 3,2,4,1. So(2t1,2,3,4)/3,2,4,1 * 3,4,1 whichis

not (2#1,2,3,4 / I , 2 ,3 ,4 - 1 ,3 ,4. This theorem suggests the following trans-

formation: \

TR11o If M i s any array and Qis a dyadic scalar operator, then

DICK] M ++ Q/CLASTI A4M.

where LASTis the index of the last coordinate of M (PPM for 1-origin and

r/~ppM in general) and A - (tK-l),LAST,((~ - l) + ~ (p p ~) - K l

TRl l above and TR12, TR13, and TR14 to follow can be used to transform a

select expression on a reduction to a reduction along the last coordinate of a'

select expression.
1

TR12. If M is any array and Q a dyadic scalar operator then -
AQD/M - => Q/(A,l+r/A)QM.

TR13. Zf M i s any array, Q a dyadic scalar operator, then

GAQ/M => Q/GfAM

where G f - (pm)p(, G) , (- ~ + ~ M) , ~ G , o .

TR14. If M is any array, g a dyadic scalar operator, and g a scalar, -
then (D_/M)[CJlQl => Q/MCCJIQl.

Proofs of TR11, TR13, TR14: Immediate from theorems T2, T3, T4.

Proof of TR12: See Appendix B.

Transformation T R l l forces all reductions to be along the last coordinate of

their operand array. TR12, TR13, and TR14 permit reduction to be "factored

outff of select expressions.

\

Given these transformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: If B is an expression on an array M containing

only selection operators and reductions, then i t can be transformed into an

equivalent expression .gof the form _Dl /_D2/.' . .QK/ g where the gI are the reduction

operators in f f ~ e order they appeared in W and where@ is in standard form.

Since the proof of this thearenr I s siiililar to that for b e first. nnmp1e~;eeess theorem,

it will be omitted. Such a proof depends on the correctness of transformations

T R l l through TR14, which follow from the theorems below:

T3. I€ M is any array, Q a dyadic scalar operator then -

GAQ/CKlM ++ Q / C K l c l ~

where (K*IPPM)/C~IG' - G AND GICK;I * (nM)LK;]
Proof: see Appendix B.

,

T4. For any array M and D a dyadic scalar operator, -

GAQIM * Q/G1aM -

where G 1 * ((ppM) ,2)p(,G),OYO

Proof: See Appendix Be

The following example takes an expression and derives the sta~ldard form of

Completeness Theorem 2.

Example: Let pM * 6,10,12,19 and consider the select expression with

reductions :

8- (2,1)Q+/[11(3,7,-4)+x/C41~

In each step, we note the transformations applied.

where F +.+ 3 1 0

7 1 0

4 9 0

where G tt 3 1 0

7 1 0

4 9 0

1 9 1 0

where H tt o o by definition of A
0 0

0 0

0 0 .

The above expression is in'SF.

E. The General Dyadic Form - A Generalization of Inner and Outer Products

In APL there a re three ways of applying dyadic scalar operators to a pair of

operands. The simplest, the scalar product, is the element- by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, in a

specified order. Finally, the inner product is n generalization of ordinary matrix

product in linear algebra, except that arbitrary (conformable) arrays may partici-

pate a s operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.

D27. Outer Product: If and N a re arbitrary arrays and D is any dyadic scalar - -

operator, then the _D outer product of M and N , written iv o .li_ N, is dcfined

a s follows: p~ 0 .D - N ct (P M) ,PN. Then for each L EL9 1pM 0 .Q N ,

(M 0.Q N)[;/LI t, MC;/(ppM)+Ll Q NC;/(ppM)+LI.

D28. Inner Product: If M and N a re any arrays such that -1 + p ~ tt 1 + p ~ and if -
Q and are two dyadic scalar operators, then thee-_F inner product of

~ a r l d N w r i t t e n M Q . ~ N , isdefinedasfollows: p M Q . E N * i - l + p ~ j , l + p ~

and for each L 1pM D_.g 1, CM D_.l N) C ;/Ll +.+ Q/(GAA!) F HkN,

where GC ;I] - ((-1tpp~)pl) , O GC ;21 t-+ (.(-i+pp~)+~) , O

If one of M orN is a scalar, i t is extended to a vector of the same length a s

the reduction coordinate. In the sequel, we assume that all operands of inner

product a r e array-shaped (ur 11ave alrcady been exterrded).

Example : (1,2,3) 0 . x 4,5 ++ 4 5

8 10
j - 2 1 5

If M and N a re conformable matrices, then

is the ordinary matrix product of h e a r algebra.

Although these three product forms appear to be different syntactically and

also in their effect, they a r e in fact intimately related, and can be considered

a s aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which

includes these a s special cases. We also investigate the effect of select operations

on this new construction called the general dyadic form (GDF), and show that it,

like the standard form on select expressions, is closed under application of select

operations.

The key to the relationship between these apparently diverse constructions

is the generalized transpose operation. By applying a transpose to an outer product,

i t is possible to write an expression which specifies a diagonal slice of the original

outer product. For example, if V is a vector, M a matrix, then the expression

1 1 2QVo . +M describes the result of adding V to each of the columns of M. It

would be desirable to understand this expression to mean the result it describes,

namely the result of adding the vector V to the columns of M, rather than the process,

that is the transpose of the outer product of V and M. The difference is important

for two reasons. Using the firs$ interpretation in a situation where the expression

must actually be evaluated, a s in a program, requires only the pertinent elements

of the result to be computed. This is especially important when the operands a r e

large arrays. Second, some information is lost by ignoring the partial results.

For example, the expressidn ((I. 2) t(1, o))[11 is undefined in the literal sense

but the apparent intended interpretation gives the value 1. Both in the case of

select expressions and in transposes of outer products this is a serious problem,

a s i t is in direct conflict with the' semantics of APL. Formally, the definition of .

the language renders expressions such a s the one just mentioned undefined, yet

this is really a matter of taste and style. My contention is that a t worst this

kind of situation should be an ambiguous one, since it is essentially an instance

of a side effect. That is, the programmer writing such an expression should not

depend on the processor of his program to indicate that a domain er ror occurred.

in the evaluation of an irrelevant partial result. If that is what he wants, there

a r e direct ways of expressing it, such a s writing A+(1,2)i (1,o) , followed by AC 11.

In any case, I have taken the view that what should be evaluated is the intent of

an expression, i f this is perceivable, rather than the literal expression itself.

Except in cases which produce side effects, both approaches compute identical
1

values.

Theorems T5 and T6 which follow, establish the essential connections among

the product forms and the transpose.

T5. If Aand B a re conformable for scalar. product, and if Q is a dyadic scalar -

Proof: See Appendix B,

T6. If M and N a re two arrays conformable for inner product and D_ and F a r e -

dyadic scalar operators, then M Q .F N * D_/AQM .F N,

where A - (1-l+ppM),(2p L A S T ~) , (- ~ + ~ ~ M) + I - ~ + ~ ~ N

and LAST1 is the index of second- to-last coordinates in M . E fl

(in 1-origin this is (p p ~) t (p p ~) - i and ~ / I (~ ~ M) + (~ ~ N) - I in general).

Proof: See Appendix B.

Example: (T6) If A andB a r e matrices then

A +.x B * +/(1,3,3,2)QA 0 . x R .

We can see this a s follows:

(+/(1,3,3,2)QA 0 . . B) L I ; J J

::In previous sections we have looked into the effect of select operators on

single arrays and scalar products. A natural question then is, what is the effect

of the select operators on inner and outer products. In order to approach an

..answer, it was necessary to discover an alternate formulation of these constructions,

which facilitates this kind of analysis. Such an alternative is the general dyadic

form, defined below.

D29. General Dyadic Form: An expression on two array operands R and S, -

with dyadic scalar operator Q is in general dyadic form (GDF) if i t is

expressed in the form:

I
AQR' 0 .Q S'

and the following conditions a re satisfied;

(i) R ' and St a re the standard forms of select expressions on R andS.'

(ii) A is a conformable transpose vector for which each of (ppR ')+A

and (ppR1 +Aare in ascending order, and each contains no duplicate

values.

(iii) (pAQR'0 .Q S')CAI (pR') ,

The last condition guarantees that if A takes a diagonal slice of the outer product

R ' 0 . g s ' , then the length of corresponding coordinates in R 1 and St a re the same.

This can always be done by performing a take operation affecting these coordinates

(see TR17).

Example: If V i s a vector, M and N matrices, then the following a r e in GDF:

but the following a r e not in GDF because the conditions on A a r e not satisfied:

(1,3,3,2)QM 0.Q N

(1,1,1)QM 0.Q V

From definitions D27, D29 and Theorem T5, it is clear that the scalar prod'uct

and outer product of R and S by D _ are special cases of the GDF, obtained by taking

A * (~ppR), IppSand A ct I (pp~)+ppS, respectively; D28 and T 6 indicate that

an inner product can be expressed a s a reduction of a GDF.

In dioouo~ing the.effeot nf select opekatatoks An G ~ F ~ s , we w i l l j.Jres&iit a iicriss

of transform.ations, with proofs of their correctness in Appendix B. In the followi@ . .

transformations, let

TR15. Jf W ++ AQR1 0 .Q S T is in GDF then HAW'=> AQu 0 .Q v where

U is the SF of R"-- HCF;lARr

V is the SF of S" * HCG;1AS1

TR16. If Wis a s above and &?is a scalar, then w C C J I Q I => BQU o.Q V

where B*(J#A)/A-J<A arid

U is the S F of IF JEF T m RIC [FIJI &I ELSE R'

v i s the SF nf a JEG TLEg SICCG~JI & I ELSE S'

TR17. If W is a s above then BQW => (F' ,GI) QU 0 .Q V

wlisre F1-(McBrFI)/M

G' *- (MEBCGI) /M M * I(~/B)+I-IORG

U is the S F of Rv -- (F'IBCFI)Q(~BQW)CBCFII+R'

V is the S F of S" * (G' IBCG~)Q(~BQW)CBCGII+S'

TR18. If M and N a re conformable for inner product and D _ and F are ' dyadic scalar

operators, then M L2.E N => Q/A4M1 S F N'

where A t+ ! l-ltpp~), LASTI ,(-l+ppM)+~ppN
/

M' is the SF of M

N' is the SF of (L A S T N , I - ~ + ~ ~ N) Q N

LAST1 is the index of the second- to-last coordinate of M O .F fl.

((ppM)+(ppN)-1 in 1-origin; r/I(ppM)+(p~N)-l ingeneral)

. . LASTIV is the index of the last coordinate of N -

(.PPN in 1-origin; r / I p p ~ in general).

These transformations a re sufficient to establish:

COMPLETENESS ,THEOREM 3 : Let E be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or

outer product of expressions d and 3, where &? and 3 a r e select expressions

on arrays . A and B respectively. Then Q can be transformed into an equivalent

expression Sof the form Ql lo2 / . . . Q ~ /.F1, where l?F' is in GDF and the LIl Is a r e

the reduction operators appearing in 8, in the same order. If the original

expression 8 contained an inner product, QK is the first operator of the inner

product.

Proof: Similar to Completeness Theorem 1. -
F. Conclusion

This chapter has discussed some of the formal mathematical properties of

the operators found in APL. Of particular interest a re the completeness theorems,

which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection

operators on an expression can ,be transformed into a shorter sequence of opera-

tions on the same expression. In other -words, if & is an e?rpression and S_1, . . . ,SK

a r e selection operators, then there is a process for finding A , F, ' and G such that

21 22 . . . S_K& * AQFAGA&.

Completeness Theorem 3 further shows that, in essence, selection operations on

inner, outer, or scalar products can be absorbed into the individual operands.

Also by Completeness Theorems 2 and 3, reductions 'can be fac1;ored out of seleot

expressions.

Clearly, the whole fitory has uot been told at this point; indeed, the contents

of this chapter barely scratch the surface of the general problem of analysis of
')

APL semantics. Even so, the results discussed a re n sufficient base for the

design of the APL machine discussed in the next chapters. In particular, thc

analysis here' provides a formal basis for the beating and dtrag-along prucesses,

which a re the tdo foundations. upon which the APL Wachfne design rests.

. .

APPENDIX A

SUMMARY OF APL

Primitive Scalar Functions

\

- 39 -

Reprinted by permisslon from APL\ 360: User's Manual @ l9fiR hy Internatlonnl Bualnoss Mochlnee Corporalion.

f

t

-

x

+

r

L

*

e

I

!

?

o

-d

A

v
h

u

c

s
=
L

>
1

form f B

1

Name

P lus

Negative

Signum

Reciprocal

C e i l i n g

Floor

Exponential

Natura l
l o g a r i thrn

Magnitude

F a c t o r i a l

Roll

P i t i m e s ,

Not

Monadic

Def in i t ion
o r example

t B . ++ O t B

- B ++ O - B

x B ++ (B > o) - (B C O)

t B ++ 1 % ~

B

- 3 . 1 4

3 . 1 4

Dyadic

Name

P l u s

Minus

T i m e s
\

Divide .

Maximum

Minimum .

Power

Logarithm

Residue -

Binomial
c o e f f i c i e n t

Deal

C i r c u l a r

And

form A f B

D e f i n i t i o n
o r example

. .

2 t 3 . 2 +t 5 . 2

-
2 - 3 . 2 . ++ 1 . 2

2 x 3 . 2 ++ 6 . 4

2 + 3 . 2 +-c 0 . 6 2 5

3 l -7 ++ 7

3 1 7 ++ 3

2 * 3 ++ 8

A o B ++ Log B base A
A e B ++ (e B) 2 e A

A ! B ++ (! B) s (! A) x ! B - A

2 ! 5 ++ 1 0 3 ! 5 ++ 1 0

A Mixed Function (See
Table 3.8)

See Table a t l e f t

* B ++ (. 2 . 7 1 8 2 8 . .) * B

O*N ++ N ++ * e ~

1 - 3 . 1 4 ++ 3 . 1 4

!O ++ 1
! B ++ B x ! B - I

o r ' ! B ++ G a m a (B t 1)

?B ++ Random choice
from t B

OB ++ B x 3 . 1 4 1 5 9 :
-0 ++l -1 ++ 0

.-

TB
4

- 3

, (- A) o B
' (1 - B * 2) * : 5

Arcsin B

Arccos B

Arctan B
(- l + B * 2) * . 5

Arcsinh B

Arccosh B

U c t a n h B

LB
3

- 4

Table of Dyadic o Functions

A

0
1

2
3
4

5
6
7

O r
Nand
Nor

0

AOB
, (I - B * 2) * . 5
Sine B

Cosine B
Tangent B

(1 t B * 2) * . 5
Sinh B

Cosh B
Tanh B -

L e s s
Not g r e a t e r
Equal
Not less
Grea te r
Not Equal

Re la t ions
Resul t i s 1 i f t h e
r e l a t i o n holds , 0
i f it does not:

3 5 7 ++ 1
7 s 3 ++ 0

3 4 p 1 1 2 ++ E

1 0 l / . C l I K ++ 1 2 3 4 ++ 1 0 its
9 1 0 11 1 2

1 0 1 l , l \ X ++

VCII of r e s u l t I I Q B + + 1 6 I1

6 0 6 0 1 3 7 2 3 ++ 2 3

Primitive Mix+ FumUons

1. Res t r i c t ions on argument ranks a r e indicated by: S f o r
e ~ a l a r , v f o r vector , M f o r matrix, A f o r Any. Except a s
t h e f i r s t argument of Y I A or b i ~ l , a aealau may bo uoed
ins tead of a veotor. A one-element a r ray may replace any
sca la r .

7 , A r m y r used 1 2 3 4 ABCD
i n examples: P ++ 2 3 5 7 E ++ 5 6 7 8 Y r- EFOII

9 1 0 11 1 2 I J K L
3. F'unction depends on index o r ig in .

4. El i s ion of any index s e l e c t s a l l along t h a t coordinate.

5. The function i s a p l i ed along the l a s t coordinate; t h e
symbols t , f , an$ a are e;lu~vaLent to /, \ , nnd O ,
respect ively , except t h a t t h e function i s appl ied along t h e
f i r s t coordinate. I f CSI appears a f t e r any of t h e symbols,
t h e re levant coordinate is determined by the s c a l a r S.

Reprinted by permibsion from APL\YGU: User's hlanual @ 1908 by 11>ternationnl DuEiness Machines Corpmation.

Scalar
Vector
Matrix

Dimension and Rank' Vectors

Inner Products for Primitive Scalar Dyadic Function6 f and g

P A

U
U

T U

T U V

Outer Products for Primitive Scalar Dyadic Function g

OB

V

V
V W

U V W

T U V W

t

P A

U
U V

T U

T U V
T U

Transposition

pAo.gB

V
u
U V

V W V w
T U

U V W U V W
T U V
T U V W

pB

V

V W

Reprlnted by permlsslon from APL\ 360: User'8 Manual @ 1968 by International Fiuslness Machlnes Corporation.

Definition
Z+Af .gB

Z+f /AqB
Z+f /AgB
Z+f /AgB
Z+f/AqB

ZCIl+f/AgBC ;I1
ZC I]+£ /A[I; IgB
ZCIl+f/AgBC ;I1
ZCIl+f/ACI; IgB

Z C I ; J I + ~ / A C I ; I ~ B C ; J I

oAf.gB

W
T
W
T
T W

Definition
Z+Ao .gB

Z+AgB
ZCIl+AgBCIl
ZCIl+ACIlgB

ZCI;JI+ACII~BCJ]
ZCI;Jl+AgBCI;Jl
ZCI; Jl+ACI; JlgB

Z[I;J;K~+ACII~BCJ;KI
Z[I;J;K]+ACI;JI~BCKI'

z[I;J;K;LI+ACI;JI~BCK;LI

Definition

R+V
R+M

RCI;JI+MCJ;I]
RCII+MCI;II

R+T
RCI;J;K~+TCI;K;JI
RCI;J;KI+TCJ;K;II
R[I:J;K~+TTK:I;J~
RCI;JI+TCI;I;J]
RCI;J]+TCI;J;I]
RCI;JI+TCJ;I;I]
R[I]+T[I;I;I]

Case

H+lQV
R+l 2QM
R+2 1QM
~ + l IQM
R+l 2 3QT
Rc.1 3 2bT
R+2 3 1QT
R+3 1 2BT
Rcl 1 2QT
R+l 2 1QT
R+2 1 1QT
R+i 1 1QT

Conformability
requirements

U=V

U=V
U=V
u=v

P R

P v
P M
(pM)C2 11
L/PM
pT
(V T) C ~ 3 2 1
(pT)C3 1 2 1
(pT)C2 3 13
(L/(pT)Cl 2I).(pT)C31
(L/(pT)Cl 3I).(p~)[21
(L/(pT)C2 31).(pT)[11
L /oT

APPENDIX B

This appendix contains proofs for the transformations and theorems which

were deferred from the main part of Chapter 11. They were omitted from the

text because they do not substantially contribute to the exposition of the material,

and a r e included here for completeness. '

The various proofs a r e trying to establish the identity of two expressions 8

and S. This is generally done fn two steps: in step 1, p8 pgis S ~ I U W ~ and

in stop 2, i t is shown that the expressions are identical element-by-element,

Lernm.n.s T d l through L9 slate results used in thc rost of. this appendix. Sj.n(?c!

they a re al l intuitively obvious, and since.their proofs follow from the definitions,

these proofs will be omitted. .
3

L1. If M is any array and V is a vector, then -

(MCCKI V1)CCKl Ul ++ MCCKI VCUII

L2. If M is any array, I<J , and ii and V are vectors 61 scalxrs, Lllexl -

L3. Let M be any array altla SI , 52 , I . . ,SK be subscript vectoris6 Thcn -
for each L U I ~ M C S I ; S ~ ; . . .;SKI,

where T is a vector with TCII - SI[L[III
for ench Ic ~ p p M ,

. .

L4. For any integral A (scalar or array) satisfying A 2 I S and (A-IORG)<LEN, - --

a. (J LE~~,ORG,O)CA] * UkC;+A=I(jii'Gic --

b. (J _ LEN ,ORG, 1 c A I ++ ORG+LEN+I~+-I -A

e. K+ J LEN, ORG ,S t-, J LEN, (ORG+K) , S if K i s an integer .
f, +J LEN ,ORG,S - J_ LEN ,ORG,-s

L5. If FDM is defined, then -
(a) pFAM * FC;lI

(b) for each L ELT tpFAM,

(FDM)C ; / L I t-+ MC ;/FC ;2I+((-FC ; 3 I) x (L - ~ ~)) + (F C ; 3 I x (F C ;~]+IoRG+-1-L))]

L6. a. U/XCSl * XCUISI -
b. U\U/X * UxX (if X is numeric)

f. U/(X D_ Y - (U/X) D_ (U/Y for g a dyadic scalar operator

g. If D_ is a dyadic scalar operator with 0 Q 0 * 0,

then U \ i X Q Y) * (U \ X) D_ (U \ Y)

L7. If O I O R G 1 - r n and (ORGl+LENl -Im) <LEN then -

a. (J LEN,ORG,O) C J LENl,ORGl,SI * J LENl,(ORG+ORGl-IORG),S

be (J LEN ,ORG, l) [J _ LEN1 ,ORGl ,S] * J_ LEN1 ,(ORG+LEN+Ia-(ORGl+LENl)) ,-S .-

L8. Jf [land V are logical vectors with pV t.-t +/-U -
then - (UV(-U) \V) - (-U)\-V.

L9, .a. Id:B. isavectorandifforanyA.A~Bisal lones, thenBCBtA1 - A . -
b. If P is a permutation of tppthen if R * PttpP, PCRl * RCPI * tpPand

P c-t R I t pR. In other words, for permutation vectors, the ranking

operator is its own inverse,

Proof of TR5:

1. pFAGaM * pFC;lJ * pHAM (by L5)

2. Foreach L E x 1pFAGmy (FAGaM)C;/Ll - (GAM)C;/SI
where SCI] * (J _ FCI;I)CLCIII ,

and (GaM)C ;IS] .c-+ MC ;/TI

where TCI3 * (J _ GCI;I)CSCIII

-- (J _ GCI;I)C(J PCI~l)CLCIl11

* ((J GCI; l > C J _ FCI;ll)CLCIll

~ u t (HaM)C;/Ll ++ MC;/UI

where UCI] * (& HCI;l)CLCIll

t+ ((J GCI; I>CJ PCI;II)CLCIll

* TCII

Thus,T ++ U and (FAGAM)C;/LI ++ (H~)C;;L]. QED.

We can give explicit formulas for H in TR5. First, HC ;I] - F C ; I I and

~ [; 3 3 * F[;3J+GL;3]. 'i;'Pm.lly, for each It~pphI, IICI;2] ++ IF 0=1;61;31 -
T m F[I;~]+GCI;~]-IORG ELSE (I O R G + + / G C I ; ~ , ~]) - + / ~ L ~ ; ~ , ~ ~ .

Proof of TR6:

1. ~ F ~ G A M - (-FC ;I])/PGAM
* (-FC ;II)/GC ;I]

'.L G1[;l] * p G v A F I N .

2. For onoh L H s lpFI\GAM,

(FAG~M)C:/LJ * (GdM)L;/L13 where L' * (x / F) + (e . - b 1 C ; 1 3 j \ ~ (byD14) - MC ; /S1

where (by L5),

S * G[;2]+((-GC ;31)xL1-Im)t(G[;3lx(GC ;11+1mt-l-~'

* GC;21+((-GC;3l>x(x/F)+((-FC;ll)\L)-I~)

+(G[;~]x(G[;~]+IoRG+-~-((x/F)+(-F[;I])\L)

(GIAFt@l>C ;/Ll - (F '@l)C ;IT]
where T - G ~ C ; ~ ~ + ((- G ~ [; ~ ~) ~ L - I O R G) + (G ~ C ; ~ ~ ~ (G ~ C ; ~ I + I ~ ~ - ~ - L))
Thus, (G'AF1AM)C ;/Ll * fl ;/Ul

where U * (x/F1)+(-Ft C;ll)\T

* (x/F')+(-F'C ;1l)\(G1C;21t((-G1C;31)xL-m)

+ (c ' C ; ~ I ~ (G ' C ; ~ I + I ~ + ~ ~ - L) ~

To complete the proof, we need to show that S * U. 33y lemma L 6 g ~

'?
X\A+B ++ (X\A)+(X\B),

and X\AxB - (X\A)x(X\B 1.

Thus, writing E * -FIC;ll *-FC;lI, andsubstitutingforFt,

U * (F [; ~] ~ (F [; ~] X G [; ~] + ((- G [; ~]) X F [; ~ ~ - I ~)

+(GC ;3lx(~C ; l l t ~ t ~ l - F C ; 2 1))))

+(E\G1C;21)+((E\-G1[;31)x(E\L)-IOR6)

+(E\G'[;~])~(E\G'[;~])~I~+-~-E\L

But E\Gr[;KI - ExG[;K] * (-F[;l])xG[;K]f0rK~1,2,3.
Making this substitution and commuting .terms,

U * ((FC ;I]+-FC;ll)x(GC ;21+((-GC ;3l)x-Im)+GC ;3lxGC ;11+10~-1)

+((-GC ;3l)x(FC ;lIxFC ;21)+(-FC;ll)x(-FC ;1l)\L)

c '+G[;3]x(F[; l] x - F [; 2]) + ~ ~ F ~ ; l ~) ~ - (~ F ~ ; l ~) \ L

m t F[;I] +-FC ; 1 I - i pPC ; 1 1) pl and does not contribute to the product in the

f i r s t term. Also,

(-F[;l])x(-FC;lI)\L * (-FC;1I)\L.

U * ~[;21+((-GC ;31)x(x/F)+((-FC;lI)\L)+m.)

+G[;3]xGC ;~I+IORG+-I-((x/F)+(-F[;l])\L)

* S QED.

Proof of TR7:

1. pF&G_nM t, (-F[;ll)/PC@! + (-~C;11)/(-'GC)/PM

H. ((NGC ;II)\-PL ;IJ)/PM (by I 4

++ pE'nc;-OM

2. For each L h x 1pFhGp1,

(FkG&V)C;/L] * (GM)C;/(x/F)+(-FC;11)\Ll * fl ;IS]

where S t+ (~/G)+(-GC;~I)\(~/F)+(-FC;~I)\L

(H&v)C ; / L J * MC;/C~/H)+(~HC;~I)\LI '< JfC ;/2'1

where T * ((G~:~~V(~-GC;~I)\FC;~I)~(G[;~J+(-G'S ;11 j\~C;21))

+(-(GC;l)v(-GC ;lI>\FC ;Ill)\L

Expanding the products, and noting that

GC;1]v(-GT;ll)\F~;ll * GC;11+(-GC;lI)\FC ;I],

we get

T c - , - (r:/~)+(G[;l]x(-C;[;I ~)\P~;~])+(GC;~I~(-GC ;~I)\FC ;I])

+(((-G[; ~ ~ > \ F L ; ~ I) ~ (~ G c ; ~ ~ ~ \ F ~ ; ~ J ~ Q ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~

So we must show that S T . In simplifying T , we use the following, in
.

order: If U and V a re logical vectors,

Ux(-U)\X - (pulp0
tU\X>x(U\Y> - U\XxY (L6g)

u\nx - (U\V)\X
Also recall from the definition of A that GC ;2 1 contains zeros wherever

GC ; 1 I does, Thus, we rewrite T:

T - (x/G)+(GC ;2lx(-GC;lI)\FC;l])+((-GC ;ll)\(x/F))+((-G[;1l)\-FC;1~)\L

But the second term goes away because of GC ; 2 I 's zeros.

T * (~ / C) + ((~ G C ; ~ I) \ ~ X / F)) + (- G C ;I])\(-FC ;lI)\L

* (x/G~+(-GC;1l~\((xlF)t~-FC;1I)\L)

* s. QED.

Proof of TR8:

Clearly the ranks of both expressions a r e identical.

1. pFAA4M * FC;11
/ '

(by L5)

Now, for each IE I ppA4FCAt;]OM

(pA@FCA;IAM)CIl * L/(A=I)/pFCA;lAM * L/(A=I)/FCA;l]

2. For each L ELT IPFAAQM,

(FAAQM)C;/LI * (A4M)C;IQl * MC ;/&CAI1

where QCII c+ (J FCI;l)CLCIll

(A4FCA;laM)C ;/LI * (FCA;laM)C;/LCAII ++ MC;./Sl

where SCI1 * (J (FCA;l)CI;I~C(LCAl~CIll

* (J FCACIl;l)CLCACIlll

* QCACIII * (QCA1)CIl

Proof. of TR9: The case of (p ~ ~ ~) tt 1 is trivial and will be omitted. Otherwise,

1. pp(AQM)CCJIQI * (ppAQM)-1 t+ (r/A)-1 ' (inl-origin)

ppAiQB@ * r/Ai t+ r/(A#J)/A-J<A * ~/((A#J)/A-A<J)CL,E,GI (* I

where L,E,Gexhausts ~pAand such that A/ACLI<J and

A/A CEl=J and A/ArG]>J . (This is possible by commutativity of, r .)

(*) * r/(J#ACL,E,Gl)/ACL,E,Gl-J<ACL,E,Gl

* r/(((pACL1 >pl> ,((pACE1)pb) , (P A C G ~) / (A C ~ I , ~ C ~ I , ~ C ~ I ~

((p ~ ~ ~ , ~ ~) ~ o) ,(~ncci)~i
, - r/flC~l,(ACG]-l) - (r / ~ c ~ i) r (r/ALGi)-I

Zf J t-t r / A then ACGI * 10 and the result is [/ALL1 * ([/A)-1. Otherwise,

A[G] is non-empty and r/ACGl ++ [/A, so the result is still ([/A) -1 , since A

exhausts IPA, by definition. Thus the ranks of both expressions a r e identical.

We now show the dimensions to be indentical,

For each %~l(r/A)-l,

(pA1QBg)CII * L/(I=A1)/pBN * L/(I=(Az~T)/A-J<A)/(A#J)/~M

* I/((AtJ)/I=A-J<A)/(AtJ)/pM * L/((A*J)hI=A-J<A)/pM (by L6e)

By case analysis, we 1111~1 L~ML

(A*J)AI=A-J<A * IF I<J I=A E m (1+1)=A - A=I+I2J
Thus, (pAt4B&M)CII * L/(A=I+IrJ)/pM * (pAQM)LI+IUl (by D18)

and (P(AQM)CCJIQI)CII <-> ((J#tpA)/pAQM)CPI

++ (QAQ,FII)C((J:~'LP~~)/L~~AWI)CII~

* (pAQM)CI+IUI - (pAi4B&V)CIl
Therefore both expressions have the same dimension,

NOW I=BCAI - (I=B)CAl sinceI is scalar. Also note that ((I=B)CAl)CKl * 1 i.

if and only if ACKIeT. Thus, I=BCAI * ACT and

(p ~ ~ ~ ~ ~ ~) ~ ~ ~ L/(I=BCAI)/PM -
7

* L/(AeT)/pM *' (pB4AQM)CIl.
. .

2. For each L ~2 I ~ B Q A Q M ,

(BQAQM)C'';/LI -A= (AQM)C;/LCBlI . '

tt M C ; I (T ~ C P l) G A l l

+i M L ; I L L ~ L A J J J '

QED.

Proof of 'l'hcorcm T2:

The only if part is easiest, a s it depends only on the dimensions of the expressions
. .

involved. Only if part:

By hypothesis, D/.CKI M - / C P C K I I PQM.
Thus, the dimensions of both expressions a r e identical. Specifically, '

and PD_/CPCK]I M * (PCKlt~ppPQM)/pptp~
. .

But, since P is a permutation of ~ p p M then pP ct p p ~

and PPQM (PM)CPI I ~ ~ M I - (~ M I C P I I ~ P I

'Also, ppPQM ppM. Honoo,

f i n i r P r K i 1 M tt I P C K I + ~ ~ ~ M) : / ~ ~ M) C P ~ I p ~ ~

* (~ M) C (P T K ~ ~ I ~ ~ M) / @ I : I ~ P I (*) ' (by L6a)

and PD_/CKIM ++ (PMIC (~ * ~ p p ~) / ~ p p M l C**)

~ u t (*) ++ (** by 11ypotliose~. TIIUE, t h ~ aubaclbipt~ 01 (p ~) arc i~ldentictil

for each expression, i. e. ,

(PCKlt~ppM)lPl I P P - (K t ~ p p M I l ~ p p M .

We now proceed with the difficult part.of the proof:

Lf part:

1. We nus t shuw llrat pQ/Ch'I W - pg/CPCKll P ~ M ,

~ u t ppP4M ++ r/P ++ p p ~ . So for each IE I P ~ M ,

since P has exactly one element equal to I. - ipM)CPlII (by D26)

Hence, pPQM ++ (pM)CPl 1pP1. Now,

pQ/CPCKll P4M * (P C K I ~ I ~ ~ P Q M) / P P Q M ++ (P C K I * I ~ ~ M) / (~ M) C P I I P P I - (pM)C (P C K I * I ~ ~ M > / P I I ~ P I ++ (P M) C (K * I ~ ~ M) / I ~ P M I

by hypothesis

++ pQ/CKl M.

Thus, the dimensions a re identical.

2 . The two expressions a r e identical element-by-element.

For each L E L 2 ~pg/CKl M, (Q/CKl M)C;/LI ++ Q/Fig

where FC;ll ++ K;t~ppM

and FC;21 ++ FC;ll\L

(D/CPCKlI PQM)C;/L] - Q/GAPQM
where GC ;11 ++ PCKl*tpp~

and GC;2I*GC;ll\L

Let us examine these two reducees element-by-element. First note that

they have the same rank. For, pF_aM ++ (K = I ppM)/pM - (pM) CKI
and pGAPQM++ (P C K I = I ~ ~ M) / ~ P Q M

++ (pP4M)CPCKll

++ L/(PCKl=P)/pM

4. (p M) T K ' I .

where R * (x/F)+(-FC;lI)\I

where S - ((L,I)C(~PCK~-~),(~+~L),(P~KI-~)+~(~L)-(PCKII-~)~~CP~
((L , I) C (I P C K I - ~ ~ , (~ ~ M) , (P C K ~ - ~) + I ~ P P M) - P ~ ~ ~ ~ ~ ~ ~ ~

To complete thc proof, we must show that R * S.

In order to look more closely a t S , we must find out more about P. Let

T - PI 1pP.

Thcn by hypothesis,

(PTKlzippMIlT - (Kti,r,pM)/~ppM - (IK-~..,K+I(OPM)-K.

Since p i s a permutation, A / (1pP)tP and w e would expecl lu lavl= A / (I ~ T) c T .

The above equation gives all of T except for the element which equals K.

There a re pT places in T that K could occur, falling into three cases. By

examining each of these cases, we can deduce the structure of F , and thus the

value of S.

(a) PCKI - K. Then9 * (tK-1),KYK+~(ppM)-K * ~ p p M .

Thus, P 4 ~ p p M and S - R.

(b) PCKIM. Then, T * (IPCK~-~),K,((PCK~-~)+I(K-~)-(PCKI-~)),K+~(~~M)-K

and by lemma L9

and then

(c) PCKl>K. In this case, T * (tK-1) ,(K+IPCKI-K) ,K,PCKI+I (ppM)-PCKI

Then, S * (L,I)C(IK-l),(ppM),((K-~)+IPCK]-K) , (P C K I - ~) + I (~ ~ M) - P C K I I

Hence, in all cases S ++ R and therefore'FAJ * G g Q M

for each L lpD_/CKI M ,

and thus Q/CKI M * D_/CPCKIl PQM. QED.

Proof of TR12:

1. The ranks of both expressions a re clearly equal. Then, for each I E I ppAQD,/M,

But also, for each I E I P P (A ,l+r/A)@My

(~ (A , ~ + ~ ~ A) Q M) L I J * L/(I=~,ltr/Al/pM L/((I=A)/-~J.~M),(I=~+~/A)/-~+~M

-
SO pD_/(A,l+r/A)QM * lJ.p(A,ltr/A)QM * pAQD_/M

2. For each L ELT I pAQQ/M,

(AQQ/M)C;/LI * (D_/M)C;/LCAII * 13_/F\M

where FC;13 * (r/lppM)#~ppM ((- l + p p ~) p l) ,O

and FC;21 * FC;ll\LCAl * LCA1,O

(D_/(A,l+r/A)QM)C;/L] * D_/Gh(A,l+r/A)QM

where G[;lI - (r / ~ p p (~ , l + r / ~) Q ~) # ~ p p (~ , l t r / ~) Q M - ((-l+pp(A,l+r/A)QM)~~l) ,O

.- ((ppAQQ/M)pl) $0

A typical element of this reducee is

(GA(A,l+rIA)QM)CIl * ((A,l+r/A)QM)C;/(x/G)+(-GC ;11)\II

* ~ (~ , l t r / ~ > Q ~ j 6 ;/(L,O)+(t P ~) p 0) ,I]

t. MC;/(L,I)CA,l+r/Al - M C ;/LCAl ,I] ++ (F&V)CIl

Thus, the two reducees a re equal, QED.

Proof of Theorem T3:

1, pGAQ/CKl M * GC ;ll

pQ/C.Kl G'AM * (KzlppM)/pG'AM

* (K # I ~ ~ M) / G ' C ; ~ I GC;lI * pGAQICK1 M

2. For each %, E x I ~ G A D _ / C K I M,

(c;ng/rKi M)C ; /LI - (DICK] M) L ;/SI - U_/P&V

where S . . * G C ' ; ~ I ~ ((~ G [; ~ ~) X L - I . I) + G C ; , ~ ~ X G ~ ; ~ J + I ~ + - I - L

and FC;ll * K z ~ p p M .

and FC;2I * F[;I]\s

(D_/CKI C I M) [; / L I - L) /FIAG'AM

where GI' * (-1*"C;13j/C11C1 - (@f)CK';l
and F1'C;11 - FfC;3,.1 * ~ [; 1 1 ,

pn[;2] ct ~'[;l]x~~[;2]+((-~'[;3])x~'[;21-1m)+~'~;3lx~'C;1l

+ I ~ + - I - F ' C ;21

But F'C;llxF'C;21 * F1C;21

and for J~1,2,3.

F'[;l]xG1 C;Jl * FC ;ll\GC;Jl

Thus, distributing the . F ' C ; 1 I term and substituting,

Ft1C;2] * (FC;lI\GC;21)+((FC;ll\(-GC;3I))x(FC ;lI\L)-=)
\

+ (F [; ~] \ G C ; ~ I) ~ (F C ; ~ I \ G ~ ; ~ ~) + I ~ R G + - ~ - F ~ ;ll\L

- F C ; ~] \ G C ; ~ I + ((- G C ; ~ ~) ~ L - I ~) + G C ; ~ I ~ G C ; ~ ~ + I ~ + ~ ~ - L

* 'FC;lI\S - FC;21
Hence F" * F

and Gt'AF'lN * Gf1AF_aM * F N QED.

Proof of Theorem T4:

* (-GC ;I I)/-l+p~ * pGG/M

2. For each L E x lpCg/M,

(G@/M)C ;L1 +) (D_/M)C ;/(x/G)+(-GI: ;lI)\L] * Q / F N

where FC;11 * (r/~ppM)#~ppM

FC;21 * FC;l]\(x/G)+(-GC;l])\L * (x/G')+ FC;l]\(-GC;l])\L

Further, (D_/G1_aM)C ;/LI * Q/F'AGIN ++ Q / H N

where FIC;ll c-, (r/~ppG'@)#~ppG'N

and F1C;21 * F"C;~]\L

and, by TR7, HC;II * G ' L ;~IV(-G'C;~I)\F'C

H[;21 t, G'C;~I+(-G'C;~I)\F'C;~I

NOW for each Ic lppF_aM,

(F&V)CII * MC;/(x/F)+(-FC ;])\I]

* M[;/((~/G~)+FC;~~\(-G~;~~)\L)+(-F~;~~)\~I

* MC;/((~/G)+(-GC;~])\L),~I

since FC ;ll * ((-l+ppM)pl) ,O

and (-GIC;ll)\F'C;ll* ((-~~;ll),l)\~'C;l]

* (G[;21,0)+((-GC ;I]>\-l+F1[;21),0 t. (GC ;21+(-GC ;11)\L) ,O

and so HAM * F N .
Therefore G@/M * Q/G l_aM. QED.

Proof of Theorem T5: There a re two main cases.
..

tL. Onc of II or B is a soalar arld is extended to the size of the other op~mnd.

Suppose A is scalar, 'rhen, A 0 .Q B ++ A Q 23, by defilllllun, alJ

(. ~ p p A :) , tppB tf i t U 1, tppB * t p p ~ , which is the identity transpose, and

similarly if B is a scalar.

b. A and B a r e arrays of identical dimension. Then

* (r/tppA)+l-I.I * ppA

and for each IE I p pA ,

2. For each L E x 1pA D_ B,

(((~ppAl,~ppBlQA 0 . Q B)C;/LI * (A 0.Q B)C;/L,LI * AC;/Ll D_ BC;/L]

* (A Q B)C;/Ll QED .
Proof of Theorem T6:

1. ppAQM 0 . F N * (r/A)+l-IBG c+ r/~(ppM)+(ppN)-1 * l+ppM D_.F N

For each I E I ~ A Q M 0 . F N,

(pAQM 0 . F N)CII * L/(I=A)/pM 0 . F N * L/(I=A)/(pM),pN

* IF I E I - ~ + ~ ~ M THEN (pM)CIl ELSE IF ~ ~ (- l + ~ p M) + ~ - l + p p ~

(pN)C?+I-ppM1 ELSE L/(-i+p~),i+p~.

So, pAQM 0 . F N * (-14-pM) ,(l+piV) ,-l+pM
-

and therefore pD_/AQM 0 . F N * 1 +pAQM 0 . F N

* (-l+pM),l+pN ++ pM D_.F N

2. For each L E x 1pM D_.F N,

(M Q . F N)C;/Ll * D_/(GM) F H N

whereG andH areas inD28. Also, (Q/AQM 0 . F N)C;/LI * QIEUQM 0 . E N

where EC;11 * ((-l+pp~QM 0 . F N)pl) ,O * ((ppM Q.F N)pl) ,O

and EC;21 * EC;lI\L * L,O

To complete the proof, we must show that the two reducees above a r e identical.

Clearly both have the same dimension, namely -l+pM.

Then for each IE I p-1 +PM,

((G M) F HM)CII * (GNICII F (HANICII

++ MC ; / ((-I+P~M)+L) ,I] F NC;/I,(--I+~~N)+LI

(E U W 0 . F N)CIl * (AQM 0 . e N)C;/L,II * (M 0 . F N)C;/(L,I)CAll

- (M 0 . z N)C ; / ((- ~ + ~ ~ M I I . L) ,I,I,(--~+~~N)+LI

.-. MC ;/((-I+PPM)+L) ,I] F NC;/I,(--I+~~N)+LI

* ((G a l F HANICII

Thus, (G M) g HAN - EUQM 0 .g N , and so the) reductions of each a r e

identical. QED.

Proof of TR15:

1. The ranks of both expressions a r e the same since the subarray operator

does not affect ranks. So for each IE IPPW,

(pAQU 0 .Q V)CI1 * L/(I=A)/pU 0 .Q V.

pU 0.Q V - (HCF;lARf) 0.Q HCG;1AS1- But

* (~HCF;IA??'>,~HCCI]AS~

* H r F ; I 1 , H C I : ; i I tL> HCP,G; I J * HLA ;1I

~ h u s , (pAQU 0.Q V)CIl * L/(I=A)/HCA;lI * L/HC(I=A)/A;l] * HCI;11

andtherefore PAQU 0.Q V * HC;lI * PHAW.
?'

2. For each L E a 1 PHAW,

(HAW)C;/Ll * (AQR' 0.Q S1)C;/P1 * (R' 0.D - S f > C ;/P[All

* RvC;/PCFIl Q S1C;/PCGI1

where P * H [; ~ I + ((~ H [; ~ I)xL-IoR(;)+HC;~IXHC . ;~I+IoRG+-I-L

(AQl.1 Q ;I, V)L;/EJ ++ (R " 0 ,D_ Slf)C ;/LCAll

++ (HCF;IAR~)C ;/LCFII Q (HCG;IAS~)C;/LCGII

* RIC;/Tl Q SfC;/Tfl

where T +> HCP;23+((- H C F ; ~ ~) ~ L C F ~ - I ~) ~ H C F ; ~ ~ ~ ~ I . I C ~ ; ~ ~ ~ I ~ ~ ~ ~ ~ ~ - L C F ~
F

* PCFI and similarly,

T' * PCGl

Then (AQU 0 . Q I/)C;/Ll * R1C;/PCFl1 Q SIC;/PCGll ++ (HAW)C;/L].

Finally, the result is in GDF since U and V a re in SF and the value of A still

satisfies the required conditions. QED.

Proof of TR16:

1. pWCCJ1 &I * (Jt~ppW)/pW. To determine pBQU o.D_ V we must first find

pu 0 .Q v.

pU * pRll* IF J E F . ~ pR1CCF~J1 &I ELSE pR'

There a re two cases:

a. JEF. Then,

pRW pR'CCF1JI &I * ((FIJ)#I~~R')/~R'

* ((FIJ)#I~~R')/(PW)CFI (by D29)

* (~W)C((FIJ)#I~F)/FI

* (pW)C (F#J)/Fl

* (((J-1).t.pW), (pW)CJI ,J.+pW)C(F#J)/FI

++ (((J-i)+pw) ,J+~w>c(F~J)/F-J<FI

since J does not occur in (FtJ) IF

* (pWCCJ1 Ql)C(F*J)/F-J<Fl

b. If -JEF then (FzJ) * (pF)pl . So in this case,

pR1' ++ pR' ct (pW)CF] * (pWCCJ1 QI)C(F*J)/F-J<FI

SO p u - (pWC CJI &I)C (F~J)/F-J<PI and similarly,

pV * (pWCCJ1 Ql)C(G*J)/G-J<Gl.

Therefore, pU 0 .Q V - (p H CJI &I) C ((F*J)/F-J<F), (G*J)/G-J<G]

t. (~ W C C J I QI)c(J~F,G)/(F,G)-J<F,G~

++ (PWCCJI QI)C(J%A)/A-J<AI

Then for each -IE~PPBQU o -Q V,

(pBQU ,o. Q VICII * L/(I=B)/pU 0.Q V

* L/(I=(J*A)/A-J<A)/(~W[[J~ Q])C(J#A)/A-J<A

and thus pBQU 0.Q V * pWCCJ1 &I.

2. For each L I~WCCJI Ql,

(WCCJI Ql)C;/LI * PC;/((J-l)+L)yQy(J-l)+LI

where T * ((J-l)+L)yQy(J-l)+L.

(BQU 0 .Q V)C ;/Ll * (Rfl o .Q S")[;/LcBll

Consider the R" term above. There a r e two cases, a s before:

a. -JEF. Then,

b. JtF.

because P i s in ascending order and + / J = F * 1

<-+ R'C ;/Lc(-I+FIJ)+F~ ,Q,LC-~+(FIJ)+FII

because of .F order

* RIC;/TCFll

And similarly, SllC;/(ppR1l)+LCBll ++ SIC;/TCGll

Finally, i t is clear that the result is in GDF since U and V a r e in SF and B

satisfies the necessary conditions. &ED.

Proof of TR17:

1. pp(F1 ,G1)QU 0.Q V * ([IF' ,Gf) + l - I B

++ (r/M)+l-Im ct (r / ~ (r / B) + i - I m) + i - ~

++ (((r / ~) + l - I O R G) + I O R G - ~) + I - ~ -- * (r/B)+l-Im * wBQW

For each I€ IPPBQW,

(pBQW)CII <-+ L/(I=B)/pW

and (p(F1,G1)QU 0.Q V)CII * L/(I=F',G')/~u 0.Q V

* L/(I=F1 ,G1)/(pRfl) ,pS"

So we must findpR" and pS1'.

pR1' ct p(F1tBCFl)Q(pBQW)CBCFIl+R'

p p ~ ~ ' * (r/FftBCFl)+l-Im * (r/tpF1)+l-I- * pF'

Then, for each JE ~PPR",

(~ R ~ ~) C J I c+ L/(J=F' IBCFI) / p (p ~ q ~) ~ ~ ~ ~ ~ ~ + ~ l

ct L/(J=F'~BCFI)/(~BQW)CBCFII

++ L/(~BQW)C(J=F~ ~BCFI)/BCFII

* L/(pBQW)C(F1 CJI=BCFI)/BCFII

ct (pBQW)CF1CJl1

Hence pRfl * (pBQW)CFf1

and similarly, pS1' ct (pBQW) CG' 1,

and thus (p(F1 yG')QU 0 .Q V)CIl t-t L/(I=Ff ,G1)/(~BQw)cF' ,G1 I

++ L/(pBQW)C(I=F1 ,Gf)/Ff ,Gf I

++ (pBQlJ)CIl

and therefore p(F1,G')QU 0.Q V t-t pBQW.

2. For each L E x lpBQW, . , . . , . , .
. .

(BQW)C;/L] +-+ (R' 0 .Q S13C;/LEBCAlll . .

t-. R' C ;/(ppR1 >fLCBCAlll Q.S1 C.;/(ppR1)+LCBCAlll

t. RIC;/LCBCFlll Q SIC;/LCBCGlll

((F1,G1)4U 0.Q V)C;/LI --:(Rf1 0.Q S")C.;/LCF1,G11'3

t-. Rf1C;/LCF1l1 Q S1'C;/LCG113 . .
.

>

So wo muot oalouhto tho R" and S l1 terms above,

R"[;/LIF1 11 * ((F1 IBLFI >Q(PBQW)CBCFII+R~) C :/LIF1 11

* ((pB4W>CBCFllfR1)C ;/LCF1 CF1 IBCF-1.111

-M= ((pBQW~CBCFIIfR1)C;/LCBCF,ll .

* R1C;/LCBCFl11

since L E X 1 pB4W

implies LCBCFIJ E x I-(~BQw)CBCFII .

Similarly, Sit[;/LCG1 11 --,S1 C;/LCBCGl11

Tllus, ((F1 ,GI)@I/ u.D_ V)C;/Ll t-, R 1 C;/LCBCFlll Q 5°C ;/LCBCI~I]I

t-. (BQW)C;/Ll
.,

Finally, obsesve t b t the result is in GDF since U and V are in SF and F 1 and

G a re in order and contain no duplications by construction. QED.

Proof of TR18:

Immediate from T6.

APPENDIXC ,

IDENTITY ELEMENTS

Identity Elements of Primitive Scalar Dyadic Functions

Dyadic
Function

Times x

Plus +
Divide 5

Minus -
Power *
Logarithm e
Maximum r
Minimum l.
Residue
Circle o

' Out of !
Or v
And A

Nor Y

Nand *

Reprinted hy permlsslon from APL\ 360: User's Manual @ 1968 by Internntlonal mslness Mnohlnes Corporntlon.

L R
L R

Identity
Element

1
0

1
0

1

-7.237...~75

7.237.. .E75

1 0

1
0

1

Left-
Right

L R
L R

R
R
R

None
L R
L R
L
None
L
L R
L R
None
None

CHAPTER 111

STEPS TOWARD A MACHINE DESIGN

Never do today what you can
Put off till tomorrow.

William Brighty Rands

procrastination is the
a r t of keeping
up with yesterday

Don Marquis, archy and mehitabel

A s demonstrated in Chapter 11, there is a high degree of power and internal

consistency in the APL operators and data structures. ,This makes i t possible to

write simple expressions which have the same semantic content as several state-

ments in comparable programming languages. This chapter discusses how to

exploit these features in the design of an APL machine.

In general, A P L programs contain less detail than corresponding programs

in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum

value in a vector, V , of data can be expressed a s r / V in APL while ALGOL requires

the following:

MAX :smalles tnumberinmachine ;

frrs: = 1 step 1 until N do - - -
i f V[I]>MAX then MAX:=V~I~:

While this aspect of APL often makes programs shorter and less intricate than,

ray, ALGOL programr, i t also requires that an evaluator of APL be illote conlplex

than one for ALGOL, especially if such expressions a re to be evaluated efficiently.

On the other hand, a machine doing APL has greater freedom since i ts behavior i s

specified less explicitly. In effect, APL programs can be considered a s descriptions

of their results rather than a s recipes for obtaining them. Further, the language

renders many of these descriptions obvious, both to the human reader and to a

machine, as in the case of T I V , while other languages encode them so intricately

that the original intention of the programmer is hidden, In the example above,

an APL machine can choose any method i t pleases to find the maximum value

while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expressions for

results require unnecessary computations if calculated literally a s written. For

instance, the expression 3 + (2 x - V) specifies a result which is the first 3 elements

of twice the negative of V. Presumably the programmer is only interested in these

three elements, However, the literal interpretation of this expression proceeds

as follows:

1. Negate V (and store it somewhere).

2. Multiply the previous result by 2 (and store it).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires (p V)

fetches and stores as well as (p V) spaces for the value to be stored. The multi-

plication requires another (p V) fetches, stores, and multiplies. In fact, the

desired result could have been found simply by negating the first three elements

of V and multiplying by 2. Clearly, we would like the APL machine to be able to

evaluate such programs efficiently!

A. Drag-Along and Beating

One approach to efficient and natural evaluation of APL expressions is to

exploit the mathematical properties of the language to simplify calculations. In

the machine, this approach is embodied in two fundamental new processes: drag-

along and beating.

Drag-along is the process of deferring evaluation of operands and operators

a s long as possible. By examining a deferred expression i t may be possible to

simplify i t in ways which are impossible when only small parts of the expression

a re available. In effect, drag- along makes the. machine context- sensitive, while

most machines a r e context-free.
/

Consider the drag-along evaluation of the example in the last section. If we

assume a stack machine, the machine code for this expression might be

1. LOAD V

2. NEGATE

3. LOAD 2

4. 'MULTIPLY

5. TAKE 3

The immediate execution of this sequence was already shown. Suppose now that

we temporarily defer instructions in a buffer instead of executing them a s they

appear. After the f i rs t instruction, the buffer contains

LOAD V

After instruction 2, we have

* I T I NEGATE
I

where the pointer connects the negation with i ts deferred operand, V. After

instruction 4, the buffer contains

The evaluation of the TAKE is different from the previous operators since i t is a

selection operator. TAKE can examine the contents of the buffer and change them,

a s below. Note that the deferred expression is equivalent to the original expression.

The process of making the changes in the buffer is called beating.

LOAD 3tVI) (Note change in this instruction)

O D i MULTIPLY

When values must finally be computed, only the desired elements w i l l be accessed

and used.) ~ h u s , drag-along facilitates beating.

The other aspect of drag-along is that i t eliminates intermediate array-shaped

results with consequent savings of stores, fetches, and space. In an expression

such a s A+B+C+D the literal execution proceeds in three steps: ,

If the variables A ,By C,D are vectors, each step above requires a vector-sized

temporary store and the last two steps require fetches to get the previous results

as operands. With drag-along, the entire expression is deferred finally to be

evaluated element-by- element as:

for x+l step.1 ..until P A do - - -
T3CIl+AC 11+BCI l+CCI]+D[: I1

This requires no kxtra fetches, stores, or temporary space to obtain the desired

result.

In the machine, drag-along will be applied to all array operands 8 and S a n d

to dl monadic and dyadic opcratoro Ira~ and D~ for which

(MoE E > C ; / L l * flOl(F18 > C ; / L 1

and

where F1. and F2 are simple functions of arrays and MOPt and are similar to

MOP andBE . An example of a function which is not dragged-along by the machine

is grade-up which is essentially a sort of i ts operand. Grade-up obviously does

not fit into the above scheme since F1 also becomes a sorting function which is

not simple as required. I

B. Beating and Array Representation

Bcating is the machine equivalent of calculating standard forms of select ex-

pressions. If the effort to do beating followed by an evaluation of a standard form

is less than that to evaluate an expression dmectly, then the process is worthwhile.

We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard

form. One possibility is to maintain the A , F , and G values for each array in an

expression to allow calculation of the standard form

,?QFAC@!

as defined in Chapter II. However, these arrays contain redundant information

and it is desirable to find a more compact representation.

If we choose to represent arrays in row-major order we can utilize the rep-

resentation of the storage access function a s the representation of standard forms.

In this way, beating will consist of applying the transformations of Chapter 11 to

the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the

index origin is zero. Situations where i t is different reduce to the zero case by

subtrac tin? I O R G from all subscripts. Let A be a rank4 array. 'I'hen, assuming

I
that each element in A is to occupy one word in memory, the element AC ; / L I will be

located at

VBASEt (pA) 1L (* >

where VBASE i s the address of AC 0 ; o ; . . . ; o I. Thus, subscripts of arrays stored

in row-major order a re representations of numbers in a mixed-radix number

system (Knuth [1968] p. 297). This representation is especially suitable for arrays

in APL because APL arrays a re rectangular, dense, and homogeneous. Further,

this representation does not favor any array coordinate over another which is

essential in APL.

We can generalize the access function slightly by writing i t in the form:

where ABASE is an additive constant, in this case zero, andDEL is the weighting

vector used to calculate the base value in (*) above. DEL is computed by

DELC N l + l

DELCI~+DELCI+~I~(~A)CI+~I for each IE I N - 1 .

Example: Let M be a matrix with dimension 2,3. Then DELc+3,1 and we set ABASE-0 .

The layout of M in memory is

VBASE

Given this formulation of the storage access function, i t is only necessary to

t r a ~ s f o r ~ n ABASE and DEL in Order to obtain the effect of evaluating selection opera-

tions on an array.

Example: T f M is the matrix in the previous example, then the mapping function

for (2 , l)QM has the same VBASE. For the transpose we use ABASETc+O and DEL '*I, 3.

Note that the change in DEL corresponds to permuting it by 2 ,I. This new function

uses the same values that were stored forM, but accesses them a s if they were

the transpose (2 , l)QM. To verify this, notie that the address for ((2 , I)QM) C I; J]

tt VBASE+ABASE++/DELxJ, I

which is the location of MCJ;II * ((2,l)QM)CI;JI.

This can be done for any selection operator by using transformations analogous

to those in Chapter 11. Appendix A shows the beating transformations on accessl

functions for arrays. In the machine, beating is also appli.ed to expressions con-

taining reductions, scalar operators, md inner iuld outer products, based on thc

results in Chapter 11.

C. Summary

At this point we have outlined the framework of a machine for APL. It is

pleasing to know that it will work since it is justified by theoretical results

developed earlier. The remainder of this dissertation discusses the structural

details of a machine based on the beating and drag-along processes and gives an

evaluation of its effectiveness. Let us outline some goals that such a design should

satisfy:

1. The machine language should be close to APL. That is, it should contain

all prfmitives in the language and in a similar form. While it i s well-known how

to design a machine to accept APL directly there is no particular advantage to

doing so. We a re primarily concerned with processing the semantics of the

language, not i ts syntax. Thus there is no loss of generality in letting the machine

language be aPolish string version of APL. This has the further advantage of

freeing the machine from the particular external syntax of APL.

2. The machine should be general and flexible. In particular, i t should

not be so deeply committed to evaluating APL a s to be useless for other purposes.

3. The machine should do as much a s possible automatically. This includes

storage management, control, and simplification of expressions. The programmer

should not have to be aware of the structure and internal functioning of the machine

at a level much beyond that specified in an APL-program.

4. The machine should do simple things simply and complex tasks in pro-

portion to their complexity. In other words, the work required for the machine

to execute a program or expression . . . should, be related in some straightforward

way to the program's complexity.

5. The machine should be efficient. This is perhaps the most important

focus of this work. Of course, the question of efficiency is related to the current

technology; at present, a major bottleneck in evaluating array-valued expressions

is use of memory. Thus we concentrate on reducing memory accessing and tem-

porary storage space in the evaluation of APL programs.

6. The machine design should be elegant, clean, and perspicuous.

APPENDIX A
\ '

TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage access function for an array M contains the following information:

RAiVK - PPM

R VEC - PM

VDASE loca.tion of first element of ,M

ABASE constall term of aooess po~.ynom.id

DEL vector of coefficients of access polynomial

Then, the element MC ; / L 1 is located at

' VBASE+ABASE++/DEL~L

2. This section lists the transformations on storage access functioils which are

used to effect beating of selection operators. These transformations are given

a s program segments written in index origin zero. It is assumed that the parameters

to the various selection operators are conformable and in the proper domain.

ABASE t .ARASEtPBL+ . x (Q< 0)xRVEC- I 6?
RVEC 4 I Q

AaclSE + ABASE+DEL+ . x (Q>O) x I &
RVEC 4 RVEC- I Q

ABASE 4 ABASE+DEL [J] x(RVECC J] -1)

DELCJI + -DEL[JI

R + RVEC'
+ DEL

RANK + I t ([/ A)
. I t 0

DEL -+ RANKfDEL

RVEC + RANKfRVEC
RANK REPEAT

BEGIN --
RVECCII -+ L / (I = A) / R
DELCII + + / (I = A) / D
I + It1

ABASE + ABASE~DELC J I XSCALAR

DEL + (J t IRANK) IDEL
RVEC + (JZ I'RANK /RVEC
RANK + RANK- 1

ABASE + ABASEtDELCKlxORGt(LE2V-1)
RVECCKI -+ LEN
IF S = l DELCKI + -DEL[K]

CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process

the semantic content of APL programs.

In general, the description will be given in English, although algorithmic

descriptions w i l l be used a s necessary to provide clarifications. The section will

be written in the style of a programming manual, with the addition of explanations

and rationales as required,

The APL machine (APLM) is conceptually composed of two separate machines,

each with i ts own language, sharing the same registers and data structures. The

D-machine (DM) accepts APL-Like machine code and does all the necessary analysis

on expressions. The DM produces code for the E-machine (EM), and in the process

does some simplification of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system. By using

a stacking location counter based on the organization of machine cnde into segments,

the overall control scheme for the machine is quite simple.

The current chapter consists of five sections which present the APLM in a

logical sequence. Section A discusses the data structures and other manipulable

objects in the machine, and explains how they are managed in the machine's

memory. Section B continues by explaining the stacks and other registers in the

machine, followed by a discussion of t h e overa,lS. m.achine control, in Sec#on C.

FinaJly, the details of the D-machine and the E-machine are set forth in Sections

D and E, respectively. Examples a re used liberally throughout, to clarify opera-
, .

f tional detaiJs of the APL machine.

A. Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data

values, descriptors and program segments. This section will describe these

three kinds of objects and how they are represented in the machine.

Scalars are the simplest kind of data. In APL, a scalar i s an array of

rank- 0. In practice, a scalar is a different kind of object than an array, and is

so treated in the machine, Although arrays a re stored in the memory, My of the \

machine, scalars are not. They appear only in the machine registers, in particular

the value stack, and as immediate operands in a code string. In a real machine,

scalars would have an attribute of type, determining the kind of representation to

use for encoding and decoding them. In this work, we will assume that this is

handled automatically, and that all scalar data are the size of a single machine

word.

The most important data structure in the APLM is the array. The represen-

tation of an array is divided into two parts. The first is the - value array which .is

a row-major order linearization of the elements of the array, The second part

is a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes i t possible to have

multiple DA1s, not necessarily identical, referring to the same value array, which

makes beating possible. In this chapter, descriptor arrays will be shown in the

form:

@ARR i s the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference

count (RC) and a length (LEN) field, a s e x p l ~ n e d in the discussion on memory

in the APLM. The rank of the array is recorded in the thirdaword of the DA;

words after that contain the elements of the dimension vector, labeled R(1). Thus

in this case, pARR is 3, 2. The second word in the DA encodes the base address

of the value part of the array (labelled VB for VBASE) and the constant term in

the storage mapping function (here labelled AB for ABASE). Finally, the DA

contains the coefficients of the storage mapping polynomial, DEL (labelled D(1)

here). ~ e c d l that for an array ARR, the element ARR[;/L] is located at

VBASE + ABASE + +/DEL x (L-IORG);

This formula is the storage mapping function for any array.
1

In addition to array descriptors, the machine contains descriptors for

J-vectors. Recall from Chapter I1 that a J-vector is a vector of consecutive

integers which can be specified by a length, an origin, and a direction bit. We

assume that these three quantities can be encoded into a descriptor by the

function JCODE(length, origin, direction) and that there are appropriate decoding

functions. (See Appendix A.)

Finally, programs in the machine are represented internally a s program

segments. A program segment is any sequence of machine commands and operands,

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segment (relative to the beginning of the

function they are a part of) and the length of the segment, There is also a bit

which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the

function may also be represented as segments. A s will be seen later, i t is easy

to activate and'de-activate segments in the APL machine. Briefly, the advantages

of organizing programs in segments is that these a re the logical units of a program,

while other organizations, such as paging, do not allow this kind of natural cor-

respondence of form and function (pardon the pun!). An important property of

APLM instructions is that they contain no absolute addresses except for references

to NT, which remain constant in any compilation. A l l internal references to

other parts of a program are relative. Thus, all programs a re relocatable.

Each function has a corresponding function descriptor, which is similar to

a DA. A function descriptor contains the following information:

FVBASE location in M of beginning of function segment

FLEN ,

FIORG

FISR

length of function segment

index origin for this function

logical variable-1 if function has a result

FPARS number of parameters

FLCL total number of local names

In addition, the rest of the function descriptor contains a list of all local names

in the function, in the order: result (if any), parameters (if any), local variables

(if any). The function descriptor for a function is used in calling and returning

from fun.ctiona, as will be discussed in Section D.

Main memory in the machine is a Linear array of words named M. The only

objects which reside in M are arrays, DA1s, and program segments. A l l other

objects are stored in the machine's registers. In addition to M, there is an array

NT, the Nametable, which is an abbreviated symbol table, Every identifier in the

active workspace has an entry in NT, which contains descriptive information and

either an actual value or a pointer to where i t can be found in M. Scalars and

J-vector descriptors a re stored directly in NT. Thus, all references to variables

and functions in the machine go through the NT. This organization allows for

dynamic allocation and relocation of space in M, without having to alter any

program references. The operation of N T is described more fully in the next

section under machine registers. Constant array values within a function are

stored as part of the program segment; they are addressed relative to the beginning

of the function, and so, too, remain relocatable.

Within My two different allocation mechanisms are used, one for functions

and array values, and one for descriptor arrays. The reasons for this a re that,

because of drag-along and beating,DAts a re expected to have a shorter lifetime

khan functions or array values. Further, in a given function, locally at least, it

is likely that DAts will be of similar sizes, Thus, i t is feasible to keep an

available space list for DA1s, with the hope that erased spaces can be reused

intact, We would therefore expect more efficient use of M by DA1s than by array

\

values.
\

The free memory space (M) is arranged as follows: functions and array

values are allocated from the lowest address (BOTM) towards the top of M and

DAts are dlocated from the top (TOPM) down. The space in the middle is the POOL,

with boundaries BOTP and TOPP. Each entry in M has a header word containing

an encoding of a reference count (see Collins [1965]), the length of the entry, alld

a filler count. The latter field is used when space shghtly larger tlim necessary

is allocated, Each time a reference to an entry is added o r deleted, the reierence

count field is adjusted. Wnen a reference count goes to zero, meaning that there

a r e no uses of the entry anywhere in the system, the entry is made available in

ono of two ways. If i t is adjacent to the POQT-o, i t i s merged with POOL. Other-

wise, it is added to the appropriate availability list, of which there are two, one

for DA1s and one for functions and array values,

The availability lists a re doubly linked, and each entry contains a header

similar to those for active entries. Wnen space is needed, the appropriate

availability list is searched using the first-fit method (Knuth [1968] 436, ff). If

a fit is found, the space is allocated and the availability list adjusted. Otherwise,

space is taken from the POOL. If a request for M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage

collection is made. The two halves of M are garbage-collected separately. In

collecting array space, all the DA1s are scanned and a linked list is set up which

ties together all DA1s pointing to the same entry. Then arrays are compacted

towards BOTM, with the links used to adjust the VBASE fields in the referent DA1s.

If enough space is still not available, the DA1s are also compacted, using a

similar algorithm. Some coalescing of available space is also done by the al-

location algorithm, GETSPACE. Figure l illustrates how M is structured.

Be Machine Registers I

This section describes the registers and register-like structures in the APL

machine, The present description covers only the logical functions performed by

these registers and does not make any demands on how they are actually to be

implemented. Although most of the registers a re not directly accessible tothe

programmer, fhorough knowledge of their use is important to understanding the
\

functioning of the machine.

'I'here are several registers related to memory accessing and allocation.

The most important of these is the Nametable, NT, NT is an associatively ad-

dressed stack, each entry of which contains a name field, a tag, and a value.

The name field of an entry contains an index for the identifier associated with the

ent,ry. Permissible tags in NT a r e ST, for scalar quantities, JT, for encoded

J-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions.

ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields.

BOTM

Array availabilitg: list
forward links - Array availability -

baokwud links

reference count

!/;////A - Available spme

DA Availdrilily list-

DA AvdlJllllty llst -..

backward links

1524A2

FIGURE 1-Struc ture of M .

- 8 0 -

When a function is called, an entry is pushed to NTfor each of the function's

local variables and parameters, a s listed in the function descriptor. Similarly,

when a function is de-activated, the reverse process occurs. Each time a variable

is accessed, NT is searched associatively from the top (latest entry). If a hit is

not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's

"dynamic block structureft and facilitates recursive function calls.

The most important registers in the APL machine are four stacks. The use

of stacks permits elimination of addresses from most instructions and simplifies

the evaluation of recursive and nested programs.

1. Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions

and in function calls. Each VS entry consists of a tag and a value part, a s in NT

entries. In addition to scalars and function or DA pointers, VS can contain seg'ment

descriptors, partially-evaluated addresses, function marks, and names.

2. Location Counter Stack (LS)

Recall that machine code is organized into segments, ch.a.racterized by a

starting address and a length. Each LS entry contains the starting address of a

segment (ORG), i ts length (LEN), a relative count, pointing to the next instruction

to be executed (REL), and control information. Each time a segment is activated,

i ts beginning address and length are p ~ s h i d to LS, and the REL field is set to zero.

The address of the next instruction is then determined from the REL and ORG fields

on the top of LS. After each instruction fetch, the REL field at the top of LS is

incremented. When this value is equal to the length of the segment, the segment

is terminated by popping the top of LS, thereby reactivating the next entry. The

control information in LS is used to coordinate i t with the other stacks in the machine.

. .

- 81 -

3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres-

sions. In this machine, IS is used to control (nested) iterations over this index

set in the element-by-element evaluation of array-valued expressions. The

operatioil of IS is coupled with LS a s follows: when a set of iterations is begun,

the Limits of the iteration a re pushed into the iteration stack, and a segment is

activated containing the range of the iterations, Then, for each instruction in

the code segment, the necessary index values are taken from JT;T; When tho nngmcnt

is completed, the entries in IS are stepped and if the required iterations are not

exhausted, the segment is re-initialized and repeated with the new IS values.

Eventually, the iterations a re completed and the segment i n the range also is

completed, in which case IS and LS are both popped, returning the machine to the

place i t was to resume after the iterated code was completed. (See Section D.)

The IS behaves essentially like a nest of FORTRAN DOt a. Each entry contains

a counter (CTR) (to origin zero), the maximum value of the counter (MA,X),

direction bit (i. e., count up o r down) (Dm) and control information. Although

the IS is partially accessible to the machine code, i t is for the most part main-

tained automatically. Like LS, IS could probably be incorporated into the value

stack, since ffiese three stacks generdly work in parallel. However, by separating

these stacks by their functions, the machine design becomes cleaner and more

perspicuous.

4, Instruction Wiffer (Q S)

Unlike LS and IS, the instruction buffer QS is logically separate from the

value stack, QS is not strictly a stack, since it is possible to access* and alter

information at places other than its top. In the D-machine, instructions a re

fetched from M, some of which are executed immediately, and others of which

a r e either evaluated by beating or a re deferred in QS by drag-along, In entering

instructions in QS, the DM may change other related QS entries. When the

E-machine is activated, instructions a re fetched from QS and executed directly,

generally in conjunction with VS and IS. QS contains operation and value fields,

similar to VS, a LINK field used to reference other deferred instructions, and

an AUX field, which is a logical vector acting a s an access mask for array entries

(see Section E).

A final four regfsters in the machine are mentioned primarily for completeness.
-

These are:

IORG Index origin of current active function

FBASE Base address in M of current active function

FREG VS index of function mark for current active function

ISMK IS index of topmost IS entry containing 1 in i ts MARK field.
\

The use of these registers is shown in the examples in following sections.

C. Machine Control
\

The purpose of the APL machine is to transform a set of data (the input) into

a secoi~d set (the output) according to encoded transformation rules (the program)

which are interpreted according to a predetermined scheme (the machine). This

entire process is called the evaluation of the program and input.

In the APL machine, programs are evaluated in two separate but related sub-

machines. The D-machine takes i ts instructions from main memory, M, in the

form of Polish APL code, and does all the necessary domain testing and storage

allocation for the various operands. In addition,. the DM does simplification of

incoming expressions by drag-along and .beating. The output of the D-machine is

values in VS and transformed code in the QS, in the form of instruction segments

for the E-machine. A t critical points, determined either by the programm.er and

the DM, control is passed to the E-machine, which executes the simplified

instructions in QS, producing values in VS and M. When done, the EM passes

control back to the DM, which resumes where i t left off.

The division of labor between the two submachines is logically similar to that

between a compiler and i ts target machine. The DM plays the role of the algebraically

simplifying compiler, whose source language is essentially APL, and whose

target language is E-machine code. The E-machine a s the target of the DM'S

transformations is a conceptually simple computer which does nothing but compute

values, Given this scheme, a question which naturally arises is, Why bother with

the D-machine at all? Why not use a separate compiler in software and let i t

produce code for a machine similar to our E-machine? Unfortunately, this is

impossible', since the behavior of the D-machine is dependent not only on the

source code (program), but is also dynamically dependent on the data. ori instance,

consider a simple APL expression such a s A + B. We would like the source code

for this expression to be some thing conceptually like

LOAD A
\

ADD (i. e. , add the values on top of the value stack aid leave the

result there.)

The problem here is that we would like the machine to do different things depending

on the data. In particular, if both A and B a re scalars at the time the above code

is executed, I1 woulcl be desirable l;o have Ll~e LOAD inotruotioes push the ac01a.l.

scalar values to the stack, and to have the ADD do the actual addition. But if A

and B a r e conformable arrays, the desired action i s to defer the entire operation

(both LOADS and the ADD) in the instruction buffer, to be performed later by the

E-machine.

No compiler would be able to make these decisions - a priori unless i t knew

what data was to be used in running the program, o r unless variables were suf-

ficiently restricted by declarations. Further, much of the work done by the D-

machine i s domain testing, including rank and dimension checking, on dynamically-

specified variables. Since this process i s data-dependent, i t must be performed

dynamic ally.

Both the D-machine and the E-machine share all the registers and.the memory

of the entire A P L machine. Further, both a r e controlled by a central cycle

routine, shown in Fig. 2. The key to the overall control of the APLM is the

location counter stack, LS, which contains active segments for both the DM and

the EM. In Fig. 2 we see that a major machine cycle takes the form:

a. Check to see if the current active segment has been completed. If not,

proceed to step by otherwise see if this segment is under control of the

iteration stack, If i t is, then step the iteration stack; in case IS does not

overflow, then reset the REL field to the beginning of the segment and

repeat this step, If the segment is not under control of IS or if i t is and .

the iteration stack overflowed, then de-ac tivate the segment and repeat

this step.

b. Calculate the effective address of the current instruction and update the

location counter stack.

c. Select the appropriate machine, determined by the D/E bit in the current
,

active segment, If the DM is selected, then defer any arrays referenced

on the tog of the value staclr to the instruction buffer; also, fetch the

instruction and (if necessary) thc secolld word of the instruction from

memory. Finally, decode and interpre't the instruction and return to

step a.

RELZORG

SEGMENT EXHAUSTED

Step c '(

I ' DE-ACTIVATE SEGMENT I

f

L

EA-REL + ORG CALC EFFECTIVE ADDRESS

L

, &8 ITURATION

EXHAUSTED?

UPDATERELCOUNTER

IS TAG OF VS
J T , DT, or F m

I DECODE & I
PUSH ENTRY TO QS.
CHANGE VS ENTRY

FETCH DM TO SE G DESCR.
OpCODE \

OPCODE
FETCH EA, ?BASE

FETCH 2nd WORD
IF NECESSARY I

DECODE &
INTERPRET

OPCODE I

FIGURE 2-- Maincycle routine.

- 86 -

D. The D-Machine

The D-machine evaluates programs written in lfmachine language" by generating

instructions in QS to be executed later by the E-machine. A s discussed in Chapter

111, the use of a Polish string for the machine language rather than "rawn APL frees

the APLM from the particular concrete syntax of APL without sacrificing any of the

semantic content.

Most of the instructions in the APLM correspond directly to the APL primitives;

those which do not are. the control instructions, which comprise a more powerful

set in the machine than are provided in the source language. Al l operands in DM .

instructions are either relative addresses within the program segment or a re NT

references or are immediate values. A s a result, all programs in the machine

are relocatable. Since only constant data is contained in function segments,

\

programs are likewise re-entrant.

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The

instructions a re divided into three classes : storage management instructions,

control instructions, and 'operator instructions. It is clear from Table 1 that no

systems functions a re included in the D-machine's repertoire. In a real imple-

mentation of an APL machine, these instructions would have to be provided,

although for the current work, they are irrelevant, The remainder of this section

discusses the instructions of the D-machine, with examples to clarify the details,

0. A Guide to the Examples

The examples used in this chapter include program listings, register dumps,

and memory dumps. In showing program excerpts, we generally also show the

APL source expression, and give values, or at least attributes, for the operands.

Programs are shown in assembly language format, except that absolute addresses

a re given. Although nothing has been said of the manner in which D-machine instructions

Storage Manag,ement and Control Instructions

Opcode Operand Description ...

A. Storage Management Instructions

LDS scalar

LDSEG seg-desc r

LDJ jcode 1, o, s

LDIS K

LDCON K

LDN N

LDNF N

AWN

ASGNV

B. Control Instructions

JW K

JMPO K

JMJ?!

LEAVE

RETURN

ITM

DO

DO1

Load scalar

Load segment descriptor

Load J-vec tor

Load iteration stack counter, K from top of IS

Load constant array, starting at FBASE +K

Load name N

Load name N and fetch value

A s 6 i . p (and discard value)

Assign and leave valuc

Jump by K (signed) i.n current segm.ent

Jump by K in current segment only if top

of VS is 0

Pop VS i n either c a s e

Same a s JMPO except test for 1

De-actfvate this segment

(i. e , , pop LS and also IS if necessary.)

Return from current function

Iterate and mark

Call E-machine to work on top of VS

Same a s DO except that tempora~y space is

allocated for the result, if any, and the result

is left on top of VS

TABLE 1-2

Scalar Arithmetic Operators

Operator APL Definition ..
A. Dyadic

ADD + Add
SU B - Subtract

MUL x Multiply
DIV - Divide

'MOD I Modulus,

IMN L Minimum

'MAX r Maximum

' PWR *' Power
LOG t~ Logarithm

CIR o Circular functions

DEAL ? Random deal
COMB ! Binomial coefficient or beta function
AND A Logical and

4.. OR. v Logical or

NAND fi Logical nand
NOR v Logical nor
LT < Less than

el LE I Less than or equal

EQ
- -
1

Equal
GE Greater than or equal

GT > Greater than

NE 7' Not equal

PLUS
MINUS
SGN
RECIP
ABS
FLOOR
CEIL
EXP
LOGE
PI
RAND
FA C
NOT

Plus
Minus
Signum
Reciprocal
Absolute value
Floor
Ceiling
Exponential (base e)
Logarithm (base e)
P i times
Random number
Factorial or gamma function
Logical not

TABLE 1-3
. f

Hemaining Operators in %Machine

Operator APL Definition ...
A. Selection

TAKE

DROP

REV K

TRANS

INX K

+ Take

+ Drop

4CK1
th

Reverse along K- coordinate

Q Generalized transpose
th

C CKI Index on K- coordinate

B. Evaluated Immediately

BASE

REP

GDU

GDD

CAT K

RAV

U M U

DRHO

TTTCPTA

Base value (Decode)

Rep re senlal lu~~ (Euc ude) . .

Grade up

Grade down

Catenate (top K on VS)

Ravel
I

Dimension

Res tsucture

PRt&sval

C. Deferrable

ROT K ~ J C XI
th

Rulale u11 K- cuurdl~rate

EPS F Mem..her ship

DICvrA I Rank

CMPRS K /r KI
th

Compress on K- nnnrdinat.~!

EXPND K \ [Kl
th

Expand on K- coordinate

SUBS K C Subscript with K expressions in VS

D. Compound

RED K OP OP/CI~I Reduce along K~ coordinate by OP

QDF O P - - - Gc11cru.1 dyudic h r l n will1 OP

are encoded, we have chosen, for purposes of illustration, to show them as one or

two word quantities, depending on whether or not they have operands. A l l operand

addresses a re shown symbolically and comments a re used to explain the program

structure. In the register dumps, most of the material is self-explanatory, Field

headings a re summarized in Appendix A, The top of each stack is indicated by an

arrow. Descriptor array addresses, which are pointers to the memory, a re in the

form @A, for variable A, and value addresses in M are of the form VA. Again, in

the real machine, these would in fact be numerical addresses, but the symbolic

form is much clearer for examples. Fields in DAts a re labelled mnemonically.

Segment descriptors in VS or QS are shown in the form SCODE(SEG.X, m), where

m is 0 or 1 depending on whether the segment is a DM or an EM segment, and X

is the segment symbolic name (arbitrary). EM segments a re delimited by llbrakketsfl

along the right side of the QS display, in the format XY, meaning that segment X

starts here and segment Y ends here. The LINK field of QS contains relative pointers

and is interpreted according to the opcode. The contents of the AUX field is to be

interpreted as a logical vector, although in fact i t may be encoded differently in an

actual APLM.

1, Storage Management Instructions

This class includes all instructions concerned primarily with the storing and

fetching of data. Each of the load instructions pushes a value to the value stack.

\
Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their

operands to VS with tags ST, S T , JT, and NPT respectively, LDIS K loads as a

scalar the current value of the CNT field of the iteration stack element K entries

from the top of IS* LDNF N refers to variable N in the nametable, and enters the
- .

current value of the variable (from NT) into VS. In the case of NT entries with tag

DT (i. e., arrays), the reference count of the DA is increased by 1 when i t is

I

entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used
. .

to access a constant array stored in a function segment. Its operand K is a pointer

relative to the function origin pointing to the beginning of the DA for the .constant

value. This DA is copied to the DA area of My its VBASE is set to the beginning

of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to

VS with tag FDT.

~ l t h o u ~ h all the load instructions just described push a value to VS, such

values do not always remain there. At the beginning of each D-machine cycle, the

top of VS is examined for tags FDT, UT, and JT (see Fig. 2'). If one of these is

present, then the entry is deferred in QS, because it is array-valued. This is

done by pushing an E-machine instruction to QS of the form
\

OP @ARR o MASK.

OP is lVA, IA, o r Id, depending on whether the VS tag was FDT, IYT, or JT;

@ARR is the DA pointer that was in the VS value field, and MASK is an access

mask. The access mask in this case is a logical vector whose last K hits a re 1

when ARR is a rank-K array, It w i l l be used by the DM in beating and by the EM

in accessing this array. The LINK field in E-machine instructions of this type is

unused, and thus is shown a s 0 above. The VS entry is then replaced by a segment

descriptor with tag SGT pointing to the one-word QS segment containing the deferred

I

operand. In general, this entire process is invisible in the examples below, and

'the load instructions which generate array values can be thought of a s doing the

deferral themselves.

Although ASGN and ASGNV,are operators, they are included as storage

management instructions because they have the side-effect of causing values to

be stored. These instructions expect the top of VS to contain a destination, either

a s a name (tag NPT) or a s a QS descriptor pointing to a segment containing only

TABLE 2

Interpretation of ASGN and ASGNV in the D-'Machine

Top of VS

a. tag=NPT or
tag= SGT.and
deferred ex-
pression has
one element

b. tag=NPT

e. tag= SGT and
deferred seg-
ment consists
of a QS' entry
with opcode IA

(TOP-1) of VS

tag = ST

tag = SGT and
deferred segment
is a J-vector

tag = SGT and
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
of 1

tag= SGT and
deferred segment
is any arbitrary
array expression

tag= 9GT and
deferred segment
is any arbitrary
array expression

Action

Do immediate assignment. That is, store
the scalar value in NT or in My as appro-
priate.

Do immediate assignment.

Do immediate assignment,

Allocate space for a DA and value of the
size necessary to store the result. Defer
the assignment in QS, a s for scalar arith-
metic operators.

Check ranks and dimensions for conformability.
If the ~hs variable is a J-vector, it must first
be explicitly evaluated. If the rhs expression
contains instances of the lhs variable with dif-
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,
the assignment is deferred a s above.

an IA instruction; the second entry in VS is the right-hand side of the assignment.

There a re several possible actions taken by the DM in interpreting assignments,

depending on the VS contents. These cases a re explained in Table 2, We have

assumed that llevil" side effects do not appear in the code; their treatment is

straightforward, but uninteresting. Also, it should be noted, that althoqgh. the
. .

strategies outlinedin Table 2 could be modified toL alter the machinet; performance,
. .

.. .

the case analysis remains the same. . . .

The final storage management instructions are INPUT and OUTPUT, which

a re left further unspecified, ~ h e s e could be conceived of a s read-only and write-

only (serial) strings, which a re used a s primitives for writing functions such a s

0 andm 0

2, Control Instructions

The control instructions of the APLM are all concerned with directing the

flow of control among statements at the source-language level, and are all evaluated

by the D-machine.

The three jump instructions, JMP, JMPO, and JMPl a re used to alter the

flow of control among statements in a function, Since no jumps are allowed out-

. side of a function, there is little difficulty in specifying this operation. All that

is necessary is to change the value of the relative pointer in the current segment

on LS. CYCLE is a special case of JMP, which sets the relative pointer to 0,

causing the current (&mode) segment to be repeated. LEAVE pops LS and also

IS, if the segment is involved in an iteration. RETURN performs similarly

in returning from a call on a function, In addition, i t automatically erases the

locals for the current function from NT.

The interpretation of the DO instruction depends on the top value on VS. If

the top of VS is a scalar then the DO acts a s a no-op. If the tag is SGT, then the

segment described on VS is activated by pushing the segment descriptor to LS,

with VS being popped. In case thetag is NPT, the corresponding NT tag is examined,

and if the tag is FT, then the named function is activated, as described in the next

paragraph; all other cases a re no-ops. The DO1 instruction is similar to DO

except that if the top is VS and has tag NPT, the value referenced is copied to new-

space, while if the .tag is SGT, temporary space is allocated for the result and

the segment is evaluated. Thus, after executing a DOI, the top of VS contains an

entry with tag ST, JT, . o r FDT.
. .

When a DO instruction encounters a function name on top of VS, the following

actions take place:

1. The function descriptor, referenced by the NT entry for the function, is

fetched. I t is expected that all parameters to the function have been evaluated

and placed on top of VS, so that the, topmost value is the leftmost parameter. The

parameter count, FPAR, in the function descriptor is fetched, and the top of VS

checked to see that there a re that many values already there. If not, an e r ro r is

signaled. Otherwise, the machine goes through the list of local variables in the
. .

function descriptor, making an entry in NT for each one. Each new tag in NT is

set to UT, for undefined, unless it corresponds to a parameter. Parameter values

a re placed in NT and popped from the value stack in order.

2. A function mark entry is pushed-to VS, with tag FMT containing an

encoding of the current values of FREG, IORG, and the name of the function being

activated.

3. IORG is set to the value in the function descriptor, and FREG is set to

the VS index of the function mark.

4. An entry is pushed into LS for the segment described by FVBASE and

FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

The segment just activated contains all the code for the function. When a RETURN

is executed within this function, the following occurs:

1. LS is popped, thereby de-activating the function.

2. The function name, encoded in the function mark onVS, is used to access

the function descriptor and then popped. If there is a result, the value is pushed

to VS, and its NT entry erased. A l l other NT entries for locals in the function,

together with their values, a re also erased.

3. FREG and IQRG a re restored from the values in the function mark oii VS.

The function mark is deleted and the result, if any, is moved into i ts place.

4. Finally, FBASE is set to point to the current active function (if any) by

accessing its function descriptor through i ts name in the newly-exposed function

mark.

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL.

They can be considered in four groupings, and are so discussed in the rest of this

section. Part a discusses the scalar arithmetic operators (Table 1-2); part b

contains a description of the selection operators which are evaluated by beating

(Table 1-YA); part c describes those operators which are generally executed

immediately (Table 1-3B); and part d covers remaining deferrable operators as

well as the compound operators ('Sable 1-3C, D).

a. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if thc opcrn.tnr i~ mnnndin)

then the operation is done immediately, leaving a result in VS and popping the

operand(s). This process is illustrated in Example 1. In fact, the operation is

pushed to QS and the E-machine i s activated to perform the actual evaluation, but

this micro-process is invisible to the user.

The' other possible cases occur when the top two elements of VS a re segment

descriptors for deferred code in QS or when one is a segment descriptor and the

other is a scalar. If one of the operands is a scalar, it is entered into QS and i ts

VS entry is replaced by an appropriate segment descriptor, reducing it to the

case of two segment descriptors in VS,

The D-machine compares the ranks and dimensions of the two operands for

conformability and signals an error if they don't match. Otherwise, the operation

is deferred by drag-along in QS and the top of VS adjusted so that i t contains a

segment descriptor pointing to the entire deferred expression in QS. Because of

the stack discipline in the machine, the deferred code for both operands will

always be contiguous in QS. The link field of the QS entry for the operator (with

opcode OP) is a relative backwards pointer to the earliest deferred operand in

the deferred subexpression. The AUX field is the same a s the AUX field of the

two operands (see Example 2).

be Selection Operators

The selection operators a re evaluated in the D-machine by beating, the process

of performing a selection operation on an array-valued expression by changing

the storage mapping functions of its constituent array operands. The mathematical

a.na.lysjs of Chapter I1 legitimizes this approach, and guarantees that the trans-

formations used in beating produce the correct results. Before proceeding, let

us define what i t means for an array-valued expression to be beatable,

An array-valued expression deferred in QS is beatable if any of the following

conditions apply :

(i) It is a single QS entry with opcode IFA o r IJ.

(ii) It is a consecutive pair of QS entries of the form

S' scalar 0 0

IRD per 0 R a

EXAMPLE 1 - SCALAR DPERATURe S C 4 L A K O P E R I I I I S - ------------------ - ---------- ----- ---
R E G I S T E R DUMP
N E l l T - 0 I I R G = 0 FYEG, = ODGZO F B e = 3 0 2 0 0

R E L ORC L E N D / E LS F N N l l CW
I S : ----- -----. ----- *--*---*---*---r

I 0 1 0 I ooc I I O C I 0 1 0 I I I 0 I cca 1
--> 1

E F F E C T I V E 1 1 O R = 0 2 1 0 I N 4

T A G .VALUI? U P WALUE L I N K A L X
rs:. ----- ------------------ ,,s: *-----,--------------- -----* ----- +

I EXAMPLE 1 -1 : BEFORE E X E C U T I N G A.>D A 1 M I Z I C !

2 .-L --.-----------
W

R E G I S T E R DUMP
I h E Y I 1 = 0 I O Y G * 0 FYEG = 0 0 C 0 0 F b A i E = COZOC

Y E L O R C L E N D I E I S F N hh7 QF

LS: ,----- ----,----.---.-- ---.--- +--.
I 0 1 1 I C O D 1 1 0 0 1 0 I J I I I 0 I GC I
I QGO I COO 1 0 0 1 1 1 I J I 0 I 0 I OC I

--> I

E F F E C T I V E U O R = 0 0 - 9 0 I h OS

TAG V A L U t OP XALUE L I N K 4 U
ys:.-----*-----------------+ QS:*----*--------------.---*-----+

I .. I ... I 0 0 I OP I L D U I 1; I
I S T 1 256 I --> I
I ST 1 32 I

-->I

rn t ~ o o lnsraucrlcn rr r t 2 1 0 1 U A S ace. ~ t r c n ~ u . o ~ c c o ~ o ,
A N 0 DEFERRED I N OS. S I N C E 8 O T H U P E R W S A C i SC&ARS.
THE DEFERRED SEGMENT I S A C I I V A T E O I M W O l d T t L Y . I N D T E L i l

t X A M P L P 1 - S C A L W U P E R M O R . SCALaR OPERANDS ---
R E 6 1 S T i R OUHY
YEWIT = 0 I O f f i = 0 FREG = OOOOC FUPSE = OOZCO

- & E L ORG L E N W E I S FiYl h i 1 QP
LS: .-----*-----*-----*--*---,---*---,----.

I 0 1 1 I 0 0 0 1 1 0 0 1 3 1 C I 1 I 0 1 0 0 1
I 0 0 1 1 GOO 1 C Y 1 I I I 0 I 0 I 0 1 0 0 1

--> I

TAG VALUE U P VALUE L I N K AUI .
>:-----r-----------------• "S:,----*----------------*---r----.--r

I .I I .*. I 0 0 I OP 1 ADO I I I
I S T 1 ' 2 8 8 I --> I

-->I

EXAMPLE 1-3: A F I E * E - M A L i l h E E X k C U I I O N OF A U O i QS S E G M t N i E X H A U S I E D '

----------------------------.---
R F G I S T E R OUMP
N E C I T = 0 I U R G = J FPEG * 0 0 0 0 0 FBASE = 0 0 2 0 6

REL ORG L E N D.'E I S F N N l T QP
LS: *----.-----.---*--*---,----*---*----,

I o l l I o o o I L o O I * 1 0 1 I I O I o O I
--> I

TAG VALUE OP VALUE L I N K A U I
vs:*----.----------------* g j : r----* -----------------.----,--- + . . . I .. 1 I --> I

1 5 1 1 2 6 8 I
-->I

EXAMPLE 1-4: A F l E C RETURU T C b - ~ l c . H l h E . Y E S U L I OF ADD I S ON V S

EXAMPLE 1-2: A F I E R . D E C O D I N G 4 0 0 ; U P E R A T I O Y UEFECUEO I N OS

EXAMPLE 2 - SCALAR OPERATOR* ARRAY OPFRANDS
---.

R E G I S T E R DUMP
N E W I T = 0 I O R G = 0 FWEG = 00060 F B A S t = 00200

R E L ORG L E N D / E I S F N N h T OP
L s : ----- + ----- + ---- +---+---+---+---+ ---- +

I 0 1 0 I 0 0 0 I l c o I o 1 o I 1 I O I O O I
--> I

E F F E C T I V E ADDK = 0210 I N M

TAG VALUE OP VALUE L I N K AUX
Vs:+-----+------------------+ QS:+ ----- + ------------------ + ---- --+

I .. I ... I 0 0 1 I F A I &A 1 I 0111 I AA
I SGT I SCODEISEG.A,~) I 0 1 I IFA 1 3 0 I I 0111 I ea
I SGT I S C O D E I S E G . B , l) I --> I

--> I

ARRAYS W I T H D A ' S AT 1000 AND 1010 A H k OF &ANK 3 (N O T E U S AUX F I E L D S) .
N E X T I N S T R U C T I O N I S ADG AT M(210)

EXAMPLE 2-1: BEFORE E X E C U T I N G ADD

..
R E G I S T E R OUMP
h E k I T = 0 I O R G = 0 FHEG = O O C O O F B A S E = OOZOC

R E L OKG L E N D / E I S F N N h T U P
LS: +-----+-----+-----+---+---+---+--A +----*

I o l l I o o o I l o o l o I o I 1 I O I O O I
--> I

E F F E C T I V E AODR s o 2 1 1 I N M

T A G VALUE OP V A I IIF L I N K AUX
v s : + ----- + ------------------ 0s: + ----- + ------------------ + ---- --+

I ... I . . . I 00 I I F A 1 J A I I 0111 I C,
I SGT 1 SCODE(SEG.Ce1) 1 01 1 I F A I d B 1 I 0111 1

-->I 02 1 U P I ADD 1 02 1 3111 1 ,C
--> I

EXAMPLE 2-2: AFTER D E F E R R I N G ADD

(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable subsegment. That is, i t is of form:

code for operand :::I
OP optype . 1 R . ,

'. .
(iv) It is a QS segment consisting of a pair of beatable operands combined

by a dyadic scalar operator, One of these operands c& optionally

be a scalar value, The form is:

code for right opnd

code for left opnd

* a -

(v) It is a pair of beatable operands combined by GDF. The form is

similslr to case (i v) above.

(vi) It is a reduction of a beata'ble operand, in the form:

BRED 0 k 0

A - code for reducee :::I
OP reduce-op - A

SGV Sl3G.A
k :

S -length

(vii) In addition to (i) through (vi) above, a single QS entry with opcode IA

is beatable, although i t does not enter into the recursive definition.

When a selection operation is interpreted by the D-machine, the array-valued

operand is f i rs t checked for conformability. If the operand is beatable, then it

is beaten, according to the transformations shown in Chapter III, Appendix A. In

this process, if a DA to be transformed has a reference count of 1, indicating that

it is a local temporary result, then the DA can be modified directly. If the reference

count is greater than 1, then a copy must be made, and the copy is beaten. If the

result of a beating operation is a scalar value, then the segment is turned over to

the E-machine, which evaluates i t and leaves the scalar result on the top of VS.

When the operand of a selection operation is not beatable, there are two

possible strategies to follow: In the case of the TRANS operation, there i s no

choice: the operand must be evaluated by the E-machine and a temporary value

stored, which is then beaten a s above. Otherwise, the selection operation can

be treated a s a special case of subscripting, in which case an appropriate set of

.E-machine instructions is dragged-along in QS. (See Section d. for an explanation

of subscripting.) The choice of strategies is a second-order design decision,

and need not be made at this time, since either approach is viable. Example 3

illustrates both beating of se1ect;ion operators and drag-along of scalar operators.

The DM code shown for the statement is a straightforward translation of the

-
APL statement into Polish. Note that the vector 2 , 2 is a constant and is

'?compiled" into the function segment. This approach avoids having to keep array-

valued constants in the memory with other array quantities; to do so would require

having an entry in NT for each such constant, and would complicate the storage

management functions. In Examples 3-1 and 3-2, the state of the machine before

executing the sample code is shown; the values of the variables M and N are not

EXAMPLE 3: DRAGALONG AND BEATING IN THE D-MACHINE
,

Consider the APL expression
/

R+(2 , 1) Q (@ C l I ~) t (2 , - 2) + ~

At the time this is to be evaluated, pM-2,2 and pN-3,4 . Assume that R

has no current value. The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr Operand Comments

LDNF N

LDCON 90 Refers to constant 2 ,-2 with DA at 290

TAKE

LDNF M

REV 0 (Recall 0-base in all machine code)

ADD

LDJ JCODE(2,1, 1) This is the vector 2 , 1

TRANS

LDN R

A SGN Assign (and discard value)

290 RC=1 IAEN=4 DA header \
291 VB=O AB=94 I DA for constant vector 2 1-2.

See Section A for description
u1 fubir-uto

294 RC=1 LEN=3 Header for value array

given, a s they are irrelevant for this example. LS contains a descriptor for a

D-machine segment of length 100, which is the main segment of the function F.

The effective address is the sum of the REL field of LS and FBA SE, the beginning

of the value part of function F. VS contains a function mark for F which w a s

. .

placed there when F was called.

In 3-3 and 3-4, the LDNF and LDCON instructions have been executed. Note
. -

that each caused the deferral if ~ ~ I F A instruction (fetch array element in the E-machine)

in QS. Also, for eachdeferred instruction, a QS segment descriptor was pushed

to VS. The LDCON instruction allocated space and made a copy of the descriptor

array for the constant which w a s in the function segment; the new DA is named TI.

The VBASE for the constant is 200, the same as the FBASE of the function.

The TAKE operation (3-5,6) is evaluated by the DM using beating. The

descriptor array T2 was created for the result, and w as derived from the DA for

N by the transformations listed in Chapter III, Appendix A. It is easy to see that

this DA is in fact the correct one. Also note that T1 is no longer needed, and has

been erased. At this point, VS contains a segment descriptor which points to the

QS segment describing the result of the computation to data, which is the evaluation

of the subexpression (2 ,- 2) +N .
Examples 3-7 through 3-9 show the next LDNF instruction and the evaluation

of the reversal operation by beating. The process in this case is similar to that

for the TAKE. The ADD operation is deferred in 3-10. because both of i ts operands

were array values. The LINK field of the ADD in QS is 2, referring to the operand

2 elements earlier in QS. The top of VS now contains a descriptor for the entire

subexpression in QS which has been evaluated at this point. The LDJ instruction

(3-11) is executed similarly to' LDNF and LDCON in that it defers a value in QS.

The TRANS instruction takes the transpose of thc cntire expression which

has been dragged along so far. In this case, since its operand is a sum, the

transpose is applied to both terms. Notice that although the deferred code in QS

has not been altered (3-12), the DA1s which it references have been (3-13). The

LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction

is an ASGN (3-15). This instruction notes that R was undefined (see NT, in

Example 3-1) and allocates space for its DA and its value array, The space is

allocated based on the knowledge of the size of the result deferred in QS, h

3-15, we see the deferral of the assignment. The POP instruction in QS disposes

of the value after i t has been assigned (in deferring ASGNV, no POPS are used).

In 3-16, the state of memory shows the new DA for R; also note that the address

of the DA for R (@R) has been entered in NT by the ASGN evaluation.

c. Other Operators (Executed Directly)

The "other operatorsff include all those APL primitives which cannot be

deferred conveniently, or which are evaluated immediately in the D-machine.

aASE is in this class because it has a scalar result, while REP, GDU, GDD are

included because they require rather complex calculations involving their entire

operands simultaneously, which are impossible or difficult to do element- by-element,

URHO is easily done by the D-machine, and so is not deferred, a s is UIOTA,

which produces a J-vector a s result. The catenation operator, with operand K,

is a direction to catenate the top K elements of VS to form a vector. This is

donc immcdiatoly (with tho rocult boing put in t o m p o r q ~paoe). The remainder

of the operators in this class a re dealt with differently, depending on the values

of their operands.

EXAMPLE 3 - ORAG-ALGhG A N 0 B E A T I N G

AOOR CONTENTS ADOR C U N T E h T S NT : TAG C U h T E N l S
----+------------------ ---,---*-----------------
i M Y C - l L t N - C S AN R C - I LEN.05 F F T i F
r01 v B = V n A8=OC3 r O 1 V B s V h A n - 0 0 0 M 0 1 OM
1 0 2 YANK-2 + 0 2 RdNK-L N U l d h
r 0 3 R l l I * O G Z O l l 1 = 0 2 * O > Y 1 1 1 = 0 0 3 0 1 1 1 = 0 4 R UT 0
r O 4 ~ (2) = 0 0 2 O l Z I = O l b C 4 R l 2 l = 0 0 + 0 1 2 1 - 0 1

EXAMPLE 3-1: MEMOYV a t F O R E E X E C U T I h G EXEMPLE CUOE

REGISTEW OUMP .
h E U l T - 0 I O Y G = I +REG = 0 0 0 0 G F b A S t = COZOO

R E L ORG L E N D I E I S F h k h T UP
L s : .----- *--'---,---- r ---. ---*- --,---. +

I 0 5 J 1 0 0 0 1 1 2 0 I 0 I 0 I 1 I 0 1 00 1
--> I

I E F F E C r l V E AOOR = 0 2 5 0 I N N

TAG VALUE OP VALUE L I N K AUX
"S:.-----*----------------* QS:+-----.-----------------*----*------+

I FMT I *FN MAUL FO* F * I --> I
- - > I

k X A N P L E 3 -2 : L E G I S T E L S BEFOCE t X E C U T I N G EXAMPLE CODE .

N E G I S ~ E U o u n p
h E h l 1 = 0 I O R G = I FREG 1 0 0 0 0 0 FBASE = 0 0 2 0 0

R E L O k G L E N O l t I S t N N i l GP
LS: -----.----- *-----*---*---*---*---t

I O ~ S I C O O I ~ ~ C ~ J I O I I I o I ~ O I
--> I

EFFECT l V E AUOR = 0 2 5 4 I h n

TAG VALUE U P VALUE L I N K AUX
"S:.-----*----------------* gS:.-----*------------------*----*------*

I F M 1 I * F N *ARK FUR F * I 0 0 I 1 F A I JN I I O O l l I A A
I SGT I SCUOEISEG.A. l I 1 0 1 1 I F A I d T L I I 0 0 0 1 U B d
I S G l I SCOOEISEG.B.LI I --> I

-->I

LONF PUSHEO 0 5 1 0 ; I AN0 V S l I; I
LOCON PUSHEO U S l l i l A N 0 V S l 2 ; l

EXAMPLE 3-3: AFTER LONF ANC LOCON

EXAMPLE 3 - D R A G - U U N G A N 0 1)EAT lNG __________________--
PECOYV OUMP

AOOR C O N l E N l S AOOR CCNTENTS AOOR C O N T E N I S
----*------------------ ----.-----------------
SM WC.1 L E N - 0 5 W RC=Z L k N - 0 5 d l 1 R C - I L E N - O I

r o t VU-VM AB=OO0 r O l Vd=VN 11)-000 *Oh V0 -200 4 0 - 0 9 4
* 0 2 RANK-2 r O 2 Y A N K - I r 0 Z RANK-1
+O3 R l L l = C O Z O I L I = O Z , r 0 3 Y l L l = O G 3 0 1 1 1 - 0 4 * 0 3 Rill-002 O l l l = O l
1 0 4 R I Z I = 0 0 2 O I Z) * O l t O b A l Z) = 0 0 + 0 1 2 1 ' 0 1

t X A P P L k 3 -4 : M tMOYV AFTER LOCGN

U E G I S I E I DUMP
L E C I T * 0 10RG - I FREG D JOCOO FUASE - 0 0 2 0 0

#EL UYG L t N D I E I S F N NUT 3 P
LS : .----- + ----- + ----- * ---.---.--- ---,----

1 0 5 4 1 O C O I I C O 1 3 1 O I l I O I G C I
--> I

E F F E C T I V E AUOR - 0 2 5 1 I h M

I A G V A L U t U P VALUE L I N K AUX
ys:* - - - - - re - - - - - - - - - - - - - - - - + ',s:.---+ ---.------

I FMT I *FN MARK FUR F* 1 0 0 1 I F A I a T 2 1 I 0 0 1 1 I A*
I SGT I S C O O E I S E G ~ A ~ L I 1 --> I

-->I

I H E TAKE HAS A L I E R E O THE U A FOR h e C R E A T I N G A NEW COPY.

EXAMPLE 3-5: Y E G I S T E N S A F l E Y 1 b K E OPERATUR

MEMOYV DUMP

AUOR COhTENTS AOOR CONTENT S AOUR C O N I E N T S
----*------------------ ----*------------------ ----.------------------
d M Y C = l L k N = 0 5 iY(R C - I LEN.05 9 1 2 R C - l LEI(IO5

r o l vt) -VM AB.000 * O l vB -VN A B = @ 9 0 * 0 1 V&VN 48.002

+ 0 2 P A N K s Z t O Z RANK=2 r 0 2 YANK-2
+ 0 3 a l l) - 0 0 2 u I I l = O Z r O 3 n l l l - 0 0 3 ~ 1 1 1 - 0 1 r 0 3 Y l l l - 0 0 2 0 1 1 1 - O I

t o 4 R 1 2) = 0 0 2 0 1 2 l = 0 1 r O 4 R l 2 1 - 0 0 4 O (2 l - 0 1 * O I R l Z) = 0 0 2 0 1 2) - 0 1

THE N E n UA A T arz COLTAINS THE S T O R A G E ACCESS FUNCIION FOY THE
TAKE J P E R A T I U N ON N. U l l l i H MAS PRGOUCEO BY BEAT ING. NOTE I N P U l I C U L A R
THAT THE VBASE OF 1 2 I S VN. U H I C H P O I N I S TO THE V A l U t ARYAY OF N. UIO
I H A T THE D I M E N S I O N OF 1 2 I S 2 ~ 2 AS S P E C I F I E D BY THE TAKE OPERATWI.
rnt ABASE HAS CHANGED FRO* o ro 2 , TO A C C O U ~ T FUR rn t - 2 ELEMENT IW T n E
PARAMETER I1.E. I A K E FRDM THE €NO). F I N A L L V . NOTE 1 h A T THE VALUE OF O t L
I N 1 2 I S THE S A M t AS I h & T FOY N.

EXAMPLE 3-6: NEMORV AFTER TAKE OPERATOR

EXIIMPLE 3 - 03AG-ALOhG ANU 8 f6T I f f i

R E G I S T E R UUMV
N E C l T = 0 I O R G = 1 F W t i = OOCCC FEASE = OOZOC

R E L M G L E N D I E I S F & N h I OP
LS: *-----*----.-----1---*---,---*---.----.

1 0 5 6 1 ~ 0 1 1 0 0 1 0 I C 1 U I C 1 C O I
--> I

E F F E C l l V ? AOOP - 0 2 5 6 I N M

TAG VOLUE U P VALOE L I N r i CU:
"5:. ----- ------------------, U1: + ------

I FMT I *FN MARK FOR F * I JC8 I I F A I d l ? I I C G l I I L A
I S G r I S;OOEISEG.A.II . JI I I F b I dM I I C O ! l I i t l
I SGT I S C O O E 0 E G . b . l l i --> I

- - 3 1

R E G I S l t R OUPP
h E u l T = 0 I U R G = I I , < t G D OCCOC F B L S E = 0 0 2 C 3

I
REL URC L E N D I E 15 F % h i 1 OP

L,.: + ----- ----- r -----.---,---,--- *---..- ---.
I O S 8 1 0 0 0 1 1 0 0 1 O I 3 1 1 I D 1 0 0 1

--> I

E F F E C T I Y i AUOR 2 C Z 5 B I h m

TAG V L L U t OP YhLuE L I N K 4k.X
\Is: ,----- ------------------ a<: .---- -----------4--- - .----. . - --

I F M I l WFh MPdK F W F* I CO l l F b l 3 1 2
I S G ~ I ~ C U O E ~ S E ~ . A , I I I 01 I IFC
I S G I I ' LCOEISEG.B I IE I --> I

ELAMPLE 3-8:: AFTER REV '

EXAMPLE 3 - DRAG-ALONG 4NO 8 t A T l N G

MEMOR'I DUMP

AOOR L O N l E h T S AOOR CGNTENTS AOUR CCNTENTS ----.------------------ ----*------------------
a* R C = l L E U = ~ ~ aN R C = l L t N - 0 5 d l 2 RC.1 L E N - 0 5

r 0 1 V0-VM bt)=W9 t O 1 VB=VN A b = D W r O L VL)=VN b 8 - G O 2
t 9 2 RANKXZ +C.z u b h r - 2 *O2 RANK=.?
r 0 3 R I I l = 9 0 2 C ~ 1 1 1 = 0 2 r 0 3 K l l l = 0 0 3 O I 1 1 = 0 1 r 0 3 R 1 1 1 = 0 0 2 O I l I = O 1
tnlc R i Z I - O G 2 C # I ? l = 0 1 r C 4 U l 2 1 = 0 0 4 O I Z l = O L + 0 1 P i Z l = 0 0 2 O l Z I = O L

ICOTICE I H E N u DAn d l 3 . U H l C H CONIAIPdS T H t ACCESS F U N C I I J N FOR I H E
R t V E R S A L UbI M . THE P A R 1 5 d H I C H n A V t CHANGE0 FYOM T H t OA AT ARE
A B A S t . N H l l H I S N o h 2. AND O t L i l I . G H I C H I S - 2 I N S T t A U CF 2. T d t S E
C H A N G ~ S AC:CUNI FIR THE R E V E R S A L OF n , A N A L O G O U ~ L Y ru 'MAY r n E OA
A T a 1 2 A:CUUNIS OR ru t T A K E O P ~ ~ P I I U N ON N .

6 r A q P ~ t 3-9: AFEEY REV

RCL UUG L E N O I E 15 F N N h T 4 P
L S ; *-----+----*----'---*---*---*---.----*

1 0 5 S 1 O O C I E C C 1 O I O 1 L I O I O C I
--> I

I A G VALUE U P VALUE L I N K A U I
ys :+ ---- + ------------------. 0s:. ----- ------------------.---- + ------

I F I T I * F h * \ Y & FCL k * 1 0 0 1 I F A I J 1 Z 1 L O O 1 1 I C -
I SGT I SCuiE(SEG.O. . l l 1 O l I I F A I d l 3 I I C O l l I

- - > I 0 2 I OP I ADO I 0 2 I 0 0 1 1 I -C,
--> I

EXAMPLE 3 - DIIAG-ALONG ANC B E A T I N G -_________----_________----_---------_-_------_----_----------------------
REGISTER OUMP
 EMIT - 0 I O R G = 1 FREG I OOCOO F B A S E - 0 0 2 0 0

REL ORG L E U D I E I S F N L h T J P
LS; . -----.-----.-----.-- + --.--.--.----

1 0 6 1 1 0 0 0 1 LCC I 0 1.0 I 1 I 0 1 0 0 1
--> I

EFFECT,IVE AODR = 0 2 6 1 I N q

TAG VALUE OV VALUE L I N K WX
rs:.-----*----------------* QS:.----.----------------*----*------*

I F I T 1 *FN MARK FOR F * 1 0 0 1 I F A 1 5 7 2 I I O O l l I C -
I SGT I SCOOEISEG.C.lI 1 0 1 l I F A 1 4 1 3 I 1 0 0 1 1 1
I SCT I SCUOElSEG.O.ll I 0 2 1 ,0P I ADD, 1 0 1 1 0 0 1 1 1 -C

->I 6 3 I I J I J C O O E I Z ~ l t l l I I 0 0 0 1 I OD
--> I

I
EXAMPLE 3-11; AFTER L O J

P 3 --
R E G I S T E Y DUMP

I h E Y I T - 0 1 0 1 6 = 1 FREG = O M 0 0 F B A S t - 0 0 2 0 0

REL OPG L E N O l E I S F N I U T U P
L s r -----.-----.----.-- +-- -.---.-- -.----.

1 0 6 2 1 0 0 0 1 1 0 C I 0 , I 0 I 1 I 0 1 0 0 1
--> I

TAG VALUE O P VALUE L I N K AUX
*c**----*--------------* 0s:---.---------------.----.------* .-- -

I FMT I OFN MARK FOP F * 1 00 1 I F A 1 d l 2
1 SGT I SCOOEISEG.L, I l I 0 1 I I F 1 I a T 3

-->I - 0 2 I QP I ADO

EXAMPLE 3 - ORAG-ALCLG AND B E I T I N G --
CEMORV DUMP

AODR CONTENIS ADOR CONTENTS AOOR C C N I E N T S ----.------------------ ---.----------------- ----.-----------------
aM ac- I L E N - ~ ~ aN RC-1 L E U - 0 5 i t 2 RC.1 L E N - ~ ~

r o ~ VB-VM AB-000 r01 VB-vu ~ 8 . 0 0 0 r o k VB-VN AB-OOZ
r 0 2 RANK.2 4 0 2 RANK-2 * 0 2 RANK=,?
t o 3 ~ 1 1 1 - 0 0 2 0 1 1 1 = 0 2 r 0 3 Rill-003 O I l I = O I r 0 3 1 1 1 1 - 0 0 2 O l L l = O l
+ 0 4 R l 2 l - 0 0 2 D l . ?)=OI + O I P t Z l - 0 0 1 D I Z I - 0 1 *O4 R I Z I - 0 0 2 D I 2) = 0 4

r n E EFFECT OF r n E r a u i s v u s E M A S TO u r e a ru t OA'S A T a 1 2 AND a13 .
THE CHANGE I N BOTH CASES d A S 10 INTENCHANGE a l l 1 # I TH a t 2 1 ANU
OCII YITH 0121 . IT s n o u L u BE l N T u l r l v E L v CLEAR r n A T THESE O A ' S MILL
NO* ACCESS THE IYANSPOSES UF T H E I R PREVIOUS VALUES,

EXAMPLE 3-13: MEMORY A F T t Y TRANS (NOTE A L T t R E O D A ' S I

--
R E G l S l E n DUMP
L E Y 1 1 = 0 IORG = 1 FREG - 0 0 0 0 0 FBASE - OOZGO

I E L ORG L E N O I E I S F N N b T OP
L S * .-----.----.-----.--+--.---.---.----.

I C 6 I 1 0 0 0 1 l O C I O I C I 1 1 0 1 0 0 1
--> I

E F F E C T I V E AJOR = 0 2 6 4 1 6 M

TAG VALUE OP VALUE L I N K A U I
"s:.-----*------------------. "SI.-----.------------------.----.----* . .

I F I IT l * F N M A R U F O I ~ F * I i0 l IFA l a 1 2 1 I O O l l 1 C -
I S G I I SCUOEISEG.C.11 I 9 1 I I F 1 I a 1 3 I I O O l l I
I NPT I R I 0 2 I U P I A 0 0 ' I 0 2 I 0 0 1 1 I - C

-->I --> I
EXAMPLE 3-12: REGISTERS *?ED TRANS

EXAMPLE 3 - I * : AFTER LON n

EXAMPLE 3 - DRAG-MGkG AND eEA'INC ---
RFG 1 STER OJMP
hEWlT = 0 IORG = 1 FREG = 0.3000 FBASE = 0 0 2 0 0 .

REL ORG LEN D I E LS F N hhT UP
LS: 4- ----*-----,-----+---.--- +---+---+ ---- +

1 0 6 5 1 G O O 1 3 C O 1 3 1 O i I l O 1 0 0 l
--> I

EFFECTIVE AOOK = 0265 I H M

I A G VALUE OP VALUE LIWlC AUK
vS:+-----+------------------+ QS: +-----+----------------+---+-----+

1 FWT I *FN MARS FOR FI 1 0 0 I I F A I 9 1 2 I i O o l l I E -
1 S,GT I SCOOE(SEG.Ev1J I 0 1 I I F A 1 i i T 3 I I 0 0 1 1 1

->I 0 2 I OP I ADD I o r I 0011 I
33 1 I F A I dR I I 0 0 1 1 I
04 I 06' I ASGN I 02 3 0011 I
3s I POP I 0 I i l O O L l I , & - - I

EXAMPLE 3-15: REGl jTERS AFTER LSGN

ADOR CiJNTE&TS AOOK CUNTErdTS NT: TAG CUNTtNIS
----+----------------- ---+----------------

a~ .KC= : L E N = ~ ~ ar2 RC=I L E N = ~ ~ F F I a~
t o 1 v s = u n ne=ooo * Q L VB=VH A ~ = O O ~ . M OT d n
* 0 2 KANK=2 " .+Q2 RCNK=2 N OT aN
t 0 3 A (l J > = 0 0 2 . D (l l = O Z +03 K (1) = 0 0 2 O (l l = O L M OT mR
* 0 4 R (2) = 0 0 2 D (2 1 = 0 1 M 4 R (2) = 0 0 2 D t 2) = 0 4

EXAMPLE 3-16: NEMOkY AFTER ASCN

RAV and DRHO a re difficult to defer in general because of the complex
.. ..

calculations necessary to access an arbitrary element of the result,. However,

there a re special cases which a re easy to defer, a s follows:

(i) The right operand is a scalar or single-element quantity. The RAV

of such a value is a J-vector if i t is an integer, o r a t worst is an

explicit one-element vector. Similarly, the DRHO of .such a value

is deferred in QS a s follows :

S value 0 0 .

IRD T1 0 R

where @ T I is a DA for the result and R is the encoding of the rank.

The IRD instruction is essentially a note to the D-machine that the

result has dimension described in TI.

(ii) The right operand B is an expression deferred in the form of (i) above.

In this case, all that has to be done is change the descriptor array

@ TI.

(iii) The right operand is of the form

IFA @W 0 R ,

and @ W points to a DA which has not been altered by any select

operations which upset the ordering of the value part. That is, if

W is the array specified by @W and D is the vector containing the

value part, then wc ; / I ,]-DL (PC LL 1 for all appropriate values of L

In this case, RAV is evaluated by providing a new DA with rank 1 and

dimension /pw . DRHO can be deferred if /PA , where A is the

left operand of the DRHO, is less than or equal to x / p C also by

providing a new DA with dimension A .

If none of the above apply, then RAV and DRHO a re evaluated immediately by

creating temporary vduca in MA,

d. Other Operators and Compound Operators (Deferrable)

The D-machine evaluates this subclass uf uperator inctructions by deferring

E-machine code in QS. The expansions are detailed in Appendix C and should be

easy to understand with a knowledge of the way the E-machine works. We w i l l

here discuss only the SUBS instruction and the compound operators, as their

behavior is somewhat more complex.

The SIJRS M operation corresponds to the symbol C in an APL program.

m e n decoded, i t expecls the top of V S to contain a QS segment descriptor far a

rank-K quantity and the next K entries on VS to be either scalars o r QS segment

descriptors for the subscript expressions. An empty subscript position is created

by the LDSEG instruction with i ts operand a segment descriptor SCODE(O,O, 0) of
,&,

length 0.

There are two important cases to consider: ,

(i) If the subscriptee is beatable, then the subscript expressions are

examincd in turn, starting; from the rightmost (deepest in VS) tu

th
find scalars o r J-vectors, If found for, say, the I- cnordinate,

the equivalent of 1NX I with tha1 upel-and ia porforlned on the. s u b

scriptee by beating, causing new DA1s to be created f u r 11. Tllt VE

entry for this subscript is then deleted if it was a scalar. If it was

a J-vector, then the VS entry is changed to the empty segment and

the QS entry is deleted by moving all of QS down 1 to f i l l in the space

(with apprupriate adjuatmcnt~ tu descriptorn). If, after all snhscrigts

have becn examined i t is found that the remaining stacked subscripts

are either empty or non-existent, then the result already exists, in

standard form, in QS. In this case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor

at the top ,of VS. Otherwise, the remaining subscripts a re treated

a s in the second case, described in tkie next paragraph.

(ii) If there a re explicit non-scalar or non-J-vector subscript expressions

and/or the subscriptee is not beatable, then the subscripts must be

dragged along in QS. This is done by creating temporary index ac-

.curnulators (opcode XT) in QS and generating E-machine code to

activate the. necessary subscript evaluations at the right times. If

the subscriptee is a reduction, QS is transformed according to the

transformation (OP/A) [9) ---* OP/A@? J and evaluation continues

a s above. The details of the subscript expansion are shown in

Appendix C. Example 4 illustrates the process which has just been

described.

In evaluating a GDF, the machine first examines the operands. If they contain

deferred operators; then they are evaluated to temporary space first. This is

done to avoid unnecessary recalculation of subexpressions necessary to compute.

a GDF. It also guarantees the possibility of applying SF' transforms to GDF ex-

pressions by beating. Then all that is necessary is to alter the access masks i n

the AUX fields of the deferred left operand in QS to provide the proper access

method for the E-machine. This is illustrated in Example 5 below. If the GDF

reduces to a simple case, e.g., if one of the operands is a scalar, then the ex-

pression is treated as a normal scalar operator expression (see part a above).

Efficient evaluation nf reductions along coordinate K of the reducee R (in.the

E-machine) depend nn transformation T R l l (see Chapter II) which allows permu-

tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see if it fits into one

of the special cases of reduction:

(i) Empty reduction coordinate, The result is then an array with value

((j y ; t I p p ~) / p ~) p ~ ~ ~ ~ ~ where R is the reducee and IDENT i s the

identity element for the reduction operator.

(ii) Reduction coordinate of length 1. The result is then R [[K]

II reducee is a scalar, the result is R .

(iii) Reducee is a vector. In this case, the reduction is activated im-

mediately in the E-machine, since the result is a scalar..

If none of the special cases is satisfied, the reduction is deferred by first doing

the transpose of T R l l if necessary, and generating the deferred code in QS as

shown in Appendix C.

EXAMPLE 4: SUBSCRIPTING IN D-MACHINE .

Consider the A P L expression A[I 4 ; ; 2 ; V I where A is a rank-4 array with

pA*5,4,6,3 and v - 3 , 2 , i , 2 , with the index origin IORG * I. The D-machine

for evaluating this' expression is

2 52 LBS 2 SCdar 2

2 54 LDSEG SCODE(0, 0,O) Empty subscript

256 LDS 4 Scalar 4

368 IlmTA Gives ~4
.

259 LDWF A . Array A

261 SUBS 4 Do the subscript, expected operand rank is 4

263 . O O 1

The following memory and register dumps show the steps the D-machine goes through

,A,
to evaluate this expression.

EXAMPLE 4 - S U B S C R I P T I N G I N 0-MACHINE

MEPORY DUMP

A 6 D R CONTENTS AOOR C C N I E N T S NT: TAG C U N T E N I S
----*----------------- ----.------------------ --.---*-----------------
O A R C - I L E N - 0 7 dV R C - I L E h - 0 4 fa 0 7 d A

r o t V 8 = v l A b - O r 0 * e l v B = v v AB-JOO v 01 d v
* 0 2 RANK-4 + 0 2 YANL-1
t o 3 R l I l " 0 0 5 O I l I ~ 7 2 *'33 R l l l ~ O O 4 O l l l ' O l
* 0 4 R 1 2 1 ~ 0 0 4 . 0 1 2 1 ~ 1 8
+ 0 5 R O I = 0 0 b 0 1 3 1 - 0 3
* 0 6 R l 4 l e 0 0 3 0 1 4 1 = 3 1

EXAMPLE 4 -1 : MEMORY BEFORE E X E C U T I N G EXAMPLE CODE

M E G I STEY DUMP
h E b I T = 0 ' I O R G = l FYEG = 0 O C I O F t l A S t = OOZOC

REL URG L t N D I E I S F N NUT 'iP
LS: .----,-----,----*---.---*---*---.----*

1 O 6 1 ~ C O O ~ 1 O C I O I O ~ L ~ C ~ O O ~
--> I

E F F E C T I V E AUOR = O Z b l I h M

I A i VALUE U P VALUE L I N K AUX
" S: . - - - - -* - - - - - - - - - - - - - - - - - r "S:.-----*------------------,-----.------*

I .. I . . . I 0 0 I IFA I a v I I O O O I I J A
I SGT I S C O O E I S E G . A ~ L 1 I O l I I J I JCUOEIS. I ,OI I I O O D I 1 d B
I S 1 1 2 I 0 2 I I F A I T A 1 I 1 1 1 1 I i C
I SGT I S C O D E I S E G . N I L ~ O 1 I --> I
I SGT I S C U O E l S E G . B ~ I I I
I SGT I SCOOEISEG.C11 l I

--> I

v s C O N T E ~ T S A R E x n E W B s c r l P r s AW SU~SCRIPTLE. hurt THE A C C E S S MASKS

IN r n C AUX FIELU OF as. T H E Y INOICAIE THAI v ~ l u o ~ 1 4 t J-VECIOL AYE
VECl lJaS. AND A I S A YANK-4 ARYAV.

EXARPLE 4-2: AFTER ALL BUT r n E s u e s o P t v r r u R

EXAMPLE 4 - S U B S C R I P T I N G Ih 0 -MACHINE ____--__-___-___--_---~~~-
R E G I S T E R DUMP
h E Y I T - 0 I O R G = 1 FREG = OOCOO FBASE - 0 0 2 0 0

REL ORG L E N O I E I S F N N b T OP
LS: ,-----.-----*----+--.---.---.---,----,

I O 6 3 I O O O I l O C I O l 3 1 l I 6 I O G I
--> I

TAG VALUE 6 P VALUE
vs:.----.------------------+ QS:.-----*--------------.

I .. I . . . 1 ,DO 1 JMP I 0
I SGT 1 S C O U E l S E G . O ~ L l I 'D l I I F A I d V

-->I C 2 I 1 6 4 I -11
0 3 1 X I I XCOUE10 .3 . I l
3 4 1 X I 1 x C 0 0 E l 0 . 3 , l l
0 5 I XT I x C O o E l 0 ~ 2 . L I
Ob 1 I k L I 0
0 7 I XS I 0
0 8 I I X L l cr
0 9 I XS I 0

L I N K AUX .--* ---- ------.
1 O b 1 I 0-
I I 0 0 0 1 1 I t
I I O I l l I F F
1 0 3 1 I
I I I
I 1 I
I I O I O O I
I 0 4 1 I
I I O O L O I
I 0 5 I I
I I 0 0 0 1 I
1 O b 1 1
1 0 9 1 I
I I 0 1 1 1 I -0

V S A N 0 0 s HAVE 0 t E N IRAhSFORMEO BV THE SUBS UPERAT ION. THE SCALAR
S U B S C Y I P I REOUCEO I H E R I N * OF A t iY 1, AND THE I U I E R V A L VECTUR
SHORTENED THE F I R S T COORDINATE (S E E UA A 1 a l l # . THE Y t S l OF THE
CCOE GENERATED I N OS I S FOR C A L C U L A I I N G E X P L I C I T S U d Y R I P T VALUES.
unlcn A Y E ~ E P T IN I n E XI ENTUIES. THESE ENIMIES COLSIITUT~ A
P S t U O 9 - I I E R A T I O N STACK. I S t E S E C T I O N E l

E X 4 S P L E C-3: REGISTEMS A F T t Y SUBS

MEMORY OJMY

AUOR CONTENTS ----.------------------
aA R C - l L E h - 0 7

* O l VU.VI A B = o r O
*OZ RANK.4
* 0 3 ~ 1 1 1 - 0 0 5 0 1 1 1 = 7 2
r O 4 R I 2 1 - 0 0 4 0 1 2 1 - 1 8
1 0 5 R l 3 1 - 0 0 6 0 1 3 1 = 0 3
+ O b R l 6 l - 0 0 3 O l 4 I = O I

AOOR C O N T E N I S - - - - . - - - - - - - - - - - - - - - - - -
av RC-2 LEN-04

r 0 1 VD-VV AB.OOC
r O 2 R A N K - I
* 0 3 R l I l * 0 0 1 D l l l - 0 1

AOOR C C h T E N l S - - - - . - - - - - - - - -- - - - - - - - -
2 * O l R C - I VB* L E N 1 0 6

he-COO
t o 2 RANK=3
* 0 3 R l l l = 0 0 4 D l I l - l b
* 0 4 R l 2 1 - 0 @ * 0 1 2 1 - 0 4
* 0 5 R I 3 1 - 0 0 1 0 1 3 1 - 0 1

EXAMPLE 5: GDF IN D-MACHINE
.. .

In the example expression, M o . x N , both M and N are matrices with pMt t4 ,3

and Nctp3,2. D-machine code for this expression is

250 LDNF N

2 52 LDNF M
. .

2 54 GDF MSJL Do GDF

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the

GDF operation has been deferred in QS. Notice that the access mask of M

in the AUX field of QS has been changed. The IRD entry, whose operand DA gives

the dimension of the result, contains 1111 in its AUX field, which instructs the

E M to use a 4-level iteration stack to evaluate the expression. The 1100 AUX for

M says that M-indices come from the two highest iterations, while the 0011 AUX

. for N indicates that N is to use the two lowest.

An equivalent formulation of fhe contents of QS at this point is that It represents

the GDF in the form:

for I := 0 step 1 until 3 do - - - -

for J := 0 step 1 until 2 do - - - -

for K := 0 step 1 until 2 do - - -

for L := 0 step 1 .unJil 1 do - 7 -
KESUL~P [I; J;K;LJ := M[I;.J] XNP;LJ;

I

t-'
t-'
Cn

---EX?ZII-1-1-4.0F-!WWD-2!snEf _------------------------ f-f---fff- ---- ---------
R E G I S I E R DUMP
N E U l I - 0 l O a G * 1 FREG * 0 0 0 0 0 FB1SE * 0 0 2 0 0

REL ORG L E N C I E I S F N N h l UP
LS: .-----*-----c---*-+--+--*---.----+

I 0 5 6 1 0 0 0 1 ~ c c 1 0 1 o I I 1 0 1 0 0 1
--> I

A VALUE OP VALUE L I N K A U I
vs:+-----+------------------* "S:*-----.----------------*---.------*

I .. I ... 1 0 0 1 l F A l d 3 1 I O O l l I A A
I S t 1 I 5COOEISEG.A.IB 1 0 1 I I F * I dM 1 I 0 0 1 1 I 0 8
I SCT I SCODEISEG.BIIB I --> I

-->I

E X A l l P L E 5 - 1 8 Y E G l j l E R S BEFORE GOF

______________---__-------------------_-----_-----------------------------
MEMURV DUMP

AOOR C O N T E N I S U)OR C O N I E N I S ----*------------------ ---+----------------

9 1 BC*1 L E W O 5 Vl YC-1 L E N - 0 5
*O1 Y8 -V l l - A 8 = 0 0 0 ' r 0 1 VB*VN A b - 0 0 0
+ 0 2 RANK-2 r 0 2 RANK-2
r 0 3 1 1 1 1 - 0 0 6 0 1 1 1 -03 6 0 3 U l 1) - 0 0 3 0 1 I l * 0 2
* O 6 R I L I - 0 0 3 0 1 2 1 - 0 1 * G I R l Z h - 0 0 2 O I Z l * O I

ENAMPLE 5 - 2 1 MEMOPV 8 E F W . E GOF

EXbMPLE 5 - GOF I N D-MACHINE

I E G I S T E R OUMP
N E h l I - 0 I U R G - I F I E G - 0 0 0 0 0 F B A S E - 0 0 2 0 0

REL ORG L E N D I E I S CN N U 1 QP
LS: .-----.-----*-----.---*---+---.----r

I O S b 1 0 0 0 1 I O O I O I O I I I 0 1 0 0 1
--> I

E F F E C T I V E AOOY - 0 2 5 6 I N

TAG ' V A L U E OP VALUE L I N K AUX ,----- ------------------ * QS,.---.---------------.----*---,

I .. I ... 1 0 0 1 I F A I U1 1 I O O L l I C,
I S G I I SC00EISEG.C. I I 1 0 1 1 I F A I U(I I I I O O I

->I oz I c o p I MUL I I I l l 1 I
0 3 I I R O I d l 1 I I I L L 1 I -C

--> I

EXA l lPLE 5-3: AFTER GOF - M I T E CUANGEO A U I F I E L O S 1M QS

MEMORY OUl lP

b o o n CONIENIS N O R CONIENTS ----.----------------- ---.---------------
i n RC-2 L E N - ~ ~ a~ RC-2 L E N = ~ ~

+O1 VB-VM A B - 0 0 0 +OL VB-VN 4 8 - 0 0 0
+OZ R A N I - 2 * 0 2 RANK-2
r 0 3 R I I l * 0 0 6 0 1 1 1 - 0 3 + O 3 R l 1 1 - 0 0 3 0 1 1 1 - 0 2
+Oh R l 2 l * 0 0 3 O I Z 1 * 0 1 + O 6 n 1 2 1 - 0 0 2 0 I Z l - 0 1

A O W ---+------------- C O N I E N T S

a11 BC*1 L E W O l
r01 WLW A B - 0 0 0
roz NANK-6
r 0 3 Rill-006 0 l 1 1 - 1 8
+ 0 1 1 1 2 1 - 0 0 3 O l 2 I * O 6
+ 0 5 R l 3 l * 0 0 3 0 1 3 1 - 0 2
+ob a t r ~ * o o z o t r) - o ~

a r l urs c a r A r E o s l r p L r r o RECORO r n c RAM ANO OIII~~SIM VKIOR OF
r n E RESULI OF OOING I n E OUIER PIOOUCI. IUE OICOOE INO III as13111
S I G N I F I E S I H A I 1 1 5 OPERbMO OA I S O E S C R I P l l V t . AN0 I S N O 1 TO B E
E I t C U l E O . I M TWE E-MALUlNF.~ llD I S IGNORED.

E. The E-Machine

The E-machine is a simple stack- oriented computer which evaluates array-

valued expressions by iterating element-by-element over their index sets. The

EM takes its instructions from the instruction buffer (QS), where they were put

by the D-machine. Other machine registers a re used in the same way a s in the DM.

The central task of the EM is to access individual array elements in computing

array-valued expressions. As most of the complexity of the E-machine is related

to this task, we hrst afscuvv Llre xccooing meohanisms in the, EM, Given Illis,

i t io a simple matter to emlitin the instruction set of the machine.

1. Array Accessing

a. Indexing Environment

Array reference instructions a re entered in QS in the form

IFA @VAR 0 MASK

where @VAR is the address of a DA in My and MASK is a logical access mask.

When such an instruction i s first entered in QS by the D-machine, it is done Without

regard to its context in the input eqresslu11. T l ~ e E-machine must, in order to

evaluate it, determine i ts context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruct~on in Q S Is:

determined by how the segment containing the instruction was activated, which in

turn relates to the form of the original expression input to the D-machine.

(i) If the QP field of the top 01 LS is zero, then the environment is simple,

and array references within this Begmcnt art, based djrcctly on the

iteration stack. A simple environment arises in variables not affected by

explicit ai~hsnripting or which are not operands in expressions which cause

expansions to be made by the DM. Fur example, in the statement A+BtC,

all variables have simple environment.

(ii) If the QP field of LS is non-zero, then the environment is complex, and

array references in this segment a re controlled by a pseudo-iteration

stack. In the statement A+B+CC V ; Wl , A and B wi l l have simple environ-

ments, but C will be complex as the reference to C is embedded in a

segment resulting from the expansion of the subscript operator. Note

that this concept is recursive. For example, we can also say that the

environment of the subexpression CC V;WI is simple. This recursiveness

allows arbitrary levels of subscript nesting to be handled by the drag-

along scheme of the D-machine.

The segment containing the IFA @C instruction is activated in the

EM by an SG instruction referring to a sequence of entries in QS of the

form:

XT XCODE(a, ml , c l)

XT XCODE(b, m2, c2) .
Here, a and b are indices for C calculated from the subscripts V and W

by the expanded subscript code in QS. These quantities are, in turn,

computed from the current values in IS. m l and m2 are the maximum

permissible values of a and b derived f rompc, and c l and c2 are change

flags. Thus, these XT entries correspond to the CNT, MAX, and CH

fields of the iteration stack, and are therefore called a p s e u d o - i t e r w

stack (pseudo-IS).

b. Initialization of Access Instructisl~s
b

Each array accessing instruction must be bound to its indexing environment

when first executed. This process is described below for IFA instructions and

.-*

is analogous for IA and IJ.

(i) Determine index sources

The encoded access mask in the AUX field of an instruction i s used

to determine i ts indexing environment. For example, if the environment

is simple and the bit pattern in AUX is 0101 and the IS i s four deep, then

the index sources a r e determined by (O , l , 0,1)/0,1,2,3 which i s the vector

1,3. Call this vector INX. Had the QP field of LS indicated a complex

Indexing environment, then INX wvuld have k e a based on the length of the

pseudo-IS rather than on the length of IS.

(ii) Set up iteration control block

An iteration control block (ICB) is established at the top of QS,

containing the coefficients of the storage mapping function from the DA

for the array (DEL) and the INX vector, calculated above. An ICB contains

one word for each coordinate of the array being accessed, a s shown below. .

The fields marked Q1 and Q2 a re both encoded into the VALUE field of

th
QS using the function QCODE (see Appendix A). The cvilte~lts of the I-

ICB entry are;

field contents I

OP - if simple environment then NT else QT

LINK m-z [€I

A I X 0

Q2 DEL [I]

91 if simple environment then BEL [P] x (MAX field of IS

entry selected by LINK Geld) else 0

In addition, the last entry in an ICB is given opcode NLT or QTiT, depending

on i ts environment.

(iii) Initialize QS entry

The Q1 fields of the ICB just established are added to the ABASE

found in the array's descriptor array to produce the sum S. VBASE is

also fetched from the DAY and the DA is lferased" from QS by subtracting

1 from its reference count, The original IFA entry is then replaced by

FA QCODE(VBASE, S) IPTR 0

where IPTR is a pointer to the beginning of the ICB for this array.

This completes the initialization of array references, In effect, what has

been done i s to replace the context-independent reference created by the D-machine,

by information which binds the reference to i ts indexing environment, and which

contains all information necessary to access the array (in the ICB),

c. The Index Unit

The index unit (IU) i s invoked by the E-machine every time i t executes an:

array-access instruction that has been initialized a s above (i. e., FA, A , J),

Using the information in the instruction, i ts ICB,and IS' or a pseudo-IS, the IU

accesses the appropriate array element and pushes it to VS. The IU functions

differently, depending on the indexing environment:

(i) Simple environment

In this case, we know - a priori that the elements of the array w i l l

be accessed in a simple order, determined by the way IS i s cycled, and this

information can be used to minimize the re-computation of the storage

mapping function for each element of the array. The IU looks at the

iteration stack entries for this array (specified in the ICB), starting at

the right-most coordinate. If the IS entry has changed (noted by CH bit)

but not recycled, then the IS adds the DEL component from the ICB to S;

if there was a change and a recycle, the Q1 field is subtracted from S.

- 110 -

The new S value is stored back in the instruction. This process continues

until an IS entry with no changes is found, in which case none of the

higher IS entries contain changes either. If the iteration is going backwards,

a s in a reduce, then addition and subtraction are interchanged.

(ii) Complex environment

In the complex case, there is no way of predicting in advance how the

iridices w i l l proceed and each change requires an explicit evaluation of

part of the mapping function, This is done similarly to the simple case,

by examining the pseudo-IS for each coordinate of the array. If a change

is recorded (in the X3 part of the XT entry) then the new index (XI part) is

multiplied by UEL. 'i'his result i s added to S and the Q1 field of the IC B i s

subtracted from S with the new S stored back in QS. ina ally, the product

just found is stored in the Q1 part of the ICB. This field thus records

partial values of the mapping polynomial.

The behavior of the machine in array accessing, as described above, is

illustrated in Example 6 ,

2, lnstruction Set

Instructions in the E-machine can be considered in three groups:

a. Simple instructions

b. Control instructions

c. Micro-instructions, used prinlarily for maintaining pseudo-iteration stacks.

In addition, a s seen in the previous section, the instructions buffer contains entries
1.

for pseudo-iteration stacks (opcode XT) and iteration control blocks (NT, QT, NLT, QLT).

Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed

algorithmic description of the E-machine's behavior. The remainder of this section

discusses these instructions in both functional and "programmingff terms.

a. Simple instructions

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA

fetches an array element according to its operand DA and the indexing environment,

and pushes i t to VS with tag ST; similarly, IJ pushes an element of a J-vector to

VS, while LA pushes an address of an array element (tag AT), These instructions

can be considered simply at the programming level, a s just described, although

the mechanism which they invoke is much more complex, a s was seen in the previous

section,

The instructions OP and GOP have as operands the names of arithmetic

functions in the EM (monadic or dyadic). Executing an OP or GOP invokes the

named function, which operates on the top of VS, deleting the operands and pushing

the result, with tag ST. (This process is illustrated in Example 1.) NIL is a

No-op, and does nothing. R e c d from Section D and Appendix C that IRD and IRP

are generated by the D-machine to keep track of intermediate results in doing

drag-along. A s they have no use in the E-machine, they are changed to NIL when

first executed.

b. Control instructions

The main control instructions are 9GV and SG, whose operands are QS

segment descriptors. SGV pushes this descriptor to VS (with tag ST) a id is thus

analogous to LDSEG in the DM. SG activates the named segment by pushing an

entry to LS; in this instruction, the LINK field is sigmficant, in that i t can change

the indexing environment, JMP, JO, J1, JNO, and J N 1 are simply relative jumps

within QS; RED is also a. relative jump, but in a.ddition, it pushes to VS an entry

with tag RT, to be used a s an accumulator for a reduction, (RED is generated by

the DM only in conjunction with reductions.)

MIT is used primarily to activate reduction segments. It takes ST entries

from the top of VS and uses them to push new iterations to IS. When the MIT

execution reaches an SGT entry on the top of VS, the referenced segment is activated

by pushing the descriptor information to LS. (See Appendix C for a description

of how reduction segments a re deferred in QS.)

c. Micro-instructions

 he set of micro-instructions a re used by the E-machine to maintain pseudo-

iteration stacks in QS. 'I'hey result from D-machine expansions of subscripting

and related operations. The micro-instructions are fully explained in Table 3-C,

and the DM expansions in Appendix C illustrate their use.

TABLE 3

E- Machine Instruction Set

Notes:

a, Each instruction is in the for~l l

UP VALUE LINK A U X .

In the discussion, i is the address of the instruction in QS.

b. Instructions starting with the letter "Ift are "uninitialized. That is, they

have not yet been bound to their indexing environments. They are changed to

similar instructions without the leading "I" when first executed.

TABLE 3-A

E-Machine - Simple Instructions

Operation Name Definition

S Load Scalar Push VALUE to VS, with tag ST,

IFA Load Array
FA Element

Load Array
Address

Load
J-Vec tor
Element

O P Scalar
GOP Operator

NIL No Operation

'\
IRD Result
IfiP Dimension

IFA causes initialization, as described in

Section E. 1. B., and the instruction becomes

FA. F A fetches an array element determined
/

by the indexing environment and pushes the

value to VS with tag ST.

LA causes initialization and the instruction

becomes A. A is similar to FA except that

the (encoded) address of the selected element

, is pushed to VS with tag AT.

IJ is similar to IFA, and becomes J after

initialization. The VALUE field i s an encoded

, descriptor of a J-vector, the correct element

of which is computed and pushed to VS with

tag St'.

The VALUE field is the name of a scalar

ai-itllmetic operator, This is invoked and

takes i ts operands from the top of VS, leaving

a result there after deleting the operands.

No operation.

These instructions are used by the D-machine

and are left in QS' when a segment is turned

over to the E-machine. Since they are of no

use to the EM, they are changed to NIL the

first time encountered.

TABLE 3-B

E-Machine - Control Instructions

Operation Name Definition

SGV Load Segment
Descriptor

Activate
Segment

JMP Jump
J O Jump if 0
J1 Jump if 1
JNO Jump if 0

nondestructive
J N 1 Jump if 1

nondestructive

. .
The VALUE field i s a QS segment descriptof; with

addresses relative to K. Make these addresses ab-

solute and push the descriptor to VS with tag>SGT.

The VALUE field is a s in SGV, and LINK, i f non-

zero, points to a pseudo-iteration stack in QS.

Activate the segment by pushing an ent:i.y to LE,

usi.ng t'h.e LINK information to alter tihe QY field uf

LS if necessary.

Potential jump destination is K+LINK, where LINK

is considered as a signed numbcr. JMP is unconc1j.-

tional.

The others a re conditional.on the value on top of

VS. JO and J1 also pop VS.

RED Begin Push an element with tag RT lo V9 to act as n ro-
Reduction

duc l i u ~ accumulator, and jump to K+EINK.

I\OT Mark and Scalar values on top of VS are used to start a new
Iterate

iteration nest in IS. The absolute value of the VS

value, less 1, is the MAX field in IS; the iteration

direction (DM) is fo~ward (0) lf VS ib: positivc,

otherwise backward (1). The CNT field of IS is

initialized to 0 o r MAX, depending on whether DIR

is 0 or 1. Moreover, the first entry in IS' has'its

MRK bit set to I; all others are 0. Each VS value

is popped. Finally, when an S T entry is found i t i s

popped and the named segment is activated in LS.

TABLE 3-C

E- Machine - Micro-Instructions

Operation Name Definition

POP POP Pop top element of VS.

DUP Duplicate Fetch the VS entry, LINK elements from top of VS, and
push it to VS. (Does not disturb original copy.)

ORG . Load IORG Push current value of IORG register to VS (tag ST).

LVE

RPT

CAS

VXC

Cycle

Leave

Repeat

Case

Exchange

Load from
Pseudo-IS

Store in
Pseudo-IS

Index load

Step IS and repeat the current segment if IS hasn't
overflowed.

De-activate the current segment, erasing any associated
IS entries.

Repeat current segment from beginning, (Does not affect IS.)

If top of VS is not an integer scalar, then e r ro r else if the
value is N, then pop VS and execute the instruction at K+N
and resume execution at K+LINK.

Interchange top two entries on VS.

LINK fields a re relative pointers to XT entries. Push X1
(or X2) field of referenced entry to VS, tag ST.

Store top (ST) entry on VS in X1 (or X2) field of referenced
XT entry. Pop VS.

K L is initialized to give XL, in which the LINK field points
to IS or a pseudo-IS element. XL gets the current iteration
value, adds IORG, and pushes the result to VS with tag ST.

XS Index Store Subtract IORGfrom ST entry on top of VS; store in X1 field
of XT entry at K-LINK in QS; if the value just stored is
negative or greater than the X2 field of the same word,
signal an error. Set the X3 field (change bit) to 1, and
pop VS.

ISC
SC

Index Change Set the change bit (X3 field) of the referenced XT entry to 1,

Activate ISC is initialized to SC in same way a s IXL. The VALUE
Segment field of the instruction is a QS segment descriptor. If the
Conditional change bit in the referenced IS or pseudo-IS entry is 1,

then the segment is activated. Otherwise, the change bit
of the XT entry referenced by the following instruction is
set to 0, and this instruction is skipped.

EXAMPLE 6:

This example illustrates typical behavior of the E-machine. Consider the

A P L statement

E[I;l+EP> I-l+(+/(I 2 2 QPT0.-PT[I;])*2)*0.5

and suppose i t is ellcountered by the machine when the variables are a s below:.

EP is 0.0001

I is 2

i s U E i s U 1 1 O

0 1 1 0 0 1

1 0 0 0 0 0 ,

1 1 0 0 0 0

The D-machine code for this statement is as follows:

D-Machine Code f o r Statement i n Example 6 :

Addr Op Operand Comments

2 00 LDS 0.5

2 02 LDS 2

204 LDSEG SCODE(0, 0,O) Empty subscript

2 06 LDNF I -

208 ' LDNF P T

210 SUBS 2 Result is PTC I ; I

2 12 LDNF P T

2 14 GDF SU B PTo . -PT[I ; I
2 16 LDCON 5 0 ' Constant vec tor 1,2,2

218 TRANS 1 2 2 QPTo,.-PTCI;]

2 19 PWR (1 2 2 QPT0.-PT[I;])*2

22 0 RED 1 ADD +/(I 2 2 QPT0.-PT[I;3)*2"

223 PWR (+/(I 2 2 QPT0.-PTCI;l)*2)*0.5 (Call thisR)

LDS

ADD

MOD

LDNF

GT .

LDSEG

LDNF

LDN

SUBS

A SGN

-1
-
1tR

I-ltR

E P

EP> I -1 +R

SCODE(0, 0,O) Empty suhsc r i p t

I "

E

X E L I ; I

E C I ; I+EP> I-1tR

0 0 0

RC=1 LEN=4 Header f o r DA of constant 1,2,2

VB=O A B=54 Res t of DA -

RA NK= 1 .

R(1)=3 D(l)=l

RC=1 LEN=4 Header f o r value of constant 1,2,2

1

2 Value a r r a y

3

Example 6-1 shows the instruction buffer containing the deferred code to

evaluate the sample statement. The transpose operation was evaluated in the D-
. .

machine using beating, and i ts results a re manifested in the access masks (AUX

field) in the instructions at locations 3 and 4.

Four temporary descriptor arrays were created by the DM as follows:

@TI DA for PTC 2; 1 . (Recall that I is 2 in this example.)

@ T2 DA containing dimension of the result of the GOP operation,

in this case 4,2.

@T3 DA containing dimension of the reduction result, in this case 4.

@T4 DA for EC2;l

The deferred code is equivalent to the following:

for J F 0 Step 1 until 3 do - - -
begin

REDUCE := 0;

for K :- 1 s tep -1 ~1~111 0 du - - - -

REDUCE := REDUCE -I. (FT€J;I<] P T ~ ;1(l)*3;

end -

The remainder of the example shows the D-machinets progress through the code

in Q S , and contains comments which explain the machine's actions at each step.

-
E U M P L E 6 -- t - M A C H I N E .---

' a i G I S T E Y DUMP
Y % l T - 1 I = 0 F U t G - 0 0 C 0 0 F t lASE * C 0 2 0 0 ISMK = 0 0

R E L 0 R G L E N D I E I S F N NmT U P C I A MAX D l Y C H MUK
-5: *-----*-----.-----t--.--.---*---*----. 1s : +---+----*--,---.---.

I C 4 C I C ~ O O I O 7 5 I O I O I I 1 3 1 0 0 I I O W l O O 3 l O I I I l I
I 00.3 I 0 0 0 I 0 2 2 I1 1 I I I 0 1 3 I 3 0 I --> I

--> I

EFFECT l V E AUOR = 0LW.J I h US

TAG V A L U t OP VALUE L I N * 4UK
,i: ----- -------------- + 0s:. ----- --------------- ---- ------.

I FMT I F C U O E I - 1 1 0 1 F l I 0 0 1 S 1 J.5 I I I
--> I C I I R E 0 I J I 0 8 I I

0 2 1 s 1 2 I I I A-
03 I I F A I a11 I I ' IUOII
0 6 I I F A I & P I I 1 9 0 1 1 1
95 1 CUP I SUB 1 0 2 1 ~ 1 0 1 1 1

I 0 6 1 I R O I i T 2 I 1 ' 3 0 1 1 1
C l I OP I PNY I 0 5 I 9 0 1 1 I

CI 0 8 I U P I 9 0 0 1 0 1 1 J O l l I -A
)3 0 9 1 SCV I SCOUElSEG.A.1I I I I
cD I 0 1 s 1 - 2 I I I

J
1 1 I M I 1 I 0 I I I
1 2 1 I R U I d l 3 I I 00C . l I
13 I nu I rhn I 13 I 0001 I
1 4 1 5 1 - 1 I I . 1
1 5 I OP I A 0 0 I 0 2 1 OUC,l I
I 6 I OP I MCO I I 3 O C l I

1 1 1 S 1 0 . 0 0 3 1 I 1 I
l a I OP I GT 1 0 2 1 0 0 0 1 I
19 I IA I a l c I 1 3 0 ~ 1 1
2 t I OP I ASGN 1 02 1 O O C l I
2 1 I POP I 0 I I I

--> I

THE 0-MICHINE' H A S J U S T PPSSEO CONTROL I U THE E - W C H l h E . NO E X E C U T I U N
HAS TAKEN PLACE Y ~ T . T F E FUNCTION M A ~ K UN vs M A S PLACEO THERE 8.1
A C T I V A T I N G F U N C T l (H F. W E C O h l E N T S J F THE M A R L ARE THE P * t V I O U S
VALUES OF FREG (-:I) A N 0 I O & G 101 . I N 0 I H E NAME DF THE F U N C I I O N I F) .

SEGMENT A U I T H l h PS EVALUATES THE R k O u C T l 5 N FOUNO I N THE SOURCt
CUOE. r H E I T E R A T I O N STACS I S SET UP TO 0 0 THE C 9 U l V A L t h T OF THE
*FOR J :- 0 STEP I U N T I L 3. I T E R A T I ~ N .

EXAMPLE 6 -- E-MACHINE

MEMORY OUM?

AUOR CL'NTENTS AOCR C C N l k h T S N l : TAG CONTENTS
----*------------------
VYT YC-2 L E N - 9 9 P I RC.2 L t N - 0 5 t F T dF

+ o h o + o i VU=VPT AU=OOO I ST z
+ 0 2 0 r 0 2 RANK-2 P T 0 1 a p r
+ 5 3 6 . +O> R l 1 1 = 0 0 4 0 1 1 1 - 0 2 E 0 1 i I E
t C I I + 0 4 U I 2 l - 0 0 2 U I Z I - 0 1 E P ST 0 . 0 0 0 1
0 I

R C - 1 LEN.04
VB-VPT A B = O O I

YANK- 1
Y l l l = o O Z o I l l = O l

R C - 1 LEN=O4
vB= AB-OdO

R A N K - I
kill-CO4 0 1 1 1 = 0 1

NOTE r H A T I N THE NbMETAeLE . THE t N T R V FOR T H t I U E h T l F I E R F P O I N T S
TC dF. THE TAG OF THE ENTYV I D E N T I F I E S I T AS A F U N C T I O N NAME.
a F I S THE AUOUESS O F THE F U N C T I O N U t S C R I P T U R FOY 6 . U H l C H I S NOT SHOhN.

E X I M P L E 6 -2 : S T A l t OF MEMCYV BEFURE E X E C U T I U N

EXAMPLE 6 -- € -MACHINE
--------------------------..----_------_---____-----___---____--__________________

REG I S I E R DUMP
L E U I T - 1 I O R G - 0 F a E G = OOCOO F B A ' i i = m 2 0 0 l s r r - CG

R E L ORG L E U O I E 1 5 t N L b T OP
LS: * ----- -----*----- r---• ---.--- c--,--* ---.-

cm MAI OIR cn mar
1s: +--- *---- - *---.-- 4 ---.

I 0 1 0 1 0 0 0 ' 1 0 1 5 I 0 1 0 I 1 1 3 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 I . I I
I 0 0 1 I 0 0 0 I 0 2 2 I I 1 I I 0 I 3 I 0 0 I --:* I

--> I

E F F E C T I V E ArlDR = 0 0 0 1 I N a S

I A G VALUE OP 'VALUE L I N K A U
vs:.----.---------- ------, QS:. ----- -.----------------.---- -------

I FMT I F C O O E I - 1 1 9 . F l I *:.*OS aUCHAf f iEO* * *
1 ST I 0.5 I

--> I

EXAMPLE 6 - 3 : A F l E R S

--.-------------------
I R E G I S I E * OUMP

Y
NEYIT - I IUWG = 9 F ~ E G = o e o o o F U A ~ ~ m z o o ISMK -

TAG VALUE OP '*ALUE L I N K A U I
v s : r - - - - - r - ---------------- * ;',S: .---- -------

I FMT I FCOUEI - I .O .F l I *'.*a5 UYCHAff iEO***
I ST I 0.5 I
I l l 1 I 0 I
I SG1 I SCOOEISEG.A . l l I
I ST 1 - 2 I

-->I

T H t B E U O P E I A T C Y P b S H E C I F 6 RT t l l P - . TO d t U S E 0 A S .IN A C C U M U L L I ~ R
FO.(THE WECUCTIGNt A N 0 AUPCEO 1 0 0 5 1 3 I . i.€ SGV I ~ . T R U C I I U N I (A - 3 1
PUSHED I T S OPERAND I l H t OE!CRIPTOR F O E S E G E r N I & I TO V'..
THE s INSTMUCIION I A T 1 2 1 P u s n t o THE - 2 VAL* r c v;.
T M e s E ruo ENTRIES WILL UE ~ S E O 01 IFIE MII I N S ~ ~ U C I I J ~ TO AC-IIULIE
I H k YEDUCTION SEGMENT.

EXAMPLE 6-4: AFDER YEO* SGV. A h U S

E X A M P L E 6 -- E - U A C ~ I ~ ~ E
-------------------*--*------------------

L E G I S I E R DUMP
L E w I T = 1 I O R G . 9 FREG - 0 0 0 0 0 FBASE - 0 0 2 C C I S M K - 01

R E L ORG L E N 01E I S F N N b l OP CTI M A X 0 1 ~ cn WK
,s: *-----+-----*-----.--*---.---*---r 1 s : ----- -----*--- ------ +

I O 4 0 1 ~ 0 0 l 0 1 5 I U I J 1 1 1 3 1 0 0 1 I O O O 1 0 0 3 1 O I l I 1
I 0 I 2 1 0 0 0 1 0 2 2 1 1 . 1 I I 0 1 3 1 0 0 1 1 0 0 1 1 0 0 1 I 1 l l 1 l
1 0 0 0 1 0 0 2 I 0-27 I I . I 1 I 0 I 1 1 0 0 1 --> I

--> I

E F F E C I I V E AOOR = O J O Z I N F S

T A G VALUE OP VALUk L I N K AUX
y S z + ----- + -----------------. 45:. ----- + ------------------ + ----. ----- +

I F M I I FCOOt l -1 .O. f I I * * * G S JNC l iANGEO** *
I S 1 I 0.5 I
t a r 1 0 I

-->I

M I 1 U S E 0 I H E S C A L A t - 2 CN TOP OF VS T J S I A Y I A N k Y I T E C I 1 I U : d .
THE LENGTH J F I H E I l E R A T I O . * I S 2. A N 0 I W S I H E MAX F I E L O I N T H E B T E R A l l O N
S T A C K IS SET 10 I. HE NEGATIVE SIGN OF r n E v s E ~ I Y Y SIGNIFIEIO THAI I H E
I r E * I I I O N I S T U RUN BACKYARDS l D I R = l I ; H t N C E CTR STARTS AT 1 IWS'EAO OF 0.
THE NEXT VS ENTRY MAS A SEGMENI J t S C R l P l U Y FOR SEGMENT A I N 2s.
* I 1 U S E U T H I S TO A C T I V A T E I * € SELMENI . BY P U S H l h G A NEW t h T Y V 1.3 LS.
%OIE r n A r IN IHE h ~ b LS ENIRV. T n E N.I $11 IS I; r n t s W A S mi PYEVIOUS
V A L U t OF NEWIT. N m I T I S NO* 8 dECAUSE A N E b I I E Y A l l U N H A S B E E 4 S I A W I E O .

EXAMPLE 6 - 5 : A F I E Y M I 1

I l E G I S I E U DUMP
N t h 1 1 = I I U N G 0 FREG - 0 0 0 0 0 F I A S E - 0 0 2 0 0 I S M & = G I

YEL OWG L E h OAE I S F N h Y T (iP CTY M A X O I R Ct4 WYK
1 s ; .-----*-----.-----*--+----.---.---.----. 1s : r-----r-----*---.---r---* - -

1 0 4 1 1 0 0 0 1 0 1 5 I C I O 1 I I 3 1 0 0 1 I G O O I C O 3 I O I i l l 1
I O l 2 1 0 0 3 1 9 2 Z I L I 1 I O I > I O O I I O O L I E O I I 1 1 1 1 1 1
I 0 0 1 I OCZ 1 0 0 1 L n I 1 I 0 I I l 0 0 I --> I

E F F E C T I V E AOOR C 0 0 1 , Ih CS

TAG
"5: .----- *-

I F M I I

VALUE . OP VALUE L I N K A U K .----------------* "S:*-----+------------------*---+-----,

F C O O t l - 1 . O o F l I ***CIS UNCHANGED***
I S l 1 0.5 I
I R I I 0 I
I S 1 I ? I

-->I

T i iE F I N S T I N S T R U C I I P N C F I H E h E d L I - A C I I V A T E O SEGMENT 1SEG.A) I S S .
A 1 O S 1 2 i l . T H I S I N E T R U C I I O N PUSHED I T S UPERANO I 2 1 10 VS.

EXAMPLE 6 -- E-MACHINE -- EXAMPLE 6 -- E - M A C H I M ---
R E G I S I E 3 DUMP REGISTER OUMP

N E Y I l I 1 10RG = 0 FREG - 0 0 0 0 0 FBASE * OOICC I S M . 0 1 N E b l l - 1 IURG = 0 FYEC . 0 0 0 0 0 FUASE - 0 0 2 0 0 I S I W 0 1

REL ORG L t N D I E I S F N N b l UP CTR MAX OJY CH W K
L S * ----- + -----,-----.---.--- *---*----r 1s : c----.- ---- c-+---.---a

I O I O 1 0 0 0 1 0 1 5 1 O l J I 1 1 3 1 C O I 1 0 0 0 1 C O 3 I O I 1 I 1 I
I 0 1 2 1 0 0 0 1 0 i 2 I 1 I 1 1 0 1 3 1 0 0 I I O O l I O O l I L I L I 1 I
1 0 0 1 I 0 0 2 I O C I I I I 1 I 0 I I I 0 0 I --> I

--> I

E F P E C l l V E AOOR = 0 0 0 3 I N US

1AG VALUE OP VALUE L l h G AUX
"S,+-----*------------------. gS:*----.-----------------*----,------+

I FMT I FCODEI-11J.61 1 0 0 1 S 1 3.5 I I I
1 5 1 1 0.5 I 0 1 I PEO I 0 1 GU I I
~ a r 1 0 I 0 2 1 s 1 2 I I I A-
I S 1 I 2 I 0 3 1 F b l i l C W E l V P T . I I I 1 9 I I

-->I 0 1 1 I F A I d P 1 I I D o l l I
0 5 I CUP I SUB I 0 2 1 0 0 1 1 I
0 6 1 I R O I a 1 2 I 1 0 0 1 1 I
0 7 l L P I P.R 1 0 5 1 0 0 1 1 I
0 8 I CP I A00 I 0 1 I 0 0 1 1 I -A
0 9 1 SGV 1 S C O D E l S S i . A s L I I 1 I
1 0 1 5 1 -2 I I I
11 I WIT I o I I I
1 2 I I R O I d l 3 I I O O O L I

2 0 I OP I ASGb 1 0 2 1 0 0 0 1 I
2 1 I PUP I C I I I
2 2 1 N L T I P C U O E l l ~ 1 1 I 0 1 I 1

R k L ORG L E N U I E I S F N NbT 9 P CIR r r x OIR cn MRK
,s: *-----,-----*-----*---+---*---em--+----. I s : .-----*-----t--.---*---•

EFFECTIVE ADUR = CGOI I N US

TAG VALUE UP VALUE L I N K AUX
,S,+-----.------------------+ gS:.-----.-----------------*----,------.

I F M I 1 FCODEI-1.O.FI I DC 1 S 1 3.5 1 1 I
. I S l 1 0.5 I 0 1 I R E 0 I 0 I 0 8 1 I

I R T I 0 1 0 2 1 s I 2 I I I A-
I S 1 1 2 I 0 3 l F b l WO€lElYPT,Sl I 1 9 I 1
I S 1 I 0 I 0 4 I I F A I dPT I I 3 0 1 1 I

-->I 0 5 I COP 1 SUB 1 0 2 1 0 0 1 1 I
0 6 1 I R O I d l 2 I I 0 0 1 1 1
0 7 I OP I P r R 1 0 5 I 0 0 1 1 I
0.9 I OP I 4CO I 0 7 I 0 0 1 1 I - A

3 9 1 S G V I S C O U E l S E G . A ~ l l I I I
LO 1 s 1 - 2 I I I
1 1 I M I 1 I U I I I
1 2 1 1 1 0 1 d l 3 1 I 0 0 0 1 I
I 3 I O P I PbR I 1 3 I 0 0 0 1 I
LC 1 s 1 - 1 I I I
1 5 I OP I AUO I 0 2 I 9 0 0 1 I
1 6 I OP I W O 1 . I 0 0 0 1 I
I T 1 S 1 O.JJO1 I I I
1 8 I UP I G I 1 0 2 1 0 0 0 1 I
1 9 I I A I d l 4 I I ' I O O L I
2 0 OP I ASGN i oz i o o o i i
2 1 I POP I 0 I I I
2 2 1 N L l I F C J U E I L . l I I 0 1 I I

L O C A I I O N 3 I N US, WHICIW PREVIOUSLY C O N I A I N E 0 I N 1FA I N S T ~ ~ U C T I O N I d A S
BEEN L N I l I A L l Z m TU FA. I H E VALUE F I E L D NONi CONTAINS VPT . THE B I S C
AOMESS YEFEREKEO IN WE UA A T a l l . ANU r H E n e a s I=II FROM THAI JA.
I N A O O I I I O N I THE L I N K C I E L O OF 9 S 1 3 i l I S Nil. L R E L A T I V E POINTER 1 0
O S I 2 2 ; l . IIHICH : I S THE I l E R b T l O N C U N l R U L BLUCK FON 1 k t S AYRAY. THE jECUN0
ELEMENT UF 1HE I C U ENTYY 1I.E. THE 9 2 F I E L O I I S THE OEL FGR T H I S ANdAY.
T4KEN FRUM 4 1 1 . I S E E E'XAMPLE 6 -2 . FOR CONTENTS OF 1 1 1 . THE F I Y S T E L i M t N 1
IOI FIELOI IS OEL TIMES r n E a r x VALUE IN THE IOP ENTRY ON IS.

L S HAS NO1 CHANGE0 * E l B tCAUSE THE NENLY-CaEATEO F A I Y S T P U C l l O N H A S .
N C I YET U C t N EXECUTED. THE I N l l l A L I L A I l U N P U C E S S ALSU ERASEU THE 0A
S T A R I l f f i A 1 a l l . WHlCM I S NO LONGER YtFEUENCED ANYWHERE I N 1HE MACWIbE.

THE AOORESS I N 9 S l 3 ; l H 4 S BEEh UPDATE0 0 1 THE I K I E X U N l 7 AND THE V A L U t
I T REFERS 1 0 HAS BEEN PLSHEO 1L VS. THUS THE VALUE 1 0 1 UN 1UP UF VS
A 1 T H I S POINT I S P T l Z i l l . I R E C A L L THAT 1He E F F E C T I V E ADDRESS OF AN -
A R R A Y ELEMENT R E F E R ~ N C E C IN AN FA INSTRUCTION IS r n E SUM n~ 11s COOEU
PAYTS. PLUS 1 1 1 0 C U W E h S A l E FUN THE U IRAV HEAUER NCROI I.

\ EXAMPLE 6 -8 : AFTER FA

EXAMPLE 6 - 7 1 AFTER I F 1

8
.v

n
-
I

x
-

D
X

--

 R

n
 N

x

-
x

-

D
-

D

-
y

l
n

P

m

z
-

r
m

-

X

0

2
 -
I

m
 o

-

V
I

H

::xr
 P

C
..

*
-
 --

O

-
m

"
T
?
 €

..

"+
x

"
C

lO
r
m

r

m

n
lS

Z
Z

P

 0
.
0

0

1
 I

D
+

m
C

-r

n
.

g

z
2

-
g

-

I
"

%

'

*
m

-

.. -
0

:.
si

m

z
-

-
.

=
€

-
2

~
:

P
 f

w
 -

-
1
2

;z
z

3
,"

 g
-
2

fw
 <

 0

-
Y

)

8
0

-

'v
 - '2 %
g

P
Z

,

,
-
I

D

m

0
0

0
0

0

-

-
-

N
U

N

U

a
o

o
m
.
.

o

I
L

"
"
I

-
4
4

m

I
2

--
--
--
--
--
--
--
--
--
--
--
--
-i
n

I
~

~
~

~
c

~
~

~
I

~
I

V
L

O
I

~
D

V
~

~
O

n

=-I

-.
0

0
-

0
0

0

f

0

m
m

m

m

m
 m

I

C

--
-

-
-

- -

I

m

-
0

-

I

y
l

<
 <

I

. .
.

fw

v
 v

-
P

a
r

-
,

-4
I

--
-

?

. .

I

-
"
I

I

- -

-

EXAMPLE b -- E-MACHLNE ----___-_____-_--_---
OEGISTER W M P .
h E h l T = L I O R G . 0 FREG 1 0 0 3 0 0 F,BASE - 0 0 2 0 0 I S M I - 01

- REL ORG L E N D I E I S F N N h l U P CIR M A X OIU CH WK
LS . .-----,-----.-----,---*---.---.---,----. 1s : .-----,-----r--*---*---,

I 0 ~ 0 1 0 0 0 1 0 7 5 1 0 I 0 I 1 1 3 1 0 0 I 1 0 0 0 1 0 0 3 1 0 I l I ~ 1
I o I Z I C o o I o 2 z 1 l I I I O 1 3 1 C o I I 0 C 1 I 0 0 1 I 1 I 1 I . I
I 0 0 6 1 0 0 2 1 0 0 1 I I I I 0 1 1 1 0 0 1 -->

--> I

E F F E C T I V E ADOR = 0 0 0 8 I N 0 s

TAG VALUE O P VALUE L I N K AUX
VS:+----+----------------+ QS:+-----*--------------.----c-----+

I FMT I F C O O E ~ - I . O I F I I * * *US U N H A N G E U * o *

I ST 1 0.5 I
I R 1 I D I
1 s r 1 0 I

-->I

PYR (A T P S l l i l l MAS A P P L I E D 1 0 THE TOP 2 ELEMENTS ON THE VALUE STACK,
0 A N 0 2 i THESE OPERANDS r E L E DELETED ANL! THE RESULT OF I H E U P E R A T I O N
H A S BEEN PUSHED I 0 PS. I d 2 * 0 1

EXAMPLE 6 - 1 1 : AFTEW BUR

___--------------------------------------
REGISTEO DUMP
h E L i l T . I I O R G - 0 FREG - 0 G C 0 0 FBASE = OOZOC I W K - 0 1

REL ORG LEN UIE IS FN U ~ I UP C T R MAX 0117 cn r a r
LS: ,----,-----+-----+--- + --,--- *---• ----. 1s : ,-----+-----*---.---,-- ,

I O L O 1 O 0 0 1 3 1 5 1 O I O I l I 3 1 O 0 1 1 0 O O ~ O O 3 1 O ~ l I l I
I 0 1 2 l 0 0 0 1 0 2 2 I I I I I o I 3 I ~ o I I O o l 1 0 0 1 L l I l l l I
1 0 0 1 1 0 0 2 1 9 0 1 1 I I I 1 9 1 I 1 0 0 1 --> I

--> I

E F F E C T I V E AUOR - COOP LN OS

T A 6 VALUE OP V4LUE L I N K AUX
~s:+----+----------------+ QS:+-----+-----------------+----+------,

I FMT I FCUDEI-I.O,FI I ***as UWIANGEO***
1 ST 1 0.5 I
I S 1 1 0 I

-->I

EXAMPLE b -- E-MACHINE .--
OEGlSTER DUMP
N E Y l I = 0 I O R G = 0 F I E 6 - 0 0 0 0 3 FUASE 0 0 2 0 0 I S M & = 0 1

REL URG L E N D I E I S F N N U 1 QP C I R MAX O I R C H I R K
LS : .----*-----*----*---.--+---.----. 1s : ----*-----*--,--*--.

1 O s O I o o o I o 1 5 1 o I D I I I 3 l O O l I o o o I o o 3 l o I I l l 1
I 0 l 2 1 0 0 0 1 0 2 2 1 1 I l I O I 3 1 0 0 1 1 0 0 0 1 0 0 1 1 I I I I L I
1 0 0 0 1 0 0 2 1 0 0 1 1 I I 1 I 0 I I 1 0 0 1 --> I

--> I

E F F E C T I V E AOUR = 0 0 0 2 I N CS

T I G VALUE U P VALUE L I N K AUX
VS:+ -----, ------------------ r 0s:. ----- ---------------- c--.--+ ------ +

I F L I I FCOOEI -1 ,016) I * o * a s urtcnrffiro***
1 S I I 0.5 I
I S 1 1 0 I

- - > I

I N THE L A S r FRAME. THE SEGMENT M A S COMPLETED1 S I N C E I T S R E L A T I V E
ADDRESS U A S THE SAME A S 1 1 s LENGIH . W Y E V E R , S I N C E THE I S 0 1 1
*AS SET FOR THAT SEGMENT. THE I S ,AS S T E P P E 0 B U T U I O N ' I UVERFLOY.
THUS. L S WAS R E - I N I T I A L I L E O TO THE a E G l N N l N G OF THE SEGMENT. I 0
LIE R ~ P E A T E D YIIH T n E NEW IS VALUES. n o r € vnrr h E u i r NOW IS 0.
A F rn l s p o i n r . THE E W I V A L ~ N T OF THE ALWLIC =REDUCE :- R ~ O V C E + ...=
H A S BEEN OONE FOR J - 0 A h 0 K.1.

THE SECCNO P ~ S S rnaoucn r n E n t D u c r l u N SEGMENT PROCEEOS SIMILARLY
TG THE F I R S T . EXCEPT T H A I NO F U U I H E U I N l T l A L l L A I l U N S N E E 0 B E OONE.
AT THE END OF T H I S I T E R A I I U N . REL'LEN I N L S AND. A S BEFORE. I H E
I T E R A T I O N STACK b l L L B E STEPPED. HOUEVER. T H I S T I M E I T OVERFLObS.
SO BOTH L S A N 0 I S ARE POPPED* R E I U R N I N G THE MACHINE I 0 THE
M A I N SEGMENT. (S E E NEXT F I G U R E)

EXAMPLE 6 -13 : B E G I N N I N G U F SEGMENT U I T H S T E P P E 0 I S

THE AOO UPERA~ION. SEEING THAT I T S SECUNO W ~ R A N U nrs r A s RI.
GIVES AS I T S RESULI m E F I R S T OPERAND, d l r n r A c ST. rnls IS
ACCORDING TO TAE O E F I N L T I O N OF REJUCT IUN.

EXAMPLE 6 -12 : AFTER A 0 0

EXAMPLE 6 -- E-MACHINE .--- EXLMPLE 6 -- E-MACHINE ---
REG I STER DUMP R E G ~ S T E M DUMP
N t b I l - 1 IORG - 0 F W G - 0 0 0 0 0 FGASE - 0020C ISM& = 0 0 N E N I Z - 1 IORG - 0 FREC - OOGOO F8ASE - 0 0 2 0 0 ISMK - 0 0

REL (1116 L E N O I E 1 5 F N NbT 2P
L S * *-----.----*---.---.--.---+-.----* CTR MAX 0 1 R C M d R L

[s : r-----.-----.---.--.---+

I O I O 1 o D O I O ? 5 1 O I J I l 1 3 I l O I 1 O O O 1 0 0 3 1 O ~ l I l I
I O l 2 I 0 0 o I o ~ 1 l I L I O I 3 I l O I - > I

--> I

ECFECTIVK AOOR - 0 0 1 2 I N 4 5

TAG VALUE OP V I W E L I N K Y I X
"s:.-----*----------------& gS;.-----.--------------+---.-----.

I F I T I F C J O E I - l v 0 , F I I 0 0 1 5 1 0 . 1 I I I -
I ST 1 0.5 I 0 1 I R E 0 I 0 . I 0 8 1 I
I S T 1 1 I 0 2 1 5 1 2 1 I I 4 -

->I 0 3 l F A l O C M € t V P l t I l . I I 9 I I
OC l F A I P L t X E l V P T r O l I 1 9 1 1
0 5 I COP . SUB I 0 2 1
0 6 1 N I L 0 I I
0 7 l OP PMK 1 0 5 1
0 8 l OP ! AUO I 0 7 l
0 9 I S i V I S C ~ (S E G . A ~ l l I I
1 0 1 5 - 2 I I
1 1 I MI^ 0 I I
1 2 1 I 1 0 173 1 I
I 3 I OP I PYR I I 3 I
I+ I s -1 I 1
15 I UP I ADO I 0 2 I
16 I OP I MOO 1 I
11 1 5 1 0 .0131 I 1
18 1 OP I GT 1 0 2 1
1 P I I A 1 4 1 4 I I
2 0 I OY I ASG4 1 0 2 1
2 1 I PUP I 0 I I
2 2 1 PJLT I OCO)EIL.LI I 0 1 I
2 3 1 NT I OC03El6 .21 I I
2 6 I N L l I 4 C U J E (l r L I I 0 1 I

--> I

REDUCE SEGMENT I S DONE. I T S R E S U L l 4 1 1 I S ON TOP O F VS.
N O I E THAT N E Y I T WAS RESIOREO T U 1 Y E N L i MAS P O P P E Q

OJOL
0+309

OJOL
0 ~ 1 0 1

rnls s r & E C o n n E s P o N o s 10 T ~ E COMPLETIOM OF TWE -FORK- LOOP WITH I)-0.

EUA3VLE 6-14: AFTER RETURN FPOM REOUC71(3..

REL ORG LEN OR IS IN NWT OP C T R MAX OIR CN m n r
LS: .-----.-----*-----,--.---,.---*---*----. 1s : .-----.-----.---*---.---*

1 0 6 0 1 0 0 0 1 0 1 5 i 0 1 . 0 1 1 3 1 GO 1 I 0 0 0 1 0 0 3 1 0 I I I 1 I
1 0 2 0 1 0 0 0 1 0 2 2 1 L 1 1 P 0 I 3 I 0 0 I --> I

--> I

E F F k C l l V t AOOR = OCZO I N OS

TAG VALUE OP VALUE L I N K AUX
VS:.----.----------------. CS:.-----.-----------------.----,-----*

1 F M l 1 FCOOE(-1.OeEI I C,O I S 1 0.5 I I I
I S T 1 1 I c 1 I R E 0 I 0 I 0 8 I I
I AT I OCOOElVE.8l I C Z l S I 2 I I I A-

-->I C 3 I F A I OCGOElYPI ,+ I I 1 9 I I
C 4 I F A I UCODtlYPT.Ob I I 9 I I
C5 I W P I sun 1 0 2 1 0 0 1 1 I
C 6 I N I L I 0 I I I
C T l OP I PUB I 0 5 I 0 0 1 1 I
C 8 I OP I A00 I 0 1 I 0 0 1 1 I -A
'09 1 SGV I SCOOEISEG.Ar l I I I I
L O I S 1 - 2 I I I

a i s IO.WOI
Ld I OP I G I
LV I A I o c c o o t l v c . 8 1

Zl I POP I 0

i 0 2 i 0001 i
I 0 6 I I
I 0 2 I OOOL I
I I I

Z? l NLT I QCC4UElL.ll i 0 1 i I
23 1 N l I Q C W E (6 e Z I 1 I I
2% I NLT I O C U) E I L I I I 1 0 1 1 I
'ZS I N L I I I P C (P E (3 e l l I I 1

OSIIZIOI T~RWGII ~ I L J ~ I +YIE.BEEN EXECUEO. NOTE TWT rnr IA rr Q S (L ~ ~)
MAS TRANSFORMEO T O L M r n A r I T S RESULT IS l n t cooro r o c i a r s s v l rn
TAG 'AT' ON 1 0 P OF #S.

I
EXAMPLE 6-15: OEFORE A S 2

EXAMPLE 6 -- E-MACHIME .---
REGISTER OUMP
N E w l T - 1 1 0 R G - 0 FREG - 0 0 0 0 0 FBASE 0 0 2 0 0 ISMK - 0 0

TAG VALUE OP VALUE L I N E AUX
VS:* ----- ---------------. 'Js: *---- ---------------- ---- ------*

I FMT I FCWEI-I.O.FI I ***as UNCHANGED***
-->I

AFIER ASGN AND VPOP. i H E VALUE CN v s HAS BEEN STUREO A r v E * l * a IN MEMURY.

SINCE rut SEGMENT HAS BEEN'COMPLEIEU, THE 1 s WILL BE S ~ E P P E O LNG
L S W I L L BE RESET TO 1 H E B E G I N N I N G S I N C E THERE I S NO OVERFLOW.
rnls STAGE CURWESPONO~ TO ONE PASS THROUGH rut =FOR J. RANGE, WITH 1-0.

F .,,--
W
Cn

MEMORV DUMP

I AOOR CONTENTS N O R C O N l E h l S & O W CCNTENIS
----*-------------- ---*------------------ ----*-----------------
P RC-1 LEN-05 VPT R C - I L E N - 0 9 VE R C = I L I N - I 1
*01 VB-YPI Ae-OCO * C l 0 * 0 l 0
* 0 2 RANK*?. * l l Z 0 * 0 2 I
+ 0 3 R l l l ~ 0 0 4 O l l l ~ 0 2 * 0 3 9 * 0 3 1 '

r 0 1 1 1 2 1 - 0 0 2 0 1 2 1 - O I *34 I * 0 1 0
* 0 5 1 r 0 5 1

i E RC-L L E N - 0 5 *36 0 * 0 6 0
* 0 1 VB-YE A B = 0 0 0 * 0 T I * 0 T 0

* 0 2 RANK-2 0 8 1 * 0 8 I '

* 0 3 R l 1 1 * 0 0 1 U l l l - 0 1 * 0 9 I
* 0 4 R 1 2 1 - 0 0 1 0 4 2 1 - 0 1 * I 0 0

e l l 0
* I 2 0
* 1 3 0
I 0
* I 5 0
* I 6 0

E N T R I E S FOR)TI ,ill0 NOW HAVE REFCOS OF 0, ANU HAVE BEEN AUOEO I 0 THE
L I N K E D A V A I L A B I L I T Y L I S I . AL IHOUGH T H I S I S NGT S W b N HERE.
r n E ENTRY IN THE VALUE ARRAY FOR E . A T V E * ~ IN MEaoav , HAS BEEN
CHANGE0 TO I BY THE ASb>N OPERATION. T H I S t N l ' 9 Y I S E (2 i O) .

EXAMPLE 6-17: STATE OF M A F I E R F I R S T T I M E T H R O U M THE SEGMENT

EXAMPLE 6 -- €-MACHINE __________-____--_--_------_-----_---_---------------------------------
REGISTER DUMP
NEWIT - 0 IURG - 0 FREG - 0 0 0 0 0 FBASE - 0 0 2 0 6 I S M K - 0 0

REL ORG L E N U I E I S F N NUT OP CTR MAX O I Y C H)(RK
Ls : *-----*-----*-----*---*---*---.---*----* 1s: *----+---c-+---*---•

I M ~ 3 1 0 0 0 1 0 7 5 1 0 1 0 1 1 1 3 1 0 0 1 1 0 0 3 1 0 0 3 1 O I L I L 1
I 0 2 2 I OCO 1 0 2 2 1 1 1 . 1 I 0 1 3 I C O I --> I

--> I

E F F t C T I V E AOOR - 0 0 2 2 1 h QS

TAG VALUE OP VALUE L I N K AUX
\s:* ----- --------------- "5: *----- -------------- *---+-----*

I FNT I FCf lOEl-1eO.FI 1 0 0 1 S 1 0.5 1 1 I
-->I 0 1 I RED I 0 1 0 8 1 I

0 2 1 5 1 2 I 1 I A-
0 3 I F A 1 P C O O E l V P T o 4 I . I 1 9 I I
0 6 I F A I O C O O E ~ V P T I ~ I I 1 9 I 1
0 5 I GUP I SUB 1 0 2 1 0 0 1 1 I
0 6 1 N I L 1 0 I I 1
0 1 I OP I P r R 1 0 5 1 0 0 1 1 1
0 8 I U P I I O U 1 01 1 0 0 1 1 I - 4
0 9 I SGV I SCUDEISEG.Ae1I I I 1

t 2 I N I L I 0

I 9 I A I ' X O O E I V E I L I I I 0 6 1 I
2 0 I OP I ASGN I 0 2 I 0 0 0 1 1
2 1 I PUP I 0 I I I
2 2 I N L T I r Y U O E l I ~ 1 l I 0 1 I 1
23 1 NT I W O U E l b . 2 1 I I 1
2 1 I N L T I X U D E I L I I I I 0 1 I I
2 5 1 N L T i d C U O E 0 r l l I I 1

--> I

EXAMPLE 6-10: REGISTERS AFTER NEXT THREF PASSES TUROUGH SEGMENI

R L G l S T E W DUWP
h E W I T = 3 I O R G = C F R t G = ' 0 0 G 0 0 F B A S E = 0 0 2 0 0

REL URG LEN DIE IS FN N ~ T UP
L s : + ----- + ----- + ----- +---+---+---+---+ ---- +

I ocm I c o o I 07s I c I o I I 1. 3 I oo I
--> I

TAG VALUE O P V A L U E L I N K AUX
y5:+ ---- + ----------------- + 0s: + ----- + ----------------- + ---- + ------ +

I FMT I F C ~ D E I - ~ ~ O D F) I --> I
--> I

T H E L A S T F I G U R E I l A S THE END OF T H E SEGMENT. T r U S r I S MA5
STEFPED. S[NCE I T OVERFLOWED, I S A h 0 L S WEHE POPPEO.
O E - U C T I V A T l b G T H I T SEGMEhT C H A N C t O CONTROL FWOP THE E- TO T H 3 D-MACHIN€
AND THEREFORE Q I WAS R E S E I TO THE B E G I t 4 N I N G OF THE SECM€YT
JUS6 COMPLETED.

EXAMPL,E 6-19 : R E G [S l E d S A T C C k P L E T Y C N OF k - M h C H L N E E V A L U A T I O N .

--
MfMOXY DUMP

ABOR CONTENTS ----,-----------------
APT H C = 1 L E N = 0 5
*OL Vt)=vPl A B = 0 0 0
t o 2 R A N K = 2
+ 0 3 R (l l = 0 0 4 O(l) = 0 2
+ 0 4 R (Z I = O G Z D (2) = O I

& D o n CONIENTS
----+----------------
VPT R C = l L E N = 0 9

+ 0 1 G
+ 0 2 0
+ 0 3 0
+ 0 4 I
+ 0 5 L
+ 0 6 0
+ 0 7 1
+ C 8 1

AUDR C O N T E N T S --- ,---- - ------ -------
V k RC=1 L E N = l 7
+01 0
+92 1
+33 1
+.54 0
+35 1
+36 0
+07 0
+38 1
+39 1
+LO 0
+ L L 0
+ L 2 1
+ L 3 0
t L 4 0
t L 5 C
* L b 0

N O T I C E Tk'AT THE b A L U E S AT V E + 9 r l O r l l r l 2 H A V E CHANGED FROM EXAMPLE 6-2 .
T H E S E CORRESPOND T O E (2 ; B t T H E E N T I R E ROW O F E TO BE C A L C L L A T E O .

APPENDIX A

SUMMARY OF REGISTERS, ENCODINGS AND TAGS

This appendix summarizes the uses of all machine registers and details the
s.

. .
. . .

fields in the various stacks. In addition, the several encodings used a s parametric

. . functions in the design description a re outlined. Because of the parametric nature
. .

of the design, not much will be said about field sizes except to indicate the range

.. . .
of the contents of a particular field or register. We assume that in any particular

. .

incarnation of such a machine, all the fields are "big enough" to contain their

. . contents. In the detailed algorithms of Appendix B, the registers a r e construed

. . .
. . . as arrays of scalars with some kind of encoding imposed upon the contents, if

I

necessary. While not completely rigorous, this approach serves to show how the
,::.*. :

machine works without having to explicitly encode and decode all references to
. .. .

' . ..

, . .
. .

registers at each step,
.: 0: ', .. :

.

A . Registers
. .

1. LS (Location Counter Stack)

. .
Field Column
Name Index Contents

RE L 0 Relative location in segment. Generally points to the - next
. . instruction to be fetched.

ORG 1 Segment origin. For D-machine segments, this is relative to
FBASE. In the E-machine, the effective address i s +/LSC L I - 1 ; O , 1 I
and in the D-machine i t i s FBASEttILSC L I - 1 ; 0 , l I . -

LEN 2 Length of segment. For D-machine segments, this is in words,
and for the E-machine, this is the number of QS entries for the
segment,

v

Segment mode. This field is 0 for the D-machine and 1 for E-
machine segments.

Iteration mark. Has value 1 if this segment is associated with
an iteration in IS; otherwise i t is 0.

FN 5 Function mark. Has value 1 (else 0) if this is the main segmen.t
of an active function. .- , . .

. . ,

NWT 6 , NEWIT value, stacked when a new iteration is activated,

&p 7 QS pointer. Used by index unit for e.xpressibn indexed:from
QS rather than IS. (See Section E.)

.

2, IS (Iteration Control Stack) . ' . : , ' : , . . .

Field Column
Name Index Contents

CTR 0 Current iteration count. This value is dways rion-negative and
varies between 0 and the value in the MAX field, in the direction
indicated by the DIR field.

MAX 1 Maximum 'iteration count.

DIR 2 Direction of count. (0 for positive, 1 for negative.) 'If positive,
then CTR is initialized to 0;otherwise it is initialized to MAX.

CH 3 Change. Used by STEPIS routine in main control cycle to mark
all IS entries which have changed since the last cycle. . '

MRK 4 Mark. Has value 1 for the outermost iteration of each nest.
Otherwise, it is 0. (See ISMK register, below.)

3. VS (Value Stack)

Field Column
Name Index Contents

TAG 0 Tag field. . Identifies kind of entry in value field. ' '

VALUE 1 V due.

4. Q 6 (In~tmction T\uffer)

Yield .Column
Name Index Contents . '

\

OF 0 .R-machinc nficrn.iinn nndc. Thc QS aontn.i.no inatru3tion.o dbfcrrcd
by the D-machine for later execution by the E-machine. Occas-
sionally this field will contain a tag, such a s XT, for an entry
which is a temporary value for the EM rather than an executable
instruction.

VALUE 1 Value. Contains the value in immediate instructions and the
operand for others. . .

LINK 2 Link. This is a signed integer used to reference other instructions
and entries in QS. It is taken relative to the QS index of the entry
in which it is found. By keeping links and segment origins relative
in QS, all deferred code is relocatable.

AUX 3 Access mask. Contains an encoding (MCODE) of the iteration
indices to use in accessing an array expression.

5. NT (Nametable)

Field Column
Name Index Contents

INX 0 Symbol index. Since NT is content-addressable, the value of
INX must be carried with each entry. These indices (or names)
may be assigned in any arbitrary way. There is no built-in
restriction on their use.

TAG 1 Tag. Same a s tag field in VS. I

CONTENTS2 . Value. SarneasinVS. . ,

In the APL machine, M is considered to be a vector of length MLENGTH of words

which can be addressed between BOTM and TOPM. The particular encodings used

in M are not specified except a s necessary, e. go , in instructions such a s LDSEG,

the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar

value is assumed to take up one machine word, as is each instruction. This is

clearly inefficient in space utilization, and it would be expected that any real

implementation would specify more reasonable and detailed encodings for various

kinds of values. Nothing in the machine design is based on the word as the primary

unit of memory in the machine, so there should be no problem in making such

modifications.

7. Other Scalar-Valued Registers

Register
Name Contents

LS index. (All stack indices point to the next available entry
in the stack.)

I1 IS index.

VI VS index.

&I ' QS index.

BOTP
TOPP POOL pointers for M allocation.

ARRAVAIL
DAAVAIL. Pointers to beginning of availability chains for M allocation.

FREG

IORG

FBASE

VS index of innermost active function mark. When a function
is activated, the previous values of FREG and IORG are stacked
in VS in the function mark, and restored on return.

Index origin for innermost active function.

Function origin in M. Poi11t.s to beg'ilu~ng of the segment
containing the innermost active function. Upon exit from a
IuluLiun, FBASE is reslored to poir~l to the correct base from
information in the stacked function mark.

Iteration tag. Set to 1 a t the beginning of a new nest of iterations,
and used by the index unit to keep indexing straight. NEWIT is
stacked in LS and restorcd from thcrc each time a new iteration
n w t it: autivat~d,

IS index of the marked entry closest to the top of the iteration
stack. Used by IU.

B. Encodings

The APL machine makes use of a few specific encoding functions. These are

used for encodings which could be expected to fit within a single machine word.

Although this bias is built into the design, it is inessential to the basic ideas used

in the design, and could be changed if necessary.

1. SCODE org, len, m . This is the encoding of a segment descriptor.

m is 0 or 1 depending on whether this segment is for the Dmachine or the E-machine.

org is the beginning address and len is the length of'the segment. The'inverse

(decoding) functions a re SORG, SLEN, and SMODE, respectively. In the EM, if

a segment descriptor is in QS, org is relative to its QS-index.

2. JCODE len, org, s . This is the encoding for a J-vector descriptor.

The inverse 'functions are JLEN, JORG, JS. . ,.

3. XCODE a, b, c . Encoding used for various purposes in the E-machine.

Generally, a and b a re an index and its limit, respectively, c is always a single

c

bit quantity. It is conceivable that the functions SCODE, JCODE, and XCODE

. ,. ,.. .
might be identical in a particular implementationof the APL machine, a s might

their inverses. The inverse functions for XCODE are XI, X2, andX3, respectively. ,

4. QCODE a, b . This encoding is used in constructing ICB1s during EM

executions. Each field is potentially as large a s the' machine's memory and might

be signed. The decoding functions a re Ql and (42.

5, 'MCODE mask . This is the encoding function which takes a logical

vector which is an access mask for an array and encodes it for storage in the AUX

field of QS. The inverse function is m1.

6. FCODE freg, iorg, name . This is the encoding used in function marks

on VS. The inverses are F1, F2, F3.

C. 'I'ags

This section summarizes the tags which can be used in VS and N T entries.

Tw VS NT Meaning

UT 1. .; .I. Undefined value.

ST 1 1 Scalar value.

JT 1 1 J-vector. ,Such entries are moved to QS from VS almost
immediately.

DT 1 1 Descriptor array pointer. In V S means thls is a result
to h e a.ssjgned to, while in NT, a11 array va111es have khis
tag. A s wit11 JT, DT entries will be deferred to QS a s soon
as they are noticed.

FDT 1 0 Similar to DT, except the array is to be fetched. Same
note applies; ' . .

FT 0 . ' 1 Function descriptor pointer.

SGT 1 0
. .

Segment descriptor.

NPT . 1 ' 0 " Name pointer. This is an NT index.

FlWT 1 ' 0 Function mark.

1 0 RT TTnnser! (so far) rkdu~btion accumulator.

APPENDIX B

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE
- ..

The functional description of the E-machine which follows is written in an

informal dialect of APL. It differs from "standard" APL only in its sequence-

controlling statements, Instead of using branches, more sophisticated, and more

easily understood, constructions are utilized. These are summarized briefly below:

1. BEGIN . . . - END delimits a compound statement, as in ALGOL,

2. Likewise, conditional statements and expressions of the form

IF condition THEN . . . ELSE . . . -
are as in ALGOL. However, in this description, the condition part

evaluates to 1 or 0, corresponding to TRUE or FALSE in ALGOL.

3. The case construction,

CASE n OF - -
BEGIN

END -
. .

th
chooses and executes the F statement in the sequence. Thi s description

has omitted some BEGIN'S and END1s in compound statements within the -
CASE statement and substituted typographical grouping. Although this is

not syntactically rig.orous, i t renders the description more readable.

4. The REPEAT statement repeats its range indefinitely. Within a repeated

statement, the CYCLE statement is used to resume the main (compound)
\

statement from the beginning, and LEAVE aborts the innermost REPEAT.

A THE E-MACHINE - - A FUNCTIONAL DBSCRJP TION

n MAIN CYCLE R O U T I N E

REPEAT
BEGLN
A T H I S I S T H E CONTROL ROUTINE IN FIGURE 2 , HOWEVER,
A ONLY THOSE P A R T S RELATED TO THE E-MACHINE ARE SHOWN,

LE -CASTOG THEN
Bgl?lB

rg L S C L I - I ; O I Z L S C L I - I ; ~ I z ~ m ~
BE_GIg A TOP SEGMENT OM L S HAS 0.VERFLOWED

IE L S C L I - 1 ; 4 1 = 1 T H E n

S T E P I S
N E W I T t n
IE STEPTOG THf!g CYCLE

EAlD . ---
A DEACTIVATE TOP SEGMENT AND TRY AGAIPI
LPOP u

CYCLE
END ---

K 4 + / L S [L I - 1 ; 0 , 1 1
Jg -&SCK;OIEIA,IFA,IJ,ISC,IXL T''EN

L S C L I - 1 ; 0 1 + L S [L I - 1 ; 0 1 + 1

END
CASTOG + 0
A I F A C T I V E SEGMERT I S FOR D-MACHINE r&Ea A C T I V A T E DM

XF L S C L I - 1 ; 3) = 0 THEN DMACHINE g&7g
C A S E DECODE Q S [K ; O I QE n GOES TO L A B E L S BEEOW ----
Bg_C_Ig R D E L I M I T S RANGE OF CqgE STAZ'EMEWT
R ' LADGLS' BELOW NAME E-)!ACHfUE I N T E R P R E T A T I O N RULF49

I A D + Q S C K ; l I
I F A) I N X + G I N X K

Q S C K ; 2 , 0 3 + Q I I_F Q S [K ; O I = T A zH&J A E68E FA
I + S + O
T 4 _I_F L S C L I - 1 ; 7 1 = 0 z_Hgg NT,FJLT E L S E QY',&LB'
(0 I N X 1 BgPEkT

E N D
USCK; 1 1 + @CODE (GEY'VBASK 1)) ,S+Ch7TABASE D
E R A S E D

A) I U K
F A) VPUSH hE Q S C K ; O l = A _THE& A T , Q S C K ; l l

E L S E ST ,FETCH Q S C K ? 1 1 ----

J) IU1 K

OP) EXECUTE QSCK;11 a QS[K;11 ENCODES A SCALAR UP

RED) VPUSH RT,O
LSCLI-1;Ol 4 K+QSCK;21

d..
DUP) LF K>VI TREfl ERROR EkSE VPUSH VSCVI-K;]

VXC) IF -- VI<2 ---- THEN ERROR ELSE ---- V S C V I - ~ , ~ ; I + V S C Y I - 2 , ' 1 ; 1

POP) VPOP

IJ) INX 4 GINX K
S + (JORG QSCK;11) + LE O=JS QSCK;11 TBEN -IORG

IORG + -1 + JLEN QSCK;l]
QSCK;] + J,(XCODE O,S,JS n),mx,o

XL) VPUSH ST, LF LSCLI-1;71=0 TYEN ISC&SCK;21;01 ELSE
IORG + XI QSCQSCK;21;1

*
IRP) QSCK;] 4 NIL,O,O,O

IRD) ERASE QSCK;11
QSCK;] + NIL,O,O,O

MIT) ISMK 4 11

IIE_PEA__T
B E E U

VI4VI - 1
6' vsc v.r; o I =SGT m ~ g L E A VF:

lg VSC VI ; 0 I *ST ERROR
IPUSH VSC VI; 1 I , II=ISNK

END ---
LPUSH O,(SORG VSCVI-1;1]),(SLEN VSCVI-1;1]),1,1,0,0

SGV) T 4 Q S C K ; ~ ~ ,n RECALL THAT SEG DESCRS ARE RELATIVE
VPUSH SGT,SCODE CK-SORG T),(SLEN T),SMODE T

SG) LPUSHS K

SC) T + I S [Q S [K ; ~ I ; ~ I A N E W I T ~ Q S [K ; ~ ~ ~ I S W K
LE T l''EN LPUSHS K
ELSE LF QSCK+~;OIEXS,XC TEE&

S 4 Kt1-QSCK+1;21
A SET CHANGE BIT TO 0
QS[S;i1 4 XCODE (XI QSCS;1I),(X2 QSCS;ll),o

El0
- 146 -

JMP) LF (QSCK;OI=JMP)v((QSCK;OIEJO,JNO)AVS[VI-1;11=0)
JO v(QSCK;OlrJ1.JNl)hVSCVI-1;11=1
J1 ---- THEN LSCLI-1;Ol + K+QS[K;21
JNO) LE QSCK;O~EJO,J~ THEN VPOP
JN1)

CY) LSCLI-1;Ol 4 LSCLI-1;21

CCY) T + K+QSCK;21
QSCT;ll + XCODE(l+Xl QSCT;lI),(X2 QSCT;11),1
LSCLI-1;Ol 4 0

RPT) LSCLI-1;Ol + 0

&VB .) LPOF

CA3) LE * - ; (Y S C V I - I ; O I ~ u " T) ~ i r S C V I - 1 11le\&SCII;21 ZHllN E8RO.R
LSCLI-1;01 + K+QSCK;21
K 4 K+VSCVI-1 ;ll

/

VPOP
CASTOG + 1

XS) J + K-QS[K;21
I 4 VSCVI-1;1]-IORG
VPOP
IF (I<O)vI>X2 QSCJ;lI THEN ERROR --

ELSE QSCJ;11 + XCODE I,(X2 QSCJ;ll),l

XC) J 4 K-&S[K;21
QS[J;1] 4 XCODE (Xl QSCJ;II),(X2 QS[J;ll),l

LX1) VPUSH ST,Xl QSCK-QSCK;2] ; I 1

SX1) T + K-&S[K;21
Q$[T;il + XCODE VSCVI-l;ll,(X2 QSCT;lI).I

SX2) T + #-&SCK;2I
&S[T;1] + XCODE (XI Q S [T ; ~ ~) , V S C V I - ~ ; ~ ~ , ~

ORC) VPUSH ST,IORG

END n END CA_U'& SIL'AIL~EME~VI R A N G E ---
A E-MACHINE INTERPRETATION RULES

A AUXILIARY FUNCTIONS FOR E-MACHINE

V INX + GINX K;R
A INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY,
n HIGHEST COORDINATE NUMBER. (I. E. FASTEST VARYING FIRST
R 4 ZE LSCLI-1;71=0 Z'EN 11 ELSE QSCLSCLI-1;71;21
INX 4 @((Rp2)~21QSCK;3l)/tR

v

v LPOP
Jg LI=O THEN ERROR E&SE LI + LI-1
LF LSCLI;4]=1 THEN POPIS
Z E LSCLI;51=1 Y'YEa FNRET .
NEWIT 4 LSCLI; 63
A JF THIS CHANCES MODES THEN CLEAN OFF QS

IF QI = LSCLI;I] Tl'N LEAVE' &7&$$ QI + QI-1
ZE QS[QI;Ol E IFA,IA ,RDT !I'PEN ERASE QS[QI ;I I

END

V POPIS . .

I1 + ISMK

REPEAZ
BEGIN

ISMK ' 4 ISMK-1
LE ISMK=-1 THEN LEAVE E&S& JF ISCISMK;41=1 THEN LEAVE

END
v

V LPUSH V
Ze LI=LIMAX THEN ERROR -
LSCLI;\71 4 (6+V),NEWIT,LE o*"~+v THEN 1tV LSCLI-1;71
LI 4 LI+1 '

v

V LPUSHS K
ZE O=SMODE QSCK;II ~ ~ g g ERROR
LPUSR O,(K-SORG QSCK;lI),(SLEN Q S C K ; ~ ~) . ~ , ~ . ? , C O R R K

v

V IU1 K;T;S;R
A CALCULATE J - VECTOR ELEMENT IN FORM XCODE(CURR ,INCR,SN
T 4 LSCLI-1;71
S + (XI QSCK;lIj,O
.IF T = O _T_HEI A IF THERE IS A CHANGE, .USE NEW ITER VALUE --

REGIN
19 I S [Q S [K ; ~] ; ~] A N E W I T V ~ K ; ~] ~ T S M K THEQ .

S + IS[RSCK;21;01,1

El!Q
lg 1=X3 QS[T+BSCK;21;11 S + (XI &S[TtK;ll),l

LF SC11=1 THEN ,
BEGIN

T + X3 &SCK;ll
S[O] 4 LE T=O THEN S[O] ELSE -s[o]
QS[K;11 + XCODE SCO],(X2 &S[K;l]),T

EEL?
v e ~ ~ s ~ sr,s[oi+x2 QSCKIII

T7

V IU K;IP;IQ;S;T;D
A INDEX UNIT
S + O
IQ 4 KtQSCK;2I A BEGINNING OF .TCB FOR THIS AIlRAY
T + LSCLI-1;71
REPEA__T

BEGIN -----

--

@ E G L L I [A TH.T"i' A R R A Y T I i r n R X K n R Y .TS

I T ISCIP; ~ I ~ ~ ~ ~ W ~ T ~ I P ~ I S M K xdgd

ZLSE
/F (IS[IP;O~=IS[IP;~])AJ'S[~'P;'L]=~' - EN --
S + S+&l QSCfQ;11

ELSE IE ISCIP;21=0 ----
S 4 St92 QSTIQ;11

ELSE S + 3-Q2 gS[IQ;lI ----
1?' iV U ---

EnrE
' gr;gE

BEGIN A THIS ARRAY IRDEXED F.ROM QS -----
LE O = X 3 QS[IP;lI Tl'Ea LEAVE ELSE

g&_o&g
D + (Q2 QSCI&;ll)xXl QSCIP;11
s + sto-(21 QSCIQ;ll
QSCIQ;l] 4 QCODE D,Q2 QSCIQ;ll

V R 4 FETCH X
A X IS A &-CODED ADDRESS OF FORM QCODE(VBASE,I~~CR)
R 4 MClt(Q1 X)+Q2 X;]

V

V EXECUTE CODOP
A CODOP IS A DYADIC OR MONADIC SCALAR OPERATOR(ENC0DED)
A EXECUTE DECODES CODOP ON THE ELEMENTS L OF VS:

A

A 2E ISDYADIC CODOP THEN
A BEGLN
A vs[v1-1;1] +- vs[VI-1;1] (DECODE CODOP) vsCvI-2;1]
A VPOP
A END_
A ELSE
A VSCVI-1;1] 4 (DECODE CODOP) VSCVI-1;lI

v
i

V STEPIS ; I;INCR
A STEP THE ITERATION NEST IN IS
A SET STEPTOG 4 LE D O N E ?HEN 0 ELSE 1
STEPTOG 4 0
I 4- 11

BEGLN
IE ISC I ; 41 THEN LEAVE ELSE

IS[I;0,31 + ISCI;ll,I
END ---

ELSE LE (ISCI;OI=ISCI;~])AIS[I;~]=O TgEN ----
REEL&!

JTF 1SC1;'41 TEE&' LEAVE IS[I;0,31 4 0,l

BEGLN
STEPTOG 4 1
IS[I;3,01 4 1,ISCI;Ol

+ LE IS[I;21aO !l'Q 1 ELSE -1
LEAVE

END ---
E m

V R 4- CORR K
R + IF -- QS[K;21=0 TR'l 0 ELSE K - Q S C K ; ~] ,

v

V IPUSH V;MX
A VC01 IS COUNT (SIGNED); VC11 IS MARK

A CASE OF COUNT=O CANNOT OCCUR (HANDLED BY D-MACHINE)
MX c -1tl~C01
IE 11 =IIMAX THga ERROR
ISCII;] 4 (IF -- V C O l c O g&El MX ELSE 0),MX,(VC01~0),1,~C21

APPENDIX C

EXPANSION OF D-MACHINE OPERATOHS FOR E-MACHINE

This appendix shows how the D-machine expands complex primitives into

deferred sequences of E-machine instructions. It is assumed that the, constraints

noted for each operator a r e met, and that all operands have been tested for domain,

conformability, and so forth before being submitted for expansion. This is not

an important constraint since, for example, the requirement that an operand be

beatable cw always be satisfied by explicitly evaliiatirig an unbeatable uperluld l o

temporary space.

Before the expansion of any of the dyadic operations, the value stack and the

instruction buffer a re a s follows: +

OP VALUE LINK AUX

0 O 0 . 0 0 0 0 . 0 . O 0 0

SGT

SGT - f
Code for right operand mZ

. ----
7

- --
Code for left operand

. . - . .
m l

where m l and m2 are the access masks for the deferred expressions, fomd in the .

AUX field of QS. In the sequel, segments in QS are delimited graphically by braces

and pointer or Greek letters a re used to avoid confusion with explicit relative ad-

dressing.

1. GDF

The operands deferred in QS must be simple array values. The operand of

a GDF instruction is a dyadic scalar operator, OPRo Expansion produces the

following :

QS

OP VALUE LINK A ~ X

SGT I Code for right operand rn2

In the above, T1 to a DA containing the result rank and dimension for the

GDF. mll is m.2 shifted left by the rank of the right operand. m 3 is the logical

or of ml t and m2 (i. e., m3 ml l m2). Because of the requirement that the -
operands be simple array values, the segments in boxes each consist of a single

Code for left operand ml l] I
GOP OPR t m3 I
IRD T1 m3

\

I J or IFA instruction.

2. RED

By the time an expansion is to be done, any necessary transposes on the

reducee have been performed. The variable B has value 1 if the reducee is

beatable and is 0 otherwise. The "beforeT1 picture is:

0 . . 0 . 0 0 0 0 0 0 0 . O

SGT a Code for reducee ml

The reduce operator is OPR, giving rise to the expansion.below:

vs OP Q S

OP VALUE LINK AUX

. O 0 . .
I 0 . . 0 0 0 . .

SGT

SGV

Code for reducee m l

I
S - len
IVuT
IRD @TI . B -1 m

where len is the length of the reduction coordinate and 'l'l is a DA with the rank

and dimensions of the result.

3. DIOTA

The ranking operation, corresponding to dyadic i, requires that the left

argument be a simple vector array value. This is because this operand is evaluated

repeatedly during the E-machine execution of the following expansion.

OP VALUE LINK AUX -__.. - .- .

n n a m 0

SGT
0 e , . " . e e 0 0

Code for right oper

DUP

JN1

POP

LVE

L OP ADD

ORG +'I

S len I

L
IRP A

len is the length of the left operand. It should be clear from working thruugll ll~e

above expansion that it is simply a literal interpretation in E-machinc code of the

definition of the ranking operator. It is assumed that the D-machine will have

checked for the case ,of an empty vector a s either operand, producing the correct

result automatically. If the rank of the result is 0, that is if the right operand is

a scalar, the above expansion is executed immediately by the E-machine. The

IRP instruction is similar to IRD, except that i t points to an instruction in QS

which contains dimension int'ormation instead of referring to an explicitly-created

DA.

4. EPS

Before expanding the membership operator, a check is made for the special

cases of right-operand scalar. o r 1-element quantity. In these cases the operation

done is A=B or A=(, B)[I], respectively, Similarly, if the left operand is scalar

then A=B is done. Otherwise, the expansion is made in QS as below:

SGT

OP VALUE LINK AUX

Code for right operand m2

JMP

1
I Code for left operand m l

RED

DUP

9G 01

OP EQ

OP OR

J N O

LVE

SGV a2

S lenl

S len2

0 0 0 0

S lenK

M r r

VXC

POP

IRP -

where lenl, len2, . . . ,lenK clinlension of right operand. A s in the expansion for

DIOTA, the expansion of EPS is a straightforward E-macl~iie translatioli of the

definition of the membership operator.

5. SUBS

~ e f o r e the SUBS expansion takes place, the subscripts have been kxainined

to see if they can be beaten into the subscriptee. If an expansion is needed, then

' there must be some subscripts left. ' ~ e f o r e expansion, the registers contain:

SGT - {
SGT P 1

Code for rightmost
subscript

m r
i

Code for leftmost
subscript m l

Cocle for subscriptcc mO

The rank r of the subscriptee must be the same as the numbcr of subscript

expressions. The rank of Wle result is the sum of thc r d c ~ of th.9 srtbscripta

't.

(counting empty subscripts a s rank-1). Some of the SGT entries on the VS may

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture

has changed to:

VS QS

OP VALUE LINK AUX

0 0 0 0 0 . O 0 . 0 0 0 0 .

/-

SGT

Code for subscriptee

J M P \

0 0 0 . 0 0 0

0 0 0 0 . 0 0

0 0 e . .

XT XCODE(0, lr, 1)

Calc subs '1

XS

SG a 1 B

IRD @TI 0 m r

Where 11, 12, . . . , lr is the dimension of the oubscriptee, ruinus 1. This field of

the XT entries is used for checking purposes in the IU (see Section E). ,6' is the

QS index of the beginning of the XT back and @TI is a DA with the rank and

dimensions of the result. mr is the access mask of the result. The link field of

p contains r, the rank of the subscriptee, which is used in the initialization of IA,

IFA, IJ instructions. The lines in QS marked "Calc subs k" are one of the

following:

O P VALUE LLNK Arm

ISC SCODE(SEG.Kr,l) . 0 m1

IXL 0- 0 m1

th
In the first case, the k- subscript i s to be computed explicitly, which is done by

activating SEG K1, one of the non-empty subscript segments on QS. In the second

case, the segment that was stacked on VS for this subscript was empty, so the

actual subscript used is the same as that which was controlling this coordinate

from the outside. The mask m1 in the AUX field specifies the index environment.

Example 4 in this chapter shows a specific instance of an expansion caused by the

SUBS operator,

The remaining operator expansions a re similar to SUBS, in that they &e all

special cases of it.

6. CMPRS '

The compressor (left operand) has been evaluated to a temporary space, if

i t was pot there already, and checked to see if it contains only O aud 1 elements.

In addition, the number of Its, call i t UlMl , has k e n ccruuled and Vil, thc index

in V of the first non-0 value is known; call i t XA. This process is unfortutiately

necessary since we must know the rank md dimension of the result before deferral.

The same process must be applied to the expansion operator. Unless the com-

pressor falls into a special case which can be done immediately (1. e . , scalar 1

or 0 or vector of all 1's or all 0's) then the following expansion i s made:

OP VALUE LINK AUX

e e

SGT 6

.I{ for compressee rn2

02 {[Code for compressor m l

XT xcode(0, lr, 1)
f 'm

OP
OP
JNO
DUP

I
IX1
OP
SX1
RPT
DUP
SX1
I x 2
XS
POP
LVE

6: IXL
XS
0 .

ISC
XC
v a

ML
XS
SG
IRD

SUB
S ~ N

SUB *

2

SUB

1
r 4-

4

4

mk'

,

mlt

mk'
e

wh.ere li, . . . lr are as in the SUBS expansion; 1111' through mrt a re the masks for

the individual subscripts with mk' being the mask for the compressed coordinate.

The first XT entry is used to hold XA and XL where XL is the last value of the

external index for the compressed coordinate. The algorithm used is as follows:

Algorithm for compression: We wish to find XT such that

(u/[K]x)[. . . ;I;. . .I- xL . . ;xT;. . .]
Let XL be the last value of I from which the last XT was calculated. XA is the

index of the first 1 in U. Then, the QS expansion for compression calculates the

new value of .XI' a s a function of the new I and uld XT a ~ d J C L aa follonls;

if 1=0 then - -
begin

XL--0

end -
else -

repeat

hegin

TbxXL-I

if T=O' thcn loave - -
repeat

begin

XT -w-T

if T.T[xT]=~ thon leave - -
end -

XL -XL T

end ---.

7, EXPND

The EWND operator is treated similarly to CI\IPRS. In particular, the

expandor (left operand) is checked to see that i t is a logical quantity and the number

of l t s is compared to the length of the expansion coordinate. If the expandor falls

into one of the special cases (all ones, all zeros) the result is calculated immediately.

Otherwise, the QS expansion that follows is made to implement the expansion

algorithm below :

Let R be (u/[K]x)[. . . ;I;. . .I. Then we want to find LX such that R-if - u~]=o

then 0 else X[. . . ;LX;. . .]. LU is the index of the last found 1 in U and LX i s the --
th

corresponding'X index (on the K- coordinate).

if U[I]=O then R--0 else - - -
begin

repeat

begin

T-XI- LU

if T=O then leave - -
repeat

begin

LU--LU+T

if u C L ~ =1 then leave - -
end --

LX --LX+T

end _cornme.@ main repeat;

R-x[. . . ;LX;.. .]
end -

: ' OP .VALUE . . " LINK AUX

Code for expandee m2

Code for expandor . . rnkl

XT xcode(-GU, lu, 1) 1
XT. xcode(0,11,1) ' r . ' .

0 . 0 0 0

XT . xc ode(0, lk;' 1) I
XT xcode(0, lr, 1).
Lxl
IXL
OP SUB'
OP SGN
JNO
DUP
ZX1
OP ADD
XS
SG 02
J 0
LX1
U P ADD
XS . ..

KPT
BOP

/

XS
0 0 0 0 .

m
XS
SG 01

SG D2
CAS '

s 0
SG 03
IRD Q

Note that the sequence of IXL and XS instructions starting at E does not contai~r a -.
th

-.

reference to the k- subscript position as this has already becn computed at the

beginning of the segment activated by the CAE inulruction. Also, in the above, the

quantity Bu in the X2 field of the pseudo-iteration stack at is the length of vector

UJ less 1.

8. ROT

Rotation is a special case of subscripting defined as follows:

;EfN is a scalar, then R+N4[KIM m e a s for each L ELT - I ~ E !

R[;/Ll*M[: ; / ((K- l)+L) ,(lORGt(pM)CKI - I(N-IORG)+I(~M)[KI) ,K+LI

If N is an integer array withpNt+(K;t~ppM)/pM then

Thus the expansion for ROT in QS is the same as for a general subscript with all

th th
but the K- coordinate being IXL, XS pairs and the K- coordinate being computed

according to the above definition. The explicit expansion will be omitted since it

is similar to what has already been shown.

APPENDIX D

POWERS OF 2

CHAPTER V

EVALUATION

In this chapter we examine the design for an APL machine proposed in

Chapter IV and compare i ts performance to more conventional architectures.

This is done by showing that the APLM is more efficient in its use of memory

\

than a less sophisticated computer doing the same task.

A. Rationale

In Chapter III, a number of design goals for the APLM were stated:

1. Machine language should be flclosell to APL.

2. Machine should be general, flexible.

3. Machine should do as much as possible automaticdly.

4. Machine should expend effort proportional to the complexity of i ts task.

5. Design should be elegant, clean, perspicuous.

6. Machine should be efficient. In particular, it should be parsimonious of

memory allocation and accessing.

We can dispose of some of these in short order. To begin with, goals 1, 3, and

4 have obviously been satisfied. Since the machine designed implements AYL, to

goal 2 we can reply that the machine is general and flexible at least to the extent

that. APT., as a. language is general and flexible. For example, even though the

APLM does not include all of the LISP primitives, if i t is easy to write a LISP

interpreter in APL, then the machine should be able to handle them with ease,

Although I believe that the goal of elegance has been satisfied, this is not the

place to make such judgements, nor am I the one to make them. This particular

aspect will have to be decided by less prejudiced readers. A seventh, unstated

goal is that the design should indeed work. It should be clear to the reader who

has reached this point that the basic machine structure proposed is in fact sound

wid l l~a l a1 APL inacl~ine as clascribed will produce corrcct anowcra.

This leaves the question of efficiency to be considered. Because we have not

detailed a complete machine, traditional measures such a s encoding efficiencies

of comparisons of cycle times cannot be used. A major emphasis throughout this

work has been to minimize the necessity for temporary storage in expression

evaluation and simultaneously to minimize memory accessing. -While these prob-

lems are often of marginal importance in a conventional design, they are quite

significant in an APL machine, since operands are generally arrays, Thus a

temporary store is no longer a single word, but is potentially an array of indefinite

size, SimiS.a,rly, the ~anvent~ional problem. of saving a. aing1.e fetch wh.ere a quantity

might be in a register, becomes the problem of saving 1000 fetches for an array

operand.

The remainder of this chapter is dedicated to the evaluation of machine ef-

ficiency. We take an analytic approach here, but cannot hope to have a simple

analytic model of the machine per se which would give clean, closed-form quanti-

tative data about the APLM. Instead, the analysis compares the performance of

the APLM to a fictitious 'naive machine, " which is simply a straightforward

interpreter of the semantics of APL.

The next section discusses the naive machine (NM) and outlines the assumptions

upon which the comparisons will be based. In the sequel, we will compare the two

machines by looking at the number of individual fetches, stores, operations, an.d

temporary stores needed to do a particdar task. Diiferent tasks will be examined

with this in mind. At the end of the chapter, these results will be summarized

together with some conclusions.

Be The Naive Machine

Although the APL machine proposed in Chapter IV has never been implemented,

there exist concrete examples of the. naive machine. These include APL \7090

- 164 -

' (~ b r a m s [1966]), APL\1130 (Berry [1968]), and APL\360 (Falkoff and Iverson

[1968] ; Pakin [1968]). The main feature which distinguishes the NM from the

APLM is that the APLM defers many computations while the naive machine

evaluates each subexpression immediately after its operands have been evaluated.

The APLM; by contrast, does some of i t s evaluations immediately (e. g., scalar

results), defers some indefinitely (by drag- along), and does still others in a non-

direct way (e. g. , beating).

The following list of assumptions clarifies in more detail the differences

between the APLM designed in this work and our T1standardll naive machine a s

used in the rest of this chapter,

1. The naive machine uses the same representation for arrays a s does

the APL machine. If the naive machine i s APL\360, then this is approximately

true. In fact, APL\360 does not separate DAfs from value parts in array rep-

resentations. On the other hand, APL\360 represents scalars as rank-0 arrays,

and is thus more inefficient in i ts handling of scalar values. We assume here

that the NM keeps scalar values in a value stack a s does the APLM. We have

also (generously) assumed that the NM uses the J-vector representation for

interval vectors. In general, these assumptions cast the naive machine in a

better light than any current implementation of APL.

2. The naive machine generates a result value whenever an operator is

found and i ts operands are evaluated. (This is exactly the way APL\360 works.)

Further, we assume that the NM will use temporary space allocated to one of

i t s operands for the result, if possible; e. g., if the expression A+B is to be

evaluated, a new temporary space must be found to accommodate the result.

However, if the expression is A+B+C; the subexpression B+C will be evaluated

first causing the creation of a temporary t which can then be used as the result

destdnation for the value of A+t.

- Ifis -

3. In an assignment to a variable, as in A-expression, the naive machine

performs the assignment simply by storing a pointer to the temporary for the

evaluated expression in the nametable entry for A. Again, this is consistent with

the functioning of APL\ 360.

4. Each operation in either the NM or the APLM requires a fixed amount

of overhead (e. g., rank checking, domain checking, space allocation, setup,

drag-along, - etc.). An analysis of the instructions for both machines shows that

these processes take approximately the same effort in both machines. Since

there is no way to compare this effort with the memory usage measures discussed

here, i t will be omitted. For a single statement, this overhead appears a s a

linear additive term.

5. Since scalars a re kept in the value stack in both machines and since the

VS mechanism is not specified (e.g., i t could be a hard-wired stack, or a fast

scratchpad memory, or i t could be kept in memory with other array values), all

scalar fetches and stores w i l l be ignored. The effort to evaluate array expressions

always dominates the effort' for scalar expressions.

6. There a re no distinctions made between data types in the APL machine.

we thus assume that both the APLM and the NM use the same representation for

individual data elements.

7. All scalar operations take the same amount of time to perform, That is,

an add or a multiply will each be counted as a single operation.

0. &'inally, it is assumed that both the naive machibe and the Al?L machine

a re implemented in similar technologies so that the-cost of memory accesses,

storage allocations, and operations are the same for both machines.

C. Analysis of Drag-Along And Beating

To begin the analysis, let us look at a subset of the operations of APL and

derive some analytic results comparing the APLM and'the NM. The set to be

considered is

1. Selection operations

2. Monadic and dyadic scalar arithmetic operations

3. Inner products

4. Reductions of the above (this includes outer products)

5, Assignments of above to unconditioned variables or to variables conditioned

by selection operators.

We consider only those? expressions which are array-valued, a s scalar expressions

are done similarly in both machines. Each operation requires the machine evalu-

ating i t to do a certain amount of work, summarized in Table 1 below. Tables

2A and 2B summarize the "effort" required to do these manipulations.

In Table 2, some of the entries contain conditional terms or factors. These

account for the different possible initial conditions when a subexpression is evalu-

ated. Also, notice that in Table 2B, some of the entries contain references to the

functions DOF, DOS, and WO. These are functions which, given a deferred

expression a s argument, return a s values the number of fetches, stores, and

operations, respectively, necessary to evaluate the expression. Thus, for the

APL machine, Table 2B does not tell the whole story; we must also take into

account the efforts to evaluate the final deferred expression (by the E-machine).

Hence, i t is necessary to give detailed definitions of the DOF, DOS, and DO0

functions.

TABLE 1

Steps in .Evaluation of APL Operators

NAIVE MACHINE

A. Selection Operators

1. Check rank, domain of operands.
2. Get space for result DA, value.

3. Set up DA, M-headers.
4. Set up copy spei-atioa.
5. Do copy operation.
6. ~ d j u s t VS.

B. Monadic Scalar Operators

1. Get space for result DA, value
(only i f operand is a variable).

2. &t up DA, M-headers i f space
was gotten in step 1.

3. Do the operation.
4. Adjust VS.

C. Dyadic Scalar Operators

1. Check rank, dimensions of
opcrmda.

2. Get space for result DA, value
(only i f both operands. are
variables).

3. Set up DA, M-headers if space
was gotten in step 2.

4. Do the operation.
5. Adjust VS,

D. Outer Product.

1. Get space for result DA, value.

2. Set ,up DA, M-headers.
3. Do the operation.
4. Adjust VS.

APL MACHINE

1. check rank, domain of opera,nds.
2. Get space for result DA (if operand

is a variable).
3. Set up DAo
4. Adjust VS, QS,

1. Defer operation to QS.

2. Adjust VS, QS.

1. Check rank, dimensions of operands.

2. If one opera.nrl i s a scal.ar, move it
t.0 QS.

3. Defer operation to QS.

4. Adjust VS, QS.

1. If operands are deferred subexpres-
sions, then evaluate them to tcmp npace.

2. Get space for result DA.
3. Set up DA. "

4. Defer operation to QS.
5. Adjust VS, QS.

b
Table 1 (cont.),

NAWE MACKINE APL MACHINE
I

E. Reduction I
1. Get space for result DA, value.
2, Set up DA, M-headers.

3. Do the reduction.
4. Adjust VS.

F. Assignment to Simple Variable I
1. If right-hand side is a temp then

go to step 6, otherwise do steps
2 through 7.

2. Get space for DAY value,

3. Set up DAY M-headers.
4. Set up copy operation.
5. Do copy operation.
6. Adjust VS.
7. Adjust Nametable.

G. Assignment to a Selected Variable

1. Check dimensions of LHS, RHS.
2. Set up copy operation.

3. Do copy operation.
4. Adjust VS.

1, Get space for result DA.
2. If reduction coordinate is other

than the last, then do appropriate
transpose.

3. Set up DA.
4. Defer operation to QS.
5. Adjust VS, QS.

1, If right-hand side is a temp then
go to step 6, else proceed.

2. If the LHS* variable is already
defined and is of the correct size
and does not appear permuted as
an operand in the deferred RHS
then go to step 5.

3. Get space for DA, value of LHS.
4. Set up DA and M-headers.
5. Defer operation in QS.
6. Adjust VS, QS.
7. Adjust Nametable.

1. Check dimensions of LHS, RHS.
2. If RHS contains deferred instances

of LHS variable which are permuted
differently than LHS, then proceed
else go to step 6.

3. Get space for DA, value of RHS.
4. Set up DA, M-headers.
5. Evaluate RHS to this temp.
6. Defer selected assignment to QS.
7. Adjust VS, QS.

*
LHS and RI-IS refer to the left-hand side
and right-hand side of an assignment
arrow, respectively.

,

OPERATOR

SELECTION.

(R I S : sel 6)

SCALAI~ MONADIC

(R I S : OP 6)

SCALAR DYADIC

(R I S : G O F , m

OUTER 2RODUCT
(R I S : 8 ::. .OP. .)

REDUCTION
(R I S : OPICKI 8)

ASSIGNMENT
(sel A >+8

Summary of Effort tc. Evaluat~ Operators - NAIVE MACEtNE

FETCHES STORES
I I

x/p sel A

TEMPS OPE PATIONS

Notes: PI- - if 8&is a variable - - then 1 else 0. P2 -if - 8 andgare both varialdes -- then 1 else 0 .
N1- - ifEand $3 are bosh arrays -- then 2 else 1.

. TABLE 2B

Summary of Effort to Evaluate Operators - APL MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS

NOTES: N1- Number of array opnds in 8 N2 - Number of opnds with reference count > 1
Pl-if - &contains cieferred operators -- then 1 else 0 P2- - if gcontains deferred operators -- then 1 else 0
P3 - - if K# r/bpp& tken 1 else 0 -- P4- - if 6 i s a temp or A is defined and of correct
PS - if &must be evaluated first then 1 else 0 - -- size and there are no indexing conflicts

then 0 else 1 --

SELECTION
(R IS: s e l &)

SCALAR MONADIC
(R IS: OP el

SCALAR DYADIC
(R IS: &OPS)

OUTER PRODUCT
(R IS: ~ O . O P ~

REVUCTION
(RIS: OP/CKI&)

ASSIGNMENT
A+&

ASSIGNMENT
(sel A)+&

Nix(3tppR)

o

0

3t(ppR)+(PlxDOS(&))
+(P2xDOS(S)

3+(ppR)+P3xNlx(4+ppR)

P4x(4+ pp8)

P5x(DOS(&)+4+(PP&)+X/P&)

0

o

0

(PlxDOF(,8))+(P2xDOFbQ)

0 -

o

P5 xDOF(&

N2x(3tppR)

o

0

3+PpR

3+(ppR)+P3xNlx(3tppR)

P4x(4+(pp&)+x/p8)

P5x(4+(pp&)+x/p&)

0

o

0

(PlxDOO(&)
+(P2xDOOW))

0

o

P5xD00(8)

For the set of expressions containing only selection operations, scalar

arithmetic operations, ,outer products, reductions, and assignment, i t is relatively

simple to specify the DOF, DOS, and DO0 functions. Recall that in the APL

machine, expressions a re deferred in QS, which contains an operation code and

an access mask for each entry. Let the function OP(1) be the operation code for

QS[I;] and MASK(1) have a s its value the access mask in the AUX field of QS[I;].

Finally, for a given expression in QS, let RR be the dimension of the final result.

For each QS entry whose opcode is IFA, IA, OP, o r GOP define the function

D(1) whose value is a dimension vector as follows: if the entry is not within a

reduce segment then D(1) is RR. Otherwise catenate an element with the length

of each reduction coordinate; the innermost reduction corresponds to the last

element of D(1). Thus, D(1) is the vector of limits of the iteration stack which

a re active when instruction Q S ~ ;] is executedby the E-machine. .The idea here is

that D(1) represents the indexing environment of QS[I;]. If N(1) is the index of the

rightmost 1 in MASK(1) (that is, N(1) - ~/(MASK(I))/L~MASK(I)), then the following

algorithm calculates the desired functions:

KF--HS-RU-O

I -starting addr of deferred expression in Q S

repeat

begin

if OP(1) = IFA then RF -- RF + X/N(I) tD(1) - -
else if OP(1) = IA then RS - RS + X/N(I) f D(I) -- -
else if OP(I) E OP, GOP then RO -- RS+ X/N(I) t D(I) -- -

I-I+l

if I > segment ending, addr then leave - --
end -

Then DOF(8) -RF ; DOS(8)-RS; DOO(8)-RO.

D. Example - A Simple Subclass of Expressions

Since the input to either the naive machine or the APL Machine may be any

arbitrary expressioqit is difficult to produce a closed-form comparison of the

performance of the two. However, we can look in detail at a simple subset of

expressions and obtain some estimates on how the two machines compare.

Consider the set of expressions of the form A+&, where &is an expression con-

taining only array-shaped operands combined by scalar arithmetic operators and

selection operators. A s an aid to the analysis, construct the t ree corresponding

to the expression 8, and number all the nodes corresponding to operators. Then,

construct vectors RR, RD, T Y , T V , N1 and N2 a s follows:

For each node I , representing RESULT T-+gf , where &I is the subexpression

rooted at node I ,

RDC 1 3 t x / pRESULT Gesult - Dimension of node I)

RRC I l - + p pRESULT (IJesult - Rank of node I)

TYC Il+ - if operator is a select - then -1 - else if monadic -- then 1 else 2

!llvCl I+ - if all sons of node I a re variable names then 1 else 0 --
N 1 C I I-+ number of leaves in the subtree of node I

N2C I]+ number of leaves in the subtree of node I accessible through a path

not including a select operation.

Finally, let R be the number of array operands in E

M be the number of monadic scalar operators in & (i. e., + / l = T Y)

N be the number of dyadic scalar operators in & (i. e., +/2=TY)

S be the number of selection operators in 8 (i* e. , +/- I =TI')

Z be the number of elements in 8 (i. e- , x / P &)

Y be the rank of E (io e. , P P 8.1

P be: if APLM must get space for A -- then 1 else 0.

Note that in a wcll-.formod e x p r e ~ ~ i o n N=R- 1 .

Then, from Tables 2A and 2 By and the definitions of DOO, DOS, and DOF,

we see that the effort for each machine to evaluate 8 is a s follows:

NAIVE MACHINE . .

fetches: t/RDx ITY

stores: (+/RD)++/((-~=TY)vTVA(~~TY~)/(~+RR)

temps: +/TV/(4tRRtRD)

operations: +/ (lrTY /RD

APL MACHINE

fetches: RxZ

stores: Z+(px(4 + ~))++/(-I=TY)/N~X(3tRR)

temps: (Px(4tYtZ) >++/(-~=TY)/N~X(3tRR)

operations: +/(ISTY)/Z

In geieral, each formula above is the sum of the relevant entries in Tables 2A

o r 2B. As the fetch formulas a re obvious, we show the derivation of the store

count for the NM. First, each operator in &calculates a result which must be

stored immediately which gives the term +/RD, Also, temporary space must be

allocated for selection operations and those cases of scalar operators in which

one of the operands is not itself a temporary. In such a case, another

4+ (result-rank) words must bestored. (All but one of these is for the new UA;

the other is for the header word for the value array.) The result ranks of the

operations in 8 a re in the vector RR. Thus, the compression selects those

elements of 4tRR which correspond to the conditions just stated. In particular,

(-1=Ty) is a vector having a one for each selection operator and TVA(llTY) has

a one for each monadic o r dyadic scalar operator whose evaluation requires

temporary space to be allocated. The sum of these terms gives the formula

shown; the other formulas a re derived similarly.

We can form the ratios of the corresponding quantities for each machine and

attempt to get some estimate of their vdues. RF , the ratio of fetches in the naive

machine to fetches in the APL machine,is given by:

Hence, for fetches, the APLM does at least twice as well a s the NM if there are

at least two monadic or select operators. The worst case is when M or S o r N .

is 1 and the rest a re 0, in which case the ratio is 1. The above also shows that

the ratio increases (without bound) in proportion to the number of monadic and

select operators in the expression 8.

The ratio of stores for the two machines, RS , is:

(SINCE pRD trt M+N+S)

But the numerators of the two fractions with denominator Z are bounded,

while Z can increase without bounds. Thus for large Z ,

RSM+ N +S

That is, in expressions in which the size of the operand arrays is large (i, e., at

least as many elements a s there are operators) the NM requires more stores

than the APLM, approximately in proportion to the number of operators in the

eqressiai~.

In the case of temporary storage allocated, the ratio, RT, is:

Again, the lower bound is greater than 1, since (+/Tv)>I. In this case, the

ratio is ,of the order of t/TV,for large 2, which is a function of the tree structure

of &'rather than an explicit function of i ts operator count. Note that in the case

where 8 contains no select operations and p i s 0,the ratio is infinite, since the

APLM requires no temporary storage.

For the case of operations the ratio, RO , is:

But ZsRDand the compression in both numerator and denominator select the

E. Example - An A P L One-Liner

A P L makes i t easy to produce simple one-line programs to do

some interesting ta'sk. One such is the program (expression) for find-

ing all the prime numbers less than o r equal to N, as shown below.

(Index origin is 1)

PRIMES -+ (2=+/[110=(tN)q.ltN)/tN

Although the algorithm used is clearly inefficient, such expressions a re not

uncommon. Since the APLM purports to be an efficient evaluator of expressions,

i t is worthwhile to look at this example in more detail. The machine code for

this expression is :

OP OPERAND COMMENTS

LDNF N

IOTA

LDNF N

IOTA

This gives the compressee, IN

LDNF N

IOTA These are the I N operands of outer product

GDF MOD (IN). . (tlV - Matrix of remainders of all

possible divisions

LDS 0

EQ O=(tN)o. I IN - Has 1 for each 0 remainder,

else 0

LDS 1
-

RED ADD +/C110=(IN).. I IN - Add rows of this

matrix

LDS 2

EQ 2=+/[1]0=(tN)o. I IN - Find which columns

have two 1 entries

LDS 1

CMPRS Do compression. These are the primes

T.,DN PRIMES Assign result to PRIMES

ASGN

Since the number of scalar operations performed is the same for both

machines, this will not be measured. At the point before executing the LDS 1

instruction which precedes the CMPRS, the state of the APL machine is as

shown in Fig. 1,

/-

OP VALUE LINK AtTX

SGT IJ (LN) 01

SGT RED

IJ (L N)

IJ (LN)

GOP MOD

IRD @TI

s 0

OP . - - EQ

OP ADD

SGV -
S (-N)

MIT

IRD @ ~ 2

S 2 .

L OP EQ 2

FIGURE 1--State of the registers before compress operator,

Up to this point, the NM used memory as follows;

Instruction Fetches Stores Temps

G.D F P?-~N N~ 13N 1 16 BT2 1311 1 16 (N-15 stores and temps
necessary to evaluate
each tN befure GDF +
the space for result)

EQ P? d o

WED N~ N+-5 Na5

TOTAL 3N2+2N 2N2+4~+21 ~ ~ + 3 N + 2 1

The count for the APLM at this point is 0 fetches, 9 stores, and 9 temps for the
\

descriptors T1 and T2. However, when the CMPRS operator is found, the left

operand must be evaluated a s explained in. Chapter N. Thus, the long QS segment

2
must be handed over to the E-machine. 'This requires N +N fetches, N+5 stores,

l and N+5 temps. In order to do the CMPRS in the NM, the right operand (LN)

must be e~aluated~requiring N+5 each of stores and temps. The CMPRS itself

takes another N+P fetches, P+5 stores, P+5 temps in the NM,where P is the

length of the result. In the APLM, the CMPRS is expanded and deferred,as is

the ASGN which follows. The NM requires no work to do the ASGN. The APLM,

after this instruction, has i ts QS full of deferred code for the CMPRS and ASGN.

It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not

the correct size already). Passing the QS to the EM requires another N+P fetches

and P stores for the APLM, Thus the grand totals are:

\

FETCHES STORES TEMPS

NAIVE MACI-IINE ~N '+~N+P
2

2N +5N-I-P-1-31 N ' ~ - ~ N + P + ~ I

APL MACHINE N'+ZN+P N+P+23 N+P+23

Recall that P is really a function of N, the number of primes less than N ,

N
which is asymptotic to log Thus, we can evaluate the performance ratios

between the two machines in some specific cases. These ratios a re RF, RS,

and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries,

respectivelye Also of interest is RM, which counts all memory access (fetches

+ stores), and is the ratio of these two quantities. Table 3 below tabulates these

quantities for a few values of N.

TABLE 3

Performance Ratios f o r Primes Problem as a Function of N

10 4 2.69 7.7 3.84 4.7
100 25 2.97 138.9 4,91 70,6
500 95 2.99 813.3 4.98 408.0

1000 168 2.997 1683.6 4.99 843.2
5000 6 69 2.999 8788.8 4.998 4395.8

10000 1229 2.9997 17779.2 4.9992 8891.0
50000 5133 2.99994 90656.6 4.9998 45329.7

lim
N -

1.og N
3 2N 5 N

N b a a

TABLE 4

Operat ion Count for One Pass Through Main Loop, Program REC

NAI'JE MACHIhT

TOTAL: 8s2+23S+16 6 ~ ~ + 2 0 ~ 1 (3 5 I 4 ~ ~ + 1 2 & - 1 0 l 4 s 2 +12S+X 1 2 ~ ~ + 1 0 ~ + 1 4 4 (2s2+6S+141 11 +3.5K I +2K +K 11 +2.5K +K fK

STATEMENT

6

7

8

9

10

11 ,

1 2

1 3

14

15

APL MACHINE

FETCHES

0

K

1.5K

8 1

4S+4

s2+s

S+1

2s2+4s

s2+s

S

FETCHES

S

2K

1.5K

8

4S+4

3s2+3s

3 S 3

3s2+9S+1

2s2+2s

S

\

STORES

S+4

K+9

0

31

4 S 3 8

4

S+9

s2+2S+24

s2+S+ 16

S+9

TEMPS

4

K+ 9

0

29

2 S 3 8

4

8

s2+2S+24

s2+S+ 16

S+9

STORES

25+5

2E+5

0

25 cs

45+20

2s2+2s+5

3S+8

2s2+6s+22

2s2+2s+12

S+5

TEMP3

3+5

K+5

0

21

2S+20

s2+S+5

3k6

s2+4s+22:

2s2+2s+12

S+5

The above table indicates that the APLM does significantly better than the

NM on this program. The RS figures may be deceptive since in terms of total

memory accesses the ratio approaches a limit of 5. This is still significant, a s

is the RT ratio, which increases linearly with N (for large N).

F. Example - Matrix Inversion Programs

A s a final example, we analyze the performance of both machines on a

standard example, a program which does matrix inversion by elimination with

pivoting. To avoid charges of bias, the particular program used was taken from

the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19).

The program REC is shown in Fig. 2 and has been changed only by altering the

syntax of the conditional branch statements. This does not affect the measure-

ments made here and is done purely for esthetic reasons.

Table 4 counts the memory accesses and temporary stores statement-by-
,

statement for one pass through the main loop in program REC, This loop is

executed S times. All but the terms involving the variable K a re independent of

the iteration count. K varies from S to 1 from the first pass to the last. Thus,

we can obtain the totals for all passes through the loop by multiplying non-K terms

by S and by summing the K terms. This gives the counts in Table 5 below:

TABLE 5

Total Operation Count For Main Loop, Program REC

FETCHES STORES TEMPS

Naive
Machine 8E?+24.752+17.75~ 6E?+218+106~ 4E?+12.58+101.5~

APL
4s3+13. 258+14.25~ 2 Machine 2s3+l0. 5 s +144.5S 2E?+6.58+141. 5 s

V B + R E C A ; P ; I ; J ; K ; S
A MATRIX I N V E R S I O N BY E L I M I N A T I O N WITH P I V O T I N G

1 IF (2 = p p A) ~ = / p A ---- THEN +L1

A ERROR E X I T
2 L 2 : 0 + ' N O I N V E R S E FOUND1
3 RETURN

a S I S DIMENSION OF A

A P RECORDS PERMUTATIONS OF ROWS OF A

A K S E L E C T S SUBARRAY OF A FOR E L I M I N A T I O N
4 L 1 : P + I K + S + 1 f p A

A ADJOIN NEW COL TO A FOR R E S U L T S
5 A + ((s ~ I I , o) \ A

R w w w M A I N LOOP*** (R E P E A T E D 5 T I M E S)

A I N I T I A L I Z E L A S T COLUMN
G L 3 : A C ; S + 1 1 +- 1 = , S

A F I N D P I V O T ELEMENT, WITH ROW INDEX I
7 J + I A C I K ; ~ ~

8 I + J I r / ~
A INTERCHANGE ROWS 1 AND I
A RECORD THE INTERCHANGE I N P

9 P C I , I I + P C ~ , I I
1 0 A C l , I ; 1 S] + A [I , l ; \ S I

A CHECK FOR S I N G U L A R I T Y
11 1 ~ - 3 0 > I A [1 ; 1 1 + [/ [, A THBB +L2

Q NORMA.CIZF PIVOT ROW
12 A [1 ; 1 A A C 1 ; l + A [l ; l l

A E L I M I N A T I O N S T E P
1 3 A + A - ((~ z I S) x ~ [l ;]) 0 . x A C l ;]

A RUY'ATE A 9'0 PREPARE F O R MEXT STEP
R T H I S B R I N C P I A I : T T V Z I S U B A R R A Y TO UPPER L r i ' r ~ '

1 4 A + l t$ClJ l@A
1 5 P + l 4 P

a I T E R A T E ON K
1 6 IE O<K+K-1 T H E N + L 3

A DO COLUMN PERMUTAT.IONS TO PRODUCE RBSIJLT
17 B + A C ; P t t S l

v

FIEVl??,2: EXAMPLE PROGRAM: REC

In order to compare the performance of the APL machine to the naive machine,

let us form the ratios of the corresponding counts and see how they behave for

different values of So (Recall that S is the dimension of the matrix being inverted

by the program under consideration.) The first derivatives of all three ratios a re

positive for S>O, so that a l l ratios are increasing a s S increases. Table 6 sum-

marizes the properties of the ratios as a function of S.

Let RF(S) by the ratio of fetches in the NM to those in the APLM, RS(S) be

the ratio of stores, RT(S) be the ratio of temporary storage allocated, and RM(S)

the ratio of all memory accesses (fetches + stores). Then,

TABLE 6

Machine Comparison Ratios For Main Loop of REC

limit 2
S-00

An examination of Table 6 shows that for input arrays A of dimension greater

than or equal to 3 , 3 the APL machine does better than the naive machine by using

fewer fetches and stores. If pA is 4,4 or more, fewer temporaries a re allocated

by the APLM. Finally, the entries for S= 10 and S = 100 show that these improve-

ments rapidly reach the theoretical limits. In the region %4 the size of descriptor

arrays is approximately the same a s the size of the value part of vectors of length

S and not much less than the size of arrays of dimension S, S. Thus for small S,

the extra overhead in the APLM for creating descriptor arrays in drag-along

1.

predominates. However, a s S increases, the APL machine improves significantly

compared to the naive machine in its economy of memory usage and access.

The program REC used in the previous discussion was taken straight from

the literature and was changed ody by altering the 'branch commands and by

replacing the operator a! by an equivalent construction (because a! is no longer a

defined operator in APL). Primarily, i t is important to emphasize that this is

not a specially prepared example designed to tout the virtues of the APL machine. In

some sense, this is a l'typicalff program. By looking more closely at Table 4

we can get a clearer idea of where the APLM does better than the NM and where

it lags behind.

Thc APL machine does better (that is , uses fewer fekhes, sl;ores, and/or

temporaries) than the naive machine on statements 6,7,11,12,13,14 does the

same a s the NM on statement 8, and worse on statements 9, 10, and 15. The

places where the NM does better than the, APLM are precisely those statem.ents

o r expressions in which the more successful strategy is to do an immediate

evaluation rather than defer the operation. A l l three are, in this example, state-

ments of the form variable --T variable, where T is an arbitrary permutation of

the subscripts of variable. In all three of these cases, the APLM does worse

only by an additive constant, which is the space (and stores) required for a DA

to describe the deferred right-hand side of the expression. The NM avoids this

by evaluating directly. The same number of fetches a re done by both machines

for these statements. Of more interest a re the cases where the APLM improves

on the NM. In all situations these a re statements involving more than one operation

on the right-hand side of the assignment arrow. By using drag-along and beating,

the APLM requires fewer temporaries for intermediate results, which in turn

requires fewer stores and consequently fewer fetches when the intermediate results

a re used later in the expression. The most dramatic demonstration of the efficacy

of drag-along is shown in the use of temps in statements 6,11, and 12 and the

' stores in statement 11. In all these cases the APL machine uses storage in

proportion to the number of array operands while the naive machine requires

storage proportional to the size of the array operands. Also, with the exception

of statement 10, the number of stores for each statement is proportional to the

size of the result for the APLM while in the NM i t is generally proportional to

both the size of the result and the number of array operations.

A s an interesting experiment to see how much these measures of the machine's

operation are a function of the actual machine design and how much they depend

on the sample program, the author rewrote the function REC in the form shown

in Fig. 3, where it is renamed REC 1. RECl is the same algorithm used in REC

except that the actual permutations of array A in lines 10 and 14 of R EC have been

eliminated by using appropriate indexing instead. Also, statement 13 in REC

(which corresponds to statement 14 in REC1) is recast to eliminate unnecessary

operations and to minimize temporaries in both machines. An analysis of the

main loop similar to that for program REC is summarized in Table 7.

V B + R E C l A ; I ; J ; N ; R ; S ; T ; W
A MATRIX INVERSION BY BLIMIIQATION WITH PIVOTING
A ' O P T I M I Z E D 1 VERSION
A T H I S PROGRAM DIFFERS FROM REC I N THAT ARRAY
A PERMUTATIONS ARE DONE BY ,CHANGING THE
A PERMUTATION VECTOR, R , RATHER THAN ACTUALLY
A PERMUTING THE MAIPI ARRAY. A IS THFIV ACCESSED
A BY INDEXING WITH R .

1 l z (2 = p p A) ~ = / p A TgE& +L1
2 L 2 : 0 + 'NO I N V E R S E FOUND'
3 RETURN
4 L 1 : R 4 I S + (p A) C l I

A S I S DIMENSION OF A
A R RECORDS PERMUTATIONS AND I C USED TO A C C E 3 3 A

A N COUNTS I T E R A T I O N S
5 N + O

A ADD NEW COL TO A ; BUILD RESULT IPJ LEFT COL
6 A + (O , S p l) \ . 4

A +**MAIN LOOP*** (R E P E A T E D s T I M E S)
A FIND PIVOT ELEMENT

7 L 3 : J + I A C (- N) C R ; N + 2 3
8 I + J I r / ~

A INTERCHANGE BY ALTERING PERMUTATION VECTOR
9 R C 1 , I I + R C I . 1 1

A I N I T I A L I Z E RESULT COLUMN I

1 0 A [; N + 1 3 + R C I I = IS
1 1 IE 1 ~ - 3 0 > (A C R C 1 3 ; l + r l 1 . A TRITN +L2

A NOREIALIBB PIVOT ROW, AND S A V E IN W
1 2 N + A C R C 1 l ; l + A C R r 1 1 ; l + A C R C l I ; N + Z J

n 2' 13 A C T I V E COLUMN
1 3 T + A C ; N + 2 1

A EETMINATION S T E P
14 A C l + R ; I + A C l + R ; I - T C l C R] 0 . x W

n ' R O T A T E * A BY ROTATING R
1 5 R + 1 4 R

n I T E R A T E ON N

1 6 LF S > N+N+1 TEEM + L 3
17 B 4 A C ; R I I S]

v

FLGUgE-3: ' OPTIMIZED ' .&XAMlJL13: PROGRAM: REC1

TABLE 7

Operation Count for One Pass Through Main Loop, Program RECl

APL MACHINE

STORES I TEMPS FETCHES

2s-2N

1.5s-1.5N

8

0

s2+s

St1

S

2s2+4s-6

S

3sZ+ii.5s+3
-3.5N

STATEMENT

7

8

9

10

11

12

13

14

15

TOTAL:

* +5 once for entire loop
** +St6 once for entire loop

i *** +S+5 once for entire loop

NAIVE MACHINE

s2+6s+109
-N

(+I0 once).

FETCHES

4s-4N

1.5s-1.5N

8

S

3s2+3s

,3S+3

S

5s2+5s-10

S

8s2-i19. 5S+1
-5.5N

2S+106
-N

(+2S+ll once)

STORES

3s-3N+10

0

2 3

2S+5

2s2+2S+5

3St8

S+5

4s2+4s+19

S+5

6s2+16s+80
-3N

TEMPS

2s-2N+10

0

21

s t 5

s2+S+5

S+6

S+5

2s2+4S+26

S+5

3s2+11s+s3
-2N

In this algorithm, a s in REC, the inner loop is performed S times. The

counts shown in Table 7 a re independent of the iteration number except for terms

involving variable N. Examination of the program shows that N goes from 0 to

S-1, increasing by 1 with each pass through the loop. Thus, a s in the case of

REC, we can obtain total counts for the main loop by summing the N terms and

multiplying the others by S. The results a re summarized in Table 8.

TABLE 8

Total Operation Counts For Main Loop; Prn@ra.m REC1

~~KPI'CHES STORES TEMPS

Naive
Machine 8E?+16.75E?+3.75~ 6E?+14.58+81.5~ 38+10E?+84~

A P L
Machine 3s3+9. 7 5 8 + 4 . 7 5 ~ E?+5.52+109.55C10 ' 1.5f?+108.5S+11

An immediate, rather startling observation from this table is that all of i ts

entries a re strictly less than the corresponding entries in Table 5 which summarizes

the operations of REC. This is somewhat surprising because although the rewriting

of the program was done in order to optimize it for the APL machine, it unexpectedly

improved performance of the naive machine, a s well. In any case, this simply

lends more weight to the data summarized in Table 9, where the performance

ratios a re computed for the two machines operating on this program.

For program REC1, based on the data in Table 8, the ratlos are:

TABLE 9

. .

Machine ~ o m ~ a r i s b n Ratios For Main Loop of RECl

Limit
S-w

G. Discussion

In the preceding sections we look at a number of typical inputs to the APL

machine and find that in all but a few singular cases, i t evaluates them more

efficiently than a corresponding naive machine. This is a fair kind of comparison

because although the naive machine mentioned here is hypothetical, it is based

on the design of existing APL implementations, a t least one of which is commercially

available. The important question, of course, is what kinds of' conclusions may

w e draw from these particular cases? I offer the following:

1. Section D derives lower bounds, all greater than 1, for the ratio between

memory accesses and temporary use on the two machines on a simple class of

expressions. From this and the previous section i t appears that the APLM
d

evaluates expressions of the type analyzed in Chapter I1 more efficiently than

the NM.

2. Operations involving scalar operands are done equally well on both machines.

3. Sections E and F contain more realistic program examples which were

analyzed in detail. In both cases, the APLM improves significantly on the NM

in its use of memory.

4. The only cases where the APLM does worse a re those expressions

containing a single operator which does not fit into the beating scheme, and for

which the best evaluation strategy is to evaluate immediately, rather than to

defer. In these cases, the NM does slightly better than the APLM but only by

a small additive constant. (This being the space and stores for the APLM to

construct a deferred descriptor.)

In view of the above, i t is clear that in most cases, the AP'L machine design

proposed here is more efficient than a naive machine in the sense that for any

given program, the APLM uses fewer fetches, stores, and allocates fewer,
.

temporaries than the naive machine. *

*
A corollary worth noting is that there exist inputs (i. e. , programs) for which
the APLM always performs worse than the N M according to the measures derived
here. However, this should be neither startling nor alarming and does not detract
from the general conclusion above.

CHAPTER VI

CONCLUSIONS

In this chapter, we w i l l summarize all that has gone before and indicate some
\

directions for future research on this subject.

A. Summary

Although the original goal of this investigation was to produce a machine

architecture appropriate to the language APL, some of the work done in pursuit

of this goal is intrinsically interesting in itself. In particular, we call attention

to'the mathematical analysis discussed in Chapter 11. In Chapter 11, we find that

there is a subset of A P L operators (the selection operators) whose compositions

a re also selection operators. Further, compositions of these operators can be

represented compactly in a standard form. Moreover, there is a set of trans-

formations sufficient to transform any expression consisting solely of selection

operators acting on a single array into an equivalent expression in standard form.

By extension, similar results a re described that apply to select expressions which

include scalar arithmetic operators, reductions, and inner and outer products.

One result, of at least theoretical interest, is that all inner products can.be

represented as a reductior~ of a transpose of an outer product (Theorem Tb).

The general dyadic form is introduced in Chapter II a s . a vehicle for extending

the results about selection operators on single arrays or scalar products to

analogous results on inner and outer products.

In Chapter III, we show that if arrays are represented in row-major order

and if the representation of the storage access function for an array is kept separate

from the array value, then the result of applying a selection operator to an array

can be obtained simply by transforming the mapping function. This approach is

the basis for beating, one d the novel features of the APL machine, In mathematical

terms, beating is equivalent to the following: if an array is construed as a function

(the storage access function S) applied to an ordered set of values A, and if F l y

F2, , FN a r e selection operators then the sequence

Fl(F2(. 0 (FN(S(A1))))
,- -

is equivalent to some new function T(A) where T is a functional composition with o:

T-(F1 o(F2 o(. . . o(FN o S)))) .
Chapter IV describes a machine based on the beating process and the drag-

along principle. The latter says that all array calculation^ should be deferred as

long as possible in order to gain a wider context of information about the expression

being calculated. This is done because of the possibility that extra information

might allow the simplification of the expression to be evalhated. This is particularly

important when, as in APL, operands are array-shaped. In effect, a language

like A P L which allows sophisticated operations on structured data to be encoded

very compactly, makes it possible to write expressions which, though innocent-

looking, require much cdculation. h fact, one major g o d of the machine design

is to minimize any unnecessary calculations in evaluating APL programs. Thus,

drag-along becomes an important way of doing so. Drag-along combines all

element-by-element operations in a.xi inco'tflifg expression into a single, mure

complex, element-by-element operation which need only be done once for each

\
element of the result array. This is based on the fact that for most APL operators, _F,

A E 8 meansforall L w l p (A F B)

\ (A F B)C;/LI ++ (n A)C;/LI E (B D)C;/LI,

where and F2 depend on F_ and are normally the identity function. Simply

stated, this says that a single element of an array-valued expression can be com-

puted by evaluating a similar expression of single elements.

The APL Machine is divided into two submachines, the Deferral Machine

and the Execution Machine, in order to facilitate drag-along and beating. Con-

ceptually, the DM is a dynamic, data-dependent compiler which examine s incoming

expressions (machine code) and their operand values (data) and produces instructions

to be executed by the EM. This code is deferred in an instruction buffer and can

also be operated upon by the DM. At appropriate times, control is passed to the

EM which executes the deferred instructions. Since EM code must compute an \.

array-valued result, a stack of iteration counters a re used by the E-machine to

produce all elements of the result one at a time. A feature of the APLM which

makes i t easy for the DM to manipulate i ts own deferred code is that programs

(and deferred code) a re organized into segments which contain only relative ad-

dresses. Thus pieces of program can be referenced by descriptors, and these

pieces can be relocated at will simply by changing the descriptors and not the code.

This scheme leads to the use of a stack of instruction counters, each one of which

refers to a currently active segment in either the EM or the DM. Thus it is easy

for the machine to change state and recover previous states, thereby simplifying

the entire control process.

Chapter V contains a discussion of the machine design in which i t is shown

that at worst, the APL Machine performs the same a s a naive machine executing

the same program and at best shows a significant improvement. The primary

parameters used in the evaluation are measures of memory utilization. . Other

measures, such as encoding densities, a re not appropriate,as this aspect of the

machine design has not been specified, Such measures should be taken into account,

however, if i t is desired to implement a machine such as this. The evaluation of

n subset of APL containing only scalar arithmetic operators and select operators

shows that the APLM approaches the theoretical minimum of memory accesses

and temporary storage utilization for this class. Further, the ratio of accessing

operations between the NM and the APLM are significant since the NM expends

effort for fetching and storing in proportion to the number of operators in an

expression while the APLM does fetches in proportion to the number of operands

an3 stores only once. Similarly, it is noted that for this class of expressions,

the APLM needs to allocate space only for the result of an expression while the

NM requires temporary storage whch is a function of the Lree slructu-e of the

expression k i n g evaluated.

Ln the same chapter, ananalysis of an A P L llone-linerlf and a m a t r k inversion

program containing a more general mix of operators, shows that the APLM does

better than the NM by at least a factor of 2 on these measures. A final observation

is that the APLM described here is not significantly different in complexity from

a naive machine. Thus, i t could presumably be implemented with approximately

the same resources. Hence, i t appears that this design is an irupruvement and

could profitably be usid in iuture mncarnations of rnachlnes Ior APL.

Although the A P L machine is an improvement over the naive approach, i t

would be absurd to claim that i t is the "final solution" to the problem. Clearly,

i t is not. There a re stil1,some functions, such as compression or catenation,

which it handles awkwardly. Similarly, i t is distasteful (and inefficient) to evaluate

operands of a GDF explicitly if they are other than simple select expressions.

IdeaJly, there should be no temporary storage used for the evaluation of expressions

without side effects (such a s embedded assignment). Thus, there is still work

to be done on this problem.
' '.)

B. Future Research

The ideas summarized'here tend to fall into two classes - extensions or

refinements of the work already reported, and new problems suggested by the

current research.

In the second category is .the .area of mathematical analysis of APL operators.

The work in Chapter II of this dissertation barely skims the surface of this topic.

The general problem, of course, is at the heart of llComputer Science, -1' namely

the study of data-structures and operations upon them, However, APL and its

extensions a re rich in mathematical interest and this field deserves further,

more concentrated investigation. Similarly, the results found in Chapter 11. as

well as the structure of the machine have implications for language design. An .

important next step is to take some of the ideas which appear in the machine or
!I

the analysis and attempt to map them back into the programming language. As a

trivial example, the ease with which the machine evaluates select expressions

suggests that there ought to be the possibility of more general select expressions

allowed to the left of an assignment arrow, cog., i t should be possible to say

(1 ~ Q M) + A , meaning assign A to the main diagonal of Mo Again, the ease with which

the APLM does segment activation suggests that there should be some parallel

facility in a programming language. At the very least, APL should contain some

more sophisticated sequence-controlling operations such a s case, conditional,

and repeat constructs. A final possibility along these lines is suggested by the

similarity among the various selection operations. Simply that there exists such

a compact standard form suggests that there might be a different, perhaps more

general, set of selection primitives which would be desirable in a language like APL.

In the direction of refinements there a re several. area's of interest. One is

to try to add more parallelism to the machine. In this work, we have used the

implied parallelism of APL in drag-along and beating, but i t appears not to be'

fully exploited. For instance, there is the interesting possibility of making

the DM and the EM more independent, thus gaining an amount of parallelism.

There is no reason, for example, why there could not be multiple copies of both,

working simultaneously on different parts of an expression or program. Another

place where parallelism could be exploited is in the E-machine. Instead of doing

everything in serial, much could possibly be done on a grander scale.

It appears possible to extend the formulation of the standard form to include

more operators such as catenation, restructuring, rotation, compression,

expansion, and explicit indexing. If such a general form could be found, the operation

of the machine could be simplified and perhaps made more efficient.

In order to have any real implementation of the machine, i t w i l l have to be

extended to include instructions for input and output and other systems-type

functions. Also, as soon as an implementation is attempted, problems such as

encoding of data and instructions will have to be broached. Similarly, it will

probably be necessary to consider the question of data types in a real incarnation

of the APL machine. Other machine extensions which might be considered is the .

addition of a s.et of registers (possibly stacks) for eliminating some of the problems

of temporary storage in EM code which does not follow the stacking discipline of

VS. This, in turn, entails the addition of instructions to the machine's repertoire,

although these might not have to be visible to the programmer.

Although oil the one hand it is c.ounter .to the idea of n. In.ng;uege-oriented

michine, it might be desirable to give the (systems) programmer more direct

control over the E-machine. In particular, this would make i t possible to "pre-

compilef1 particular segments for the EM when enough information is available in

advance. An interesting extension of this is to allow the EM to call upon the DM

in the same way that the DM uses the EM. This would make the overall system

more symmetric and might increase i ts power and versatility.

A further area of investigation combines language and machine design. This

is the problem of extending APL to include more general kinds of data str.uctures,

such as lists or records, and then attempting to fit these into the structure of the

machine. This problem, in turn, makes further demands on the mathematical

analysis of the language and its operators.

Finally, it is important to investigate the possibility of extending some of

the methods and results of this work to other languages and data structures.

C. Concluding Remarks

This chapter has summarized the mathematical analysis and machine design

reported in this dissertation and has indicated some directions for fruitful investi-

gations in the future. It is pleasing to be able to end this work with a feeling of

accomplishment, yet it is perhaps more satisfying to know that this is not really

an ending, but a beginning.

The Road goes ever on and on,
Down from the door where it began,
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with weary feet,
Until i t meets some larger way,
Where many paths and errands meet.
And whither then ?. . .
I can not say.

J. R. R. Tolkien

REFERENCES

Abrams, P. S. [1966]. An Interpreter for I1Iverson Notation. Report No.
\.

CS47, Computer Science Department, Stanford University (August 17).

Adams, D. A. [1968]. A Computation Model with Data Flow Sequencing. Report

No. CS117, Computer Science Department, Stanford University (December).

Amdahl, G. M. L1964 . The Structure of SYSTEM/~~O: Part III - Processing

Unit Design Considerations. IBM Systems Journal, Vol. 3, No. 2, 144-164.

Amdahl, G. M., Blaauw, G. A. apd Brooks, Jr., E'. I?. r19644. Architecture

of the IBM SYS'I'EM/360. IBM Journal of Research and Development,

Vol. 8, No. 2 (April), 87-101.

.
Anderson, J. P. [1961 . A Computer for Direct Execution of Algorithmic

Languages. 1961 Eastern Joint Computer Conference, The Macmillan i .-,

Company, New York, 184-193.

Bairstow, J. N. [19691,. Mr. Iversonfs Language and How It Grew. Computer 'G .

Decigions, Vol. 1, No. 1 (~eptember) , 42-45.

Barton, R. S. Ll961j. A New Approach to the Functional Design of a Digital

Computer. Proceedings of the Western Joint Computer Conference, 393-396,

Barton, R. S. [1965]. The Interrelation Between Programming Languages and

Machine Organization. Proceedings of the IFIP Congress 1965, Vol. 2 ,

617-618.

Bashkow, T. Re ,19641. A Sequential Circuit for Algebraic Statement Transla-

tion. IEEE Trancactiono on Elcotronio Computcro, Vol. EC 13 (April),

102-105.
-

Bashkow, To R., Sasson, A. and Kronfeld, A. 1967 . System Design of a

FORTRAN Machine. IEEE Transactions on ~ l ec t ron ic Computers,

Val. EG-16, NO. 4 (August), 485,499.

Bayer , R. and Witzgall, C. [1968]. A Data Structure Calculus for Matrices.

Report No. 2 0, Information Sciences Laboratory, Boeing Scientific Research

Laboratories, Seattle, Washington, (May).

Berry, Po [1969]. APL\ 360 Primer. Form No. C20-1702-0, International

Business Machines Corp. , White Plains, New York.

Berry, P. [1968]. APL\ 1130 Primer. Form No. C20-1697-0, International

Business Machines Corp. , White Plains, New York.

Branin, Jr., F. H., Hall, L. V., Suez, J., Carlitz, R. M., and Chen, T. C.

[1965]. An Interpretive Program for Matrix Arithmetic. IBM Systems

Journal, Vol. 4 , No. 1, 2-24.

Breed, L. M. and Lathwell, R. H. [1968]. The Implementation of APL\360.

Interactive Systems for Applied Mathematics, Academic P re s s , New York ,

390-399.
1

Buchholz , W. [1962]. Planning a Computer System, McGraw-Hill Book Co. ,

New York.

Burks, A. W., Warren, D. W. and Wright, J. B. [1954. An Analysis of a

Logical Machine Using Parenthesis-Free Notation. Mathematical Tables . B ,

and Other Aids to Computation, Vol. 8 , No. 46 (April), 53-57.

Burroughs Corporation [1963]. The Operational Characteristics of the Proces-

so r s for the Burroughs B5000. Burroughs .Corporation, Detroil, Michigan.

Clark, E. R. [1967]. On. the Automatic Simplification of Source-Language Pro-

grams. Communications of the ACM, Vol. 10, No. 3 (Marchj, 160-165.

Cohen, J. [1967]. A Use of Fast and Slow Memories in List-Processing Lan-

guages. Comm~~nications of the ACM, Vol. 10 , No. 2 (February), 82-86.

Collins, G. E. [1965]. Refco 111, A Reference Count List Processing System

for the IBM 7079. Research Report No. RC-1436, IBM Research Division,

Yorktown Heights, New York (May 11).

Davis, G. M. [1960]. 'The English Electric KDF9 Computer System. Computer

Bulletin, Vol. 4 , 119-120.

Dijkstra, E. W. 119681. Go To Statement Considered Harmful. (letter) Com-
a

munications of the ACM, Vol. 11, No. 3 (March), 147-148.

Elspas, B., Goldberg, J. , Green, M., Kautz, W. H. , Levitt, K. N., Pease,

M. C. ', Short, R. A. , and Stone, H. S. [1966]. Investigation of Propagation-

Limited Computer Networks. R.eport No, AFCRL 64-376 (TS). Slalhfo.rd

Research Institute, Menlo Park, California (June).

Falkoff, A. D. 119653. Formal Description of Processes - The First Step in

Design Automation. Research Note No. NC-510, IBM T. J. Watson Research

Center, Yorktown Heights, New York (June),
I

Falkoff, A. D. and Iverson, K. E. [I 968aI. The APL\ 360 Teril~illal System.

Interactive Systems for Applied Mathematics, Academic Press , New York ,

22 -3 7.

Falkoff, A. D. and Iverson. K. E. [196f4h;). APL\ 360: IJsei-'s Manual. Btcr-

national Business Machines Corp, , Yorktnwn Heights, New York (July).

~'n.lknff, A., R., Tvnrnon, 1I. E; u11~l Ousseiigulh, E. fi. [.9tj4]. A Formal De-

scription of SYSTEM/~~O. IBM Systems Journal, Vol. 3, No. 3,, 198_262,

(Errata; lbid. , V O ~ . 4, No. 1, 84). -
Galler, B. A. and Perlis , A. J. [1962']. Compiling Matrix fp~sat ions. Com-

munications of the ACM, Vol. 5, No. 12 (December), 590-594.

Pa.lles, B. A. and Pcrlis , A. J. [1(467]. A Propusal for Definitions in ALGOL.

Communications of the ACM, Vol.. 10, No. 4 (April), 204-219.

Hellerman, H. [1964]. Experimental Personalized Array Translator Syst~m.

Communications of the ACM, Vol. 7, No. 7 (July), 433-438.

Hill, U., Langrnaack, H., Schwarz, H. R. and Seegrniiller, G. [1962].

Efficient Handling of Subscripted Variables in ALGOL 60 Compilers. Pro-

ceedings of 1962 Rome Symposium on Symbolic Languages in Data Process-

ing, Gordon and Breach, New York, 331-34 0.

Hillegass, J. R. [1968]. Burroughs Dares to Differ. Data Processing Magazine

(July)*

Hoare , C. A. R. [1968] . Subscript Optimization and Subscript Checking. Algol

Bulletin, No. 29 (November) 3344.

Iliffe, J. K. [1968]. Basic Machine Principles. American Elsevier Publishing

Company, New York.

Iliffe, J. I<. and Jodeit, J. G. [1962]. A Dynamic Storage Allocation System.

Computer Journal, Vol. 5, 200-209.

Iverson, K. E. [1966]. Elementary Functions : An Algorithmic Approach,

Science Research Associates, Inc. , Chicago, Illinois.

Iverson, K. E. [1964]. Formalism in Programming Languages. Communications

of the ACM, Vol. 7, No. 2 (February), 80-88.

Iverson, I<. E. [1962]. ,A, Programming Language, John Wiley and Sons, New

York (1962).
I

Iverson, I<. E. [1963]. Prngraanming Notation in Systems Design. IBM Systems

Journal, Vol. 2 , No. 2 (June), 117-128.

Jodeit, J. G. [1968]. Storage Organization in Programming Systems. Com-

munications of the ACM, Vol. 11, No. l l ' (~ o v e m b e r) , 741-746.

Knuth, D. E. [1967]. The Remaining Trouble Spots in ALGOL 60. Communica-

tions of the ACM, Vol. 10, No. 10 (October), 611-618.

Knuth, D. E. [19681. The Art of Computer Programming, Vol. 1 : Fundamental.

Algorithms, Addison Wesley, Reading, Massachusetts.

Korfhage, R. R. [1965]. Deeply Nested Iterations. Commtlnications of the

ACM, Vol. 8, No. 6 (June), 377-378.

Lawson, H. W. [1968]. Programming-Language-Oriented Instruction Streams.

IEEE Transactions on Computers, Vol. C17, No. 5 (May), 476-485.

Lesser, V. R. [1969]. A Multi-Level Mirco Computer Architecture. Report

No. CGTM-87 , Stanford Linear Accelerator Center, Stanford University,

Stanford, California.

Lowry, E. S. and Medlock, C. W. [1063]. Object Code Slptimizat.inn. C ~ r n -

n~u~licalluns of the ACM, Val. 12, No. 1 (January), 13-23.

Mc Carthy, J. 119631. A Basis for a Mathematical Theory of Computation.

Braffort, P. and Hirschberg, D. (eds.), Computer Programming and

Formal Sys terns, North-Holland Publishing Co . , Amsterdam , The Netherlands.

McCarthy, J. [1966]. A Formal Description of a Subset of ALGOL. Steel, Jr. ,

T. B. (ed.), Formal Language Description Languages for Computer Pro-

gramming, North-Holland Publishing Co. , Amsterdam, The Netherlands , 1 -7.

McCarthy, J., Abrahams, P. W., Edwards, D. J . , Hart, T. P. and Levin,

M. I. [1962a]. Lisp 1.5 Programmerls Mantxal. MIT Press, Cambridge,

Massa~husetts.

McCarthy, J. [1962b]. Towards a Mathematical Science of Computation.

Proceedings, of the IFIP Congress 1962, North-Holland Publishing Co. ,

Amsterdam , The Netherlands.

McKeeman, W. M. [1966]. An Approach to Computer Langungc Design. Rupert -

No. C S 8 , Computer Science Department, Stanford University, (August 31).

McKeeman, W. M. [1967]. Language Directed Computer Design. 1967 Fall Joint

Computer Conference, Thompson Books, Washington, D. C. , 413-417.

Meggitt, J. E. [1964]. A Character computer for High-Level Language Inter-

pretation. IBM Systems Journal, Vol. 3 , No. 1, 68-78.

Melbourne, A. J. and Pugmire, J. M. [1965]. A Small Computer for the Direct

Processing of FORTRAN Statements. The Computer Journal, Vol. 8 (April),

24-28.

Mendelson, E. [1965]. Introduction to Mathematical Logic, D. Van Nostrand Co. ,

Princeton, New Jersey.

Mikhnovskiy , S. D. [1965aI0 Addressing of Elements of a Block Using Address

Scales. Glushkov, V. M. (ed.), Problems in Theoretical Cybernetics,

Naukova Dumka Publishing House, Kiev, U. S. S. R. Translation: JPRS

Washington, D. C. (1966), 71-80.

Mikhnovskiy, So D. [1965blO A Method for Abbreviated Notation of Blocks of

Llata. Ibid. , 38-44. -
Mullery, A. -P. , Schauer, R. F. and Rice, R. 119631. ADAM: A Problem

Oriented Symbol Processor. 1963 Spring Joint Computer conference, , .
. ,

Spartan Books, Washington, D. C. , 367-380.

Myamlin, A. N. and Srnirnov, V. K. [1968]. Computer with Stack Memory.

IFIP Congress 68, D91-D96.

Naur , P. (ed), [1963]. Revised Report on the Algorithmic Language ALGOL 60.

Communications of the ACM, Vol. 6, No. 1 (January), 1-17.

Pakin, S. 119681. APL\ 360 Reference Manual, Science Research Associates,

Inc. , Chicago, Illinois.

Randell, B. and Russell, L. J. [1964]. ALGOL 60 Implementation, Academic

Press , London.

Sat.l:erthwaite, E. r19691, MIJTANT 0.5, An Experimental Programming Language.

Report No. CS12 0, Computer Science Department, Stanford University,

Stanford, California (~ e b f u a r ~ 17).

Sattley , K. [1961]. Allocation of Storage for Arrays in ALGOL 60. Communica-

tions of the ACM, Vol. 4 , No. 1 (January) 60-65.

Senzig, D. N. and Smith, R. V. [1965]. Computer Organization for Array

Processing. 1965 Fall Joint Computer Conference, Spartan Books,

Washington, Do C. , 117-128.

\ Sugimoto, M. [1969]. PL/I Reducer and Direct Processor. Proceedings of the

24 th National Conference, Association for Computing Machinery, New York.

Wagner, R. A. [1968]. Some Techniques for Algorithm Optimizatiu~~ with Ap-

p l i u a l l ~ ~ to Matrix A ri thrnetio Expraasiuns . Computer Science Department,

Carnegie-Mollon U~iiver~i ty ((June 3 7).

Weber , H. [1967]. A Microprogrammed Implementation of EULER on IBM

System/360 Model 30. Communicntions of the AClU, Vol. 10, No. 9

Wilkes , M. V. [1965]. Slave Memories and Dynamic Storage Allocation. IEEE

Transactions on Electronic Computers, Vol. EC-14, No. 2 (August), 270-2 71.

Wirtli , N. [l~ti'l]. On Certain Basic Concepts of Programming Ldngii-ages. Report

No. C303, Computer Science Department, Stanford University, Stanford,

California (May 1).

Wirth, N. and Weber, H. [1966]. EULER: A Generalization of ALGUL and its

Formal Definition,

Past I: Cornn~unicxllonsotthe ACM, Vol. 9, No. 1 (January), 13-23;

Part n: C ~ m m ~ n i ~ a t i o l i s of the ACM, Vol. 9, No. 2 (Febru~,ry), 89-90;

Xrrata: Communications of the ACM, Vol. 9, No. 12 (December), 878.

Wortman, D. W. [1970]. PL/I Directed Language Design (to appear).

Yershov, A, P. , Kozhoklrin, G. I. and Volushin , IT. M. [1!363]. Input Language

For Automatic Programming Systems,, Academic Press, Londo1-i.

