AANNNNNNNANNNANANANN

STANFORD LINEAR ACCELERATOR CENTER

Stanford University + Stanford, California

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

N

RS

SLAC-114
UC-32
(MISC)

AN APL MACHINE

PHILIP S. ABRAMS

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U.S. A_TO'mC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

February 1970

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22151,
Price: Full size copy $3.00; microfiche copy $.65.

LEGAL NOTICE —
This report was prepared as an account of Government sponsored work, Neither the United
States, oor the Commiasion, nor ony person acting on behalf of the Commisalon:

A. Makes any warranty or representatlon, expressed or implled, with respect to the accu-
racy, completeneas, or usefulness of the information contained in this report, or that the use
of any informatlon, apparatus, method, or process disclosed in this report may not infringe
privaialy nwned righis: v

B Aouucioy dug HABLINGIS Witk vaapset g (e wee of, on far domages remiiting fram the

use of any informaiton, spparatus, method, or process disclosed In this report.
As used in the sbove, ‘'person zclng on behalf of the Commlssion’’ (ncludes any eoi-

ployce or of the or empl of such contractor, to the extent that -

such employee or contractor of the C or of such prepares,
dtsseminates, or provides nccess to, any information pursant to his employment or contract
with (he Coaiuifsaion, or s employment with cuch contragtar.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

~
\-

ABSTRACT

i
This dissertation proposes a design for a machine structure which is ap-

propriate for APL and which evaluates programs in this language eff.icriently°

" The approach taken is to study the semantics of APL operators and data
structures rigorously and analytically., We exhibit a compactly representable
standard form for select expressions, which are composed of operators which
alter the size and ordering of array structures. In addition, we present a set
of transformations sufficient to derive the equivalent standard form for any
select expression. The standard form and transformations are then extended
to include expressions containing other APL operators.

By applying the standard form transformat;ons to storage access functions
for arrays, select expressions in the machine can be evaluated without having
to manipulate array values; this process is called beating. Drag-along is a
second fundamental process which defers operations on array expressions,
making possible simplifications of entire expressions through beating and also
leading to more efficient evaluations of array expressions contain.iné several
operations.

The APL machine con‘sists’ of two separate sub-machines sharing the same
memory and registers. The D-machine abplies beating and drag-along to defer
simplified programs which the E-machine then evaluates. The major machine
registers are stacks, and programs are organized into logical segments.

The performance of the entire APL machine is evaluated analytically by
comparing it to a hypothetical naive machine based upon presently-available
implementations for the language. For a variety of problems examined, the
APL machine is the more efficient of the two in that it uses fewer memory
accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.

T i -

ACKNOWLEDGEMENTS

- I wish to express my sincere thanks and deep gratitude to my dissertation
advisor, Harold Stone, whose unselfish godd counsel and understanding have been

essential to the successful completion of this work. The other members of my
reading committee, Bill Miller, Bill McKeeman, and Ed Davidson, have each
contributed much aﬁﬁreciated time and energy towards improving the final form
of this thesis. Larry Breed provided valuable help with his detailed readings
and cri'ticisms of the material in Chapter II. My friend and feliow student
Sheldon Becker has been a kindred spirit during the vicissitudes of graduate
student life. Thanks to Ken Iverson and Adin Falkoff who over the years have
helped to imbue me with the 'spirit of APL," and to Ed McCluskey, whose finan-
cial support enabled me to finish this work.

I dedicate this thesis to Life and Living, which begin anew each day.

- iii -

TABLE OF CONTENTS

Chapter

I. INTRODUCTION. . .

A. A Programming Language + « « ¢« « o « &
B. The Problem.

C. Historical Perspective

D. Conclusion. « . « « . ¢ o ¢ o0 o0 e .

II. MATHEMATICAL ANALYSIS OF APL OPERATORS
On Meta-Notation. . .~. . . . « ¢ ¢ ¢« o . .
Preliminary Definitions .

The Standard Form for Select Expressions

The Relation Between Select Operators and Reduction . .

Bo o w >

The General Dyadic‘Form — A Generalization of Inner
and Quter Products. + « « ¢« « o ¢ ¢ o . .

F. ConcluSion- . o o s o o o o o o « o o o a « o« o o«

APPENDIX A: SUMMARYOFAPL oo oo

APPENDIX B . » v v o e oo e e e e e e e e e e e

APPENDIX C: IDENTITY ELEMENTS o « .

I0. STEPS TOWARD A MACHINEDESIGN . . « ¢« « « o « « « « &
A. Drag-Alongand Beating . . « . « « ¢« ¢ o o « o s o &
B. Beating and Array Representation &

C. SummATY v v v v s o o s o o s s &

"‘APPENDIX A: TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS

INDUCED BY SELECTION OPERATORS

A, Data Structures and Other Objects « - . « « + « ¢« « o &

- jv =

Page

17

25

31
37
39
42
63
64
65
68

70

72
74

75

Chapter

B.

Page

Machine Registers. . . 79
1. Value Stack (VS). . . - 81
2. Location Counter Stack (LS) . 81
3. Iteration Control Stack (IS) . 82
4., Instruction Buffer (QS). . . 82
Machine Control .. . 83
The D-Machine ., . . . o 87
0. A Quide to thé Examples . 87
1. Storage Management Instructions « « + « . .« . 91
2. Control Instructions 94

The E-Machine . .

1. Array Accessing

2. Instruction Set

B B 1)

o 116

e e e e e . 120

APPENDIX A: SUMMARY OF REGISTERS, ENCODINGS AND TAGS . . 137

APPENDIX B: A FUNCTIONAL DESCRIPTION OF THE E-MACHINE . . 143

APPENDIX C: EXPANSION OF D-MACHINE OPERATORS

FORE—MACHINEetvnuun...n........ 150

APPENDIX D: POWERS OF 2

V.

162

EVALUATION B [
A. Rationé.le. .. 163
The Naive Machine . . . 164
Analysis of Drag-Along and Beating 167

5 oY 0 o

A

Example — A Simple Subclass of Expressions 173

Example — An APL One-Liner .

176

Example — Matrix Inversion Programs « « + . . '1_81

¥

Chapter

G. Discussion.

VI. CONCLUSIONS .

A. Summary

B. Future Research .

C. Concluding Remarks

REFERENCES .

°

°

o

- Vi -

Page
189
191
191
195
197

198

Chapter IV
1-1.
1-2,
1-3.
2.

3.

3-A.
3-B.
3-C.

Chapter V
1.
2-A.

2-B.

LIST OF TABLES

Storage Management and Control Instructions.
Scalar Arithmetic Operators o .

Remaining Operators in D-Machine

. Interpretation of ASGN and ASGNV in the D-Machine

E-Machine InstructionSet
E-Machine — Simple Instructions
E-Machine — Control Instructions .

E-Machine — Micro-Instructions

Steps in Evaluation of APL Operators . .

Summary of Effort to Evaluate Operators — NAIVE MACHINE
Summary of Effort to Evaluate Operators — APL MACHINE .
Performance Ratios for Primes Problem as a Function of N .
Oparatian Count far Ono Piss Throngh Main T.onp,

Program REC. :

Total Operation Count for Main Loop, Program REC
Machine Comparison Ratios For Main Loop of REC .
Operation Count for One Pass Through Main Loop,

Program REC1 . .

Total Operation Counts for Main Loop, Program REC1

Machine Comparison Ratios for Main Loop of REC1.

- vii -

Page

88
89
90
93

122

123

124

125

168
170
171

179

1380
181

183

187
188

189

,,3

e

LIST OF FIGURES

e
Page
"o Chapter IV -
1. Structure of M. . . . o & & & ¢ v ¢« o o o s s o o o 0 0 0 . 80
2. Maincycleroutine . o . o ¢ ¢ . 4 4t h 4 s e 6 e e e e e e 86
Chapter V
1. State of the registers before compress operator. 178
2, Exampleprogram: REC & o ¢« 4 4 o o o o« o o 182
3. 'Optimized' example program: REC1 . ., . . + . + « « . . . 186
[
/lh
':'»1'

- viii -

.o

-, ')

B

b t?

)“‘

CHAPTERII
INTRODUCTION

an optimist is a guy that has never
had much experience

Don Marquis, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an
esotéric curiosity, to its present pervasive and indispensable role in modern
society. Over the years, man's uses of computers have become increasingly.
sophisticated. of particular importance is the use of high-level programming
languages which have made machines more accessible to problem-solvers.

In general, the use of problem-oriented programming languages requires a
relatively complex translation process in order to present them to machines.
Although this can be done automatically by compilers, there is a wide gap to
bridge between the highly-structured concepts in a programmi;xg language such .
as ALGOL, PL/I, or APL aﬁd the relatively atomic regime of today's computers.
In gffect, there exists a mismatch between the kinds of tasks we want to present
to machines and the machines themselves. One possible way to eliminate this

difference is to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them,

A, A Programming Language

A particular programming language in which this mismatch with contemporary
machines is especially obvious is APL, based on the work of K, E. Iverson
(Iverson [1962])° APLis a éoncise, highly mathematical programming language
designed to deal with —array- structured data. APL programs generally contain

expressions with arrays as operands and which evaluate to arrays, while most

other languages require that array manipulations be expressed element-by-element.
To complement its use of arrays as operands, APL is rich in operators which
facilitate array calculations. Also, it is highly consistent internally both syntac-
tically and sema.nticaily, and hence could be called "mathematical''. Becausevof
its use of structured data and its set of primitives wh{ch are quite different from
those of a classical digital computer, APL does not fit well onto ordinary machines.
It is possible to do so, and interpreters have been written for at least three dif-
ferent machines (Abrams [1966]; Berry (1968); Pakin [1968]). Finally, because |

of its mathematical prdperties, 1t is possible to discuss the serﬁantic.s of the"
language rigorously and to derive significant formal results about expressions in'

the language.

B. The Problem

The problem considered in this dissertation is to design a machine structure
which is appropriate to APL. !'Machine structure' here means a general func-
tional scheme and not a detailed logical design. The expected result is not a set
of specifications from which a circuit designer could produce a working device,
but rather a superstructure into which the features of the language fit cleanly.
Thus, this design must in some sense be natural for the language. For example,
the primitive operations and data structures should include those of APL., In
addition, the machine should take advantage of all available information in order
to execute programs as efficiently as possible. We use the word ""machine' in
a very broad sense: what it really means here is "algorithm' and not necessarily
any particular physical device. Such a machine could be implemented as a con-
ventional program or as a hardwired device or as a microprogram in an appropr.iate

system. For the purposes of this work, it doesn't really matter.

~a-.

*

"APL" means any programming language which includes the semantics of
APL\360 (Pakin [1968]). We shall not be concerned with the particular syntax
of APL, although this currently appears to be the best way to represent the
semaﬁtic ideas of the language. In short, the machine should be able to handle
array-structured data with ease and should be able to evaluate functions on such
data using the operators of APL as basic primitives.

The approach taken is to invest a considerable amount of effort in the analysis
of the mathematical properties of the operators and data structures of APL and
to exploit these results in the design of the machine., Thus, a major part of this
work will be dedicated to a rigorous, mathematical investigation of APL expres-
sions. This study is contained in Chapter II. In Chapter III, the work of Chapter
II is related to the design of a machine, and the design goals are set forth in
detail, Chapter IV discusses the proposed machine design, and Chapter V is an
evaluation of the machine with respect to the goals of Chapter IIT.

It should be emphasized that the goal of designing an APL machine is a rather
broad one. Although there are clearly practical applications of such a design, ‘
thaf is not the major focus of this work. Rather, we hope that by investigating
this language and machine in detail, it will be possible to learn something about
the basic processes in computing and find ways of reflecting these processes in
a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C. Historical Perspective

Fof the purposes of this dissertation, we are primarily interested in previous

work inthe area of language-directed machine design (McKeeman [1967]; Barton [1965]).

To some extent, all machine design can be considered to be language-directed, in

that one wishes to implement some particular (machine) language in a piece of

-3-

hardware. However, let us consider only the class of machines which might
better be called "higher language inspired"; that is, machines which are based
in some way on languages capable of expressing concepts at a higher level than
are normally associated with assembly code.

| The first such machine was reported in 1954, and was & relay device capable
of directly evaluating logical expressioﬁs (Burks, Warren, and Wright [1954]), '
In addition, this machine used input in parenthesis-free (Polish) notation, thus
doubling its historical interest. ’l‘ﬁe logic machine typifies‘ one major oiass of
language-inspired machine designs in that its machine language is identical to thé
high-level source language. The other major class of language-inspired designs
is more concerned with the processing of the semantics of thc source language,
rather than direct acceptance of the exact language by the machine. In fact, most
désigns fall between the two extremes, as even those which accept the source
language directly do some preliminary transformations on it to produce a sim.plef
intermedlﬁte language.

Other language-inspired machines accepting source language directly include
an ALGOL 60 machine (Anderson [1961]), two FORTRAN machines (Bashkow,
Sasson and Kronfeld [1967); Melbourne and Pugmire [1965)), fhe ADAM maclhine,
hased on a special symbol-oriented language (Muller’jr, Schauer and Rice [1963];
Meggitt [1964]), and a machine for EULER, a generalization of ALGOL (Weber
[1967])° Of these devices, some were to be implemented in hardware (e.g.,
Bashkow et al.; Mullery et al) while others were implemented in microprogram
(Meggitt; Weber).

Machines which are more concerned with semantic processing to the extent
that their machine languages are significantly different from.a higher-level

language include the Burroughs B5000 (Barton [1961]; Burroughs [1963]) which is

-4 -

=y

I’T

,?\\

essentially an ALGOL machine, a PL/I machine (Sugimoto [1969]) and the Rice
University computer (Hiffe and Jadeit [1962]). Current work in this area includes
a PL/I machine (Wortman [1970]) and a micro-computer capable of emulating
high-level processes easily (Lesser [1969]).

Most of these efforts are not directly relevant to the work in this dissertation
and are thus reported here only for completeness. The common aspect of all these
designs is that they are concerned with the processing of more highly organized
information and programs than are found in the conventional von Neumann
type architectures. Most of them include generalized addressing schemes using
some modification of descriptors, as well as at least one stack.

Although the Burks, Warren, and Wright machine was the first to use Polish
notation as a machine language, the first commercially produced devices to do so
apparently were the English Electric KDF9 (Davis [1960]) and the' Burroughs i35000°
Both of these machines included stacks, Other related efforts not yet mentioned
are two machines based on lower-level machine languages, but intended to deal
with high-level primitives. One of these (Iliffe [1968]) is based on extensive use
of descriptor logic for both programs and data, while the other (Myamiin and
Smirnov [1968]) is somewhat more closely oriented toward higher-level languages.
The latter, in particular, does run-time evaluation of infix arithmetic expressions,

Aside from the work of Burks et al., none of the designs in the literature seem
to be derived from explicit mathematical analysis of their input languages. Further,
except for simulations or actual performance, none of the papers in the literature
present satisfactory evaluations of their designs. This is not to say that the
designs are not satisfactory: to the contrary, the success of the Burroughs family
of computers and the KDF9 show that language-inspired designs are a viable ap-
proach to the developrhéht of new machines., On the other hand, nobody seems to

have establiched oxactly how viablc such dcsigns really are.

-5-

D. Conclusion

Having briefly reviewed the developments of language-inspired machine design
to déte, they can now be left in the background. The present approach is different
from those in the past in that it is based on a mathematical analysis of the seman-
tics of the source language. Also, the evaluation of the resulting design is analytic,
and gives a clear comparison of this APL machine to other similar devices. There
are, of course, similarities to the designs of the past. In particular, the use of
program segments, data descriptors, and stacks is not novel in itself, although
the machine developed here is substantially different from those mentioned in the

1

last section.

"The thing can be done, "' said the Butcher, 'T think,
The thing must be done, I am sure.
The thing shall be done! Bring me papcr and ink,
The best there is time to procure, "

L. Carroll, The Hunting of the Snark -

¥

@

*\

I3 ‘r)l

[

CHAPTER II

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter e.xamines the mathematical properties of some of the APL
operators. Mathematical definitions of the operators are given from which it is
possible to deduce their properties. We show that there is a standard form for
expressions containing selection operators, and that there is a complete set éf
transformations to obtain it. A similar form which generalizes inner and outer
products is introduced with transformations appropriate to obtain it. Finally,
the relation between these operators and others in APL is discussed.

This kind of analysis is important for several reasons, First, in its own
right it contributes to the understanding of the operators and data-structures in
APIL. Second, and most important for this work, it provides a strong mathematical
basis for the -design of the machine to be discussed later. In particular, the ideas
discussed here are reflected in the drag-along and beating processes, which are

fundamental in the proposed machine design.

A. On Meta-Notation

APL is a programming language, and as such is best suited for describing
processes, while mathematics is primarily concerned with discussing relations
rather than processes. Thus, in order to do mathematics with APL, it is neces-
sary to use some notations that are not available in the language itself. Some of
these meta-notations are actually extensions of the language which might well be
included in APL to make it more powerful, while others are necessitated by the
analytic approach, and do not reflect shortcomings in APL. In the next section,

definitions of objects not in APL are clearly noted as such.

A

P

B. Preliminary Definitions

The definitions to follow are given partly in APL and partly in meta-notation.
Hence this and the remaining sections in this chapter assume a minimal ""reading

knowledge“ of APL. The APL summary in Appendix A will be helpful to the reader-

not fluent in this language. Also recommended are the APL\360 Primer (Berry

[1969])a.nd APL\360 Reference Manual (Pakin [1968]). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)
APL operators is elliptical, In fact, there is no circularity sincc thc dcfinitions
could be given in more primitive forms, but at the cost of less perspicuity. Since
the goal here is not the development of a coherent theory of APL expressions but
rather the illumination of the behavior of these expressions, the current mode of
explication was chosen. The use of ''undefined’ APL operators is made advisedly
and no special or esoteric applications of them aré made in the following definitions.
The basic problem here is that of using a formalism to' describe a formalism,

At some point it is necessary to assume a previous knowledge of something in
order to avoid an infinite regress. !'"Nothing can be explained to a stone; the
reé.der must understand something beforehand." (McCarthy [1964] » P T)

The definitions will be numbered Dn for easier reference. Theorems and
transformations will be numbered Tn and TRn, respectively. In APL expressions
to follow, the convention that unparenthesized subexpressions associate to the
right will be used wherever this does not lead to confusion. Material which can
be skipped in the first reading is enclosed in heavy brackets. For the most part,
this includes formal statements in definitions which are necessary for proving
theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.

4

-

)

’ Db. - Identity: (Meta) If .« and &8 are expressions, then
A R
means they have identical values.,
The sign ' is used for identity because the more traditional equality

sign '=' is reserved for use as a dyadic scalar operator in APL.,

D1. Conditional Expression: (Meta) The conditonal expression

IF B THEN A ELSE C
has as its value the value of 4 if B <= 1,the value of Cif B <> 0,and is
undefined otherwise. - |
McCarthy [1963] discusses formal properties of conditional expressions,

some of which are used in the proofs in this chapter.

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in
W '
APL expressions. It will be referred to as IORG.
In general, this work attempts to show explicit dependencies on index origin.
However, to do so throughout simply complicates many expressions without adding
insight. Whenever it is unstated we use l-origin indexing. .
Da3. Intcrval F'unction: If ¥ is a nun-negative Integer scalar, the interval
function of ¥,denoted by ¥, is a vector of length ¥ whose first element is
IORG, and whose Successive'elemerits increase by 1.
) [Formally, \W <> IF N=0 THEN EMPTY VECTOR ELSE (1N-1),N+IQRG-1]
L 3]
. Thus, one representation for the empty vector is 0.
D4. Odometer Function: (Meta) If Ris a vector of non-negative integers, the

odometer function of K, denoted by 1R, is a matrix with dimension (x/R),pR

T

whose rows are the mixed-radix representation to base B, of the (x/pR)
consecutive integers, starting with LOKG. ‘I'his extension Is nol a part
of APL, but is useful for discussing individual subscripts of an array.

: [Formally, for each Ierx/R, (R I;] «— JQ}_?Q+RTI—IORG.]'

Example: 13,2 <> 1 1
12
21
2 2
31
3 2
D5, Row Membership: ZLT is a function whose left operand is a vector and

whose right operand is a matrix, defined as follows:
L ELT R «— IF (pL)=(pR)[(2] THEN V/RA.=L ELSE 0.
That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

Example: (1,3) ELT 13,2 <= 0

(2,2) ELT 13,2 < 1

D6. List:(Meta) If L is a vector, then the list of L, denoted by ;/L, is a
subscript list made up of the elements of L. That is,

3/L <> L[11;002];...300pL].

Fxample: ML 3/715] <> M[1;2;3;435]

of ¥ in row-major order. The dimension is
p,M > x/pM

If Mis a scalar, then ., is a one~element vector.

- 10 -

D7. Ravel: The ravel of ¥, denoted by, , is a vector containing the elements

0

-,

Y

A7

[Otherwise for each Ieix/pM, (,M)[I] > M[;/(lpM)[I;]]]_

D8. Reshape: LetR be a vector of non-negative integers. Then the F reshape

of ¥ , denoted by RpM, is an array with dimension R, whose elements are
taken from M (possibly with repetition) in row-major order.
Formally, for each L ELT 1R,
(RoM)[3 /L] += (,M)LIORG+(x/pM) |RLL-IORG]
Example: (3,2)p16 <= 1 2
34
56
4p1,2,3,4,5 < 1,2,3,4
(2,4)p13 <> 1 2 3
2 31

1
2

D9. Partial Subscrioting: (Meta) ML[X] S] denotes the partial subscripting

of array Malong the X th coordinate. In other words,
MULK] 8] <= ML ;...58;...5]
: R +
1 K . ppM
Formally,
oML [KT 51 <> ((K-1)tpM),(pS), (K¥pM)
and for each L ELT 1pML[K] 51,
| if S ie a vector, then
(MLTK] S])[_;/L] > MC;/((K-1)4L),S[LIK]],KVL]

and if S is a scalar, then

(MLTKY S /L1 <> ML /((K-1)4L),8,(K-1)+L]
= «

-11 -

D10. Subscripting: If Mis a rankX array, then for any 51,52,...,5KM1,5K

MCS1;...;8KM1;8K] <> (...((M[LppM] SK1)LL(ppM)-11 SKM1])...)[[1] S1] ¥y

The above simply gives a formal definition for array subscripting. It looks
more complex than it really is because APL uses a different syntéx for subscripting
than for other operators. If we write SK X[K1 Minstead of M[{[X] S], then the
value of the above expression can be rewritten as:

S1 X(1] ... SkM1 X[(ppM)-1 SK X{ppM] M N

D11. J-Function: Let LEN be a non-negative integer, URG an integer, aud3:0,1.

Theun g LEN,ORG,S ioan intorval vector of length 7.AN whose least element -

is ORG; if S «<» 0 then successive elements increase by 1, else they decrease

by 1. Formally, | : . | 4
J LEN,0RG,S

<> IF S=0 THEN ORG+(1\LEN)-IORG ELSE (LEN+0RG—1)—((1LEN)—£QEQ).l

J-vectors are a generalization of the interval function. In particular, J-vectors
can have any origin, are invarfant under changes of IORG, and can run forward
or hnokward.

Example: J 4,2,0 & 2,3,4,5

J 4,2,1 +> 5,4,3,2 und these relations are truc for any IO0RG.

D12z, Subarray: (Mela) LetM be any array and Fan array with dimensian

(ppM),3. Then the subarray polooted byF , denoted FAM, is

FoM <> MLJ F[1;1;d FL2;]; ... 3J FlppM;1] m

where the elements of Fare assumed to be in the domain of the above

expression.
A

-12 -

@

i

I

A subarray selected by this function is compact. The subarray function will be
used to provide a standard representation for all the various ways of selecting
compact subarrays.

Example: Let oM <> 10,15

~then FAM <> M[J 4,3,0"; J 3,5,1]
M

R and

3,4,5,6 ; 7,6,5]

D13. Whole Array: (Meta) For any array M, the whole array of ¥, denoted

by AM, produces as a result the F such that Fay — M.

[Formally, MM <> Q(3,0pM)p(pM),((ppM)pIORG), (OOM)DO]

Example: If oM <> 6,10,32, then A¥ <= 6 1 0

101 0
and .IORG > 1 32 1 0

D14. Cross Section: (Meta) LetM be any array, F an array with dimension

(ppM),2 such that
o (i) FL[:11€0,1
(i) (~FL;11)/F(;2] < (+/~F[;11)p0
(iii) (FU;11/FC;2]) ELT F(;11/p0M
Then the F cross section of ¥, denoted by FAM, is: pFAM <> (~F[;11)/pM

and for each 7 ELT 1pFoM, (FAMIU /L] < ML 3/(x/F)+(~F[;11)\L]

Cross section is used to formalize the subscripting of arrays by scalars. The
first column of F contains zeros for coordinates to be left intact. Condition (ii)
requires that if F[J;1] <> 0 then F[J;2] <> 0. This is primarily to make some
of the theorems easier to prove. Entries of 1 in F[;1] correspond to coordinates

indexed by scalars in the corresponding element of 7[;2] .

- 13 -

Example: | Let pM > 4,7,13

B O
B OoN

0

then FAM <« M[2; ;10]

D15. Take: If Mis any array and 4 is an integer vector with pA <> ppM and
(14)<M , then A+M is an array of the same rank of ¥, as follows: for each
TerppM, ifA(I]=0 then includé the first A[I] elements along the I th coordinate
of M; otherwise if ALT]<Othen take the last |ALT] elewenls.
Formally, A+M <« FaM

where F < 8(3,ppM)p(14),(IORG+(A<0)x(pM)-|4),(ppM)p0

D16. Drop: I M and Aare as above, then4yy is similar to the take e;ccept that
for each coordinate, the first (or last)lA[I] elements are ignored.
Formally, AvM < GAM

where G <~ &(3,ppM)u((oM)-14),(IORGIOTA) ; (ppl) 0

D17, Reversal: If ¥ is any array then $[X1 is the reversal of ¥ along the KL—h

coordinate.
TFormally ¢[KIM <> HAM
v'vhere. H «— 8(3,ppM)p(AMIL 51],(AM)[52],K=1ppM
If the subscript on the operator is elided, it is taken to be oM.

Example: Let M <> 1 2
4 5
7 8

O O W

-14 -

it

¥

then, (2,2)4M <= 1 2 (2,72)4M «> 2 3
T 5 6
(2,1)¢M <> 8 9 (T1,1)M — 2 3
5 6
- Q11 <> 7 8 9
456
123

D18, Transpose: If M is any array and 4 is an integral vector satisfying

(i) p4 <> ppM
(i) A/Ae IppM' i.e.,A contains only coordinate numbers of ¥
(iii) A/(1[/A)€A i.e., A is dense
then the transpose A8 of M byA is defined as follows:
1. ppASM «— 1+([/4)-1I0RG
2. For each Iei1ppA8M,
(pASM)[I] «> L/(A=I)/pM
3. Foreach L ELT 1p AWM,
(AWM 3 /5] + ML ;/LLA]]
In other words, 4 permutes the coordinates of ¥. Transpose can also

specify an arbitrary diagonal slice.

Example: Suppose M is a matrix with p¥ <> 5,6. Thenitr — (2,1)8 , and
IORG ++ 1 we have ppR <> 142-1 «» 2 . Further, (pR)[1] < L/(1=2,1)/5,6 <> b
(pR)[2] ~= L/(2 = 2,1)/5,6 «++ 5 andfox-gachL ELT 16,5, R[;/L] — M(;/(,0)[2,1]]
or R[L[1]; L[2]] <« M[L[2]; LC11].
Thus, R is the ordinary matrix transpose of ¥ .

Now suppose M is same as above and R <> (1,1)8M. ._Then, ppR <> 1+1-1 < 1.

So the result is a vector. Then (pR)[1] <+ L/(1=1,1)/5,6 <= 5.

- 15 =

Then for each Le15, we have R[L] < M[;/(,L)[(1,1]]

<~ ML ; L]

So R is the main diagonal of M.

D19, Compression: If x is any vector and U is a logical vector of the same

length, theny/x is the result of suppressing from X all elements whose

corresponding entry in U is 0. For an arbitrary array X, U/LI] X compresses

X along the I th coordinate.

D20. Expansion:

—

Formally, forvector X, pU/X <> +/U and for each Ie1pU,

IF ULI)=1 THEN(U/X)[+/ItU] < X[I]

This is not a constructive formula for (U/X)[1]; however, sucha
formula is too complex to be useful here. For any arrayX ,

U/LI] X «— XLLIJ u/(px)LI1]].

then U\X is a vector with 0 elements wherever v has, and whose other

elements are taken from X in order.

The definition of expansion is extended to higher-dimensional arrays in

the same way as for compression.

Example:

Formally, pU\X < pU and for each IcipU,

(UN\X)LI] +> IF UCI] THEN XU+/ItU] ELSE 0

(1,1,0,1,0)/1,2,3,4,5 <> 1,2,4

(1,1,0,1,0)\1,2,3 + 1,2,0,3,0

- 16 -

If X is any vector and Uis a logical vector with +/U <« oX,

,‘}1

\‘:\w

.
ke

C. The Standard Form for Select Expressions

In this section the selection operators considered are take, drop, reversal,
transpose, and subscripting by scalars or J-vectors. Because of the similarity
among the selection operators, we might expect that an expression consisting only
of selection operators applied to a single array could be expressed equivalently in
terms of some simpler set of operators. This expectation is fulfilled in the
standard form for select expressions, to be discussed below.

If the existence of a standard form is to be at all useful, there must be a way
to decide whether a particular expression has a standard form representation and
if so, there must be an effective method to obtain it. In the sequel we show that
every select expression has an equivalent standard form, and exhibit a set of
formal transformations which are sufficient to derive the standard form from an
arbitrary expression. |

It may at first seem strange to include subscripting in the set of selection
operators, since its parameters are of a different kind than those for the other
select operators. In the other select operators such as take or drop, the left
operand is a count, which is indepéndent of ways of accessing the argument array.
On the other hand, in subscripting the arguments act like maps rather than counts.
For example, an expression like 444 has meaning out of context, as long as the
values of 4 andM are known. Contrariwise the expression M[1;3] cannot be
evaluated without knowledge of the index origin. In the theorems and proofs to
follow, the major complications often come from this dichotomy in the way of
specifying select operations, rather than from the actual content of the material,
Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.

- 17 -

D21. Select Expression: Let & be any (well-formed) array-valued expression.

Then Zis as a select expression on & if it is a well-formed expression

consisting of an arbitrary number (including 0) of the following operators

applied to &:
(i) Take
(ii) Drop
(iii) Reversal

(iv) Transpose

(v) Subaoripting by scalars of J-vectors

By extension, we will also include the subarray and cross section operators

in this class.

Example: Let Mbe a rank-3 array. Then by D21,

(2,1,3)8(P023(4,76,3)¢M)[; 3 J6,2,1]

is a select expression on ¥, but

-MC ;

3 5,7,3,1]

is not because it contains the scalar operator '-' and the subscripting is not by

a scalar or J-vector. The definition also admits M as a select expression on M.

- ‘.
D22. Equivalence Transformation: An equivalence transformation on expressions

is a rule of the form:

if set of assertions then & =>&

where &and #are expressions. If the set of assertions is true, then expression

& may be replaced by expression &, and the Lrull of the assertions guarantees

that &=>%

For example (if X is any vector then ¢¢px=>x) is an equivalence transivrmation,

since it is always true that if Xis any vector,¢dX < X.

- 18 -

S

&

Na

i

M

For any given transformation, it is necessary to prove that it is indeed
equivalence-preserving. If this is the case the transformation is said to be
correct. Note that the notions of expression and transformation and standard
form used here are informal ones. It is possible to make them rigorous, so as
to be acceptable to a logician, but that is irrelevant to the current aims and would

only serve to obfuscate the important mathematical relationships we are trying

to explicate. The correctness proof for each transformation will be called

"Proof of TRn'.

D23. Standard Form: A select expression on an arrayM is in standard form

(SF) if it is represented as ARFAGAMwhere A,F,G are all of the correct

size and domain.

In the remainder of this section, we introduce a set of equivalence transfor-
mations sufficient to transform most select expressions into standard form. In
the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If &is any select expression on an array¥,

then & can be transformed into an equivalent expression & in standard form.,

In order to obtain an SF representation of an arbitrary select expression, we
must first be able to eliminate the operators take, drop, reversal and subscripting.

The first four transformations below .do this.

TR1. If¥is anyarray and 4 is conformable to # for take, then AtM => FAM

where F < &(3,ppM)p(14),(IORG+(A<0)x(pM)-14),(ppM)pO0 .

-19 -

|

If ¥ is any array and 4 is conformable to ¥ for drop, then AvM => FAM

where F <« &(3,ppM)p((pM)-14), (IORG+OTA) ,(ppM)p0.

TR3. If ¥is any array then (XM => FAM

where F <> 8(3,00M)o(aM)[317,(AM)L 32],K=1ppM.

These three transformations are obviously correct, as they follow directly from
the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted,

'TR4. Ifmis dny array then ML[X] J LEN,ORG,5] -» FaM

where FLK;] <> LEN,ORG,S and (K=z1ppM)/[1]F > (Kz1ppM)/[110M

That the above is an equivalence transformation requires a small proof:

Proof of TR4:

We must prove that for any array ¥,
MCCK] J LEN,0RG,S] <> FAM
where F is as given in TR4. In order to prove the identity, we show first that both
quantities have the same dimensions. Then we show that corresponding elements
of each a;re identical.
Let R < MI[XK] J LEIV,O}?C—',S].
1. By definition, pR > ((X-1)toM),(p LEN,0RG,S) ,K+pM
| > ((K-1)+pM),LEN ,K+pM
and pFAM +- F[;1]
> ((K—1)¢(AM)[;1]),LEIV,K¢(AM)[;1]
<> ((K-1)+pM) ,LEN ,K+pM

<> pR

- 20 -

4

\.S_

Y

o)

2. For each L ELT 1pR,
RU3/L] > ML 3/((K-1)4L),(J LEN,0RG,S)[LLK]],K+L]
and (FAM)L;/LY <> (ML F(13] 5 4 FL23] 5 ... 5 FlopM;11L5/L]
— ML(J FL1;10LL113; ... 5 (J FlppM; 1DILIMII]
(by L3 in Appendix B).
But for each I=K, . (J FLI;1)[LLI]] < (J (pM)[I],I0RG,0)(LLI]]
< L[I] (by L4, Appendix B)
and (J F[K;1)LLLK]] Al (J LEN,ORG,S)LLLK]]. Therefore,
(FAM)[3/L) <> MCLC1] 5 LL2) 5 ... 5 L[K-1] ; (J LEN,ORG,S)[LLK]]1;
L{K+11; ... ;LLppM]] |
<« ML ;/((K-1)4L),(J LEN,ORG,S)[LLK]1,K+L]

< R[;/L] QED.

The preceding proof of TR4 is reasonably simple, and is representative of

the kind of proof required. Although similar in style, the proofs of the remaining -

‘transformations are more complex. Since they add little to the exposition, they

are given in Appendix B.
The following transformation makes it possible to reduce the number of

occurrances of adjacent subarray operators in an expression.

TR5. If Mis any array and F and G are conformable for subarrays, then

FAGAM => HAM
where pH <> pF and for each TIeippM, H[I;] < L,0OR,S

where J L,0R,S < (J GLI;1)[J FL(I;]]

Transformations TR1 through TR4 are used to eliminate instances of the
operators take, drop, reversal, and indexing from select expressions by trans-
forming them into equivalent expressions involving subarray and cross section

operatnrs. TRS5 shows how to conlesce two adjacent occurrances of subarray into

-21 -

one. The remaining transformations, TR6 through TR10 are similar in spirit

and are used to permute the remaining operations into the order required by the

standard form.

TR6.

TRY.

TR9.

TR].O- '

If Mis any array and Fand G are conformable, then FAGAM => G'AF'AM,
where G' « (~F[;11)/[11¢

and F'[;1] < F[31]

and F'[;2] <

FL ;1]X(G[;2jy+((~GL531)xFL 321-I0RG)+(GL ;3 1x(GL ;1]+I0}?G+;‘1-F[521)))

If M is any array and F and G are conformable to¥ for cross section,
then FAGAM => HAM
where H(;1] <> GL;1Iv(~G[;11\FL;1]

and H(321 < GL321+(~GL311)\A ;2]

If Mis any array and F,4 are conformable to ¥ for subarray and transpose,
respectively, then

FAAQM => AQFLA;]MM.

If Mis any arfay, Qa écaiar, Je ulapAQM t'hen-
(ASM)LLJIQ). => IF 1=npASM THEN BAM ELSE A'SBAM
where A' < (Awf)/4-J<4 |

and DL;1] «—J - 4

and B[;2] <> @xBL[;1].

If Mis any array and' B and A are conformable for transpose, then
BRARM => C&M .

where C <« B[A].

-22 -

W

#

Now that we have transformations TR1 through TR10 which are proved correct
in Appendix B, we can outline a proof of Completeness Theorem 1. First
note that for any array M, ¥ <« (1bpM)Q(AM)A(((poM),Q)DO)AM-
1. Let & be any select expression on M which satisfies the hypotheses of the
theorem. Apply TR1, TR2, and TR3 to & enough times to eliminate all instances
of the operators take, drop, and reversal. (In order to be absolutely rigorous,
we would have to prove a replacement theorem which says that if in an expression
<7, an occurrance of a subexpression & is replaced by an equivalent subexpression
B (i.e., B«>R"), then the resulting expression.#' is equivalent to .« only
st <> o . Call the result of this operation &'. Note that &' contains only
subscript, A, and & operations. Clearly &'« & because we have applied
only equivalence transformations.
2. Now for each instance of an indexed quantity, substitute the equivalent
expression using partial indexing, as per definition D10, Write this using the
IX notation mentioned there and apply TR4 to eliminate all instances of J-vector
subscripts and call the resulting expression &". It should be obvious that &"
has the form 51 01 52 62 ... 5N 6N M, where the S quantities are left operands
for the operators @ and the 6's areA, & and IX in arbitrary order. Finally
substitute the expression (1ppM)Q(AM)A(((ppM),2)p0)aM for y, and note that this
subexpression, call it ¢90N, is in standard form. Call the resulting expression &,
and again note that 97N<—> s.

3. Consider the following algorithm: at each step, the input is

Ty <> 51 61 52 62 ... SK 6K Py, where J is in standard form, i.e.,

Fi > AKQFKAGKAM

(a2) If X <> 0 then the algorithm is terminated. Otherwise, look at the operator

6K. Do step 1, 2, or 3 below depending on whether 9X is®, A or IX, respectively,
and return to step (4).

- 23-

1. 6K is transpose, § . Apply TR10 to the expréssion SKQ% <~ SKQAKQFKAGKAM,
to get the equivalent QKQFKAGKAM, where @K < SKLAK] and call this 317(_ 1 .

2, o9k is subarray,A. Apply transformations TR8 and TRS to SKA% to
get SKAS, «» SKAAKSFKAGKAM => AKSSKLAK; IAFKAGKAM => AKSFK'AGKAM, where FK'
is obtained by TR5. |

3. 6K is indexing by a scalar, Ix(J] . Apply transformations TR9, TR6,
and TR7 to SK IX[J]?;(, getting

SK IXTJ1 AKQFKAGKAM => AK'&BKAFKAGKAM
_> AK'SFK' ABK' AGKAM
=> AK'QFK'AGK'AM.

In each of steps 1, 2, 3 above, a set of transformations was applied to the
subexpression SK Qkyk of O/k Call the resulting subexpression yK—l' Since all
transformations were equivalence transforms, it is clear that SK QK% > yK-l'
Let F/'K_ 1 be the resulting expression from plugging yK—l into Q'K., Clearly
T 1 g’K. Finally observe that eachyk is in standard form. Hence, in N steps,
the algorithm will terminate with result & <> 4, R IN <&, and Ty — Sy
which is in standard form. This is the desired result. QED.

So far, we have defined a standard form for a subset of select eixpressions
and exhihited a complete set of transformations for obtaining the standard form
représentation uf an arbitrary expression in this class. Moreover, the proof of
the completeness theorem gives an algorithm for obtaining the SFofan expression,
Note that there are alterﬁate ways of formulating Lhe standard form. For instanco,
an equivalent formulation says that an expression is in standard form if it is
represented as ARB+C+OLK] DAY with B,C non-negative and X a vector of indices

so that the definition of ¢[X] extends in the obvious way. The choice of using

the meta-notation formulations was made for two major reasons. First, fewer

-24 -

v
-

transformations and therefore fewer proofs are needed to establish completeness.
Second, this formulation is closer to the way these results will be used in the
design of the machine. | |

Another point to note is that the standard form could be made more general,
by allowing more operators to be included in the set of selection operators. In
particular, compression and expansion might be included, as well as reshape
and catenation. The general rotation operator at first seems to be a possible
candidate for inclusion, but in fact does not fit in cleanly. This is primarily
because rotations involve taking residues of subscripts, which do not compose in
a simple way. A further extension would allow arbitrary indexing of select
expressions and perhaps extend operations on select expressions to operations
on their subscripts, as in the case ¢V[S] + V[¢S].

A final point concerns the significance of the SF and completeness results.
These results are important in that they establish fbrmally some of the relation-
ships between APL-like operators which informally may appear obvious. This
not only provides a useful tool for the programmer, who may make formal trans-
formations on his programs without a second thought, but it also provides a formal
basis for automatic transformation of programs and expressions. This second
property is heavily used in the design of the APL machine. Also important is
that results such as we have described aid in the understanding of array operators,
which might be used in generalizing them further or in strengthening the theoretical

foundation for operations on array data.

D. TheABe]ation Between Select Operators and Reduction

Obviously there is more to APL than just selection operators. If the results
of the previous section are to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of operators

- 25 -

in an array language. One result that has been used implicitly in some of the
proofs in Section C is that selection operators are distributive with respect to
scalar arithmetic operators. For instance, (4+B)[S] <> A[S]+BLS] and

-9V <> ¢-v. This property fbllows immediately from the definition of scalar
arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem T1 below:

T1. Let 4 and B be arrays with the same dimensions and ¥ and D be monadic
and dyadic scélar arithmetic operators and T a selection operatdr; then
(i) if A D B is defined,
I (ADB) < (LA D(LDB)
(ii) if ¥ Ais defined

IMA<—>UTA

T1 contains the restriction that4A D B and ¥ A be defined, in order to deal
with cases like ((1,1,1)+1,1,0)[1,2] in which the result is undefined as written
but is defined after distributing the indexing operator. 'I'his result is in [ucl more
general than as slaled. It should be clear that the operatnr T can also be rotation,
compres'sion, expansion (for some scalar operators) or operators such as ravel
or reshape. A similar result holds if one of Aor B is a scalar,

One of the most iniportant conatructions in APL is reduction which applies a
dyadic scalar operator between all elements ofu veclvi., Reduction io not an
operator in the sense we have been using, but is more like a functional. As will
be shown below, it is possible to change the order of select operators and reductions
as well as to permute the coordinates of the reducee. As in the previous section,
these facts will have direct use in the APL machine. The remainder of this section

defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.

- 26 -

D24. Reduction: IfD is a dyadic scalar operator and Vis a vector, then theD

reduction of v, written D/V, is a scalar defined as follows:
D/V <> IF (pV)>1 THEN V{13 D V{21 D ... D VlppV]
ELSE IF (pV) = 1 THEN V(1] ELSE (IDENTITY OF D)
In the expression above, the operators D associate to the right, as usual,
The identities of the scalar dyadic operators are listed in Appendix C.
If Mis any array and D is as above then the D reduction over theX th
coordinate of Mis defined as follows:
pD/LK]1 M <> ((K-1)+tpM),K¥pM
and for each L ELT 1pD/[K1 M
(D/LK] M)L5/L] < D/FAM
where F[;1] <> Kz1ppM AND F[;2] <« FL;1\L

If the subscript X is elided in the expression D/[X] M, it is taken to be

the last coordinate of M,which is ppM in 1-origin and [/1ppM in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators are defined formally first.

D25. Membership: If 4is a scalar and B is any array, then the membership

relation AeB has value 1 if at least one of the elements of B is identical to
A, otherwise the value is 0, The dimension of the result is the same as

that of A, and the definition is extended element-by-element on 4.

[Thatis AeB <> v/ ... V/A°.=B]
N
ppB TIMES

D26. Ranking: If Bis a vector and 4 is a scalar, then B14 denotes the index

of Ain B, namely the least subscript I of B such that4 < B[I].

[Formally, BiA <> |/(A=B,A)/ 11+pBJ)

- 927 -

\

From the expression above, it is clear that if ~AeB then the result is

1+ /1pB. The operation is extended to arbitrary arrays A element-by-

element.

Thus, if Ais any array, then for ‘each L ELT 104,
(BAA)[5/0) < L/(AL5/L] = B,AL;/L1)/\1+4pB.

An interesting question about reductions is under what circur.nstances can the
coordinates of the reducee be permuted, with reduction carried out on a different
coordinate, and still have the result remain the sume ? It is intuitively obvious,
for example, that +/[11 M < +/I2] (2.1)84. when M.is a matrix, since adding
the rows is the same as adding the columns of the transpose. Theorem T2 shows
that this kind of permuting can be carried out as long as the coordinates that are

left after reduction are in the same order.

T2, Let Mbe any array, D any scalar dyadic operator, X a scalar, and P dny
permutation of 1ppM, ' Then,
D/LK1 M < D/UPLK]] PoM
if and only if

(PLK1z1ppM) /P11pP <> (Kz1ppM)/1ppM

Proof: See Appendix B.

The complicated condition in T2 is a formal statement of the requirement
that permutation by P does not disturb the ordering of the coordinates in ¥ other
than A,

Example: LetM be a ran\k—4 array. Then, by theorem T2, all of the following
are true:
+/021M <> +/[1] (2,1,3,4)8M
< +/[3] (1,3,2,4)QM

~— +/[4] (1,4,2,3)8M

- 28 -

¥

No other values of P satisfy the condition in T2, For instance if P <> 4,2,1,3,
P[2] «> 2and Pi1pP « 3,2,4,1. S0 (2%1,2,3,4)/3,2,4,1 <> 3,4,1 which is
not (2#1,2,3,4)/1,2,3,4 <> 1,3,4. This theorem suggests the following trans-

AY

formation:

TR11l. If Mis any array and Dis a dyadic scalar operator, then
D/{K1 M < D/[LAST] AQM.
where LASTis the index of the last coordinate of ¥ (peM for 1-origin and

[/1ppM in general) and 4 <> (1X-1),LAST,((K-1)+1(ppM)-K)

TRI11 above and TR12, TR13, and TR14 to follow can be used to transform a
select expression on a reduction to a reduction along the last coordinate of a:

select expression.

TR12. If Mis any array and D a dyadic scalar operator then

ARD/M => D/(A,1+[/A)&M.

TR13. If ¥is any array, D a dyadic scalar operator, then
GAD/M => D/G'AM

where G' <= (pAM)p(,G),(14pM),IORG,0.

TR14. If Mis any array, D a dyadic scalar operator, andg a scalar,

then (D/M)LLJ1Q] => D/MI[71Q].

Proofs of TR11, TR13, TR14: Immediate from theorems T2, T3, T4.

Proof of TR12: See Appendix B.

Transformation TR11 forces all reductions to be along the last coordinate of
their operand array. TRI12, TR13, and TR14 permit reduction to be "factored

out" of select expressions.

- 29 -

\

Given these t:,ransformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: If & is an expression on an array ¥ containing

only selection operators and reductions, then it can be transformed into an
equivalent expression % of the form 21 /22/.' . .QK/F] ! where the D [are the reduction

operators in the order they appéared in & and where #" is in standard form.

Since the proof of this theorem ls siimilar to that for the first completeness theorem,
it will be omitted. Such a proof depends on the correctness of transformations

TR11 through TR14, which follow from the theorems below:

T3. If ¥is any array, D a dyadic scalar operator then

GAD/LKIM < D/[KIC'AM

where (Kz1ppM)/[11G" > G AND G'[K:] — (AM)LK;]

Proof: See Appendix B.

T4, For any array M and D a dyadic scalar operator,
GAD/M < D/G'AM

where G' <« ((ppM),2)p(,G),0,0

Proof: See Appendix B.
The following example takes an expression and derives the standard form of
Completeness Theorem 2,
Example: Let oM +> 6,10,12,19 and consider the select expfession with |
reductions:

&+ (2,1)8+/[11(3,7, 4)4x/[41M

In each step, we note the transformations applied.

- 30 -

1. ‘é°+—>(2,1)Q+/[3](3,1,2)QFA></[L+]M (TR11, TR1)

where F « 3 1
7 1
4 g

[eNe]

2. &< +/[33(2,1,3)8(3,1,2)8x/[uleay (TRI12, TRI13)

where G+« 3 1 0

7 1 0

b 9 0

19 1 O
3, & +/[3](3,2,1)‘QX/[4jGAM (TR10)
4, &« +/[3Ix/[41(3,2,1,4)8GAM (TR12)

5. &<« +/[31x/[41(3,2,1,4)8CAHAM

where H «+ by definition of A

00
00
00
00
‘The above expression is in SF.

E. The General Dyadic Form — A Generalization of Inner and Outer Products

In APL there are three ways of applying dyadic scalar operators to a pair of

operands. The simplest, the scalar product, is the element-by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, in a

specified order. Finally, the inner product is a generalization of ordinary matrix

product in linear algebra, except that arbitrary (conformable) arrays may partici~-
pate as operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.

- 31 -

D27. Outer Product: If Mand y are arbitrary arrays and D is any dyadic scalar

operator, then the D outer product of ¥ and ¥, written 4 s.p ¥, is dcfined
as follows: pM o.D N <> (pM),pN. Then for each L ELT 1pM o.D N,

(M °.D N)[;/L) <> ML ;/(ppM)+L] D NL;/CopM)SL].

D28. Inner Product: If¥M and Vare any arrays such that “14pM <> 1+pN and if

D and Fare two dyadic scalar operators, then theD-F inner product of
M and N written ¥ D.F N, is defined as follows: pM D.F N < (T1vpM),1¥plN
and for each L ELT \oM D.F N, (M D.F N)[;/L] <~ Q/(G"QM) F HAN,
where GL[;1]1 <> ((T1+ppM)p1),0 G[;2] > ((T1+ppM)tL),0
H(;1] < 0,(1+ppl)pl

H(;2] <> 0,(1-ppN)+L

If one of ¥ orV is a scalar, it is extended to a vector of the same length as
the reduction coordinate. In the sequel, we assume that all operands of inner

product are array-shaped (ur have alrcady been extended).

Example: (1,2,3) eoux 4,5 <=4 5
8 10
12 15

(1,2,3) .+ 4,5,6 ~— [/(1,2,3)+4,5,6
9
If Mand NV are conformable matrices, then
M +.x N o
is the ordinary matrix product of linear algebra,
Although these thi'ee product forms appéar to be different syntactically and
also in their effect, they are in fact intimately related, and can be considered
as aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which

- 32 -

<

includes these as special cases. We also investigate the effect of select operations
on this new construction called the general dyadic form (GDF), and show that it,
like the standard form on select expressions, is closed under application of select
operations,

The key to the relationship between these apparently diverse constructions
is the geperalized transpose operation. By applying a transpose to an outer product,
it is possible to write an expression which specifies ‘a diagonal slice of the original
outer product. For example, if V is a vector, ¥ a matrix, then the expression
1 1 28Ve.+M describes the result of adding V to each of the columns of #, It
would be desirable to understand this expression to mean the result it describes,
namely the result of adding the vector Vto the columns of ¥, rather than the process,
that is the transposé of the outer product of V and »#. The difference is important
for two reasons. Using the first interpretation in a situation where the expression
must actually be evaluated, as in a program, requires only the pertinent elements
of the result to be computed. This is especially iﬁlportant when the operands are
large arrays. Second, some information is lost by ignoring the partial results.
For example, the expressic))n ((1.2)+(1,0))[1] is undefined in the literal sense
but the apparent intended interpretation gives the value 1. Both in the case of
select expressions and in transposes of outer products this is a serious problem,
as it is in direct conflict with the semantics of APL. Formally, the definition of .
the language renders expressions such as the one just mentioned undefined, yet
this is really a matter of taste and style. My contention is that at worst this
kind of situation should be an ambiguous one, since it is essentially an instance
of a side effect. That is, the programmer writing such an expression should not
depend on the processor of his program to indicate that a domain error occurred

in the evaluation of an irrelevant partial result. If that is what he wants, there

- 33 -

are direct ways of expressix:lg it, such as writing A4+<(1,2)%(1,0), folloned by A[1].
In any case, I have taken the view that what should be evaluated is the intent of
an expression, if this is perceivable, rather than the literal exbréssion itself,
Except in cases which produce side effects, both approaches compute identical
values.)

Theorems T5 and T6 which follow, establish the eésential connections among

the product forms and the transpose.

T5. If Aand B are conformable for scalar product, and if D is a dyadic scalar

operalor then A D D <~ ((wppd),wppD)84 «.D D.
Proof: See Appendix B.

T6. If Mand N are two arrays conformable for inner product and D and F are
dyadic scalar operators, then M D.F N <> D/ASM o.F N,
where 4 <> (1 1+ppM),(2p LAST1),(1+ppM)+1 1+pph
and LAST1 is the index of second-to-last coordinates in¥ o .F N

(in 1-origin this is (ppM)+(ppN)-1and [/1(ppM)+(ppN)-1 in general),

Proof: See Appendix B.
Examglé: (T6) If AandB are matrices then
A +.x B < +/(1,3,3,2)84 o.x RB.
We can see this as follows: |
(+/(1,3,3,2)8 o.x BILI3J)
— +/((1,3,3,2)84 o.x BY.I;:J;]
<> +/A[I;IxB[;J]

— (4 +.x B)(I;J]

-~ 34 -

N

~..In previous sections we have looked into the effect of select operators on
single arrays and scalar products. A natural question then is, what is the effect

of the select operators on inner and outer products. In order to approach an

.answer, it was necessary to discover an alternate formulation of these constructions,

.- which facilitates this kind of analysis. Such an alternative is the general dyadic

form, defined below.

D29. General Dyadic Form: An expression on two array operands R and S,

with dyadic‘ scalar operator D is in general dyadic form (GDF) if it is
expressed in the form: "
/ AQR' °.D S!'
and the following conditions are satisfied;
(i) R'and S' are the standard forms of select expressions on k andS.
(ii) A is a conformable transpose vector for which each of (ppR')*+4
and (ppR')VAare in ascending order, and each contains no duplicate
values.

(iii) (pA&R'c.D S')[A] <> (pR'), oS

The last condition guarantees that if A takes a diagonal slice of the outer product
R' o.D S', then the length of corresponding coordinates in R' and S' are the same.
This can always be done by performing a take operation affecting these coordinates
(see TR17). |
Example: If Vis a vector, ¥ and N matrices, then the following are in GDF:
(1,1,2)/V o.] M,
(1,3,2,3)8 o.D (2,1)8N,

(1,1)8((1,1)84) ©.D V

- 35 -~

but the following are not in GDF because the conditions on 4 are not satisfied:
(1,3,3,2)8 o.D N
(1,1,1)8 o.D V
From definitions D27, D29 and Theorem T5, it is clear that the scalar product
and outer product of R and S by D are special cases of the GDF, obtained by taking
A <> (1ppR),1ppSand 4 <+ 1(ppR)+ppS, respectively; D28 and T6 indicate that
an inner product can be expressed as a reduction of a GDF.
In disouecing the. effect of select operators (‘)n GDF's, we wlll present a séries
of transformations, with proofs of their correctness in Appendix B. In the followinig
transformations, let

F <> (ppR')44 and G > (ppR')+A.

TRI15. IfW <> ASR' o.D S' is in GDF then HAW => AQU o.D V Wwhere

U is the SF of R" <> H[F;JAR"

V is the SF of $'"" <> H(G;IAS'

TR16. If Wis as above and ¢ is a scalar, then W[[J]Q] => BRU -.D V
where B <> (Jz4)/A-J<4 and
U is the SF of IF JeF THEN R'[[F1J] Q] ELSE R'

V is the SF of [F JeG THEN S'((G\J] Q) ELSE &'

TR17. If ¥ is as above then B => (F',G)& ©:D V
wlhere ' «— (McB[F1)/M
G' <~ (MeBLG1)/M M < ([/B)+1-10RG
Uis the SF of R" <> (F'\B(F])&(pB&W)[BLF1]+R'

Vis the SF of S'" <> (G'1BLG1)&(pBYW)[BLGII4S!

- 36 =

TRI18. If Mand N are conformable for inner product and D and F are dyadic scalar
operators, then ¥ D.F N => D/ASM' o.F N'
where A <+ (1 1+ppM), LAST1,(1+ppM)+1ppl
M' is the SF of M ,
N' is the SF of (LASTN,1 1+ppN)&N
LAST1 is the index of the second-to-last coordinate of ¥ °.E V.
(CooM)+(ppN)-1 in l-origin; [/1(ppM)+(ppN)-1 jn general)

LASTN is the index of the last coordinate of V.

(poN in l-origin;[/1pp/N in general),
These transformations are sufficient to establish:

COMPLETENESS THEOREM 3: Let & be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or
outer product of expressions .«Zand 2, where +Z and 2 are select expressions
on arrays .4 and B respectively. Then & can be transformed into an equivalent
expression & of the form 21/122/ .. ‘-D-K/g"’ where & 'isin GDF and the QI 's are
the reduction operators appearing in &, in the same order. If the original

expression & contained an inner product, QK is the first operator of the inner

product.
Proof: Similar to Completeness Theorem 1.

F. Conclusion

" This chapter has discussed some of the formal mathematical properties of
the operators found in APL, Of particular interest are the completeness theorems,
which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection

- 37 -

operators on an expression can be transformed into a shorter sequence of opera-
tions on the same expression. In other words, if éis an expression and Si,...,5K
are selection operators, then there isa process for finding A, F, * and G such that
51 82 ... SK& <> ASFAGAE.
Completeness Theorem 3 further shows that, in es‘tsence, selection operations on
inner, outer, or scalar products can be absorbed into the individual operands.
Also by Completeness Theorems 2 and 3, reductions can be factored out of seleot
expressions,

Clearly, the whole Story has not been told at this point; indeed, the contents
of this chapter barely scratch the surface of the general problem of analys1s of
APL semantics. Even so, the results discussed are a sufficient babe for the
design of the APL machine discussed in the next chapters. In particular, the
analysis here provides a formal basis for the beating and drag-along prucesses,

which are the two foundations upon which the APL machine design rests.

- 38 -

P

APPENDIX A

SUMMARY OF APL

Monadic form f£B £ Dyadic form 4fB
Definition Name Name Definition
or example or example
+B. «+> 0+B Plus + | Plus 2+43.2 ++ 5.2
-B «+ 0-B Negative - | Minus 2-3,2 ++ "1.2
xB «> (B>0)=(B<0) Signum x | Times 2x3,2 «> 6.4
- N
+B ++ 1B Reciprocal : | pivide 2+43.2 <> 0.625
B l rBl LB Ceiling | Maximum 3[7 +» 7
3.14) 4 3
T3.14(73 |Th Floor L | Minimum 3L7 ++ 3
*B <+»> (2.71828,.,)+B|Exponential | » | Power 2%3 «+ 8
OxN «+ N ++ %N Natural e | Logarithm [4eB ++ Log B base 4
logarithm A®B «> (@B):04
] 73,14 «> 3,14 Magnitude | | Residue - Case | A|B
A=x0 B-(|A)xLBz:|A
A=0,B20|B
A=0,B<0|Domain error
10 <+ 1 Factorial ! | Binomial A'B +» (!B):(!4)x!B-A
!B ++ Bx!B-1 coefficient [215 «» 10 3!5 +«+ 10
or !B ++ Gamma(B+1)
?B ++ Random choice|Roll | ? | Deal A Mixed Function (See
from B Table 3.8)
OB ++ Bx3,14159... Pi times o | Circular See Table at left
~1 «+ 0 ~0 «=»1 Not ~
A | And a|BlaaBlave|anB|lavs
(-4)0B A AOB v | Or oflo] o 0 1 1
(1-B*2)*x.5 [0} ,(1-B*2)%.5 ~ | Nand oj1| O 1 1 0
Arcsin B |{1| Sine B » | Nor 1]0] o 1 1 0
Arccos B |2} Cosine B 111] 1 1 o] 0
_ Arctan B | 3| Tangent B
(1+B%*2)x.5 |4 (1+4B*x2)*.5 < | Less |Relations
Arcsinh B |5| Sinh B < | Not greater Result is 1 if the
Arccosh B |6 | Cosh B = | EqQual relation holds, 0
Arctanh B |7 | Tanh B 2 | Not less if it does not:
_ . > | Greater 357 «» 1
Table of Dyadic © Functions # | Not Egual 7<€3 «+ 0

Primitive Scalar Functions

-39 -

Reprinted by permission from APL\360; User's Manual (€ 1968 hy International Business Machines Corpurutivn,

Name |sign! | Definition or example?
Size pA pP ++ 4 pE «+ 3 4 p5 +=+ 10
Reshape VoA Reshape A to dimension V 3 4p112 ++ E
1208 ++ 112 0pE +«+ 10
Ravel oA WA v (n/uA)pA 8 +212 nes «+ 1
Catenate v, v P, w2 «+ 2 3 5 7 1 2 ‘T 'HIS' «+ 'THIS'
VLA] PL2] ++3 P4 3 2 11 «+7 5 3 2
Index34 N[44 E[1 3:;3 2 1) «» 3 2 1
S 11 10 9
ALA;. . E(1;] «+ 1 2 3 4 ABCD
..34] E(;1) «+ 1 5 8 'ABCDEFGHIJKL'[E) «+ EPGH
. . . IJKL
Index ¥ First S integers . 1% +=+ 1 2 3 &4
generator3d) 10 «+ an empty vector
Index of3 |Vi4° |Least index of 4 P13 +»2 5125
in Vv, ox 1+pV PLE «+ 3 5 4 5
4 44 «+ 1 5 5 5
Take V4 Take or drop {V[I] first 2 34X ++ ABC
r (v[I)20) or last (V(Il<0) EFG
Drop VA elements of cooxrdinate I T2¢P ++ 5 7
Grade upS¥ [§4 The permutation which 33 5 3 2 ++ 4 1 3 2
> woiild order i (asvend-
Grade: downd3{¥4 ing or descending) §3 5§ 3 2 ++ 2 1 3 4
1 3
Compress® |v/a 1010/P.++25 1010/E «+5 ¥
’ 9 11
10 1/[1)E ++ 1 2 3 & «+ 1 0 14F
9 10 11 12 ’ ‘
A BCD
Expand® Sv\a 10 1\12 «+ 10 2 101 1 1\X +«+ E FGU
I JXL
DCBA IJKL
Reverse® A ¢X ++ HGFE ¢[1)X «+ @X ++ EPGH
. LKJI ¢P «+ 7 5 3 2 ABCD
. BCDA
Rotate® rey) 0P «+ 7 2 3 5 «+ “16P 1 0 T1éx ++ EFCH
LIJK
AEI
Va4 Coordinate I of 4 2 18X «+ BFJ
’ becomes cooxdinate CGK
Transpose VLI] of result 1 1QE ++ 1 6 11 DHL
R4 Transpose last two coordinates ' - RE ++ 2 1QF
0110 -
Membership |4ed oWeY ++ pW EeP +~ 1 0 1 0
g Pei4 ¢+ 1 1 0 0 g U 0060
Decode . Viv i041 7 7 A v+ 1776 24 60 ANL1 2 3 ++ 3723
Bnoode vrs 24 B0 6073723 «+ 1 2 3 60 6073723 +» 2 3
Deald 575 W?Y ++ Random deal of W elements from 1Y
Primitive Mixed Functions

1. Restrictions on ax"gument.ranka are indi_(:‘ated by: 8§ for
gcgla;, v for vector, M for matrix, A for Any. Except as
the first argument of 314 or 5{4A], a sualar may bo ueed
ingtead of a vector. A one-element array may replace any
scalar. :

2. Arrays used . 12 3 & ABCD
in examples: P ++ 2 3387 E++5 6 7 8 X += EFGU

: . 9 10 11 12 " IJKL

3. Function depends on index origin,

4. Elision of any index selects -all along that coordinate.

5. The function is applied along the last coordinate; the
symbols 4, %, and- e are eyuivaient to /, \, and ¢,
respectively, except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

.
.

- 40 -

Reprinted by permission from APL\360: User's Manual) 1968 by International Business Machines Corporation.

>,

Type of Array] rA ppAjpppA

Scalar 0 1
Vector Nl 1 1
Matrix M N[2 1
3-Dimensional|L M N]| 3 1

Dimension and Rank Vectors

Conformability Definition
pA |oB |oAf.gB|requirements 2«Af.gB
2«£/AqgB
14 z+f/AgB
/) 2+£f/AgB
ulv u=v 2+«£/AqQB
V W] W Z[I)+«£/AgB(;I]
TU T Z[T)«£/ALI;])gB
Uulv wi w u=v ZLI)+«£/AgB(;I]
T Ulv 7 U=v z{1)+£/A[I;]1gB
TUIVWN|TVW u=v Z(I;J])«£/A[I;]1gB[;J]

Inner Products for Primitive Scalar Dyadic Functions f and g

Definition
.gB Z+Ae .gB

©
S
°

pA |pB

Z+AgB
Z[I)«AgBLI]
ZLT]+«A[LI]1gB

Z[I;J])«AlI]gBLJ]
Z[I;J)«AgBLI;J]
2[I;J1+AlI;J]gB
Z{I;J;K]«ALT1gBLJ ;K]
Z(I;J;K)«ALI;J1gBLK]
2(I;J3K:;L)«ALI;J)gBlK;L]

<

Mo oaw
SToeR|RTER
|S<XT

~
SoQa o«
x

|<sS= <<

W
W
W

Outer Products for Primitive Scalar Dyadic Function g

Case pR Definition

Reprinted by permlsslc;n from APL\360: User's Manual (©) 1968 by International Business Machines Corporation.

R<1QV pV R+V

R«1 28M |oM R+M

R+2 18%M (oM)(2 1] RLI;J)+M[J;I]
R+1 14§M L/oM RLIYM[I;I]
R+1 2 38T{p7T : ReT

Rv1 3 28T |{(pT)[1 3 2] ROI;J3KI+TLI:K:id]
R+2 3 18T|(pT)[3 1 2] ROI;J;K1«T{J;K;I1]
R+3 1 28T|(pT)(2 3 1] RLI:d:K1+TTK:T:d1
R+«1 1 28T|(L/(pT)(1 21),(pT)[3] R{I;J)«T(I;I;J]
R+1 2 18T {(L/(pT){1 31),(pT)[2]| RII;JI+TLI;J;I])
R+2 1 18T |(L/(pT)[2 31).(pT)(1] R{I;J1«T[J;I;I]
R+1 1 18T|L/0oT RLI)+T(I;I;I]

Transposition
- 41 -

APPENDIX B

This appendix contains proofs for the transformations and theorems which
were deferred from the main part of Chapter II. They v’vere omitted from the
text because they do not substantially contribute,to-the exposition of the material,
and are included here for completeness.

The various probfs are trying to establish the identity of two expressions &
and #. This is generally done in two steps: in step 1, p& > pF 1s shown and
in step 2, it is shown that the expressions are identical element—bif-element.

Lemmas 1.1 through L9 slate results used in the rest _of‘ this appendix. Since
they are all intuitively obvious, and since.their proofs follow from the definitions,

these proofs will be omitted.

L1, If Mis any array and Vis a vector, then

(MULKY VDLLK] U] > MLLK] VIU]]

L2, If Mis any array, I<J, and U/ and V are vectots or scalars, then

(MCLJ] VIHLLTY U] + (MULI] UDLLT-0=ppU] V]

L3. Letm be any array and $1,52,:..,5k be subscript vectors; Then
for each L ELT\oM[S1:82;...;5K],

(MLS1352;..0.3SKI)3/L] < ML ;/T] -
where T is a vector with T[(I] <« SITL[I]]

for each IcippM.

L4, For any integral A (scalar or array) satistying A>T0r¢ and (A-IORG)<LEN,
4. (J LEN,0RG,0)LA] = UKG+A=LIURG

b, (J LEN,0RG,1)[A] ORG+LEN+IQRG+ 1-A

- 492 -

c. (J LEN,ORG,S)[A] <> ORG+((~S)x(A-IORG))+(Sx(LEN+IORG+ 1-4))
d. -J LEN,ORG,S <> J LEN,(-(ORG+LEN-1)),~§
e, K+J. LEN,ORG,S <> J LEN,(ORG+K),S if X is an integer

f, &J LEN,ORG,S <> J LEN,ORG,~S

X FoM is defined, then
(a) pFAM <> F[;1]
(b) for each L ELT 1pFAM,

(FAM)C; /L) <> ML /FL523+((~F[331)x(L-I0RG))+(FL;31x(FL;11+I0RG+ 1-L))]

a, U/X[(S1 < xLU/S]

b. U\U/X <> UxX (ifX is numeric)

c. U/UNX <= X

d. U/V/X < (V\U)/X

e. (UAV)/X < (U/V)/(U/X)

f. U/(X DY) <> (U/X) D (U/Y) forD a dyadic scalar operator
g. If Dis a dyadic scalar operator with 0 D 0 <> O,

then U\(X D Y) <= (U\X) D (U\Y)

If 0<ORG1-IORG and (ORG1+LEN1-IORG)<LEN then
a, (J LEN,0RG,0)[J LEN1,0RG1,S] <> J LEN1,(ORG+ORG1-IORG),S

b. (J LEN,0RG,1)(J LEN1,0RG1,S) <> J LEN1,(ORG+LEN+IORG-(ORG1+LEN1)),~S

If Uand V are logical vectors with pV « +/~U

then ~(UV(~U)\V) > (~U)\~V.

a, If Bis a vector and if for any A,4¢B is all ones, then B[B14] «+ A.
b. If P is a permutation of 1pPthen if R <> P11pP, P[R] <> R[P] <+ 1pPand
P <> RuipR. In other words, for permutation vectors, the ranking

operator is its own inverse.

- 43 -

Proof of TR5:

1. oFAGAM <> oF[;1] <> pHAM (by L5)
2. For each L ELT 1pFAGAM, (FAGAM);/L] «— (GAM)[;/S]
where SLI] < (4 FLI;1)LLLI]]
and (GAM)[/91 <> ML 5/T]
where T[I] < (J GLI;1)LS[I1]
— (4 GLI; DI FLIADILLIII]
— ((GLI; DIL FLI;INILLIT]
But (HMM)(;/L] > ML; /U]
where ULI] « (J HLI;1)ILLI]]
— ((J GLI; DLL FLI;INCLIIT]
«— TLI]
Thus, T <> U and (FAGAM)[;/L] <> (H)[3/L1. QED.
We can give explicit formuias for H in VTR5. First, #4(;1] <~ F[31] and
H(;3] <> F(;3)=GL;3]1. Finally, for each ITeppd, O[I32] <« IF 0=60I;3]

THEN F(I;31+G(I;31-I0RG ELSE (IORG++/G(I31,21)-+/FLI;1,2].

Proof of TR6:

1, pFAGAM <> (~F[311)/pGoM
> (~FL31D)/6L;1]
— G'[;1] > pGTARTAM,
8., TFor cach L ELT \pFAGAM,
(FAGAM)C : /L] (GAM)L;?L'] where L' «+ (x/F)+(~t[;11\L (by D14y

— M[;/5]

- 44 -

v

where (by L5),

S <> GL;21+((~G[;31)xL" -I0RG)+(GL 531x(GL ;1 1+I0RG+ 1-L")

> GL;2]+((~GL331)x(x/F)+((~F[;11)\L)-10RG)

+(GL;31x(GL 31 1+I0RG+ 1-((x/F)+(~F[;11)\L))

(G'AF'AM)L /L] > (P'AM)L5/T]

where T «> G'[;2]1+((~G'[;31)xL-IORG)+(G'[331x(G'[;1]+I0RG+ 1-L))

Thus, (G'AF'AM)[/L] <> ML ; /U]

where U <> (x/F'")+(~F'[;11)\T

— (x/F")+(~F'[;1D\(G'[;2]+((~G"[;3])xL-IORG)

+(@"[331x(G'[311+I0RG+ 1-L)))

To complete the proof, we need to show that § <+ . By lemma Lé6g,

X\A+B > (X\A)+(X\B),

and X\AxB <> (X\4)x(X\B).

Thus, writing E <> ~F'[;1] <> ~F[;1], and substituting for F',

U <« (FL:;1Ix(FL3211%GL :21+((~G[3;3])=F[;21-I0RG)

+(6L 330G ;1 I+ I0RG+ 1-F[321))))
+(E\G'[;21)+((E\N~G'[:3])x(E\L)-IORG)

+(E\G'[;31)x(E\G'[;11)+I0RG+ 1-E\L

But E\G'[;K] « ExG[;K] < (~F[;11)xG(;K] for Ke1,2,3.

- Making this substitution and commuting terms,

U <« ((Z;’[311+~F[31 1)x(GL ;2 1+((~GL ;31)x-IO0RG)+GL ;31xGL ;1 1+I0RG-1)

+((~GL 331)x(FL 32 IxFL321)+(~F[311)x(~F[;11)\L)

+GL 33 1x(FL31)x-F[321)+(~F[;11)x-(~FL31\L .

But F[;1]+~F[:1] <> (pF[;1]1)p1 and does not contribute to the product in the

- 45 -

first term. Also,
(~FL311)x(~F[;2\L > (~F[;11\L.
U <> GL;23+((~GL 331)x(x/F)+((~F[;11)\L)+I0RG)
+GL331xGL 31 1+I0RG+ 1-((x/F)+(~F[;11)\L)
~— S QED.

Proof of TRT7:

1, pFAGAM <> (~FL;11)/0CGAM + (~FE;1])/(~.*G[;1])/0M'
o (6L DAFL510) /ol (by L6d)
oHAM <> (~H[311)/pM > (~(GL;1Iv(~GL3;1N\FL511)) /M
— ((~GL;1\~FL;11)/pM (by L8)
«> pFAGAM |
2. For each L ELT 1pFAGAM,
(FAGAM)L 5/L] > (GAM)L 3/ (x/F)+(~F[311\L] > M(;/S]
where S +> (x/@)+(~GL;1D\(x/F)+(~F[;1IN\L o
(HAM)YT 5 /L) > ML;/(x/E)+(~HL; 1 DALY <> MU5/T]
where T < ((GM:1Iv(~GL;2DA\FL;1D)%(GL521+(~6L 1 IN\FL:21))
+(~(GL;1)IV(~GL ;1 D\FL;11))\L
Expanding the products, and noting that
GL31IV(~GT 1 DNFL 31T <> GLi1d+(~GL1DN\FL 3],
we gef:
T or (%/G)+(GL 31I%(~GL 31 DNRT 321)+(GL 3 2% (~GL ;1 1D\FL 311)

+(((~G(;1])\FL;1J)x(~G[;1])\F[;2J)+((~GE;1])\~F[;1J)\L.

- 46 ~

So we must show that S > T, In simplifying T, we use the following,‘ in
order: If Uand V are logical vectors, |
Ux(~U\X « (pU)p0
(NO*(U\Y) <> U\XxY | (L6g)
UN\MX > (\V)\X
Also recall from the definition of A that G[;2] contains zeros wherever
G[;1] does. Thus, we rewrite T: |
T (x/G)+(GL;21x(~GL; 1 DNFL; 1 D+ (~GL 32 DN(x/F))+((~GL31IN\~FL 31 1\L
But the second term goes away because of G[;2]'s zeros.
T > (x/G)+((~6L:1 D\ C/F))+(~GL;1 D\ (~FL1 DL
o (/EIH(~GLLDN(/F)H(~FL:1DND)
<> S QED.

Proof of TRS:

Clearly the ranks of both expressions are identical,
1, PFASM <> F[;1] (by L5)
Now, f;r each Ie1ppARFLA;]1AM
(pAQFLA;1AMLI] <> L/(A=I)/pFLA; 1M «— |/(A=I)/F[A;1]
> L/FL(A=D)/A31] (by Léa)
< L/(+/A=I)pF(I;1] <> F[I;1] <> (pFAAQM)(I]
2. For each I ELT 1pFDARM,
(FAASM)[3 /L] <> (ASM)[;/Q] <> M ;/QLA]]
where QLI] «— (4 F[I;]).[L[I]]
(AQFCA;1aM)[3/L] <> (FLA;1aM)(;/LLA1] > M[;5/S]
vs;here SLI] «— (L (FLA; DHII; NHULIADLIT]
| — (J FLALI};DILIACIIN]
> QUALI]] < (QLAD)LI]

Thus #LA) ++ S, QED,

- 47 -

Proof- of TRQ:k Thé case of (p4QM) <> 1 is trivial and will be omitted. Otherwise,
1. pp(AM[J1Q] <> (ppA&M)-1 <> ([/A)-1 ~ (in l-origin) -
0pA'RBAM <> [/A" > [/ (4zJ)/A-d<A > [/((A=J)/A-A<T)[L,E,G] (*)
where L,E,G exhausts 1pA4 and such that 'A/A[L]<J and
A/ALE)=J andA/A[G)>J . (This is possible by commutativity of [.)
(%) <> [/(J#ALL,E,G1)/ALL,E,G1-J<A(L,E,G]
> T/(((pALL1)p1),((pALE1)p0),(pALG])p1)/(ALL],ATED,ALG])
((pALL,E1)p0) (pAlC)p1
o (/4003 (ALE1-1) < ([/ALLDT (F/ALG1)-1
If J < [/Athen ALG] < 10and the result is [/A[L] «> ([/A)-1, Otherwise,
A[G] is non-empty and [/A[G] /4, so the result is stil'l([/A)-l , since 4
exhausts 1pA, by definition. Thus the ranks of both expressions are identical.
We now show the dimensions to be indentical. |
For each Ie1([/4)-1,
(pA'RBAMILI] <> L/(I=A")/pBAM <> L/(I=(A=J)/A-J<A)/(A=J) /oM
o /(A=) I T=A-T<A) [(A=T) /oM > L/((A=J)AI=A-d<A)/pM (by Lée)
By case anulysls, we [ind that A

(A#J)NI=A-J<A <> IF I<J THEN I=A ELSE (I+1)=A

> A=I+I12J
Thus, (pA'SBAMILIT «> L/(A=I+I2J)/pM <> (pAQM)LI+I2J1 (by DL8)
and (p(ASM)[[JIQDII] < ((J=1pA)/pASM)[F] "
s (AR (7 1pA)/ ppARi) (I]]
<> (pASM)[I+I2J] <= (pA'®BAM)[I]

Therefore both expressions haire the same dimension.

- 48 -

2. For each L ELT 1p(A8M)[LJ1QI,
((AAM)LLJIQIL;5 /L] «— (ARM)[;3/((J-1)4L),Q,(J-1)¥L]
— M[;/(((J-1)4L),Q,(J-1)+L)[A]]
Call this subscript vector S.
(A"®BAM)[;/L] <> (BamM)[;/LLA'1] <> ML ;/(x/B)+(~BL311\LLA"]]
Call this subscript vector 7. It remains to show that S <> T'. First,
pS <> pT. For each I€1pS,
S[I1 < (((J-1)4L),Q,(J-1)+L)[ALI]]
«— IF A[I1<J THEN LUA[I1] ELSE IF ALIl=J THEN Q ELSE ((J-1)+L)LALI-J]]
So, S > (@xJ=A)+(J=A)xLLA-J<A].
T > (@rJ=A)+(J2ANLL (A2) /A-d<A] <> (@xJ=A)+(J2A)\(J#A)/LLA-J<A]
— (@xJ=A)+(JzA)xLLA-J<A]
< S QED.

Proof of TR10: As in the proof of TR9, the hard part of this proof is to show that

the two expressions BRASM and B[4 18 have the same dimension,

1. Clearly BLAJ®M is well-defined since A exhausts 1pB and thA] <+ ppM.
Also, ppBLA1&M <« [/B[A] <> [/B <> ppBRARM. By definition of transpose,
for each Ie1ppBRASM,

(pBRASM)Y[I] <> L/(I=B)/pASM <> L/(pARM)L(I=B)/1ppARM].
Let us write R > A§M and T <« (I=B)/1ppR. The remainder of this part
depends primarily on the associativity and commutativity of minimum (L).
(pBRASM)[I] <> L/(pR)LT] < L/(pR)[T[11], (pRCTC2]],...,(pR)LTLppT]]
| > L/(L/CA=TL1])/oM) ,(L/(A=T(21)/pM), ... ,(L/(A=T[ppT1)/0M)
< L/((A=TC[11)/pM) ,((A=T(21)/pM), ... ,((A=T[ppT])/§M)
> L/((A=TL11)V(A=TL21)V. . .V(A=T[ppT1)) /oM

— L/(AeT) /oM (by D25)

- 49 -

Now I=B[A] <> (I=B)[4] sinceT is scalar. Also note that((I:B)[A])[K] 1
if and only if ALK]eT. Thus,I=B[A] <> 4eT and
(pBLAISM)[I] <> L/(I=BLA1)/oM -
o L/(AeT) /oM < (oBRASM)LI].
2. TFor each I ELT 1pBRASY, a o -
(BRASM)[3/L] < (ASM)[3/LIB1]
— M[;/(TLR1ILAI]
<> ML3/LLBLAL]]
> (BLATSD[:/LT
QED.

Proof of Thcorem T2:

The only if part is easiest, as it depends only on the dimehsions of the expressions
involved. Only if part: B
. By hypothesis, Qz/’[K] M < D/LP(K]1] PaM.
Thus, the dimensions of both expressions are identical, Specifically,
oD/[K1 M > ((K-1)tpM), K4pM <> (Kz1ppM)/oM |
and pD/[PLK]] M <> (PLK]=z1ppP8M)/poPRM
But, sinceP is a permutation of 1pp¥ thenpP <—> ppM
and pPQM <> (pM)[P11ppM] <> (pM)[P11pP]
‘Algo, ppPAM - ppM'- Honoo-, ' '
pR/TPTKIT M s+ (PLK1210pM)/ (o) P11pP)

o > (oML (B[K1z1ppM) /Pi1pP] (%) (by L6a)
and ' - D/LKIM <> (pM)L(K21ppM)/1ppM] (%)
But (*) *H (%%) by hypotheses. Thus, thc subscripts of (pM) arc indenticul
for each expression, i.e.,

(PLK]=1ppM)/Pr1pP > (Kz1ppM)/1ppM.

- 50~

We now proceed with the difficult part of the proof:

If part:

1.

We must show that vD/LK] M — pD/[PLK]] FRM,
pD/LK] M > ((K-1)tpM), K¥pM <> (Kz1ppM)/oM <> (pM)[(Kz1ppM)/1ppM]
But ppP®M <> [/P <> ppM. So for each Ie1ppM,
(pPOM)LI] <> L/(P=I)/oM <> L/(oM)[(P=I)/1ppM] <> (pM)[(P=I)/1ppM]
since P has exactly one element equal to I.
<> (pM)[PI] (by D26)
Hence, pP8M <> (pM)[P11pP]. Now,
D_D./[P[K]] PRM <> (PLK1z1ppP8M)/pP8M <> (P[KJ=z1ppM)/(pM)[P11pP]
> (pM)L(PLK]=1ppM) /P11pP] «> (pM)L(K#10pM)/ 10pM]
by hypothesis

<~ pD/[K] M.

Thus, the dimensions are identical,

The two expressions are identical element-by-element.
For each L ELT 1pD/LK]1 M, (D/LK] M)[;/L] <> D/FAM

where FL;1] +> Kz1ppM

and F[;2] «— F[;1\L

(D/LPLK]] PRM)[5/L] o D/GAPSM
where GL;1] <> P[K1#1ppM
and G[;2] < G[;10\L
Let us examine these two reducees glement—by—element. Fifst note that
they have the same rank. For, pF_A_M > (K=1ppM) /oM > (pM)[K]
and pGAPSM <> (P[K]=1ppM)/pPRM
> (pPeM)[P[X]]

< L/(PLK]=P)/pM

.f

(pMITKT].

- 51 -

For each Ier(pM)[K],
(FAMYLTY <> ML5/R]
where R «— (x/F)+(~F[;1]1)\I
' > ((Kz1ppM)\L)+(K=1ppM)\T
> (L,I)(1K-1),(ppM) . (K-1)+1(ppM)-K]
(GAPRM)(I] <> (P&M)L;/(x/G)+(~GL;11)\I]
> (PRM)L;/((PLK]=1ppM)\L)+(PLK]=1ppM)\I]
<~ M[;/5]
where S <> ((L,I)[C(1PLK]-1),(1+pL),(PLK]I-1)+1(pL)-(PLKI-1)1)[P]
((L,I)L(PLKI-1),(ppM), (P[K1-1)+1(ppM)-PLK]1])[P]
To completé the proof, we must show that & <> 5.
In order to look more closely at S,we must find out moré about P. Let
T <> Pi1pP.
Then by hypothesis,
(PIKI= 1 neM) /T > (Kz1ppM)/1ppM < (I.K-l).Kﬂ(poM)-K-
Since Pis a permutation, */(1pP)e¢P and we would expecl Lo have A/(1pT)eT.
. The above equation gives all of T except for the element which equals X.
Thereuare_ oT places in T that X could occur, falling into three cases. By.
examining‘ each of these cases, we can deduce the structure of F,and thus the
value of S.
(a) PLK] <> K. ThenT <« (1K-1),K,K+1(ppM)-K <> 1ppM.
Thus, P > 1ppM aﬁd S +— R,

(b) PLK]<K. Then, T <> (1P[K]-1),K,((PLK]-1)+1(X-1)-(P[K1-1)) ,K+1(ppM)-K .

- 52 -

(c)

and by lemma L9
P > TuipT .
< (WPLK]1-1),(1+(P[K]I-1)+1(X-P[K]1)),P[K] ,K+1(ppM)-K
<> (1P[K]-1),(PIK]+1K-P[(K]),P[K],K+1(ppM)-K
and then
S > (L,I)L(WPLKI-1),((PLK]-1)+1K-P[K]) ,(ppM) ,K+1(ppM)-K]
> (L,I)0(1K-1),CppM) ,Kt1(ppM)-K] +> R°
PLK]>K. In this case, T <> (1K-1),(K+1P[K]-K) ,K,P(K]1+1(ppM)-P[K]
and’ P« TuipT <> (1K-1),P[K],((K-1)+1P[K]1-K) ,PLK]+1(ppM)-P[X].
Then, S «> (L,I)[(1K-1),(ppM),((K-1)+1P[K]-K),(PLK]-1)+1(ppM)-PLK]]
> (L,I)0(1K-1),(ppM),(K-1)+1(ppM)-K] <> R.
Hence, in all cases S <« R and therefore FAM <> GAPRM

for each L ELT 1pD/[X] M,

and thus D/[XK] M < D/[P[K1] PaM. QED.

Proof of TR12:

1.

The ranks of both expressions are clearly equal. Then, for each Iei1ppARD/M,
(pARD/M)LI] <> L/(A=I)/pD/M <> L/(A=I)/ 14pM

But also, for each Iecipp(4,1+[/4)8M,

(o (A, 14T /AYMILT) > L/(I=A,1+T/4) /oM > L/((I=A)/"14pM),(I=1+[/A)/ 14pM

SO oD/ (A, 1+ /A)QM <> “14p(A,1+[/A)QM <> pARD/M

For each I ELT 1pA8D/M,
(ARD/M)(3/L] «— (D/M)[;/LLAL] <~ D/FAM

where FL:1] < ([/1ppM)z1ppM > ((T1+ppM)pl),0

and F(;2] — FL;1\L[A] < L[4],0

(D/(A,1+[/A)QM)[; /L] <> D/GA(A,1+[/A)aM

- 53 -

where G[:1] < ([/1pp(A,1+[/4)8M)=1pp(4,1+4[/A)OM
< ((T1+pp(4,1+[/4)8M)p1),0
> ((ppASD/M)p1),0
GL;2] <> GL;ANL <> L,0
A typical element of this reducee is
(GAWA,1+T JAISMYLIT > (4,147 /AYSM)T 3/ (x/G)+(~GL 511\
> (4,147 /4)8M)[5/(L,0)+((pL)p0),I]
— ML;/(L,I)LA,14T /AT < MU;/LLAY,I] < (FAM)LI]
Thus, the two reducees are equal. QED.

Proof of Theorem T3:

1, pGAD/[K] M «— G[;1]
pD/LK] G'MM < (Kz1ppM)/pG'AM
> (K#1ppM)/G'[31] +> GL;1] 4<——> pGAD/(K] M
2, For each I ELT 1pGAD/[K] M,\ |
(GOR/TKY MDL:/LT > (D/LKT M)L3/S] <> 1/ FAM

where § <> GL;323+((~Gl 331)xL-I0RG)+GL 331xGL 31 +IOKG+™1-L

and FL[;11 <= Kz1ppM .

and FL;2] < FL;10N\S

(D/LK] G'aM)Y[3/L] <> D/F'AG'AM

where F'[;1] <> K#1ppGAM <> K#1ppM and F'[;2] <> F'[;11\L

But by TR6, F'AG'AM <+ G'AF'AM

where G" > (~[311)/0136" = (AM)(K;]

and F'"[;1] <> F'(;12] < F[;1],

F'T521 <> P51 1xG' 0521+ (MG 058 1)xF' (52 1-JORG)+G" [331xG ' [51]

+IORG+ 1-F'[;2]

)

But F'[;11xF'[;2] < F'[;2]

and for Je1,2,3.
F'[;10xG'[3J] <> F[;1I\GL;J1

Thus, distributing the F'[;1]term and substituting,

F'[;2] «— (FL;1NGL:2D)+((FL1 N(~GE331))x(FL31 NL) -I0RG)
+(FL31INGL331)x (P31 NG 31 1) +I0RG 1-FL 31 \L

— FL31INGL;21+((~GL 331)xL-IORG)+GL ;31xGL ;1 J+I0RG+™1-L
— F[;11\S « F[32] |

Hence "< F

and GUAFUAM <> GUAFAM <> FAM QED.

Proof of Theorem T4:

1. pGAD/M <> (~G[311)/pD/M > (~G[;11)/ 1+oM *
pD/G' AM <+ “14pG'AM > “14(~G'[:11) /oM _1+((;G[;1j),1)/0M
<« (~G[;11)/ 1+pM > pGAD/M
2. Tor each L ELT 1pGAD/M, .
(GAD/M)(;L] < (D/M)05/(x/G)+(~GL;11)\L] > D/FMM
where F[;1] «— ([/1ppM)=1ppM '

F[;2] <« FL;AN(x/G)+(~GL;11\L + (X/G.')+ FL;aN(~GO1 DN\
Further, | (D/G'AM)[/L] +> D/F'AG'AM <> D/HAM
where F'[:1] <> ([/1ppG'AM)=z1ppG'AM
and F'(;2] < F'(;10\L
and, by TR7, HL;11 < G'[1Iv(~G'[;1D\F'[51]

H[;2] <> G'[321+(~G'[;1N\F'[;2]

- 95 -

Now for each IcippFAM,
(FAMEIT <> ML/ (x/F)+(~FL; I\I]
> ML3/((/GN+FL 1IN (GL 31 DAD)+ (SFL 311N
> ML 5/ ((</G)+(~GL31TINE) I |
since F[;1] < ((_1+bDM)pl),O |
and (~G'[;1IN\F'[31] < ((~6L510),0\F'[51]
o (60511, DONC LR [511),T1AF 51
L (G 2HppG MM p1) 0 > (~G(511),0
So H(311 «+> G'[;11v(~G[;11),0 + (G[;11,0)v(~G[;11),0 <> ([/1ppM)=1ppM
H[32] <= (G[;323,0)+((~G[;11,A0\F'[;2]
> (G[321,0)+((~GL ;1 1\"1+F'[321),0 > (GL;2]1+(~G[;11)\L),0
and thus (EAM)LI] <« ME;((X/H)+(~H[;1])\I]
> ML;/(GL32]+(~GL;11\L),I] «— (FAM)[I]
'and so HAM < FAM.
Therefore GAD/M < D/G'AM. QED.

Proof of Theorem T5: There are two main cases.

a., Onc of Aor B ig a scalar and is extended to the size of the other operand.
Suppose 4 is sc:il,B."r. ‘then, 4 ».D B ++ A D B, by definillun, amd
(1ppA),1ppB <> (10),1pp8 <> 1ppB, which is the identity transpose, and
similarly if Bis a scalar.

b. A and B are arrays of identical dimension. Then

1. nn((.mp/l).lémB)@A o, B+ ([/(1ppA),10pB)+1-I0RG
<> ([/1ppA)+1-I0RG > ppA
and for each ¢ AlppA ,
(p((1ppAd)s1ppB)®A o.D B)LI] <= L/(I=(1ppA),1ppB)/(p4),0oB
> L/ (I=1ppA)/pA «— (pA)LI]
Thus, pA D B <> p((1ppA),1ppB)RA o.D B.

- 56 -~

2. Foreach L ELT 1pA D B,
(((1ppA) ,1ppB)®4 o.D B)[;/L] <> (A o.D B)[;/L,L] < A[;/L] D BL;/L]
<~ (A D B)[;/L] QED.

Proof of Theorem T6:

1. ppA®M o.F N < ([/A)+1-I0RG <> [/1(ppM)+(pplN)-1 «> 1+ppM D.F N
For each Te1pA®M o.F N,
 (pA8M o.F N)LI] <> L/(I=A)/pM o.F N <> L/(I=A)/(pM) .o
<« IF I€1_1+ppllw THEN (pM)[I] ELSE IF Ie(1+ppM)+1 1+pplN
THEN (pN)[2+I-ppM] ELSE L'/('1+pM),1+p1v.
So, PARM o.F N <> (T14pM),(14plN), 14pM
and therefore pD/ASM o.F N <> “14pA8M o.F N
> (T14pM) ,14pN <> oM D.F N
2. Foreach L ELT oM D.F N,
(M D.E N)L5/L] <> D/(GAM) F HAN
where G and # are as in D28, Also, (D/ASM o.F N)[;/L] <> D/EMRM o.F v
where E[;1] <> ((T1+ppA& o.F N)p1),0 <> ((ppM D.F N)p1),0
and E[;2] < E[;1\L < L,0
To complete the proof, we must show that the two reducees above are identical,
Clearly both have the same dimension, namely ~1+pM. .
Then for each Iei1p 14pM,
((GAM) E HAN)LI) <> (GAM)[I] E (HAN)LI
— M3/ ((C1+ppM)tL),I1 F N[;/I,(-"1+ppN)4 L]
(EAASM o .F N)[I] <> (AQM o.F N)[;/L,I1 <> (M o.F N)[:/(L,I)[A]]
(M o.F N)L[;/(("1+ppM)+L),I,I,(- 1+ppN)+L]
<> ML;/((C1+ppM)4L) , 11 E NL3/I,(-"1+ppl)4L]

— ((GAM) F HAN)LI]

Thus, (GAM) F HAN < EASM o.F N, and so the D reductions of each are ‘ v;
identical. QED., |

Proof of TR15: w

1. The ranks of both expressions are the same since the subarray éperator
does not affect ranks. So for each IeippW, o
(pAQU ©.D V)(IT +> L/(I=A)/pU °.D V.
But oU o.D V < (H[F;1AR') o.D H[G;1AS'-
<+ (pH[F;]AR'),pH[C:]AS!
<> HIF;11,HL51] <= HLF,G31) +— HL4;1]
Thus, (pARU °.D V)LI] < L/(I=A)/HLA;1] < L/HI(I=A)/A;1] <> H[I;1]
and therefore PAR®U ©.D V <> H[;1] <> pHAW. .
2. For each I ELT 1pHAW,
(HAW)L 5/L] <> (AQR' o.D S')[;/P] <> (R' o.D 8")[;/PLA]]
<~ R'[;/P[F]]1 D S'[;/PLG]]
where P +> H[;21+((~H[;31)xL-I0RG)+H[;3 IxHL ;1 1+I0RG+ 1-L
LAQL o.D VYL;/LJ 4—4- (R" =D SM[;/L[A]] .
> (HLF3JaR")[3/LLF1] D (H[G3188")3/L061)
> R'[3/T1 D S'(;/T"] |
where T *—r-' H[F;2]+((~H[F;3])YL[F]-@_G_‘HH[F;B]rxH[F;1A]5|A£@QJ+’1-L[F]
<~ P[F] and similarly,
T' «— P[G]
Then (A®U °.D V)[;/L] < R'[3/P(F1] D S'[;/PLG]] <~ (HAW)(;/L].
Finally, the result is in GDF sincel and Vare in Sf‘ and the value of 4 still ,

satisties the required conditions. QED.

- 58 -

Proof of TR16:

1. pWLLJ] Q1 «— (J=1ppW)/pW. .To determine B8 ©.D V we must first find
pU o.D V.
ol <> pR' <> IF JeF THEN pR'[[F1J] Q] ELSE oR'
There are two cases:
a. JeF. Then,
pRY «> pR'[[F1J] Q) ((F1d)=1ppR')/pR'
> ((F1d)=1ppR")/ (pW)[F] (by D29)
g (pW}[((F1J)¢IpF)/F]
<~ (pW)[(F2J)/F]
— (((J~1)tpW),(pW)[J], J+oW)L(F=J)/F]
— (((J-1)4pW) ,J4pW)[(F=J)/F-J<F]
since J does not occur in (FzJ)/F
— (pW[LJ] @D (F=J)/F-J<F]
b. If ~JeFthen (FzJ) <> (pF)pl. So in this case,
PR" <> pR' «> (pW)[F] +> (pWILJ] Q1)[(F=J)/F-J<F]
So pU — (pWL[J] QI(F2J)/F-J<F] and similarly,
oV <> (pWL[J] @1I(G=T)/G-J<G].
Therefore, pU o.D V <> (pWLLJ] @1)[((F2J)/F-J<F),(G2J)/G-J<C]
— (pWL[J] Q1) (J=F,G)/(F,G)-J<F,G]
— (pWL[J] Q1) [(J=A)/A-J<A]
Then for each -Ie1ppBQU .0 V,
(pBRU ©.D V)[I] <> L/(I=B)/pU o.D V |
— L/(I=(J=2A)/A-J<A)/(pWLLJT QDI (J2A)/A-J<4]
o L/(pWLII] @D)[(I=(J#A)/A-T<A)/(J=A)/A-T<A]

— (pW[[J] @DLI]

and thus pBRU o.D V «> pW[[J] @J.

2, For each L ELT 1oW[LJ] @],

(WLLJT @DL5/L]

<>

WL /((J-1)4L0),Q,(J-1)+L]

(R' o.D 8")[;/(((J-1)4L),Q,(J-1)+L)[A]]

< R'(;/TCF]1] D S'[;/T(G]] !

where T <> ((J-1)4L),Q,(J-1)+L.

(BRU ©.D V)L[;/L) <> (R" o.D S")[;/L[B]]

— R"[;/(ppR"™+L[B1] D S"(;/(ppR")YLLB]]

Consider the R" term above. There are two cases, as before:

a, ~JeF. Then,
Rl ;/(ppR"™M4L[B]]
|

<>

<>

b, JeF.

Rv[3/ (ppR")4L[B]] «—>

<>

R'[3/(ppR")4LL(J=A)/A-d<A]]
R'[:/LL(ppR")+ (J=A)/A-I<A]]
R'[;/LL(J2F)/F-J<F]] < R'[;/L[F-J<F1]

R'[3/(((J-1)4L),Q,(J-1)¥L)[FI] <> R'[;/TLF]]

(R'[[FJ] Q1)L 5/LL(1+ppR')4 (J=A)/A-I<A]]

(R'[[FJ] Q[;/LL(J#F)/F-J<F1]

(R'I(FWJ] @05 /L0 14T)AF], LI(Fid)4 F-11]

becatise F is in ascending order and +/J=F <> 1

R'[;/LIC 1+FJ)4F]1,Q,LL 1+(F1J)4F]]
R'[;/C(T-1)4L) ,Q . (J-1 L) (T 1+F1d)AF) ,FLT), (F1d) +F]]
because of F''s order

R'[;/T(F]]

And similarly, S"(;/(ppR")+L[B1] « S'[;/TCG]]

Thus (WL[J] Q1)(;/L] < (BRY o.D V)[/L].

Finally, it is clear that the result is in GDF since U and V are in SF and B

satisfies the necessary conditions. QED;

- 60 -

" Proof of TR17:

1. pp(F',G')RU s.D V « ([/F',G')+1-I0RG
e <> ([/((MeBLF1)/M),(MeBLG])/M)+1-I0RG «> ([/(MeB(F,G1)/M)+1-I0RG

<~ ([/M)+1-IORG <= ([/([/B)+1-I0RG)+1-I0RG

— (((T/B)+1-IORG)+IORG-1)+1-IO0RG <> ([/B)+1-IORG +> ppBYW
For each IeippBYW,
(pBRW)LI] <« L/(I=B)/oW
and (p(F',G'")YRU o.D VYI] <> L/(I=F',G')/pU .0 V
> L/(I=F"',G')/(pR™),pS"
So we must findeR" and pS'',
" PR p(F"{B[F])Q(pBQW)[B[F]]fR'
ppR! <> ([/F'1BLF1)+1-I0RG <+ ([/\pF')+1~IORG <« pF'
Then, for each Je1ppR",
(pR™M[J] < L/(J=F'\BLF1)/p(pB&W)(BLF1J4R!'
<> L/(J=F'"\B[F])/(pB&W)[BLF]]
< L/(pBW)L(J=F"B(F]1)/BLF]]
<~ L/(pBRW)L(F'[J1=BLF])/BLF]]
<~ (pBRW)[F'[J]1]
Hence pR'" <« (pB&W)[F']
and similarly, oS" < (pBW)(G'1,
and thus (p(F',G'IAU o.D VILIT <> L/(I=F',G')/(pBRW)IF',G']
«— L/(pB&W)CL(I=F',G")/F',G"]

<~ (pBRW)[I]

and therefore o(F',G')QU o.D V «> pBYN.
P

=61 =

2, TFor each L ELT 1pB8W,
(BQW)[3/D] +> (R' ©.D §')[;/L[BLA]]]
> R'(;/(ppR")4L[BLAII] D-5'(3/(ppR")4LLBL4]]]
<~ R'[;/L[BLF]1]] D S'[;/LIBLG]]]
C((F',G')]U °.D V)[3/L] <> (R" o.D S™M[;/LLF',G']]
< R"[;/L[F'1]1 D S"[+/LLG']1] ..

So wo muet caleulate the R and 5" terms ahove.
RU[/LLF'}] < ((F'1BLF]1)&(oB&W)[BLF]I+R") s/LLF' 1]
> ((pB&W)LBLFI1I4R")[s/LLF'(F"\BLF111]
> ((pB®W)[BLF114+R")[;/LIBLF]]
<+ R'[;/L0BLF]]]
since L ELL 1pB&W
implies LLBLFI] ELT (pB&W)[BLF]]
Similarly, S"(;/L[G']]) «>-S'[;/LIBLG]]]
Thus, ((F',5')9U v.D V)[;/L] « R'[;/LIBLFI]] D S'[;/LLBLG1]]
<« (B&W)[/L])
Finally, observe that the result is in GDF since U and ¥ are in SF and F " and

G' are in order and contain no duplications by construction. QED.

Proof of TR18:

Immediate from T6.

- 62 -

-’

L

APPENDIX C
IDENTITY ELEMENTS
Dyadic Identity Left-
Function Element Right
Times x 11 L R
Plus +{0 L R
Divide |1 R
Minus -{0 R
Power * (1 R
Logarithm e| . None
Maximum N 7.237...E75|L R
Minimum L] 7.237...E75|L R
| Residue I {o L
Circle o] None
Out of | L
Or vio L R
And Al L R
Nor v None
Nand al IR None
Equal =[1] Apply L R
Not equal =|0| for L R
Greater - >|0{ logical R
Not 1less 211 arguments R
Less <|0f{ only L
Not greater <|1j L

- 63 -

Identity Elements of Primitive Scalar Dyadic Functions

Reprinted by permission from APL\360: User's Manual @ 1968 by International Business Maohines Corporation.

CHAPTER III

STEPS TOWARD A MACHINE DESIGN

Never do today what you can
Put off till tomorrow.

William Brighty Rands
procrastinatibn is the

art of keeping
up with yesterday

Don Marquis, archy and mehitabel

As demonstrated in Chapter II, there is a high degree of power and internal
Qonsistency in the APL operators and data structures, This makes it possible to
write simple expressions which have the same semantic content as several state-
ments in comparable programming languages. This chapter discusses how to
exploit these features in the design of an APL machine,

In general, APL programs contain less detail than corresponding programs
in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum
value in a vector, V , of data dan be expressed as [/ V in APL while ALGOL requires
the following:

MAX :$mallestnumberinmachine ;

for:=1 step 1 until N do

if V(I]>MAX then MAX:=V(I]:
While this aspect of APL often makes programs shorter and less intricate than,
3ay, 'ALGOL programa, it also requires that an evaluator of APL be muie complex
than one for ALGOL, especially if such expressions are to be evaluated efficiently.
On the other hand, a machine doing APL has greater freedom since its behavior is
specified less explicitly. In effect, APL programs can be considered as descriptions

of their results rather than as recipes for obtaining them. Further, the language

- 64 -

renders many of these descriptions obvious, both to the human reader and to a
machine, as in the case of [/V, while other languages encode them so intricately
that the original intention of the programmer is hidden. In the example above,
an APL machine can choose any method it pleases to find the maximum value
while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expressions for
results require unnecessary computations if calculated literally as written. For
instance, the expression 3%(2x-V)specifies a result which is the first 3 elements
of twice the negative of V., Presumably the programmer is only interested in these
three elements. However, the literal interpretation of this expression proceeds
as follows: |

1. Negate V (and store it somewhere),

2, Multiply the previous result by 2 (and store it).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires (pV)
fetches and stores as well as (pV) spaces for the value to be stored. The multi-
plication requires another(pV) fetches, stores, and multiplies. In fact, the
desired result could have been found simply by negating the first three elements
of V and multiplyirig by 2. Clearly, we would like the APL machine to be able to

evaluate such programs efficiently!

A, Drag-Along and Beating

One approach to efficient and natural evaluation of APL expressions is to
exploit the mathematical properties of the language to simplify calculations. In
the machine, this approach is embodied in two fundamental new processes: drag-

along and beating.

- 65 =

Drag-along is the process of deferring evaluation of operands and operators
as lohg as possible. By examining a deferred expression it may be possible to
simplify it in ways which are impossible when only small part; of the expression
are available. In effect, drag-along makes the machine context-sensitive, while
most machines are context-free.

Considér thé drag-along evaluation of the example in the last section. If we
assume a stack machine; the machine code for this expression might be

1. LOAD \' | |

5. NEGATE

3. LOAD 2

4, MULTIPLY

5. TAKE 3
The immediate execution of this sequence wés already shown. Suppose now that
we temporarily defer instructions in a buffer instead of executing them as they
appear. After the first instruction, the buffer contains

LOAD V

After instruction 2, ‘we have

LOAD V

NEGATE ‘>
where the pointer é,olrlnects i:he negation with its deferred operand, V. After
instruction 4, the buffer contains

LOAD V

| NEGATE) } :
LOAD 2 > :
MULTIPLY

The evaluation of the TAKE is different from the previous operators since it is a

selection operator, TAKE can examine the contents of the buffer and change them,

- 66 -

-

Q

&

as below. Note that the deferred expression is equivalent to the original expression.,
The process of making the changes in the buffer is called beating.

LOAD 34V | (Note change in this instruction)

NEGATE)

LOAD 2\

MULTIPLY)
When values must finally be computed, only the desired elements will be accessed
and used,)Thus, drag—along facilitates beating.

The other aspect of drag-along is that it eliminates intermediate array- shaped .
results with consequent savings of stores, fetches, and space. In an expression .
such as A+B+C+D the literal execution proceeds in three steps:

T1<C+D

. T'2«B+T1

T3+A+T2
If the variables 4,B,C,D are vectors, each step above requires a vector-sized
temporary store and the last two steps require fetches to get the previous results
as operands. With drag-along, the entire expression is c}eferred finally to be
evaluated element-by-element as:

for Ie1 stepl.untilpa do
T3[I1+ACI1+BLI1+CLI1+DLI]

This requires no éxtra fetches, stores, or temporary space to obtain the desired
result.

In the machine, drag-along will be applied to all array operands & and % and
to all monadic and dyadic opcrators MO and DOF for which

(MOP &)L /L) < MOP!(F1&)L ;/L]

and

(& DOPF)5/L] « (F1 &)(;/L] DOP' (F2 @) /L]

- 67 -

where F1 and F2 aré simple functions of arrays and MOP' and DOP' are similar to
MOP andDOP ., An example of a function which is not dragged-along by the machine
is grade-up which is essentially a sort of its operand. Grade-up obviously does
not fit into the above scheme since F1 also becomes a sorting function which is

not simple as required. N\

B. Beating and Array Representation

Beating is the machine equivalent of calculating standard forms of select ex-
pres&ions, If the effort to do beating followed by an evaluation of a standard form
is lessl than that to evaluate an expression directly, then the process is worthwhile,
We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard
form. One possibility is to maintain the 4,7, and G values for each array in an
‘expression to allow calculation of the standard form

ARFACAM
as defined in Chapter II. However, thése arrays contain redundant information
and it is desirable to find a more compact representation.

If we choose to represent arrays in row-major order we can utilize the rep-
resentation of the storage access function as the representation of standard forms.
In this way, beating will consist of applying the transformations of Chapter II to
the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the
index origin is zero. Situations where it is different reduce to the zero case by
subtracting IORG from all subscripts. LetA be a rank-¥ array. Then, assuming
that each element in4 is to o!:cupy one word in memory, the elementAl ;/L] will be
located at

VBASE+(pA)LL (%)

- 68 -

where VBASE is the address of A[O;O;‘. ..30]. Thus, subscripts of arrays stored
in row-major order are representations of numbers in a mixed-radix number
system (Knuth [1968] p. 297). This representation is especially suitable for arrays
in APL because APL arrays are rectangular, dense, and homogeneous. Further,
this representation does not favoxl any array coordinate over another which is
essential in APL,
We can generalize the access function slightly by writing it in the form:
VBASE+ABASE++ /DELXL (%x)

where 4BASE is an additive constant, in this case zero, andDEL is the weighting
vector used to calculate the base value in (*) above. DEL is computed by

DEL[N]+1

DELLIN«DELLI+11x(pA)(I+1] for each IeN-1.
Example: Let¥ be a matrix with dimension 2,3, ThénDEL«—>3,1 and we set ABASE<«>0.
The layout of # in memory is

VBASE

v +1 +2 +3 + +5

MLO;0] § MLOs;1] | ML0;2] | MC21;0] | MO1;1] | MC1;2]

Given this formulation of the storage access function, it is only necessary to
transform ADASE and DEL in order to obtain the effect of evaluating selection opera-
tions on an array.

Example: If¥ is the matrix in the previous example, then the mapping function

for (2,1)8M has the same VBASE. For the transpose we use ABASE'<>0and DEL'+>1,3.
Note that the change in DEL corresponds to permuting it by 2,1. This new function
uses the same values that were stored for¥, but accesses them as if they were

the transpose (2,1)8Y. To verify this, note that the address for ((2,1)8)[I;J]

- 69 -

is
VBASE+ABASE ' ++/DEL'xI,J <> VBASE+ABASE'+(1xI)+(3xJ)
<> VBASE+ABASE+(3%J)+(1xI)
<> VBASE+ABASE++/DELxJ ,I
which is the location of M[J:;I1 <> ((2,1)8M)[I;J]. '
‘This can be done for any selection operator by using transformations analogous
to those in Chapter II. Appendix A shows the beating transformations on aécess
functions for arrays. In the machine, beating is also applied to expressions con-
taining reductions, scalar opérators, and inner aud vuter products, based on the

results in Chapter I

C. Summary

At this point we have outlined the framework of a machine for APL. It is
pleasing to know that it will work since it is justified by theoretical results
developed earlier. The remainder of this dissertation discusses the structural
details of a machine based on the beating and drag-along processes and gives an
evaluation of its effectiveness. Let us outline some goals that such a design should
satisfy:

1. The machine language should be close to APL. That is, it should contain
all primitives in the language and in a similar form. While it is well-known how
to design a maqhine to accept APL directly there is no particular advantage to
doing so. We are primarily concerned with processing the semantics of the
language, not its syntax. Thus there is no loss of generality in letting the machine
language be a Polish string version of APL. This has the further advantage of

freeing the machine from the particular external syntax of APL,

- 70 -

O

lag)

@

“
Ay

2. The machine should be general and flexible. In particular, it should
not be so deeply committed to evaluating APL as to be useless for other purposes.

3. The machine should do as much as possible automatically. This includes
storage management, control, and simpliﬁcatior‘x of expressions., The programmer
shoﬁld not have to be aware of the structure and internal functioning of the machine
at a level much beyond that specified in an APL program,

4, The machine should do simple things simply and complex tasks'in pro-
portion to their complexity. In other words, the work required for the mgchine
to execute a program or expression should be related in some straightforward
way to the program's complexity. ' |

5. The machine should be efficient. This is perhaps thé most importént
focus of this work, Of course, the question of efficiency is related to the current
techﬁology; at 'present, Ia major bottleneck in evaluatingA array-valued expressidns
is use of memory. Thus we concentrate on reducing memory accessing and tem-
porary storage space in the evaluation of APL programs, |

6. The machine design should be elegant, clean, and 'perspicuous..

-71-

APPENDIX A.
\ r
TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage'access function for an array M contains the following informétion:

RANK | <~ ppM

RVEC «~ pM

VBASE location of first element of ,M

ABASE constunt term of aocess polynomial

DEL ~ vector of coefficients of access polynomial

Then, the element M ;/L1] is located at
' VBASE+ABASE++/DELxXL
2. This section lists the transfoi'mations on storage access functions which afe
used to effect beating of selection operators. These transformations are given
as program segments written in index origin zero. It is assumed that the pairameters

to the various selection operators are conformable and in the proper domain,

a. @t

ABASE + ABASE+DEL+.x(Q<0)xRVEC-|Q

RVEC « |Q p
b. Q¥4

ABASE <« ABASE+DEL+.x(@>0)x|@Q
RVEC <« RVEC-1Q

e, ¢lJlM

ABASE < ABASE+DEL[J Ix(RVEC[J1-1)
DELLJ] « -DEL[J] '

-72 -

)

¥

»

~ad

&l

ASM

R < RVEC

D <« DEL

RANK < 1+([/4)

I <« 0

DEL <« RANKADEL

RVEC <« RANKARVEC

RANK REPEAT

BEGIN

RVECLI] <« L/(I=A)/R
DELLI] <« +/(I=A)/D
I« I+1

END

e. MLLJISCALAR]

ABASE < ABASE+DEL[J1xSCALAR
DEL « (J#\RANK)/DEL

RVEC + (Jz1RANK)/RVEC

RANK <« RANK-1

M[K]J LEN,ORG,S]

ABASE + ABASE+DEL[K1xORG+(LEN-1)

RVEC[K] « LEN
IF S=1 THEN DEL[K] <« -DEL[K]

- 78 -

CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process
the semantic content of APL programs. |

In general, the description will be given in English, although algorithmic
descriptions will be used as necessary to provide clarifications. The section will
be written in the étyle of a programming manual, with the additi‘on of explanations
and rationales as required.

The APL machine (APLM) is conceptually composed of two separate machines,
each with its own language, sharing the same registers and data structures. The
D-machine (DM) accepts APL-~like machine code and does all the necessary analysis
on expressiohs. The DM produces code for the E-machine (EM), and in the process
does some simplificatibn of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system. By using
a stacking location counter based on the organization of machine code into segments,
the overall control scheme for the machine is quite simple.

The current chapter consists of five sections which present the .APLM in a
logical sequence. Section A discusses the data structures and other manipulable
objects in the machine, and explains how they are managed in the machine's
memory. Section B continues by explaining the stacks and other registers in the
machine, followed by a discussion of the averall machine control, in Section C.
Finally, the details of the D-machine and the E-machine are set forth in Sections
D and E, respectively. Exémples are used liberally throughout, to clarify opera-

tional details of the APL machine.

- 74 -

A, Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data
values, descriptors and program segments. This section will describe these
three kinds of objects and how they are represented in the machine.

Scalars are the simplest kind of data. In APL, a scalar is an array of
rank-0. In practice, a scalar is a different kind of object than an array, and is
so treated in the machine. Although arrays are stored in the memory, M, of the
machine, scalars are not. They appear only in the machine registers, in particular
the value stack, and as immediate operands in a code string. In a real machine,
scalars would have an attribute of type, determining the kind of representation to
use for encoding and decoding them. In this work, we will assume that this is
handled automatically, and that all scalar data are the size of a singie maéhine
word,

The most important data structure in the APLM is tﬁe array. The represen-
tation of an array is divided into two parts. The first is the value array which.is
a row-major order linearization of the elements of the array. The second part

ie a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes it possible to have
multiple DA's, not necessarily identical, referring to the same value array, which

makes beé.ting possible. In th1s chapter, descriptor arrays will be shown in the

form:

4 @ARR RC=2 LEN=05
+01 VE=VARR AB=000
+02 . RANK=2 .
1-03 R(1)-003 D(1)=02
+04 R(2)=002 D(2)=01

@ARR is the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference

- 75 -

count (RC) and a length (LEN) field, as explained in the discussion on memory .
in the APLM. The rank of the ai'ray is recorded in the third'word of the DA; ﬂ
words after that contain the elements of the dimension vector, labeled R(I). Thus
in this case, PARR is 3, 2. The second word in the DA encodes the base address
of the value part of the array (labelled VB for VBASE) and the constant térm in
t%le storage mapping function (here labelled AB for ABASE). Finally, the DA
contains the coefficients of the storage mappihg polyr_mm'ial, DEL (lab_el‘led”D(I)
here). Recall that for an array ARR, the element ARR[;/L] is located at '
VBASE + ABASE + +/DEL x (L - IORG);

This formula is the st‘orége mappiﬁg function for any'array,

In addition to array descriptors, the machine contains descriptors for
J-vectors. Recall from Chapter II that a J-vector is a vector of consecutive
integers which can be specified by a lengtp, an origin, and a direction bit. We
assume that these three quantities can be encoded into a descriptor by the
function JCODE(length, origin, direction) and that there are appropriate decoding
functions. (See Appendix A.)

Finally, programs in the machine are represented internally as program
segments. A program segment is any sequence of machine commands and operands, -

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segment (relative to the beginning of the
function they are a part of) and the length of the segment, There is also a bit
which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the
function may also be represented as segments; As will be seen later, it is easy
to activate and de-activate segments in the APL machine, Briefly, the advantages A,

of organizing programs in segments is that these are the logical units of a program,

- 76 ~

&y

&

iy~
<

while other organizations, such as paging, do not allow this kind of natural cor-
respondence of form and function (pardon the pun!). An important property of
APLM instructions is that they contain no absolute addresses except for references
to NT, which remain constant in any compilation. All internal references to

other parts of a program are relative. Thus, all programs are relocatable.

Each function has a corresponding function descriptor, which is similar to

a DA. A function descriptor contains the following information:

FVBASE ‘ location in M of beginning of function segment
FLEN - length of function segment

FIORG index origin for this function

FISR ' logical variable -1 if function has a result
FPARS number of parameters

FLCL total number of local names

In addition, the rest of the function descriptor contains a list of all local names

in the function, in the order: result (if any), parameters (if any), local variables
(if any). The function descriptor for a function is used in calling and returning

from functions, as will be discussed in Section D,

Main memory in the machine is a linear arfay of words named M. The only
objects which reside in M are arrays, DA's, and program segments. All other
objects are stbred in the' machine's registers. In addition to M, there is an array
NT, the Nametable, which is an abbreviated symbol table. Every identifier in the
active workspace has an entry in NT, which contains descriptive information and
either an actual value or a pointer to where it can be found in M. Scalars and
J-vector descriptors are stored directly in NT. Thus, all references to variables
and functions in the machine go through the NT. This organization allows for

dynamic allocation and relocation of space in M, without having to alter any

-77 -

program references. The operation of NT is described more fully in the next
section under machine registers. Constant array values within a function are :
stored as part of the program segment; they are addressed relative to the beginning
of the function, and so, too, remain relocatable.

Within M, two different allocation mechanisms are used, one for functions
and array values, and one for descriptor arrays. The reasons for this are that,
because of drag-along and beating, DA's are expected to have a shorter lifetime
than functions or array values, Further, in a given function, locally at least, it
is likely that DA's will be of similar sizes. Thus, it is feasible to keep an
available space list for DA's, with the hope that erased spaces can be reused
intact, We would therefbre expect more efficient use of M by DA's than by array
values, ' .

The free memory space (M) is arranged as follows: functions and array
values are allocated from the lowest address (BOTM) towards the top of M and
DA's are allocated from the top (TOPM)down. The space in the middle is the POOL,
with boundaries BOTP and TOPP. Each entry in M has a header word containing
an encoding of a reference count (see Collins [1965]), the length of the entry, and
a filler count. The latter field is used when space slightly larger than necessary
is allocated. Each time a reference to an entry is added or deleted, the reference
count field is adjusted. When a reference count goes to zero, meaning that there
are no uses of the entry anywhere in the system, the entry is made available in
ono of two ways. If it is adjacent to the POQL, it is merged with POOL. Qther-
wise, it is added to the appropriate availability list, of which there are two, one
for DA's and one for functions and array values.

The availability lists are doubly linked, and each entry contains a header

similar to those for active entries, When space is needed,_ the appropriate

- 78 -

e

availability list is searched using the first-fit method (Knuth [1968] 436, ff), If

a fit is found, the spz;ce is allocated and the availability list adjusted. Otherwise,
space is taken from the POOL, If a request for'M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage
collection is made. The two halves of M are garbage-collected separately. In
céllecting array space, all the DA's are scanned and a ﬁnked list is set up which
ties together all DA's pointing t6 the same entry. Then arrays are compacted
towards BOTM, With the links used to adjust the VBASE fields in the referent DA's,
T enough space is still not available, the DA's are also compacted, using a "
similar algorithm. Some coalescing of avé.ilable space is also done by the al-

location algorithm, GETSPACE. Figure 1 illustrates how M is structured.

B. Machine Registers ' :

This section describes the registers and register-like structures in the APL
machine, The present description covefs only the logical functions performed by
these registers and does not make any demands on how they are actually to be
1mp1emented Although most of the registers are not directly accessible to the
programmer, thorough knowledge of their use is 1mportant to understanding the
functioning of the machine. \

'There are several registers related to memory accessing and allocation.
The most important of these is the Nametable, NT. NT is an associatively ad-
dressed stack, each entry of which contains a name field, a tag, and a value.
The name field of an entfy contains an index for the identifier associated with the
entry. Permissible tags in NT are ST, for scalar quantities, JT, for encoded
J—vectofs, UT, for undefined identifiers, DT, for arrays, and FT for functions.

ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields,

- 79 -

'BO

™
_ ARRAVAIL : *D)
Array availability list .
forward links — _1] Ant;.u{: :J:ii?’ii,‘,‘éi -
-)
%
N 7/ j)
) /]
reference count ——————
1] T
2]
"ﬁ

f' BOTF

y _
{/4//{/% T, = .Avm.ble space
\'ropp—,—/ ////j) | |

L

— = |
DA Avallability list= A

forward link§ ———pm|

— DA Avallability list -
backward links

N

i

el

DAAVAIL Cj
\ o
TOPM - 1524A2

FIGURE 1--Structure of M.

- 80 -

Y

When a function is called, an entry is pushed to NT for each of the function's
local variables and parameters, as listed in the function descriptor. Similarly,
when a function is de-activated, the reverse process occurs. Each time a variable
is accessed, NT is searched associatively from the top (latest entry). If a hit is
not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's
"dynamic block structure' and facilitates recursive function calls.

The most important registers in the APL machine are four stacks. The use
of stacks permits elimination of addresses from most instructions and simplifies
the evaluation of recursive and nested programs,

1. Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions
and in function calls. Each VS entry consists of a tag and a value part, as in NT
entries. In addition to scalars and function or DA pointers, VS can contain segment
descriptors, partially-evaluated addresses, function marks, and names,

2, Location Counter Stack (LS)

Recall that machine code is organized into segments, characterized by a
starting address and a length, Each LS entry contains the starting address of a
segment (ORG), its length (LEN), a relative count, poinﬁng to the next instruction
to be executed (REL), and control information. Each time a segment is activated,
its beginning address and length are pushéd to LS, and the REL field is set to zero.
The address of the next instruction is then determined from the REL and ORG fields
on the top of LS. After each instruction fetch, the REL field at the top of LS is
incremented. When this value is equél to the length of the segment, the segment

is terminated by popping the top of LS, théreby reactivating the next entry. The

control information in LS is used to coordinate it with the other stacks in the machine.

- 81 -

3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres-
sions., In this machine, IS is used to control (nested) iterations over this index
set in the eleI,nent-by-element evaluation of array-valued expressions. The
operation .of IS is coupled with LS as follows: when a set of iterations is begun,
the limits of the iteration are pushed into the iteration stack, and a segment is
activated containing the range of the iterations. Then, for each instruction in
the code segment, the necessary index values are taken from IS, When tho nogment
is completed, the entries in IS are stepped and if the required iterations are not
‘exha'.usted, the segment is re-initialized and repeated with the new IS values.
Eventually, the iterations are completed and the segment in the range also is
completed, in which case IS and LS are both popped, returning the machine to the
place it was to resume after the iterated code was completed. (See Section D.)

The IS ‘behaves essentially like a nest of FORTRAN DQ's, Each entry cbntains
a counter (CTR) (to origin zero), the maximum value of the counter (MAX),
direction bit (i.e., count up or down) (DIR) and control information. Although
the IS is partially accessible to the Iﬁaéhine code, it is for the most part main-
tained automatically. Like LS, IS could probably be incorporated into the value
stack, since these three stacks generally work in parz;.llel., However, by separating
these stacks by their functions, the machine design becomes cleaner and more
perspicuous,
4, Instruction Buffer (QS)

Unlike LS and IS, the instruction buffer QS is logically separate from the
.value stack. QS is not strictly a stack, since it is possible to access and alter
information at places other than its top. In the D-machine, instructions are

fetched from M, some of which are executed immediately, and others of which

- 82 -

s

@

are either evaluated by beating or are deferred in QS by drag-along. In entering
instructions in QS, the DM may change other related QS entries., When the
E-machine is activated, instructions are fetched from QS and executed directly,
generally in conjunction with VS and IS. QS contains operation and value fields,
similar to VS, a LINK field used to reference other deferred instructions, and
an AUX field, which is a logical vector acting as an access mask for array entries
(see Section E).

A final four registers in the machine are mentioned primarily for completeness.
These are:

IORG Index origin of current active function

FBASE Base address in M of current active function

FREG VS index of function mark for current active function

ISMK IS index of topmost IS entry containing 1 in its MARK field,

The use of these registers is shown in the examples in following sections.

C. Machine Control

The purpose of the APL maehine is to transform a set of data (the inpet) into
a second set (the outpﬁt) according to encoded transformation rules (the program)
which are interpreted according to a predetermined scheme (the machine)., This
entire process 18 called the evaluation of the program and input.

In the APL machine, programe are evaluated in two separate but related sub-
machines., The D-machine takes its instructions from main memory, M, in the
form of Polish APL code, and does all the necessary domain testing and storage
allocation for the various operands. In addition, the DM does simplification of
incoming expressions by drag-along and beating. The output of the D-machine is
values in VS and transformed code in the QS, in the form of instruction segments

for the E-machine. At critical points, determined either by the programmer and

- 83 -

the DM, control is passed to the E-machine, which executes the simplified
instructions in QS, producing values in VS and M. When done, the EM passes
control back to the DM, which resumes where it left off,

The division of labor between the two submachines is logically similar to that
between a compiler and its target machine. The DM plays the role of the algebraically
simplifying coﬁpiler, whose source language is essentially APL, and whose
target language is E-machine code. The E-machine as the target of the DM's
transformations is a conceptually simple computer which does nothing but compute
values. Given this scheme, a question which naturally arises is, Why bother with
the D-machine at all? Why not use a separate compiler in software and let it
produce code for a mé.chine similar to our E-machine? Unfortunately, this is
impossible, since the behavior of the D-machine is debendent not only on the
source code (program), but is also dyriamically dependent on the data., Forz instance,
consider a simple APL expression such as A + B. We would like the source code
for this expression to be something conceptually like

LOAD B (l.e., "lvad" B to the valuo stack)

LOAD A

ADD | (i.e., add the vahles on top of the value stack and leave the

result there,)
The problem herg is that we would Vlike the machine to do different things depending
on the data. In particular, if both A and B are scalars at the time the above code
is executed, il would be desirablo tv have the LOAD inatructions push the actial
scalar values to the stack, and to have the ADD do the actual addition. But if A
and B are conformable arrays, the desired action is to defer the entire operation
(both LOADs and the ADD) in the instruction buffer, to be performed later by the -4

E-machine,

-84 -

No compiler would be able to make these decisioné a prioriunless it knew
what data was to be used in running the program, or unless variables were suf-
ficiently restricted by declarations. Further, much of the work done by the D-
machine is domain testing, including rank and dimension checking, on dynamically-
specified variables. Since this process is data-dependent, it must be performed
dynamically.

Both the D-machine and the E-machine share all the registers and the memory
of the entire APL machine. Further, both are controlled by a central cycle
routine, shown in Fig. 2. The key to the overall control of the APLM is the
location counter stack, LS, which contains active segments for both the DM and
the EM. In Fig. 2 we see that a major machine cycle takes the form:

a. Check to see if the current active segment has been completed. If not,
proceed to step b, otherwise see if this segment is under control of the
iteration stack. If it is, then step the iteration stack; in case IS does not
overflow, then reset the REL field to the beginning of the segment and
repeat this step. If the segment is not under control of IS or if it is and
the iteration stack overflowed, then de-activate the segment and repeat
this step.

b. Calculate the effective address of the current ~instruct.ion and update the
location counter stack.

c. Select the appropriate machine, determined by the D/E bit in the current
active segment., If the DM is select‘;ed, then defer any arrays referehced
on the top of the value stack to the instruction bufter; also, fetch the
instruction and (if necessary) the second word of the instruction from
memory. Finally, decode and interpré't the instruction and return to

step a.

- 85—

__<N¢ REL2O0RG

YES 4
SEGMENT EXHAUSTED

YES

Step a < ‘

STEP
ITERATION
STACK

15 OVERFLOW?

4 I8 ITERATION
DE-ACTIVATE SEGMENT EXHAUSTED?

pt EA=-REL + ORG |-st—— CALC EFFECTIVE ADDRESS

v

REL-=REL +1 _ UPDATE REL COUNTER

Step b

NN

WHICH MACHINE HAS CONTRUL?
YES
———————

IS TAG OF V§ YES
JT, DT, or FDT

-l ; PUSH ENTRY TO Q8.
DECODE & CHANGE VS ENTRY
FETCH DM TO SEG DESCR.

INTERPRET
‘—— QS (EA) OPCODE\

(E-MACHINE)

FETCH FA, FBASE

v

.F£TCH 2nd WORD
IF NECESSARY
AND UPDATE REL

7 .

DECODE &
INTERPRET
= — OPCODE

L ({D-MACHINE)

Step ¢ ﬁ ST OPCODE 4— <

FIGURE 2--Maincycle routine,

- 86 -

i

D. The D-Machine

The D-machine evaluates programs written in ""machine language'" by generating
instructions in QS to be executed later by the E-machine. As discussed in Chapter |
III, the use of a Polish string for the machine language rather than "raw' APL frees
the APLM from the particular concrete syntax of APL without sacrificing any of the
semantic content,

Most of the instructions in the APLM correspond directly to the APL primitives;
those which do not are. the control instructions, which comprise a more powerful
set in the machine than are provided in the source language. All operands in DM
instructions are either relati\}e addresses within the program segment or are NT
references or are immediate values. As a result, all programs in the machine
are relocatable. Since only constant data is contained in function segments,‘
programs are likewise re-entrant. \

| The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The
instructions are divided into three classes: storage management instructions,
control instructions, and operator instructions. It is clear from Table 1 that no
systems functions are included in the D—machine's. 'reperto.ire. In a real imple-
“mentation of an APL machine, these iﬂstruct.ions would have to be provided,
although for the current work, they are irrelevant. The remainder of this section
discusses the instruct.ion‘s of the D-machine, with examples to clarify the details.
0. A Guide to the Examples l

The examples used in this chapter include program listings, register dumps,
and memory dumps. In showing program excerpts, we generally also show the
APL source expression, and give values, or af least attributes, for the opéra.nds.
Programs are shown in aésembly language format, except that absolute addresses

are given, Althoughnothinghas been said of the mannerin which D-machine instructions

- 87 -

TABLE 1-1

Storage Management and Control Instructions

Opcode Operand Description

A. Storage Management Instructions

LDS scalar ' Load scalar
LDSEG seg-descr Load segment descriptor
| LDJ jecode 1,0, s Load J-vector
LDIS K Load iteration stack counter, K from top of IS
LDCON K Load constant array, starting at FBASE +K
LDN N Load name N ‘
LDNF N Load name N and fetch value
ASGN Assign (and discard value)
ASGNV ‘ Assign and leave valuc
B. Control Instructions -
JMP K Jump by K (signed) in current segment
JMPO K ‘ Jump by K in current segment only if top
of VS is 0
Pop VS in either case
JMP1 K Same as JMPO except test for 1
LEAVE De-activate this segment
(1 €., pop LS and also IS if necessary.)
RETURN : Return from current function
ITM Iterate and mark L
DO Call E-machine to work on top of VS

DOI Same as DO except that temporary space is .

allocated for the result, if any, and the result

is left on top of VS

- 88 -

Lo

v

CIR
DEAL
COMB
AND
OR .
NAND
NOR
LT
LE
EQ
GE
GT
NE

B.

PLUS
MINUS
SGN
RECIP
ABS
FLOOR
CEIL
EXP
LOGE
PI
RAND
FAC
NOT

Monadic

LV IVIHIAAZ P> =00 % r—— o X | +

e V0O @ X A — oe X+ +

14

TABLE 1-2

Scalar Arithmetic Operators

Definition

Add

Subtract

Multiply

Divide

Modulus

Minimum
Maximum

Power

Logarithm
Circular functions
Random deal
Binomial coefficient or beta function
Logical and
Logical or
Logical nand
Logical nor

Less than

Less than or equal
Equal

Greater than or equal
Greater than

Not equal

Plus

Minus

Signum

Reciprocal
Absolute value
Floor

Ceiling

Exponential (base e)
Logarithm (base e)
Pi times

Random number
Factorial or gamma function
Logical not

-89 -

TABLE 1-3

Remaining Operators in D-Machine

Operator ___________APL___________] Definition ______________ ..
A, Selection

TAKE ' 4 Take

DROP 4 Drop

REV K dLK] Reverse along Kg-1 coordinate

TRANS) Generalized transpose

INX K ([X] Index on KQ}- coordinate

B. Evaluated Immediately

BASE Base value (Decode)

1
REP T Representallon (Encode)
GDU A Grade up
DD ¥ Grade down
CAT K s Catenate (top K on VS)
RAV : , Ravel '
URHO o Dimension
DRHO P Restructure
TTOTA 1 Interval
C. Deferrable
ROT K ‘, JYLX] Rulale vn Kt—h coordinate
EPS € Membership
DIOTA 1 Rank
CMPRS K /TK] Compress on ki enardinate’
EXPND K \[X] Expand on K@ coordinate
SUBS K ' L Subscript with K expressions in VS
D. Compound
RED K OP OP/[K] Reduce along KE coordinate by OP

GDF OP --- Geueral dyadic [orm with OP

-90 -

& are encoded, we have chosen, for purposes of illustration, to show them as oneor
two word quantities, depending on whether or not they have operands, All operand

‘ addresses are sflown symbolically and comments are used to explain the program
) structure. In the register dumps, most of the material is self-explanatory. Field
headings are summarized in Appendix A. The top of each stack is indicated by an
arrow., Descriptor array addresses, which are pointers to the memory, are in the
form @A“, for variable A, and value addresses in M are of the form VA, Again, in
the real machine, these would in fact be numerical addresses, but the symbolic
form is much clearer for examples. Fields in DA's are labelled mnemorﬁcally.
Segment descriptors in VS or QS are shown in the form SCODE(SEG.X, m), where
m is 0 or 1 depending on whether. the segment is a DM or an EM segment, and X

is the segment symbolic name (arbitrary). EM segments are delimited by "brackets"

along the right side of the QS display, in the format XY, meaning that segment X

X3

starts here and segment Y ends here. The LINK field of QS contains relative pointers
and is interpreted according to the opcode. The contents of the AUX field is to be
interpreted as a logical vector, although in fact it may be encoded differently in an
actual APLM.
1, Storage Management Instructions

This class includes all instructions concerned primarily with the storing and
fetching of data. Each of the load instructions pushes a value to the value stack.
Of these, four have immediate operands; LDS, LD§EG, LDJ, anq LDN push their
operands to VS with tags ST, SGT, JT, and“NPT i'espectivély, LDIé‘ K loads as a
scalar the current value of the CNT field of the iteration stack ele;nent K entries
ffom the top of IS. LDNF N refers to variable N in the nametable, and enters the
& current value of the variable (from NT) into VS, In the case of NT entries with tag

DT (i.e., arrays), the reference count of the DA is increased by 1 when it is

- 91 -~

entered into VS, and the VS tag is set to FDT. The LDCdN K instruction is used
to access a constant array stored in a fu.ticfion segmen't° Its 'operand K is a pointer
relative to the function origin pointing to the beginning of the DA for the ‘constant
value. This DA is copied to the DA area of M, its VBASE is ~set to the beginning
of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to
VS with tag FDT. ’

Althougﬁ a11 the load instructions just described push a value to VS, such
values do not always remain there, At the beginning of each D-machine cycle, the
top of VS is examined for tags FDT, DT, and JT (see Fig. 2').,~ If one of these is
present, then the entry is deferréd in_QS, because it is array-valued. This is
done by pushing an E-machine instruction to QS of the form

opP @ARR 0 MASK
OP is IFA, IA, or IJ, depending on whether the VS tag was FDT, DT, or JT;
@ARR is the DA pointer that was in the VS value field, and MASK is an access
mask. The access mask in this case is a logical vector whose last K bits are 1
when ARR is a rank-K array, It will be used by the DM in beating and by the EM
in accessing this array. The LINK fieldin E—machine—instructions of this type is

unused, and thus is shown as 0 above. The VS entry is then replaced by a segment

descriptor with tag SGT pointing to the one-word QS segment containing the deferred

operand. In general, this entire process is invisible in the examples below, and
‘the load instructions which generate array values can be thought of as doing the
deferral themselves.

Although ASGN and ASGNV are operators, they are included as storage
management instructions because they have the side-effect of causing values to
be stored. These instructions expect the top of VS to contain a destinatién, either

as a name (tag NPT) or as a QS descriptor pointing to a segment containing only

-92 -

»

b

Ll
<

TABLE 2

Interpretation of ASGN'a.nd ASGNV in the D-Machine

Top of VS (Top-1) of VS Action
a. tag=NPT or tag= ST Do immediate assignment. That is, store
tag= SGT and the scalar value in NT or in M, as appro-
deferred ex- priate.
pression has
one element
b, tag=NPT tag=SGT and Do immediate assignment,
deferred segment
is a J-vector
c. tag=NPT tag=SGT and Do immediate assignment,
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
of 1
d. tag=NPT tag= SGT and Allocate space for a DA and value of the
deferred segment size necessary to store the result, Defer
is any arbitrary the assignment in QS, as for scalar arith-
array expression metic operators,
e. tag=SGT and tag=SGT and Check ranks and dimensions for conformability.

deferred seg-
ment consists
of a QS entry

with opcode IA

deterred segment
is any arbitrary
array expression

If the lhs variable is a J-vector, it must first
be explicitly evaluated. If the rhs expression
contains instances of the lhs variable with dif-
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,

the assignment is deferred as above,

- 93 -

an IA instruction; the second entry in VS is the right-hand side of the assignmeht.
There are several possible actions taken by the DM in interpreting assignments,
déepending on the VS contents. These cases are e:xplained in Téble 2, We have
assumed that "évii" side effects do not appear in fhe code; their treatlr;eht is
-stfa.ightforward, but uninteresting. Also, it should be noted that although-the
strategies outlined in Table 2 could be modified to. alter the machine's pérformance,
the case analysis remains the same. o B

The final storage management instructions are INPUT and OUTPUT, which
are left further unspecified. These could be conceived of as read-only and write-
only (serial) strings, which are used as prinﬁﬁves for»writi‘ng functions such as
0 and[. |
2, Control Instructions

The control instructions of the APLM are all concerned with dlrectmg the
flow of control among statements at the source-language level, and are all evaluated
by the D-machine,

The three jump instructions, JMP, JMPO, and J MPl are used to alter the
flow of control among statements in a function., Since no jumps are allowed out-
side of a function, there is little difficulty in specifying this operatioﬁ., All that
is necessary is to change the f/alue of the relative pointer in the current segment
on LS. CYCLE is a special case of JMP, which sets the rel.ative pointer to 0,
causing the current (D-mode) segment to be répeated. LEAVE pops LS and also
IS, if the segment is involved in an iteration, RETURN performs similarly
in returning from a call on a function. In addition, it automatically erases the
locals for the current function from NT.

The interpretation of the DO instruction depends on the top value on VS, If

the top of VS is a scalar then t_he DO acts as a no-op. If the tag is SGT, then the

- 94 -

-
-

segment described on VS is activated by push_ing the segment descriptor to LS,

with VS being popped. In case thetagis NPT, the corresponding NT tag is examined,
and if the tag is FT, then the named function is activated, as described in the next
paragraph; all other cases are no-ops. The DOI instruction is similar to DO

except that if the top is VS and hés tag NPT, the value referenced is copied to new-
space, while if the tag is SGT, temporary space is allocated for the result and

the segment is evaluated. | Thus, after executing a DOI, the top of VS contains an
entry with tag ST, JT, or FDT,

When a DO instru_ction‘ ehcounters a function name on top of VS, the following
actions take place:

1. The function descriptor, referenced by the NT entry for the function, is
fetched. It is expected that all parameters to the function have been evaluated
and placed on top of VS, so that the topmost value is the leftmost parameter. The
parameter count, FPAR, in the function descriptor is fetched, and the top of VS
checked to see that there are that many values already there. If not, an error is
signaled, Otherwise, the machine goes through the list of local variables in the
function descriptor, making an entry'in NT for each one. Each new tag in NT is
set to UT, for undefined, unless it corresponds to a parameter., Parameter values
are placed in NT and popped from the value stack in order.

2. A function mark entry is pushed to VS, with tag FMT containing an
encoding of the current values of FREG, IORG, and the name of the function being
activated.

| 3. IORG is set t<; the value in the function descriptor, and FREG is set to
the VS index of the function mark, h |

4, An entry is pushed into LS for the segment described by FVBASE and
FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

is completed, ‘ .
\

- 95 -

The segment just activated contains all the code for the function. When a RETURN
is executed within this function, the following occurs:

1. LS is popped, thereby de-activating the function,

2, The function name, encoded in the function mark onVS,.is used to access
the function descriptor and then popped. If there is a result, the value is pushed.
to VS, and its NT entry erased. All other NT entries for locals in the function,
together with their values, are also erased.

3. FREG and IORG are restored from the values in the function mark on VS.
The function mark is deleted and éhe resﬂt, if any, is moved into its place.)

4, Finally, FBASE is set to point to the current active function (if any) by
accessing its funcfibn descriptor through its name in the newly-exposed function
mark,

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL.
They can be considered in four groupings, and are so discussed in the rest of this
section. Part a discusses the scalar arithmetic operators (Table 1-2); part b
contains a description of the selection operators which are evaluated by beating
(Table 1-3A); part ¢ describes those operators which are generally execiited
immediately (Table 1-3B); and part d covers remaining deferrable operators as
well as the compound operators ('I'able 1-3C, D).

a. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if the operator is manadic)
then the operation is done immediately, leaving a result in VS and popping the
operand(s). This process is illustrated in Example 1, In fact, the operation is
pushed to QS and the E-machine is activated to perform the actual evaluation, but

this micro-process is invisible to the user.

- 96 -

@

The other possible cases occur when the top two elements of VS are segment
¥ descriptors for deferred code in QS or when one is a segment descriptor and the
other is a scalar. If one of the operands is a scalar, it is entered into QS and its
» VS entry is replaced by an appropriate segment descriptor, reducing it to the

case of two segment descriptors in VS, .
The D-machine compares the ranks énd dimensions of the two operands for
conformability and signals an error if they don't match. Otherwise, the operation
is deferred by drag-along in QS and the top of VS adjusted so that it contains a
segment descriptor pointing to the entire deferred expression in QS. Because of
the stack discipline in the machine, the deferred code for both operanfls will
always be contiguous in QS, The link field of the QS entry for the operator (with
& opcode OP) is a relative backwards pointer to the earliest deferred operand in
the deferred subexpression. The AUX field is the same as the AUX field of the
o two operands (see Example 2).
b. Selection Operators
" The selection operators are evaluated in the D-machine by beating, the process
of performing a seiection operation on an array-valued expression by changing
the storage mapping functions of its constituent array operands. The mathematical
analysis of Chapter II legitimizes this approach, and guarantees that the trans-
formations used in beating produce the correct results. Before proceeding, let
us define what it means for an array-valued expression to be beatable,
An array-valued expression deferred in QS is beatable if any of the following
conditions apply: | |
(i) It is a single QS entry with opcode IFA or 1J,

(ii) It is a consecutive pair of QS entrieé of the form

&

S scalar 0 0

IRD ptr 0 R,

-97 -

EXAMPLE 1 - SCA.AR OPERATUR, SCBLAR OPERAN)DS

REGISTER DUMP

NEWIT = O 1DRG = © FREG. = 00030 FBASE = 320200
REL ORG LEN O/E 1S FN Nwl (#

153 #==-mm m———— -m———— Fmmmpmmm e pmmm pmm

J ool ooc J1oc i oot o) cae)

EFFECTIVE a)DR = 0210 IN 4

TAG vALUg ¢4 YALUE LINK ALX
vSie + -- -+ QS:e
Ces 1 b -o>
I St | 256 {
t ST | 32 {
-1

EXAMPLE 1-1: BEFORE EXECUTING AJD AT M(21(!

REGISTER DUMP

NEWLT = 0 [AGRG = O FREG = 00C00 FbASZ = (Q20C

REL ORG

[T Ry e bl S b ey Tl

LEN D/E U5 FN anl QF

b
1 011 1600 | 100801311 101{6CIH
| 960 1 €00 4 001 | L 1310101 o

--> }

EFFECTIVE ADDR = 0090 IN QS

TAG VALUE op YALUE LINK aux

vs: am—- Qs: —— 13

1 ee | aee 160t ap | 200 I]

I st | 256 1 -=> 1

1 st 1 32 |
-=>1

THE ADD INSTRUCTICN AV #(210) MAS BEBN FETLHED, DECGOED,
AND DEFERRED IN QS. SINCE BOTH UPERAMNDS ALZ SCALARS,
‘THE DEFERRED SEGMENT IS ACTIVATED IMMEDIATELY. (NOTE Li}

EXAMPLE 1-2: AFUNER-DECODING ADD: UPERATION UEFERRED IN QS

EXAMPLE | - SCALAR UPERANUR, SCALAR OQPERANDS

REGISTZR DUMP
NEWLT = 0 IORG = 0 FREG = 00000 FBASE = 002C0
-REL ORG LEN OVE IS FN AmT QP
[D T s Y TRy Ly S it St Y S
fotLtoool 1coldtcltlofo0l}
1 201 1 00 1 COL 1L 1 Ot O 00

> |
EFFECTIVE ADDR = 000L IN QS
146G VALUE uP VALUE LINK AUyl
Y8 b —_———— ¢+ QS: * $mmmmmt
ee | cen | 00 | aPp | ADD 1 1
| ST | 288 1 -->1
-=>}

EXAMPLE 1-3: AFTER E-MACAHINE EXECUTION OF ADD; QS SEGMENT EXHAUSTED

RFGISTER DumMP

NEWLT = 0 10RS = 9 FREG = 00000 FBASE = 00200
REL ORG LEN DJE 1S N NWT QP
LSt .

folL 10001 1001 e o)1 folcoi
L}

-->
EFFECTIVE ADDR = Q21 IN N
TAG VALUE op vALUE LINK AUX
vS:e -+ Qi:e bttt 4
oo oae I -=>1
{ S1 | 268 |

-=>1

EXAMPLE L-4: AFTEER RETURH TC D-PACHINE, HESULT OF ADD 1§ ON VS

8
L4
§

@

EXAMPLE 2 - SCALAR OPERATUR, A

- - - ————— - - ——

REGISTER DUMP
NEWIT = 0O IGRG = 0 FRE

REL ORG LEN' D/E IS

[e e R Sy P

1 010 1 000 | 1CO 1 O | ©

-=> |

EFFECTIVE ADDR = 0210 IN
TAG VALUE

VS 4-———- e Rttt +
I L] I oo '
I SGT | SCODE(SEG.A,1) i
| SGT | SCODE(SEG.B,1) |

-=>|

ARRAYS WITH DA*S AT 1000
NEXT INSTRUCTION IS ADC

EXAMPLE 2-1: BEFORE EXECUTING
REGISTER DUMP
NEWIT = 0O IORG = 0 FRE

REL ORG LEN D/E IS

LS: #-mcmm bbb — =~
| o1t | 000 | 100 J O | ©
-=>

EFFECTIVE ADDR = 0211 IN

' LN ' LI} ‘
| SGF | SCODE(SEG.Cs1) |
-=>1

EXAMPLE 2-2: AFTER DEFERRING A

RRAY QOPERANDS

- ——— . - - - - - - - -

G = 00000 FBASE = 00200
FN NaT QP
L e et
! 1101 00|
M
oP VALUE ' LINK AUX
QS p=m === P R e L L e R IS it DL Lttt 4
00 | IFA | aA | i o111 | AA
oL { IFA | aB | | o111 | BB
--> |

AND 1010 ARE GF RANK 3 (NOTE QS AUX FIELDS).
AT M(210)

)

ADD
G = 00000 FBASE = 0020C

FN NWT P

Ll e S Ry 3

it 1101 00|

M

ae Val UE : LINK AUX

QS: ¢————m b — e —— -~ T A *

00 | LFA | aA | f o111 | C_
01 | 1FA | a8 J { o111 | '
02 | oP | AvD { 02 1 2111 | _¢C
--> 1

DD

-99 -

(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable sub-segment. That is, it is of form:

code for operand

e © o

OP optype = 1 R

(iv) It is a QS segment consisting of a pair of beatable operands combined
by a dyadic scalar operator, One of these}opera.'nds can optionally

be a scalar value. The form is:

. code for right opndr

“code for left opnd

OF optype k R

(v) It is a pair of beatable operands combined by GDF. The form is
similar to case (iv) above,
(vi) It is a reduction of a beatable operand, in the form:

BRED 0 k 0

éode -for reducee A

o 0 O

OP reduce-op : A
SGV SEG.A
S -length

ITM

- 100 -

FY

29

o>

(vii) Inadditionto(i) through (vi) above, a single QS entry with opcode IA
is beatable, although it does not enter into the recursive definition,

When a selection operation is interpreted by the D-machine, the array-valued
operé.nd is first checked for conformability. If the opérand is beatable, then it
is beaten, according to the transformations shown in Chapter IIl, Appendix A, In
this process, if a DA to be transformed has a reference count of 1, indicating that
it is a local tempofary result, then the DA can be modified directly. If the reference
count is greater than 1, then a copy musf be made, and the copy is beaten. If the
result of a beating operation is a scalar value, then the segment is turned over to |
the E-machine, which evaluates it and leaves the scalar result on the top of VS,

When the operand of a selection operation is not beatable, there are two
possible strategies to follow: In the case of the TRANS operation, there is no
choice: the operand must be evaluated by the E-machine and a temporary value
stored, which is then beaten as above. Otherwise, the selection operation can

be treated as a special case of subscripting, in which case an appropriate set of

‘E~-machine instructions is dragged-along in QS. (See Section d. for an explanation

of subscripting.) The choice of strategies is a second-order design decision,
and need not be made at this time, since either approach is viable., Example 3
illustrates both beating of selection operators and drag-along of scalar operators.
The DM code shown for the statement is a straightforward translation of the
APL statement into Polish, Note that the vector 2,72 is a constant and is
"compiled" into the function segment. This approach avoids having to keep array-
valued constants in the memory with other array quantities; to do so would require
having an entry in NT for each such constant, and would corﬁplicate the storage
management functions, In Examples 3-1 and 3-2, the state of the machine before

executing the sample code is shown; the values of the variables M and N are not

- 101 -

EXAMPLE 3: DRAG-ALONG AND BEATING IN THE D-MACHINE

'

14

Consider the APL expression

R<(2,1)Q(d[1IM)+(2,72)4N
At the time this is to be evaluated, pM<«>2,2 andpN<>3,4 . Assume that R
has no current value. The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr Op Operand __ Comments
250 LDNF N
252 LDCON 90 Refers to constant 2, 2with DA at 290‘
254 TAKE i
255 LDNF M ,
257 REV' 0 (Recall 0-base in all machine code)
259 ADD ,
260 LDJ JCODE(2,1,1) This is the vector 2,1
262 TRANS
263 LDN R
265 ASGN Assign (and discard value)
266 ‘e
290 RC=1 LEN=4 DA header
291 VB=0 AB=94 DA for constant vector%',? .
209 R éNK:l . Ls;[eiui?ﬁgto.n A for description
293 R(1)=2 D(1}=1
294 RC=1 LEN=3 Header for value array
295 2 Value
296" -2

-102 -

given, as they are irrelevant for this example. LS contains a descriptor for a
D-machine segment of length 100, which is the ma.in.segment of the function F,
The effective address is the sum of the REL field of L.S and FBASE, the begifming
of the value part of function F. VS contains a function mark for F which was
placed there when F was called, |

In 3-3 and 3-4; the LDNF and LDCON instructions have been executed., Note
that each caused the deferral of anIFA“instruction (fetch array element in the E-machine)
in QS. Also, for each deferred instruction, a QS seg'fnent descriptor was pushed
to VS. The LDCON instruction allocated space and made a copy of the descriptor
array for the c;onstant which was in the function segment; the new DA is named T1.
The VBASE for the constant is 200, the same as the FBASE of the function.

The TAKE operation (3-5, 6) is evaluated by the DM using beating. The
descriptor arréy T2 was created for the result, and was derived from the DA for
N by the transformations listed in Chapter III, Appendix A, It is easy to sée that
this DA is in fact the correct one. Also note that T1 is no longer needed, and has
been erased. At this point, VS contains a segment descriptor which points to the
QS segment describing the result of the combutation to data, which is the evaluation
of the subexpression (2, 2)4N . | |

Examples 3-7 through 3-9 show the next LDNF iﬂstrucﬁon and the evaluation
of the reversal operation by beating. The process in this case is similar to that
for the TAKE. The ADD operation is deferred in 3-10. because both of its operands
were array values, The LINK field of the ADD in QS is 2, referring to the operand
2 elements earlier in QS. The top of VS now— contains a descriptor for the entire
subexpression in QS whicﬂ has been evaluated at this point, The LDJ instruction

(3-11) is executed similarly to LDNF and LDCON in that it defers a value in QS.

- 103 -

The TRANS instruction takes the transpose of thc entire expression which
has been dragged along so far. In this case, since its operand is a sum, the
transpose is applied to both terms. Notice that although the deferred code in QS
has not been altered (3-12), the DA's which it references have been (3-13). The
LDN R instruction pushes 2 value with tag NPT to VS (3-14) as the next instruction
is an ASGN (3-15). This instruction notes that R was undefined (see NT, in
Example 3-1) and allocates space for its DA and its value array. The space is
allocated based on the knowledge of the size of the result deferred in QS. In
3-15, we see the deferral of the assignment. The POP instruction in QS disposes
of the value after it has been assigned (in deferring ASGNV, no POPS are used)..
In 3-16, the state of memory shows the new DA for R; also note that the address
of the DA for R (@R) has been entered in NT by the ASGN evaluation,

Cc. Other Operators (Executed Directly)

The "other operators' include all those APL primitives which cannot be
deferred conveniently, or which are evaluated immediately in the D-machine,
BASE is in this class because it has a scalar result, while REP, GDU, GDD are
included because they require rather complex calculations involving their entire
operands simultaneously, which are impossible or difficult to do element-by-element,
URHO is easily done by the D-machine, and so is not deferred, as is UIOTA,
which produces a J-vector as result. The catenation operator, with operand K,
is a direction to catenate the top K elements of VS to form a vector. This is
donc immediately (with tho result boing put in toemporary space). The remainder
of the operators in this class are dealt with differently, dépending on the values

of their operands.

-104 -

- 60T -

EXAMPLE 3 — DRAG-ALGNG AND BEATING

PEMURY DUMP

ADOR CONTENTS ADDR CUNTENTS NT: TAG CONTENTS

—meepemmm e m————— ———pmemme— ———— mmmemee e cfemefmmmcmcem————————

an RC=1 LEN=CS aN RC=1 LEN=05 FFT af
+01 vB=vM AB=0CD 01 VB=sVM AB=000 M DT oM
+02 RANK=2 +02 RANK=2 N 0T &N
+03 R(11=002 0L1}=02 03 R(1)=003 D(1)=04 R UT [
+04 R(2)2002 0(2)=D1 +C4 RU2)=004 UB(2)=201
EXAMPLE 3-1: MEMURY BEFORE EXECUTING EXAMPLE COUDE
- — - - - - e e e ——-—————-— - !
’ REGISTER OUMP .
NEWIT = O IORG = 1 FREG = 00000 FBASE = 0200
REL ORG LENM D/E IS FN Nal P
[I e e R e R e ey S L ey 3
| 650 1600 1 1201 01 041 30 wal
-=> |
EFFECTIVE ADOR = 0250 IN M
TAG VALUE op VALUE LINK Aux
vs: + QS: - D
I FMT | ®FN MAKK FOR Fe | =-=> |
-->t

EXAMPLE 3-2: REGISVERS BEFOKE EXECUTING EXAMPLE CODE

REGISTER OUMP

NERIT = O 10RG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN O/t IS &N Nal QP

LSs: -

J 054 1 COO J lwC O 4 011 1O COI
[

e bmmmpmmmpmmamy
-—>

EFFECTIVE ADDR = 0254 in M

TAG VALUE up VALUE LINK AuX
¥s: - 4§ pmm — +*
| FMT | ®FN MARK FOR Fe& | 00 | IFA | oN | | oc1t | aa
| SGV 1 SCUDE(SEG.As1) 01 1 EFA | wTL | | 0001 | 84
| SGT) SCODE(SEG.8s1) 1 -=> 1
|

LONF PUSHED QS(0;) AND VS(1;)
LOCGCN PUSHED QSf1i) AND VS(2:)

EXAMPLE 3-3: AFTER LONF ANC LOCON

EXAMPLE 3 - DRAG-ALONG AND BEATING

FEPORY OUNP

ADDR CONTENTS . ADDR CCNTENTS ADDR CONTENTS

————ta _—— -

aM RC=1 LEN=0Y N RC=2 LEN=05 atl RC=1 LEN=O4
+0L ve=VM A8=000 401 vB=VN AB=000 +01l vB=200 AB=094
+02 RANK =2 +02 RANK=1 +02 RANK=1

+03 R{1}=C02 D(1)=02 , +03 R(1)=0G3 D(1)=04 +03 R{1)=002 Dii)=01
+04 R(2)=002 DI2)=01 +04 R(2)=004 D12}=01

DA FOK N NOW HAS REFCO OF 2. TIL IS A CUPY UF THE DA FUR THE VECTOR 2,-2

EXAMPLE 3-4: MEMOKY AFTER LOCON

REGISTER DUMP

AEWLIT = O 10RG = 1 FREG = VOC00 FUASE = 00200
REL ORG LEN D/E IS FN NWT QP
LS: ¢v—mmmtrncee L A B L Y S L

1 054 1 0CcO | 10) 01 O)1)O3 oC
|

-->

EFFECTIVE AUDR = 0254 (L]

up VALUE LINK AUX
QS: e—-——+ e -
| FMT | ®FN MARK FUR Fe | 00 | LFA | T2 | 1 0011 | aA
| SGY | SCODE(SEG.a,1} i ==>1

-5
THE TAKE HAS ALTERED THE LA FOR N, CREATING A NEW COPY.

EXAMPLE 3-5: REGISTERS AFTER TAKE OPERATUR

HEMORY DUKP

ADDR CONTENTS ADDR CONTENTS ADUR CONTENTS

—mcetmmm— camem——an ——— tomommm—— ——— eam ceemtecesmcmmsema—————

an RC=1 LEN=05 N RC=1 LEN20S ar2 AC=1 LEN=0S
01 VB=VM AB=000 +01 vB=VN A8=070 01 VBxVN AB=002
+02 RANK=2 02 RANK=2 +02 RANK=2

+03 R(1)=002 LL1}=02 ¢03 kE1)=003 D{1)=04 +03 &k{(1)=002 O{1)=0s
*06 RI12)=002 DI2) =01 +04 R(2)=004 D(2)=01 *06¢ R(2)=002 Dt2)=01

THE NEw UA AT @T2 CONTAINS THE STORAGE ACCESS FUNCTION FOR THE

TAKE OPERATIUN ON Ny WHICH WAS PRODUCED BY BEATING. NOTE IN PARTICULAR
THAT THE VBASE OF T2 IS VN, WHICH POINTS TO THE VALUE ARHAY GF No AND
THAT THE DIMENSION OF T2 IS 242 o+ AS SPECIFIED BY THE TAKE OPERATUR.
THE ABASE HAS CHANGED FROM O TG 2, TG ACCOUNT FUR THE -2 ELEMENT [N THE
PARAMETER (I.E. TAKE FRCMN THE END). FINALLY, NOTE THAT THE VALUE UF OfL
IN T2 IS THE SAME AS THAT FOR N,

EXAMPLE 3-6: MEMORY AFTER TAKE OPERATOR

- 90T -

EXAMPLE 3 - DRAG-ALONG BND BEATING

REGISTER DUNP MEMORT DUNP
NEWIT = O 10RG = | FIEG = 000CC FEASE » 0020C
' ADDR {ONTENTS ADDR CONTENTS
REL ©OmG LEN D/E IS Fa NwT QP caeces ——————— -———mmam— ——rebmammmee—aee —m—————
LS: #emmmmtrmcepmcaan PR e R L LYY am RC=1 LEN=0S N RC=1 LEN=05
1 056 i %0 L 1001 00 G L ICCOI 401 VisvM 2820C2 +01 VBsVN AB=000
-=> | 92 RANK=2 2 RANK=2
¢03 RI{1}=002 Cl1)=02 03 R{11=003 D{1)=04
EFFECTIVE ADDR = 0256 IN M +J6 RU2)=062 012)=01 ¢04 RL2)2004 OL2}=01
TAG VBLUE up VALBE LINK 2y
VSitemmmm b —— cmm—mt Yl mm e b ———————————— b mprm———— +
| FMT | ®FN MARK FOR F® | 00 | IFA | a2 | | Cotl | £aA
} SGY | SZODE(SEG.A,1L} < 01 L IFA | aM 1) CO:1 | EB
| SGT | SCODE(SEG.B,1) Po--2
-=>}

ADUDR CCNTENTS

e gmmm———— e ————— -

ar3
01
+02
+03
+Ce

RC=1 LEN=0Q5
vB=vN a8=002
RANK=2

RU1)=002 DIL11=04
R{2)=002 D{21=01

RC=1 LEN=05
VB=vM AB=002
RANK=2

R(1}1=002 D(11==2
R{2)=0C2 0(2)=01

NOTICE THE NEw CA. 413 , WHICH CONTAINS THE ACCESS FUNCTION FOR THE
REVERSAL ON M . THE PARTS WHICH nAVE CHANGED FRUM THE DA AT aM ARE
EXAPPLE 3-7: AFTER LDNF M ABASE, WHIZM IS NOw 2, AND DEL(L), WHICH TS -2 INSTEAD CF 2. THESE
CHANGES AC-CUNY FIR THE REVERSAL OF M 4 ANALOGOUSLY TU THE WAY THE DA

- AT aT2 AZCOUNTS FOR THE TAKE OPERATIUN UN N .
REGISTER DuMP
NEWIT = O {URG =} U<EG = 00COC FBASE = 002CD ENANPLE 3-9: AFTER REV
LS REGISTER DUNP

REL URG LEN O/E IS FN NaT 9P
EFFECTIVZ ADDR = G254 FO] LS5 $o——=m P PP A Sa——
!

05 L ooc i ke lol ot fofoCl

TAG vaLuE oe VALUE LINK BLX -1
A R e it S/ LR R RS Bl R Rt ———————————— T B —————
| #MT | ®=FN MARK FUR F* | CO | IF2 | aT:z | 1 2CL. | aa EFFECTIVE EDOR = (259 IN M
| SGT | SCUDE(SEU.ALLY | o1 | 1fe | a®z | I 2CL2) 33
| SG1 | SLCOE(SEC.B,1) I -->1 TaG VALUGE upP VALUE
-=>1 e amomet (SI¢mcmceta—coan B ettt

| FNMT | sFN MARK FCk F* | 00 | Ifa | &12

} SGT | SCUBEC(SEG.C..1) I 01l | LFA | al3

EXAMPLE 3-8% AFTER KEV ! -=>1 02 | ap | ADD
-=> 1

EXAMPLE 3-10: AFTER AJL

: 058 | 500) 1001 01 34k I D100 NEWll = 0 IORG = i FREG = 00COC FBASE = 00200

LINK AUX
D o e iatated .
. L oot | ¢
! 1 con1 |
1 02 1 0011 | _C.

-

- 0T -

-

v

EXAMPLE 3 - DRAG-ALONG ANC BEATING

REGISTER DUNP

NEWITY = D 108G = 1 FREG = 0CCOO FBASE = 00200

REL ORG

LEN O/E IS FN NWT 4P

———

1 061 1 000 f 1cC b O) 032 §oO 00
|

-->

EFFECTIVE AOOR = 0261 NN

TAG VALUE op VALUE LINK AuX
vs: ¢ QSie— »
| FAT | sFN MARK FOR F& | 00 | IFA | a¥2 | 1 ookl 0 C_
| SGT | SCODE{SEG.Co3} | 01 | IFA | aV3] | oot1 1§
| SGT | SCUDE(SEG.D.1) | 02 1 OP | ADD V02 1 o001t | _C
—>| 03 | 1J | JCODEIZ4101) 1 1 0001 1 0O
-=> |
EXANPLE 3-111 AFTER LOJ
REGISTER DUMP
NEWIT = 0 10RG = 1t FREG = 00600 FBASE = 00200
REL ORG LEN DO/E IS FN NuT P
LS: + r=—c9
1 662 1 000 b 10C 1 O4 0 110 3jo0Ll
-3 |
EFFECTIVE AODR = 0262 IN M
TAG VALUE opP VALUVE LINK AUX
v$2e Qs: - »
| FAT | oFN MARK FOR F® | 00 | IFA | aT2 | i oot ¥ C_
} SGT | SCODELSEG.Co1) | 01 | IFA | av3 1 | 0011 1
-=>1 - 02 | OP | ADD 1 02100111 _¢C

- |

EXAMPLE 3-123 REGISTERS AFTER TRANS

k2 0 —
p ba i~
T~
EXAMPLE 3 -~ DRAG-ALCNG AND BEATING
MEMORY DUMP
ADDR CONTENTS ADOR CONTENTS ADOR CCNTENTS
o me=1 LENSOS aN RC=1 LEN=0S @f2 RC=1 LEN=05
+0L vB=vM AB=000 *01 VB=VN AB=000 *0L VB=VN AB=2002

+02 RANK=2 +02 RANK=2 *02 RANK=2
03 2(1)=002 O(1)=02 +03 R(1)=003 D{1)=0e +03 R(1)=002 DiL)=01
+04 R42)=002 DI2)=01 +06 R(2)=004 D{2)=0) *04 RI2)=002 DI2)=04

ar3 RC=1 LEN=0S
*01 vBave AB=002
+02 RANK=2

+03 R(11=002 DI1)=0}
+04 R(2)=002 LI2)=-2

THE EFFECT OF THE TRANSPUSE WAS TO ALTER TH: OA*S AT QT2 AND aT3.
THE CHANGE IN BOTH CASES WAS TO INTEKCHANGE R(1) WITH R{2), AND

DELY WITH D(2). IT SHOULD BE INTUITIVELY CLEAR THAT THESE DA°’S WilL
NDW ACCESS THE TRANSPOSES OF THEFR PREVIOUS VALUES,

EXAMPLE 3-131 MEMORY AFTER TRANS (NOTE ALTERED DA°*S)

REGISTER DUNP

NEWLT = 0 10RG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN U/E 15 FN NwT QP
LS$3 e-—- - * +*
1 Cos 1000) 10CH 0O Ccl1tolool
->

EFFLCTIVE AUDR = 0264 INN

TAG VALUE or VALUE LINK AU
vSss * WS:
| FNT) oFN MARK FOR F® | 00 | 1FA | aT2 [} | o011 | €.
| SGT | SCODE(SEG.C.1) | oL | (FA | aT3 | | oo1l |
I NPT | R | 02 | op | apo Y le2iooll) ¢
-->1 -=>

EXAMPLE 3-14: AFTER LON R

- 80T -

EXAMPLE 3 ~ DRAG-ALGCNG AND EBEATING

- - — - - -—

RFGISTER DJMP
ANEWLY = O IORG = 1 FREG = 02000 FBASE = 00200

REL ORG LEN DJE S FN NnT QP

LS: ¢ prcmn e s prm b pm e pm—mnp

| 665 1 600 1 2¢O | 2 1 0 i1 4O {00 |

-— |
EFFECTIVE ADDR = 0265 IN M
TAG VALUE orp VALUE LINK AUX
Vi§te—mmma e, — - ————— ¢ QS:e4-—=-um P ————— ————————— b ———
| FMT | *FN MARX FOR F2= | 00) IFA | aT2 | } 0011
| SGT | SCODE(SEG.Esl) I 01) IFA | 4T3 | i 0011
—>| 02) of | ADD | 02 | ooll
03 | IFA | aR | I ool
04 | OGP | ASGN | 02 § 001t
A% | POP | 0 | 4§ ootl
-—-> |

EXAMPLE 3-15: REGISTERS AFTER ASGN

. ——— . . . o s T — . " . " o o —— = i - — -

I

MEMORY DUMP

ADDR CONTENTS AODR CUNTENTS NT: TAG CUNTENDS
——— - - e emcr e emce—cc——as o=- R
aM RC=L LEN=05 ar2 RC=1 LEN=05 F F1 aF

¢01 vB=vM AB=000 +«01l vB=VvH A8=002 M orT aM

«02 RANK=2 - . +02 RANK=2 N 12} anN

+03 R(1)$=002 D(11=02 +03 R{1)=002 V(1)=01 R o7 @R

+04 R(2)=002 D(2i=01 04 RU2)=002 D12)=04

&N RC=1 LEN=CS &73 RC=1 LEN=0S
+0l vB=WH AB=000 +01 VvB=VM AB=002
*02 RANK=2 +02 RANK=2

+03 R(1)=003 D(1-=04 +03 R{1)=002 D{(1)=01
+04 R(2)=006 D(2.=01 +0% R(2)=002 Di(21=-2

K RC=1 LEN=05
+01 NB=Ww AB=000
02 RANK=2

+03 RU(1)=002 D(1:=02
+04 R(2)=00Z D(2;=01

EXAMPLE 3-16: MEMOKY AFTER ASGN

RAV and DRHO are difficult to defer in general because of the complex

calculations néce"ssary to access an arbitrary element of the result. However,

there are special cases which are easy to defer, as follows:

(1)

(i1)

(iii)

The right operand is a scalar or single-element quantity, The RAV
of such a value is a J-vector if it is an integer, or at worst is an
explicit one-element vector., Similarly, the DRHO of such a value
is deferred in QS as follows:

S value 0 0.

IRD T1 0 R

; where @T1 is a DA- for the result and R is the encoding of the rank.,

The IRD instruction is essentially a note to the D-machine that the
result has dimension described in T1.

The right operand B is an expression deferred in the form of (i) above.

. In this case, all that has to be done is change the descriptor array

@t
The right operand is of the form
IFA @W 0 R

and QW pbints to a DA which has not been altered by any select

operations which upsét the ordering of the value part. That is, if

W is the array specified by @W and D is the vector containing the
value part, then i[;/L1«<D[(pC)1L] for all appropriate values ofL.
In'this case, RAV is evaluated by providing a new DA with rank 1 and
dimension % /p¥ .« DRHO can be deferred if */pA , where 4 is the
left operand of the IjRHO, is less than or equal to */pC also by

providing a new DA with dimension 4.

If none of the above apply,- then RAV and DRHO are evaluated immediately by

creating temporary values in M,

- 109 -

d. Other Operators and Compound Operators (Deferrable))
The D-machine evaluates this subclass of uperator inctructions hy ‘deferring

E-machine code in QS. The expansions are detailed in Appendix C and should be

o

easy to understand with a knowledge of the way the E-machine works. We will
here discuss only the SUBS instruction and the compound operators, as their
behavior is somewhat more complex.

The SUURS K opcration corresponds to the symbol [in an APL program,
When decoded, 1t expects the top of VS to contain a QS segment descriplor for a
rank-K quantity and the next K entries on VS to be either scalars or QS segment
descrip’tors for the subscript expressions. An empty subscript position is created
by the LDSEG instruction with its operand a segment descriptor SCODE(0, 0, 0) of
length 0, |

There are two important cases to consider:

(i) I the subscriptee is beatable, then the subscript expressions are
examincd in turn, starting from the rightmost (deepest in VS8) tu
find scalars or J-vectors. If found for, say, the Itﬁ coordinate,
the equivalent of INX I with thut vperand is porformed on the sub-
scriptee by beating, causing new DA's to be created for Il. The VE
entry for this subscript is then dcleted 1f it was a scalar. If it was
a J-vector, then the VS entry is changed to the empty segment and
the QS entry is deleted by moving all of QS down 1 to fill in the space
(with appropriate adjustmente tu descriptora). If, after all snhseripts
have been examined it is found that the remaining stacked subscripts
are either empty or non-existent, then the result already exists, in
standard form, in QS. In th_ls case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor

- 110 -

. at the top of VS. Otherwise, the remaining subscripts are treated
as in the second case, described in the next paragraph.

(ii) I there are explicit non-scalar or non-J-vector subscript expressions
and/or the subscriptee is not beatable, then the subscripts must be
dragged along in QS. This is done by creating temporary index ac-
.cumulators (opcode XT) in QS and generating E-machine code to
activate the necessary subscript evaluations at the right times., If
the subscriptee is a reduction, QS is transformed according to the.
transformation (OP/A) [¢] —> OP/A[#] and evaluation continues
as above. The details of the subscript expansion are shown in
Appendix C. Example 4 illustrates the process which has just been
described.

In evaluating a GDF, the machine first examines the operands. If they contain
deferred operators, tﬁen they are evaluated to temporary space first. This is
done to avoid unnecessary recalculation of subexpressions necessary to compute.
a GDF. It also guarantees the possibility of applying SF transforms to GDF ex-
pressions by beating. The:n all that is necessary is to alter the access mé.sks in
the AUX fields of the deferred left operand in QS to provide the proper access
method for the E-machine. This is illustrated in Exé.mple 5 below. If the GDF
reduces to a simple case, e.g., if one of the operands is a scalar, | then the ex-
pression is treated as a normal scalar operator expression (see part a above).

Efficient evaluation of reductions along coordinate K of the reducee R (in»thé
E-machine) depend an transformation TR11 (see Chapter II) which allows permu-
tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see if it fits into one

~ 111 -

of the special cases of reduction:

(i) Empty reduction coordinate. The result is then an array with value
((K=21ppR)/pR)oIDENT Where R is. the reducee and IDENT is the
identity element for the reduction operator. |

. (ii) Reduction coordinate of length 1. Thé result is then [[X1 JORG]
If reducee is a scalar, the result is R.
(iii) Reducee is a vector. In this Case, the reduction is activated im-
mediately in the E-machine, since the result is a scalar.-
If none of the special cases is satisfied, the reduction is deferred by first doing
the transpose of TR11 if necessary, and generating the deferred code in QS as

shown in Appendix C.

EXAMPLE 4: SUBSCRIPTING IN D-MACHINE .

Consider the APL expression A[14;;2;V] where A is a rank-4 array with
pAd<>5,4,6,3 and V<»3,2,1,2 , with the index origin IORG <+ 1. The D-machine

for evaluating this expression is

250 LDNF' \4 Vector V

252 LDS 2 Sealar 2

254 LDSEG ~SCODE(0, 0,0) Empty subscript

256 LDS 4 Scalar 4

268 UIOTA Gives L4

259 LDNT) A Array A

261 SU B'S 4 Do the subscript, expected operand rank is 4
263 ... '

The following memory and register dumps show the steps the D- machine goes through

to evaluate this expression,

- 112 -

- €11 -

EXAMPLE 4 -~ SUBSCRIPTING IN D-MACHINE

MEMQRY DUMP

ADDR CONTENTS ADOR CONTENTS

——————— —_—— m———

NT: TAG CUNTENTS

aAa RC=1 LEN=Q? av RC=1
+01 ve=v] AB=0(Q +Cl vBavy
+02 RANK=4 +02 RANK=]

+03 R{1)=005 O(i)=22 +23
¢04 R{2)=2004.0(2)=18
405 R(3)=006 D{3I1=Q)
406 R{4)=003 0(4)=21

EXAMPLE 4-1: MEMURY BEFORE EXECUTING Exal

LENZO4 A 1) ah

AB=900 v or v

R{L1)=006 Ot1)=01

MPLE COOE

REGISTER DUMP

NEWIT = 0 10RG = | FREG = 00C90 FBASE = 0020C
REL ORG LEN D/E IS FN NwV P
LS: ¢-=~== ———- —————— -t
1 061 4 COO) 10CHNOIONLDC) OO
-=> |
EFFECTEVE AUDR = 0261 INM
146 VALUE op vaLuE LINK Aaux
¥Sie——munm dmmmmcmmmaa ——————— ¢+ QSie----- tm— .
e cen | 00 | LFa | av 1 i 0001 | aa
| SGT | SCODE(SEG.A,1) b 01 1 14) JCUDE(&.150) i I godl | 88
| ST | 2 I 02 | 1FA | 24 | | 1181} CC
i SGT | SCODELSEG.NIL,0) | --> |
| SGYT | SCUDELSEG.B.1) |
| SGF | SCODE(SEG.C.1) |
-=>1
VS CONTENTS ARE THE SUBSCRIPTS AND SUBSCRIPTEE. NUTE THE ACCESS MASKS
IN THE AUX FLELD OF QS. THEY INDICATE THAT Vv AND THE J-VECTUR ARE

VECTURS, AND A IS A RANK-& ARKRAY,

EXAMPLE 4~2: AFTER ALL BUT THE

SUBS OUPLRATUOR

K4

A
3

REGISTER DUMP

NEWIT = 0 I0RG =) FREG = 00C00 FBASE = 00200
REL ORG LEN O/E IS FN NwT QP
LS: ¢-== —_ - -—
063 | 000 | 10C 401 01 10 oOCH
-->
EFFECTIVE ADDR = 026) IN %
TAG VALUE e VALUE LINK AUX
vs: -+ QS .
lee 1 cen i 00 L JmwP | O [L |
| SGT | SCOUE(SEG.D1) I 91 1 1Fa | v i | o001l |
-=>} C2 | IFA | &T1 | 1 o111 1]
03 | XV | XCOUDE{O.3,1) i 031 i
04 | XV | XCOOE(0,3,1) 1 | |
05 | XT | XCODE(O,2.1)] |
Q96 | IxL | 0] 1 0100 |
o7 | xS | 0 | 04 | |
08 | 1xL | ¢ [} { ool0 1
09 | xs | 0 tos | |
10 | 1SC | SCUDE(SEG.E,1) 1 1 0001 |
tlxs 1o i 06 | [}
12 | SG | SCOOEUSEG.Fed) 09| i
13 | IRD | aT2] b o1l
-->
VS AND QS HAVE BEEN TRANSFORMED BY THE SUBS UPERATIUN. THE SCALAR

SUBSCRIPT REOUCED THE RANK OF A 8Y 1, AND THE INFERVAL VECTUR
SHURTENED THE FIRST COORGCINATE (SEE DA AT @T1). THE REST OF THE
CCOE GENERATED IN QS IS FOR CALCULATING EXPLICIT SUSSCRIPT VALUES,
WHICH ARE KEPT IN THE X1 ENTWIES. THESE ENTRIES CONSVITUTE A
PSEUDU-ITERATION STACK. (SEE SECTIUN E)

EXAMPLE #-3: REGISTERS AFTER SUBS

"MmO
"m|

MEMDRY Dump

AUDR

————pm——

3Aa
+01
*02
+03
+04
*05
+06

CONTENTS ADDR CONTENTS ADDR CCNTENTS
RC=} LEN=QT av RC=2 LEN=O4 ar2 RC=1 LEN=Qb
viev] AB=20(0 +01 ¥O=vy AB=00C +01 vBa A8=C00
. RANK=4 *02 RANK=1 +02 RANK=>3
R{1}=005 D(1)=72 +03 R{1)=004 DI1)=0) *03 R{1)=004 Dil)=is
R{21=004 O12)=18 +04 R{2)=00¢ 0(2)=04
R{3)2006 0(3)=03 «ll AC=1 LEN=06 +05 R{(3)=004 DO13)=01
Ri4)2003 Ot4)=01 +01 vB=vaA AB=003
+02 RANK=3

+03 RI1)=004 OI1¥=T2
«04 FR(2)2004 D(2}=18
¢CS5 R{3)=003 U(3)=01

-EXAMPLE &-4: MEMURY AFTER 5uBS

EXAMPLE 5: GDF IN D-MACHINE

In the example expression, Me.xN, both# and NV are matrices with pM—4,3

and N<»p3,2, D-machine code for this expression is

250 LDNF N
252 LDNF M

254 GDF MUL Do GDF
6 ..

Examples 5-1,2 show fhe machine state before evaluating fhis code. In 5-3, the
GDF operation has been deferred in QS. Notice that the access mask of M
in“the AUX field of QS has been changed. The IRD entry, whose operand DA gives
the dimension of the result, contains 1111 in its AUX field, which instructs the
EMto use a 4-level iteration stack to evaluate the expression. The 1100 AUX for
M says that M-indices come from the two highest iterations, while the 0011 AUX
for N indicates that N is to use the two lowest,

An equivalent formulation of the contents of QS at this point is that it represents
the GDF in the form:

for I := 0 step 1 until 3 do

for J := 0 step 1 until 2 do
for K = 0 step 1 until 2 do
for L := 0 step 1 until 1 do

RESULT [LJ;K;L) = MI;9] xNK;L);

- 114 -

- GIT -~

REGISTER DUMP
NEWIT = O 10RG = 1 FRE

REL ORG LEN C/E IS

G = 00GO00

FN Nu1 QP

LS: -
| 0S4 § 000 J ICC 10 {1 O
-=> |

EFFECTIVE ADDR = 0254 N

! oo | ome i
| SGT | SCODE(SEG.A,1) |
| SGT | SCODE{SEG.8,1) |
-->1

PR ORY

b1 1L o001

ap VALVE

FBASE = 00200

LINK AUX

YSitmmrempm e
00 | IFA | @N

oL | LFA | an
-=> |

I ooll
| o011

| AA
| B8

N EXAMPLE S5-13 WEGISFERS BEIFORE GOF
MEMORY DUMP
ADDR CONTENTS ADDR CONVENTS
FL] AC=1 LEN=0S] RC=1 LEN=05
+01 VvBsVM - AB=000 ' #0l VB=VN AB=000
402 RANK=2 * 02 RANK=2

«03 AL11=004 D(1)=03 *03
404 R{2)=003 Dli)=01 *C4

EXANPLE $-21 MEMONY BEFORE GOF

Ri1)=003 D 1)=02
R12}=002 D{2)=01

vh,

. ¥ -
EXAMPLE 5 - GDF IN D-MACHINE
REGISTER DUMP
NEwlT = 0 JURG = } FREG = 00000 FBASE = 00200
REL ORG LEN D/E IS #N NNT QP
LS: #cvecctrcccctonccctorctocctoccperapoa=me
1056 1ooo l100ilo01l o0i11 101001
-=> |
EFFECTIVE ADOR = 0256 IN N
TAG " VALUE oe VALVE LINK AUX
vS:e ¢ QS1e———-¢
oo voe 00 | IFA | 3N i 1 o011 | C_
| SGT | SCODE(SEG.C.1) i ol | IFA | an I 1 1100)
—>| 02 1 GOP | muL | i
03 | IRD | avl I Il _c

-~ |

EXAMPLE 5-3: AFTER GOF - NMOTE CHANGED AUx FILELOS IN QS

MEMDRY DUNMP

ADDR

an
+01
+02
+03
+04

CONTENTS ADDR CONTENTS ADDR CONTENTS
RC=2 LEN=0S an RC=2 LEN=0S art ac=1 LEN=O7
vé=vM AB=000 +01 vB=VN A8=000 «01 vb= A8=000
RANK=2 *02 RANK=2 +02 RANK=4
R{1)=004 D{1)=0) 403 R(1)=003 0{11=02 +03 R(1)=004 O(1)=18
R{21=003 D(2)=01 +04 R(21=2002 0(2)=01 *04 R{2)=003 D(2)=06

+05 R{3)=003 0i{3)=02
*06 R{4)=002 D(4)=01

@71 WAS CREATED SIMPLY TO RECORD THE RANK AND DIMENSION VECTOR OF
THE RESULT OF OOING THE QUTER PRODUCT. THE OPCODE 1RD (IK QS{3;3H)
SIGNIFIES THAT ITS OPEKAND DA IS DESCRIPTEIVE, AND IS NOT TO BE
EXECUTED. [N THE E-MACMINE, IRD IS IGNORED.

EXAMPLE S5-4: MEMORY AFTER GOF

E. The E-Machine

The E-machine is a simple stack-oriented computer which evaluates array-

valued expressions by iterating element-by-element over their index sets. The

EM takes its instructions from the instruction buffer (QS), where they were put

by the D-machine. Other machine registers are used in the same way as in the DM,

The central task of the EM is to access individual array elements in computing

array-valued expressions. As most of the complexity of the E-machine is related

to this task, we first discuss e accedsing mechanisms in the EM, Given this,

it io o simple matter to explain the instruction set of the machine,

1. Array Accessing

do

Indexing Environment

Array reference instructions are entered in QS in the form

IFA @VAR 0 MASK

where @VAR is the address of a DA in M, and MASK is a logical access mask.

When such an instruction is first entered in QS by the D-machine, it is done Without

regard to its context in the input expression. The E-machine must,. in order to

evaluate it, determine its context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruction in QS Is

determined by how the segment containing the instruction was activated, which in

turn relates to the form of the original expression input to the D-machine.

(1)

If the QP field of the top of LS is zero, then the envirdhment is simple,
and array references within this segment ure based directly on the
iteration stack. A simple environment arises in variables not affected by
explicit suhscripting or which are not operands in expressions which cause
expansions to be made by the DM. For exé.mple, in the statement A<B+C,

all variables have simple environment,

- 116 -

B2

(ii) If the QP field of LS is non-zero, then the environment is complex, and
array references in this segment are controlled by a pseudo-iteration
" stack. In the statement A«B+C{V;¥], A and B will have simple environ-
ments, but C will be complex as the reference to C is embedded in a
segment resulting from the expansion of the subscript operator. Note
that this concept is recursive. For example, we can also say that the
environment of the subexpressioh CLV;W] is simple. This recursiveness
allows arbitrary levels of subscript nesting to be handled by the drag-
along scheme of the D-machine,
The segment containing the IFA @C instruction is activated in the
EM by an SG instruction referring to a sequence of entries in QS of the
form:
XT XCODE(a, ml, cl)
XT XCODE(b, m2, c2).
Here, a and b are indices for C calculated from the subscripts V and W
by the expanded subscript code in QS. These quantities are, in turn,
computed from the current values in IS. ml and m2 are the maximum
permissible values of a and b derived from pC, and cl and c2 are change
flags. Thus, these XT entries correspond to the CNT, MAX, and CH
fields of the iteration stack, and are therefore called a pseudo-iteration
stack (pseudo-IS).
b. Initialization of Access Instructions
Each array accessing instruction must be bound to its indexing environment
when first executed. This process is described below for IFA instructions and

is analogous for IA and 1dJ.

=117 =

(i) Determine index sources
The encoded access mask in the AUX field of an instruction is used

to.determine its indexing environment. For example, if the environment
is simple and the bit pattern in AUX is 0101 and the IS is four deep, then
the index sources are determined by (0, 1, 0,1)/0, 1,2, 3 which is the vector
1,3, Call this vector INX. Had the QP field of LS indicated a cdmplex
indexing environment, then INX would have been b?.sed on the length of the
pseudo-IS rather than on the length of IS.

(ii) Set up iteration control block

An iteration control block (ICB) is established at the top of QS,

containing the coefficients of the si:orage mapping function from the DA
for the array (DEL) and the INX vector, calculated above, An ICB contains
one word for each coordinate of the array being accessed, as shown below.
The fields marked Q1 and Q2 are both encoded into the VALUE field of
QS using the function QCODE (see Appendix A), The contents of the I@-

ICB entry are:

field contents [
OoP if simple environment then NT else QT
LINK INX (1]
| AUX 0
Q2 DEL (]
Q1 if simple environment then DEL (I] x (MAX field of IS

entry selected by LINK field) else 0
In addition, the last entry in an ICB is given opcode NLT or QT.T, depending

on its environment.

- 118 -

ar

(iii) Initialize QS entry
The Q1 fields of the ICB just established are added to the ABASE
found in the array'.s describtor array to produce the sum S. VBASE is
also fetched from the DA, and the DA is ""erased' from QS by subtracting
1 from its reference cbunto The ofiginal IFA entry is then replaced by
FA QCODE(VBASE,S) IPTR 0
where IPTR is a pointer to the bevginning of the ICB for this array.

This completes the initialization of array references. -In effect, what has
been done is to replace the context-independent reference created by the D-machine,
by information which binds the reference to its indexing environment, and' which
contains all information necessary to access the array (in the ICB).

c. The Index Unit |

The index unit (IU) is invoked by the E-machine every time it executes an:
array-access instruction that has been initialized as above (i.e., FA, A, J).
Using the information in the instruction, its ICB,and IS or a pseudé—IS, the IU
accesses the appropriate array element and pushes it to VS. The IU functions
differently, depending on the indexing environment:

(i) Simple environment

In this case, we know a priori that the elements of the array will
be accessed in a simple order, determined by the way IS is cycled, and this
information can be used to minimize the re-computation of the storage
mapping function for each element of the array. The IU looks at the
iteration stack entries for this array (specified in the ICB), starting at
the right-most coordinate. If the IS entry has changed (ﬁoted by CH bit)
* but not recycled, then the IS adds the DEL component from the ICB to S;

if there was a change and a recycle, the Q1 field is subtracted from S.

- 119 -

The new S value is stored back in the instruction, This process continues
until an IS entry with no changes is found, in which case none of the
higher IS entries contain changes either. If the iteration is going backwards,
as in a reduce, then addition and subtraction are interchanged.
(ii) Complex environment
In the complex case, there is no way of predicting in advance how the
indices will proceed and each change requires an explicit evaluation of
part of the mapping function. This is done similarly to the simple case,
" by examining the pseudo-IS for each coordinate of the array. If a4 change
is recorded (in the X3 part of the XT entry) then the new index (X1 part) is
multiplied by DEL, 'T'his result is added to S and the Q1 field of the ICB is
subtracted from S with the new S stored back in QS. Finally, the product
just found is stored in the Q1 part of the ICB. This field thus records
partial values of the mapping polynomial.
The behavior of the machine in array accessing, as described above, is
illustrated in Example 6.
2, Instruction Set
Instructions in the E-machine can be considered in three groups:
a. Simple instructions
b. Control instructions
¢, Micro-instructions, used primarily for maintaining pseudo-iteration stacks.
In addition, as seen in the previous section, the instructions buffer contains entries
for pseudo-iteration stacks (opcode XT) and iteration control blocks (NT, QT, NLT,QLT).
Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed
algorithmic description of the E-machine's behavior. The remainder of this section

discusses these instructions in both functional and "programming" terms.

~ 120 -

e

a. Simple instructions

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA
fetches an array element according to its operand DA and the indexing environment,
and pushes it to VS with tag ST; similarly, IJ pushés an element of a J-vector to
VS, while IA pushes an address of an array element (tag AT). IThese instructions
can be considered simply at the programming level, as just described, although
the mechanism which they invoke is much more complex, as was seen in the previous
section,

The instructions OP and GOP have as operands the names of arithmetic
functions in the EM (monadié or dyadic). Executing an OP or GOP invokes the

named function, which operates on the top of VS, deleting the operands and pushing

the result, with tag ST. (This process is illustrated in Example 1,) NIL is a‘
No-op, and does nothing., Recall from Section D and Appendix C that IRD and IRP
are generated by the D-machine to keep track of intermediate results in “doing
drag-along. As they have no use in the E-machine, they are changed to NIL when
first executed.

b, Control instructions

The main control instructions are SGV and SG, whose operands aré QS
segment descriptors. SGV pushes this descriptor to VS (with tug SGT) and is thus
analogous to LDSEG in the DM. SG activates the named segment by pushing an
entry to LS; in this instruction, the LINK field is significant, in that it can change
the indexing environment, JMP, JO, J1, JNO, and JN1 are simply relative jumps
within QS; RED is also a relative jump, but in addition, it pushes to VS an entry
with tag RT, to be used as an accumulator for a reduction. (RED is generated by

the DM only in conjunction with reductions.)

- 121 -

MIT is used primarily to activate reduction segments. It takes ST entries
from the top of VS and uses them to push new iterations to IS. When thp MIT
execution reaches an SGT entry on the top of VS, the referenced segment is ac.tivated
by pushing the descriptor information to LS. (See Appendix C fpr a description
of how reduction segments are deferred in QS.)

¢. Micro-instructions

The set of micro-instructions are used hy the E-machine to maintain pseudo-
iteration stacks in QS. 'T'hey result from D-machine expansions of subscripting
and related operations. The nlicrofinstruétions are fully explained in Table 3-C,

and the DM expansions in Appendix C illustrate their use.

TABLE 3

E-Machine Instruction Set

Notes:
. Each instruction is in the form
op VALUE LINK AUX ,
In the discussion, K is the address of the instruction in QS.
b. Instructions starting with the letter "I'' are "uninitialized.' That is, they
have not yet been bound to their indexing environments. They are changed to

similar instructions without the leading '"I'"" when first executed.

- 122 -

»)

TABLE 3-A

E-Machine — Simple Instructions

Operation Name Definition
s Load Scalar Push VALUE to VS, with tag ST,
IFA Load Array IFA causes initialization, as described in
FA Element .
Section E. 1. B., and the instruction becomes
FA. FA fetches an array element determined
by the indexing environment and pushes the
value to VS with tag ST.
1A Load Array IA causes initialization and the instruction
A Address
becomes A. A is similar to FA except that
the (encoded) address of the selected element
is pushed to VS with tag AT.
1J Load 1J is similar to IFA, and becomes J after
J J-Vector
Element initialization. The VALUE field is an encoded
. descriptor of a J-vector, the correct element
of which is computed and pushed to VS with
tag ST,
oP Scalar The VALUE field is the name of a scalar
GOP Operator
arithmetic operator. 'This is invoked and
takes its operands from the top of VS, leaving
a result there after deleting the operands.
NIL No Operation No operation,
IRD Result These instructions are used by the D-machine
IRP Dimension

and are left in QS when a segment is turnéd
over to the E-machine. Since they are of no
use to the EM, they are changed to NIL the

first time encountered.

- 123 =

TABLE 3-B

E-Machine — Controi Instructions

Definition

Operation . Name '
SGV Load Segment The VALUE field is a QS segment descriptor, with
Descriptor : : ,
addresses relative to K. Make these addresses ab- °
solute and push the descriptor to VS with tag ‘SGT.
SG Activate The VALUE field is as in SGV, and LINK, if non-
Segment
zero, points to a pseudo-iteration stack in QS.
Activate the segment by pushing an entry to LS,
using the LINK information to alter the QP field of
LS if necessary, | |
JMP Jump Potential jump destination is K+LINK, where LINK
Jo Jump if 0
Jl Jump if 1 is considered as a signed numbcr. JMP is uncondi-
JNO Jump if 0
nondestructive tional.
JN1 Jump if 1 7
nondestructive = The others are conditional on the value on top of
VS. J0 and J1 also pop VS.
RED Begin Push an element with tag RT Lo V5 to act as a ro-
Reduction »
duclivn accumulator, and jump to K+LINK,
MIT Mark and -Scalar values on top of VS are used to start a new
Iterate

iteration nest in IS, The at;solute value of the VS
value, less 1, is the MAX field in IS; the iteration
direction (D1R) i forward (0) I{ VS is pusitive,
otherwise backward (1). The CNT field of I8 ie
initialized to 0 or MAX, depending on whethef DIR
is 0 or 1. Moreover, the first entry in IS haS‘iﬁs
MRK bhit set to 1; all others are 0. Each VS value
is popped. Finally, when an SGT entry is found itis

popped and the named segment is activated in LS.

- 124 - ‘

«

TABLE 3-C

E-Machine - Micro-Instructions

Operation Name

Definition

POP Pop

DUP Duplicate

ORG Load IORG

CY Cycle

LVE Leave

RPT Repeat

CAS Case

VXC Exchange

LX1 Load from

LX2 Pseudo-IS

SX1 Store in

SX2 Pseudo-1S

XL Index load

XL~

XS Index Store

XC Index Change

ISC Activate

SC Segment
Conditional

Pop top elément of VS.

Fetch the VS entry, LINK elements from top of VS, and
push it to VS. (Does not disturb original copy.)

Push current value of IORG register to VS (tag ST).

Ste‘p IS and repeat the current segment if IS hasn't
overflowed.

De-activate the current segment, erasing any associated
IS entries.

Repeat current segment from beginning. (Does not affectIS.)

If top of VS is not an integer scalar, then error else if the
value is N, then pop VS and execute the instruction at K+N
and resume execution at K+LINK,

Interchange top two entries on VS,

LINK fields are relative pointers to XT entries. Push X1
(or X2) field of referenced entry to VS, tag ST.

Store top (ST) entry on VS in X1 (or X2) field of referenced
XT entry. Pop VS.

IXL is initialized to give XL, in which the LINK field points
to IS or a pseudo-IS element. XI. gets the current iteration
value, adds JORG, and pushes the result to VS with tag ST,

Subtract IORG from ST entry on top of VS; store in X1 field
of XT entry at K~-LINK in QS; if the value just stored is
negative or greater than the X2 field of the same word,
signal an error. Set the X3 field (change bit) to 1, and
pop VS,

Set the change bit (X3 field) of the referenced XT entry to 1,

ISC is initialized to SC in same way as IXL. The VALUE
field of the instruction is a QS segment descriptor. If the
change bit in the referenced IS or pseudo-1S entry is 1,
then the segment is activated., Otherwise, the change bit
of the XT entry referenced by the following instruction is
set to 0, and this instruction is skipped.

- 125 -

EXAMPLE 6:

This example illustrates typical behavior of the E-machine. Consider the

APL statement

ELT;]«EP>|"14(+/(1 2 2 ®PTo.-PT[I:1)*2)%0.5

and suppose it is encountered by the machine when the variables are as below:.

EP is 0,0001

lis2

Plis o 0 Eis 0 1 1 0
0 1 -1 0 0 1
1 0 ‘ 0o 0 0 0
1 1 0O 0 0 0

The D-machine code for this statement is as follows:

- 126 -

4

”»

,"r

v

b

D-Machine Code for Statement in Example 6:

Addr Op Operand Comments

200 LDS 0.5

202 LDS 2

204 LDSEG SCODE(0, 0, 0) Empty subscript

206 LDNF I i

208 " LDNF PT

210 SUBS 2 Result is PT{ I;]

212 LDNF PT.

214 GDF SUB PTo.-PT{I;]

216 LDCON 50 Constant vector 1,2,2

218 TRANS 1 2 2 ®PTo.-PI[I;]

219 PWR (1 2 2 QPTo.-PT[I;1)*2

220 RED 1 ADD +/(1 2 2 QPTo.-PT[I;1)%2"

223 PWR (+/(1 2 2 ®PTo.-PT[I;1)*2)%0.5 (Call thisR)
224 LDS -1 | '
226 ADD T1+R

227 MOD |"1+R

228 LDNF EP ‘

230 GT EP>| 1+R

231 LDSEG SCODE(0, 0, 0) Empty subsecript

233 LDNF I)

235 LDN- E

237 SUBS 2 ELTI;]

239 ASGN E(I;1<EP>| 1+R

240 oo

250 RC=1 LEN=4 Header for DA of constant 1,2,2
251 VB=0 AB=54 Rest of DA -

252 - RANK=1"-

253 R(1)=3 D(1)=1

254 RC=1 LEN=4 Header for value of constant 1,2,2
255 1

256 2 Value array

257 2

- 127 -

Example 6-1 shows the instruction buffer containiné the deferred code to
evaluate the sample statement. The transpose operation was evaluated in th_e_ D-
machine using beating, and its results are manifested in the acceés masks (AUS(
field) in the instructions at locations 3 and 4.

Four temporar;lr descriptor arrays were created by the DM as follows:

@T1 DA for PTL2;1 . (Recall that I is 2 in this example.)
@T2 DA containing dimension of the result of the GOP operation,
.in this case 4,2,
@13 DA containing dimension of the reduction result, in this case 4.
@t4 DA for E[2;]
The deferred cdde is equivalent to the following:
for 3 = 0 step 1 until 3 do
begin
REDUCE := 0;
for K = 1 step -1 untll 0 do
REDUCE := REDUCE + (PT[J;K] DPT[2;K])*2;
E[2;J] = 0. 0001>| 1+(REDUCE*0, 5);
end
The remainder of the example shows the D-machine's progress through the code

in QS, and contains comments which explain the machine's actions at each step.

- 128 -

SKAMPLE 6 -- E-MACHINE

- 821 -

EXAMPLE &6 -- E-MACHINE

REGISTER DUNP MEMORY OQUMP
NOWlT =) 1URG = © FREG = 0CCOO FUASE = CO200 ISMK = OO
AUDR CCNTENTS ADCR CCNIENTS NT: TAG CONTENTS
REL ORG LEN .D/E IS FN Nal P CWR MAX DIR TH MRK e ————tmmmem e R B s T T e R LR
_S: - .ot L £ I e e el b EE S ver RC=22 LEN=D9 arT RC»2 LEN=0S # FT oF
fcac | CcOO 1 OIS Q01 01 1 313001 Il oco 1 003 O L)t I +01 © 401 ve=veY AB=000 1 ST 2
1 000) 000 § 022 13 4 L 10) 31001} ==>1 +02 0 02 RANK=2 PY OF apr
- *23 6 +03 R(1)1=004 D{1)=02 E OV QE
s 1 +04 R{2)=002 L(2)=0F EP ST 0.0001
EFFECTIVE ADDR = 0COD 18 QS +05 1
+06 2 € RCe1 LEN=05
TAG VALUE op VALUE LINK BUX 07 1 +01 VBavE AB=000
PEIR EE ey tommme e —— B B E X e i e D DD DI DALY +08 | *02 RANK=Z
| FMT | FCUDEL=1,0,F} 1 00 1S 1 Q.5 | | | 03 R{1)=004 LIl}=04
-1 c1 | RED | 9 1 08 | | vE RC=2 LEN=17 404 RE2)=006 D(2)=01
021s |2 | | | a_ +01 0
A3 | 1FA | ali] 1 2001 | +02 |} all RC=1 LEN=0%
o6 | IFA | aPT I [EOLIN 403 1 4Cl vBaveT AB=004
95 | GuP | suB 1 02 | o1l | +04 O +02 RANK=1
06 | IRD) a¥2 |) 9011 | 05 1 +03 R(1)=002 DI1)=01
CT) 0P | PwR 1 05 | 2011 | +«6 O
o8 | uP | AabD 1071 2011 | _A +c7 © ar2 Resl LEN=0S
09 | SGV | SCOUVE{SEG.A L) | [} [} +08 | +01 v8= AB=000
1015 | -2 t | | +09 © *02 RANK22
(SN TE S) | | | +i0 ¢ *03 R{1)=004 O(1)202
12 | IRU | 4T3 |) oocl | ‘1L 0 +C4 R(2)=002 D(2)=01
13 | g | PuR {113t 000t | 12 0
14 | 3 i -1] [| +13 0 @13 RC=1 LEN=04
15) 0P | ADD 1 02 | ooct 14 9 401 ve= AB=000
16 | 0P | MCO] 1 s0¢1 | 15 90 +02 RANK=1
17 1S | 0.0001 | | | +l6 ¢ +03 K(1)=C04 D(1)=01
18) OP | GF { 02 | o001l |
19) 1a | ate | 1 d0C1 | arts RC=1 LEN=04
26 | OP | ASGN | 02 | ooch | 0l VBsVE AB=008
21 L eoOP | O 1 I] +02 RANKe=1
~=> 1 403 R{11=C0& L(LI=O01
THE D-MACHINE HAS JUST PASSED CONTRUL TU THE E-MACHINE. NO EXECUTION NOTE THAT N THE NAMETABLE, THE ENTRY FOR THE TUENTIFEER F POINTS
MAS TAKEN PLACE YET. THE FUNCTION MARK UN VS wAS PLACED THERE BY TC aF. IME TAG OF THE ENTRY IDENTIFIES LT AS A FUNCTION NAME.
ACTIVATING FUNCTIUN F, THE CONTENTS OF THE MARK ARE THE PREVIOUS - AF 1S THE AUDKESS OF THE FUNCTION DESCRIPTUR FOR F, WHICH IS NOT SHOWN.
VALUES OF FREG (=1} AND 10KG 10}, AND THE NAME DF THE FUNCTION (F).
SEGMENT A WITHIN QS EVALUATES THE REDUCTILN FOUND IN THE SOURCE EXAMPLE 6-23 STATE UF MEMCRY BEFURE EXECUTIUN

CUDZ. UTHE ITERATVION STACK IS SET UP TO DO THE EQUIVALENT OF THE
®FQR J t= O STEP | UNTIL 3" JVERATIUN.

EXAMPLE 6-1: SVAVTE OF THE REGISTERS HEFURE EXECUTION

= 0€T1 -

EXAMPLE & -- E-MACHINE

REGISTER DUMP

NEWIT =] IORG = 0 FREG = 00C00 FBAG: = 00200 ISMK = CO
REL ORG LEN D/E 13 FN uwT QF CmR MAL DIR CH Mak
LSS #-cmempomnccbcvnc e el e e N I et A DL LY TEEY PR PP S

1 040 [00O] O¥S G o1 3|00l foas fcor il 0l Ll .
: 00l oot o022) 1) Lo 3tlog--»1
-—> .

EFFECTIVE ANDR = 0001 IN QS

TaG VALUE i1 ‘TALUE LINK AUX
vS: ——=% QSitrrrotrmr e et trcm e pmam——— -
| FAT | FCODE(-1,9,F}] 3605 SNCHANGED e oe
I 57T | 0.5]
-=>
THE S INSTRUCTICN (LUAD LCALARI PUSWED [~ UPERANL (®.5) TU WNS§.

EXAMPLE 6-3: AFIER §

REGISFER DUNP

NEWIT = 1 I9KG = 9 FREG = 0C000 FOAS: = 00200 ISMK = 0D
REL ORG LEN O/E 15 IN &wT QP CTR MAL DIR CH MEK
LS: Lt el bbbl Ab bl e R et Sl N FEEI S L e e e S e LT PN 3
] 060 J 000 | a75 J O 1 o N1) 3400 1 000 {005 1 0 L 1 .
f oLl 1 000 1 222 0 1 1 LAO I 310D 2
-.>

EFFECTIVE ADDR = OIL IN JS

TAG VALUE oe
VS itonccmtumcna rmm e —— Q15 G e
| FMT | FCODE(=~1,0,F) | *=63S UNCHANGED® s
I ST | C.5)
| RY 1 9 i
I SGY | SCODEISEG.A,Ll) |
st | -2 |
-=>

THt AED UPERATCR PUSHEC TrE RT ENTR™, TO 4t USED AS 4N ACCUMULATER
FORX THE RECUCTIGN, AND JUMPED 10 QS5(3), TEE SGV IN.TRUCTIUN (A" 3)
PUSHED ITS OPERAND (THE DESCRIPTOR FOu SEGECNT A} TU Vn.
THE S INSTRUCTION (AT 12) PUSHED THE -2 VALUE TC
THESE TwQ ENTRIES wllL BE WSEV 8y THE MIT INSTRUCTIOR TO ACVIVATE
THE REDUCTIIUN SEGMENT.

EXAMPLE 6-4: AFFER RED, SGV, AN S

d

EXAMPLE 6 ~- E-MACHINE

FEGISTER DUMP

PEWIT =] [ORG = 9 FREG = 00000 FBASE = Q02GC ISMK = Ol
REL ORG LEN UL/E IS FN NuT QP CTR MAX DIR CH MRK
LS teccmmbmrn b e pmmmpmmm e bmmmat [§I @ *

1 040 1 COO L OS5 | Ul 1 L3100 1000410031011 1
1 002 1 000t 0221 L1 tfo1) 300 {toor loort It 1 L
Lood2 1002 {067) LI LIOTILI OO -=>

P |

EFFECTIVE ADOR = 0J0Z IN GS

Tag VALUE ap VALUE LINK AUX

¥Ste + Q83 —————— L et]

| FAT | FCODEL-1+0.F}] ¢s005 UNCHANGED® S

1 st | 0.5 \

| RT 10 |
-=>]

MIT USED THE SCALAR -2 CN TOP OF VS TO START A NEw ITERATIOW.

THE LENGTH OF THE ITERATION IS 2, AND THUS THE MAX FLELD IN THE ZFERATIUON
STACK IS SET TO 1. THE NEGAVIVE SIGN OF THE VS ENTRY SIGNIFIED THAT TME
TTERATION IS TO RUN BACKWARDS (B1R=1); HENCE CTR STARTS AT | INS EAD UF O.
THE NEXT VS ENTRY mAS A SEGMENT DESCRIPTUR FOR SEGMENT A [N 2S.

MY USED THIS TO ACTIVATE THE SEGMENT, BY PUSHING A NEw ENTRY 1 LS.
NOTE THAT IN THE NEw LS ENTRY, THE Nal 31T 15 L THIS WAS THZ PREVIOUS
VALUE OF NEWIT, NEMIT JS NOw 1 BECAUSE A NEw I[TERATIUN HAS BEEW STARTED.

EXAMPLE 6-5: AFTER wIV

REGISTER DUmP

NewiT 2 1 [uRG = 0 FREG = 00000 FOASE = 00200 ISk = GL
REL ORG LEN DAE IS FN NwT GP CTR MAX DIR (H MRK
LS: #tevccctemccatemrrcpr ey mmmtmmcbrered [§! SmcccctreccctmnrpomPonas
1042 JOoO |l 075 1 €1 O 1 | 3100 100l co3 i ot 2t
1012 1000 19221 L1 1101) 3)00 pootlcor bt bl
I 200 10c2 1007 buiLlol ool -=>1|
-=> |
EFFECTIVE ADDR = CGOT_ IN GS
TAG VALUE . oP VALUE LINK AUX
PR e e mmmrsmemrcetd QS é---m-t- +* —hom—————y

FMT | FCODE{(-1,0.F) |

*

, #56Q5 UNCHANGED®*s
ISt | 0.5 -

|

1

|

|
RT | O |
sro1 2 |
THE FIKRST INSTRUCTICN GF THE NEWLY-ACTIVATED SEGMENT [SEG.A) IS S
AT Q50250. THIS INSTRUCTION PUSHED 1TS UPERANMD (2) TO VS,

IXAMPLE 6-6: AFTER S (AT QSt2:) }

= TeT

p
a

EXAMPLE 6 -- E-MACHINE
REGISTER DUMP

NEWIT = | I0ORG = © FREG = 00000 FBASE = 002CC ISKK = 01
REL ORG LEN O/E IS FN NalT QP CTR MAX DIR CH MRK
[T b TR e L e e N I ey e kit TS 4
1 060 1 COO0O OISt OO L)3)eoo} to00 t €03 1 D) L)L)
1012 40001042111 14§01 3 oo Looy 001) Y I L)1
yoo1j1002)Joc?T i vl Liol1ool-->1
-=> |
EFFECTIVE ADDR = 000) IN QS
TAG VALUE oP VALUE LINK AUX
¥Sse -- -+ QS34—---=e ———— - 3
| FAT | FCODE(=-140,F) I o001 s I 3.5 | 4
1 st | 0.5 {1 01 1 RED | O [T
| &1 | © 1 021 s V2 i | | AL
I sv 12 | 03 | Fa | QCODEIVPRT,&) 1914
-=2> 06 | IFA | aPT } | 001l |
- 05 | Gop | Sus | 02) 0011 ¢
06 | IRD | @12 | i oull |
07T | GP | PaR I 05 1 0011 |
08 | ¢ | aOD { 07 f 0oLk [_A
09 | SGV | SCODE(SEG.A,L) | [}
¢ 1 S | -2 | | |
11) miT | O | | |
12 | IRD | 4T3 | | 0001 |
13 1 CcP | PR 1 13 1 0001
te | S i -1 § i]
1S | UuP | ADD i1 €2) Joci |
{ 16 | aP 1 MuD I 1 ooty
17 1S I 2.0001 1] |
18 | oP | G¥ 1 02 | 0001 |
19 | 1A | aTe | 1 go0t |
20 | GP | ASGN 1 02} 0001)
21 | puP | C { i |
22) NLT | QCUDE(1,1) 1 ol |
--> |

LOCATION 3 IN US, WHICH PREVIOUSLY CONTAINEU AN IFA INS

TRUCTION, rAS

BEEN INITIALIZED TU FA. THE VALUE FIELD NOw CONTALINS VvPT , THE BASE
ADDRESS REFERENCED IN THE DA AT 3T1, ANU THE ABASE (=4} FROM THAT DA,

IN ADDITION, THE LINK FIELD OF QSI33) iS5 NOw R RELATIVE POINTER TQ
QS(223)s WHICH IS THE ITERATION CONTRUL BLUCK. FOR THIS ARRAY. THE 3SECUND

ELEMINT UF VHE 1CB ENTRY ([.E. THE Q2 FIELO) IS VHE DEL

TAKEN FRUM @T1. ISEE EXAMPLE 6-2. FOR CONFENTS OF T1). TH

(Q) FIELD) IS DEL TIMES THE MAX VALUE IN THE T0P ENT
LS HAS NOT CHANGED YET BECAUSE THE NEWLY-CREATED FaA

FGR THIS AKRAY,

E FIRST ELCMENT
RY ON IS,
TMSTRUCTION HAS -

NCT YET BEEN EXECUTED. THE INITIALIZATION PRIOCESS ALSU ERASED THE DA

STARFING AT @TLl, WHICH IS NO LONGER ReFERENCED ANYWHERE

EXAMPLE 6-7: AFTER IFA

EN THE MACHINE.

EXAMPLE 6 ~- E-MACHINE

\

REGISTER OUuMP

NEWIT = | 10RG = 0 FREG = 00000 FBASE = 00200 Ismx = 01
REL ORG LEN O/E IS FN NeT QP CIR MAX DIR CH AMRK
LS: Pm———— - —— pmmmpmmmpm—==e |52 & + Lkl 4
1 9¢0) 000 J 075 J 0) O L} 31001 1000 1 003 001 L)1)
1 0_B2 1000 022 | 1) L) O 3)OO fboor oot iy i
103210021007 14 1 L 1O L OO -—>1
--> | : :
EFFECTIVE ADOR = CGO4 IN QS
TAG VALUE oe VALUE LINK AUX
VS1e-- * QSs L et -— .
| FuI | FCODE(-1,04F) i oc | S I 3.5 i { [}
b st | 0.5 I o1 1RED | O | 08 | |
| RY 1O I o021 s |2 i | | AL
| ST 42 I 03 | F& | QCODE(VPT,5) [IS i
I ST 1o I 04 | 1FA | aPT | | 9011 |
-=>1 05 | GOP § suB | 02) o0l |
06 | LRD | aV2 I 1 o011 |
Q7 { 0P | PwR 1 05 | ool |
v | o { apD 1 or | ool | _aA
09 | SGV | SCODE(SEG.A.L) | | |
10| s | -2 | |
1 Mr | | |
12 | 1R0 | 413 | i 0001 |
13) 0P | PmR 1 13 | o001 |
14 | S I -1 | |
15) 0P) AUD 1 02 | 2001 |
16) 0P) mOD } .} oooy)
1715 | 0.00901] | 1}
18 F UP | GT i 02 | oool |
19 | 1A | dTe | i %00t |
20 | OP | ASGN i 02 | o001 |
21 | POP) 0 |] 1
22 : NLY | CCUDELL.1) | o1} |
-->

THE ADURESS IN QS{3;) HAS BEEN UPDATED BY THE INDEX UNIT AND THE vALUE

1T REFERS TO HAS BEEN PUSHED YL VS. THUS THE VALUE (0) UN TUP UF VS

AT THIS POINY IS PT{2;1). {RECALL THAT THt EFFECTIVE ADDRESS GF AN -
ARRAY ELEMENT REFCRENCEC IN AN FA INSTRUCTION IS THE Sum OF 1VS CODEL
PARTS, PLUS 1 (TO COMPENSATE FUR THE ARRAY HEAOER WCRD)).

EXAMPLE 6-8: AFTER FA

= 28T -

EXAMPLE 6 -~ E-MACHINE

REGISTER Oump

FOASE = 002C0

NEWIT = | 10RG = 0 FREG = 00C0D ISHK = 0]
REL ORGC LEN O/E IS FN NuT Q@ CTR MAX DER CH WRX
LSt + =-—— * r—— + 182 Adatnind 4
| 040 000 | OTS J O) O L | 3)9 | fmojoict)
1 012 1 00C 1 022) L) 146031091 [W - T O T T T OO I O |
1003 1 00Z 10O 9 1 1 11O 114G ==>|
-=> |
EFFECTIVE ADDR = 0005 IN QS
TAG VALUE ae. VALUE LENK AUX.
VSie Gs: L4
| FAT | FCODE(~1,0,F) I 001 s | 0.5 | | |
I ST | 0.5 | o1 JRED | O 1 o8 |
| RT j 0 I 02,s 12 { I | AL
) ST)2 | 0¥ 1 FA. | QCODE(VPT,S) |91
1sY |0 | 04 % FA | QCCOE(VPT.1) 119 | |
I sv 10 I 0% 31 6OP-| Sus 1 62) ooll |
-=>| 06 1 IRD | 12 I I o011
o7 % 0P | PwR 1 05 | 00l |
98 } OP | a0D | 07) 001 | _4A
09 1 SGY | SCOVE(SEG.A,L) ! | 1
10 ¢ § | -2 | | |
1L MY jo |]]
12 1 100 | T3 1 | ooel |
13 1 0P | Pul 1 13 1 o001 |
14 1 8 [} | I |
15 1 0P | AvD 1 02) o001 |
16 | OP.) mOD | | ooel |
1T 4s | 0.0001 | |
18 1 op | GV 1 02 } ool |
19-) 1A | avs] | coel |
20 | OP | ASGN | 02 | oosl |
21 1 P00 | O] | I
22 | NLT | QCODE(L,LD I ot | |
23 | NT | QCODE(6,2)] | [
26 | NLT | QCODELLJLN for i |
-—) |
THE IFA AT QS(63) HAS EEEN CHANGED TO FA , AS IN EXAMPLE 6-T. AND THE

FA HAS BEEN EXECUTED,
PTL23t0 AND PT(D;L).
MMICH ARE THE 1CB FOR

EXAMPLE 6-93 AFTER QSis3)

AS IN 6-8.

VAE TOP- IO ELEMENTS ON VS ARE NGw

ALSO NOTE THZ TWU NEW ENTRIES. ON THE TOP OF L

IHE FA AT QSl451.

UIKITEALIZATION ARD EXECLTION)

)

EXAMPLE 6 ~~ E~MACHINE

REGISTER Oump

NEWIT = | IORG = 0 'FREG = 00000 FBASE = 00200 ISHK = 91
REL ORG LEN DJE 7S FN NeT GP (21} MAX DIR CH MRK
LSt 4w ¢-—=e $rmmtmemct (52 tememcponana boee e tomns
| 040 J 002 1 0TS I 90011)3]o00| I 000 | €03 1 2 Lt
lor2z1000 102211 011013 1900]| | 001 1 001 | 1 [
{ 005 | 002 | oo7 | IrLio1 1)oo} =-->|
-y I
EFFECTIVE ADDR = 000" In Qs
TAG VALUE op VALUE LINK AUX
¥vS$: -+ QS tmm———— -———
| FRT | FCODE(-1,0,F) i 001 S I 0.5] | |
I st 1 2. 1 0t | RED | © 1 08| |
| kY | o I 021 s b2 1 | 1 a_
A st 2 I 93 | FA | QCODE(VPT,S) I 19 |
I'st 1o I 04 | FA | QCOOELVPT,1) 119 |
-->t 05 | coP | sus 1021 00m |
o6 | NIL | O [} [} |
07T | oP | Pur 1 051 o011 |
08 | UP | AOD | 67 1 0011 | _a
09 | SGV | SCODE(SEG.A,1) | | |
10 | § | -2 | | |
11 | M7 | 0 | [} [}
12 | tRO | oT3 [} § 00C1 |
13 | OP | PWR 1 13) oo¢l |
16 | S [} | [} |
15 | 0P) ADD | 02) 0061 |
16 { 0P | MOD [} i opel |
171 s { 0.0001 [} [} 1
18 | gp | GV | 02 | coer |
19 | ta |} dte | | o061 |
20 | 0P | ASGN- 1 021 oo |
21 | poP | O } | |
22 | NLT | QCODE{R,1) 101 | {
23 | NT | QCUDE(6,2) | | [}
26 | NLT | JCODE(L,1) 1ol]
--> |
WHE SUB HAS BEEN JCNZ. (IN THE E-MACHINE, GOP 1S TREATED SAME AS OP.)
THE IRD OPERATEIN- DAZREASES THE REFCO UF (TS OPERAND BY | AND REPLACES
ITSELF BY NIL, THE NG-0P, BECAUSE [RD 1S USED BY THE D-MACHINE BUT

NOT BY THE E-MACHINE.

EXAMPLE 0-10% AFTER SUB.IAD

- g€l -

e
v
2]

EXAMPLE & -~ E-MACHINE

REGISTER DUNMP

NEWIT = | 10RG = 0 FREG = 00200 fBASE = 00200 ISHK = 0}
- REL aRrG LEN O/E IS FN NnT 4P CTR MAX DIR CH MRK
LS: - » . -+ 152 . ——to-t
| 040 JOOO F OS5 I Oh O L 43§ o0l 4000 4003 101 t LI
j otz 1cooto22 41811013 1col boct h ool 41 i L)
| 006 J 002 1 OS7 1 1 1 4011 LOO | ==>1
-->
EFFECTIVE ADOR = 0008 IN QS
TAG VALUE op VALUE CINK AUX
VS:ie . + QS: _—
| FMT | FCODE(-1,0,F} 1 #8635 UNLHANGEUS®D®
1 sT | 0.5 |
1RY {0 |
t ST Lo | -
-->)

PMR (AT QSUT7;)) wWAS APPLIED TO THE TOP 2 ELEMENTS UN THE VALUE STACK,
THESE OPERANDS wEKE DELETED ANU THE RESULT OF THE UPERATION

0 AND 2 3
HAS BEEN PUSHED TO vS. (0 * 2 = 0)

EXAMPLE 6-113 AFTER PwR

REGISTER DUMP

NEWIT = | IORG = 0 FREG = 00CO0 FBASE = Qo20¢C ISMK = Ol
REL ORG LEN D/E IS FN NKul 4P CTR MAX DIR CH MRK
LS: o * -- * —-——t . 15: ¢ L e it 3
1 060] 060 1 215 1 0 1 O) L I 3 L 00| 1 000 4 003 1014 111
10121000 10220113 110143)col | oo b oot k1 Lt L
toor 1062197411 1violtlido]) -->)
-=> 1
EFFECTIVE ADOR = C009 IN QS
TAG VALUE [+]4 VALUE LINK AUX
[T T Tt I} £1 -
| FAT | FCODE(-1+0,F) | #86QS UNCHANGED®®»
I ST | 0.5 |
1sT 1o |
-=>1

THE ADD OPERATION, SEEING THAT ITS SECUND OPERANU HAS TAG RT,
GIVES AS ITVS RESULT FHE FIRST OPERAND, WiTH TAG SV. THIS IS
ACCORDING TO THE DEFINITION OF REUUCTION.

EXAMPLE 6-12% AFTER AOD

EXAMPLE & -~ E-MACHINE

REGISTER Oump

NEWIT = 0 I0RG = © FREG = 00000 FUASE = 00200 ISMK = Ol
REL URG LEN D/E IS FN NwT QP CTR mAX OIR CH MRK
LS: —— et is: Vot
| 040 1 000 { 075 b Ol Ol Lt |3]o00I 1000 | 003401 1)1}
} 012100000221 11110131 00I1 1000000 1 B11¢t1
1000 1002 007 4111l oOL1 ool -->I
-1
EFFECTIVE ADOR = 0002 IN GS
TAG VALUE op VALUE LINK AUX
vs: . e I M D il DL L DL
FRT | FCODE(-1,04F) [#09QS UNCHANGED®®s
'
|

|
i S1 | 0.5
| sY 1o

|

IN THE LAST FRAME, THE SEGMENT wAS COMPLETED, SINCE ITS RELATIVE
ADDRESS wWAS THE SAME AS ITS LENGTH. HUMEVER, SINCE THE 1s 104
WAS SET FOR THAT SEGMENT, TFHE 15
THUS, LS WAS RE-INITIALIZED YO THE BEGINNING UF THE SEGMENT, TO
BE REPEATED WITH THE NEw s VALUES. NOTE THAT NEWIT NOw IS O.

WAS STEPPED BUT UIDN'T UVERFLOMW.

AT THIS POINT, THE EQUIVALENT OF THE ALGOLIC “REDUCE := REDUCE ¢ ..."

HAS BEEN DONE FOR J=0 AND X=1.

THE SECCND PASS THROUGH THE REDUCTIUN SEGMENT PROCEEDS SIMILARLY
TG THE FIRST, EXCEPT THAT NO FURTHER [NITUIALIZATIUNS NEED BE DONE.
AT THE END OF THIS ITERATIUN, REL=LEN IN Ls
ITERATION STACK willL BE STEPPED. HOWEVER, THIS TIME 1T OVERFLOBS,
SO BUTH LS AND IS ARE POPPED, RETURNING THE MACHINE TO IHE
MAIN SEGMENT. (SEE NEXT FIGURE)

EXARPLE 6-13: BEGINNING OF SEGMENT wWiTH STEPPED IS

AND, AS BEFORE, THE

- 98T -

EXAMPLE 6 == E-MACHINE

REGISTER OQuMP

NEWET = 1 IORG = O FREG = 00000 FEASE = 0020¢C ISMK = OC
REL ORG LEN O/€E 15 FN Nwl QP CTR MAX DIR O MR
LSt o —— . bmmepem==t [§! tmmvecteccactocnsatonny
I 040 1 000 | O7% | O 211 |3 |01 1000 1 003 1 OF L 11
=012|ooo|ozz|||llOl;looc——>l R
-=>
EFFECTIVE ADOR = 0012 [N QS
TAG VALUE oP VALUE LINK AUX
¥s: . dSie-- .
| FRY | FCIDEL~1,0,F) I o0 1S } 0.5] | |
1 ST | 0.5 | oL I RED | O 1 08) |
1 st 11 f 021 |2 i | [
-—>| 03 | FA | QCODE(VPT,4) LN |
04 | FA ! QCODE(VPT,0) 119} [}
05 | GOP , Sud 1 02) 0311 1
06 | NIL O | |
or | or Pur § 05-1 0211 ¢
08 | OGP : AUD b o7 1 0d0d } b
09 | SGV | SCODE(SEG.AsLID i |
104§ . =2 | | |
nymr o | |
12 | tap i a7y | 1 0301 |
13§ 0P | PMR 13 1 o001)
14 1S -1 1 A |
15 | 0P | ADD:) 02 | od01 1
16 | 0 | mOO | 1 0%01 |
1ITES 1 0,001 | |
18 | OP | GT | 02 | o%01 |
191 1A | aTe 1 | oool |
20 | OP | ASGH 1 02 § 0001 |
21 | PuP | O | |]
22 1 KLY | QCOJE(L, L)) o1 | |
23 | NT | QC0JE(6,2) | |]
264 | NLT | QCUDE(L,L) [|
- l
REDUCE SEGMENT {5 DONE. TS RESULT (11 |5 ON TOP OF vS.
NOTE THAT NEWIT WAS RESIORED TU 1 WHEN L3 WAS POPPED.
THIS STALE CORRESPONDS 10 TNE COWPLETION OF THE “FOR K™ LOOP WITH J=0.

EXAXPLE 6-143 AFTER RETURN FFOM REDUCTIO-

»

EXAMPLE & -~ E-MACHINE

REGISTER DumP

NEWLT =) 10RG = O FREC = 00600 FBASE = 00200 1SMK = 00
REL ORG LEN DA IS PN NuT QP CTR MAX DIR CH MRK
——mpmm el — = -—t ¢ IS * * (2
L 000 f OO0 JOTS v @10 1L |3 4col 10001 003 b OB L |}
1020 1 000§ 022t LJ LEO) 31001 =-=>1I
-->
EFFECTIVE ADDR = 0C2a0 [N GS
TAG VALUE op VALUE LINK AUX
VSl ¢emmnnpemmrncc v cnasormnny (§Ibrcncctoncaan
| €MT | FCODE(-1,0,4} Il ¢ 1s | 0.5] | |
1s7T |11 | cL I RrReD) O 1 08 | i
| AT | QCODE(VE,8) 1 c21s 2 I | | AL
-=>] C3 | FA | QCCOE(VPT,4) [IEL | |
Co | FA | QCQOELVPT,0) 119 |
€5 | GOP | sud | 02 1 ool |
o | NIL | 0 | t |
CT | OP | PuR I 05 { o011 |
G8 | op | aoU | o7 | o011 | _aA
@9 | SGV | SCUDE(SEG.A,1) | 1 I
wils -2 | | |
tymrjo | |
k2 I NIL | O | | 1
13 | OP | PuR I 13 | ooo1 |
“ils -1 | | |
15 | OF | AU 1 02 § 0001 |
w | op | muD] 1 oool |
LT 1S | 0.0001 | | |
e joer | 67 1 02 | o001 |
19 { A | QCODEIVE,8) 1 06 | |
20 | 0P | ASGN { 02 1 oool |
21 1 POP | O | \ |
22 | NLV | QCODE(L,L) 1 o1 t
23 } NT | QCODE(6,2) | | |
24 | NLY | QCUUELL,1) 101} |
25 | NLT | QCODE(3,s1) t | [
Q$(1230) THROUGH GS(LB3) FMWE _BEEN EXECUTED. NOTE THAT THE 1A AT QS(19%)
WAS TRANSFORMED T9 N AND THAT ITS RESULT IS THME CODED ADURESS wWITH

TAG ‘*AT* ON TOP OF vS.

EXAMPLE 6-15: BEFORE ASGN .

- GEeT -

(
-
-
'
EXAMPLE & -- E-MACHINE
REGISTER OuMp
NEWIT = | 10RG = O FREG = 00000 FBASE = 00200 ISHK = 00
REL ORG LEN D/E IS FN NwT QP (413 MAX DOIR CH MRK
LSt ¢ . + 152 o= * .
1060 J 000 JOTS 1 O1 O} Y| 300 loool1 o003 1 a1 {11
0221000 1022110111013 1001 -->1
-=> 1
EFFECTIVE ADOR = 0022 IN Q5
TAG VALVE op VALUE LINK AUX
vs: \ ¢ QS: . .
| FAT | FCODE(-1,0,F) | $¢8QS UNCHANGED®se
-=>}

AFTER ASGN AND ¥POP., THE VALUE CN VS HAS BEEN STURED AT VE*Lle8 IN MEMURY.
SINCE THE SEGMENT HAS BEEN COMPLETED, THE Is witL BE STEPPED ANC

LS wilL BE RESET TO THE BEGINNING SINCE THERE IS NO QVERFLOW.

THIS STAGE CURRESPONDS TO CNE PASS THROUGH THE “FOR J® RANGE, WITH J=0.

EXAMPLE 6-163 AT END OF MAIN SEGMENT, FIRST TIME TMROUGH

EXAMPLE 6 -~ E-MACHINE

MEMORY DUNP

ADDR CONTENTS ADOR CONTENTS A0DR CCNTENTS

arT RC=1 LEN=O0S veT RC=1 LEN=Q9 vE ACs1 LEN=17

+01 vBsvPT AB=0CO +21 0 *0l 0O

+02 RANK=2 2 0 02 1

+03 RULI=004 DUL)=02 3 9 +03 |

+04 R(21=002 0(2)=01 4 1 04 0

*05 1 +05 1

aE RC=1L LEN=0S *36 0 *06 O

¢01 VBsVE AB=000 *07 1 407 O

+02 RANK=2 38 1 +08 1

403 R(1}1=004 UIL)=04 +09 1

+04 RI(21=004 D(2}=0) +10 0

+11 0

+12 0

*13 0

°le O

*15 0

¢l6 ¢

ENTRIES FOR @V1ljyseeedTe NOw HAVE REFCOS OF O, AND HAVE BEEMN AUDED TO THE
LINKED AVAILABILITY LIST, ALTHOUGH THIS IS NGT SHOWN HERE.

THE ENTRY IN THE VALUE ARRAY FOR E o, AT VE®9 IN MEMORY, HAS BEEN
CHANGED TO 1 BY THE ASSN OPERATIDN. THIS ENTRY 1S £(2;0).

EXAMPLE 6-173 STATE OF M AFFER FIRST TIME THROUGH FHE SEGMENT

REGISTER DumP

NEWIT = O 1URG = 0 FREG = 00000 FBASE = 0020C iISHK = 00
REL ORG LEN D/E IS FN NWT QP CTR MAX DOIR CH MRK
LS: #ecerepoccccpoccocponcpaccpocntbontommns [§3 - * .
1 042 0000 1 O7S | 01 O L |3)OO 1eo3 b ooz i ol vt i

I o022 10cofo0221 v L bOo134cCOo -=>1
[

EFFECTIVE ADDR = 0022 1IN GS

TAG VALUE op VALUE LINK AUX
vss: ¢ YSie-——-e- ~.
| FMT | FCODEL=~1,04F) I 00 1S | 0.5] | |
-=>1 0L | RED | © 1 o8 | |
02 1S | 2 |] | AL
03 | FA | QCODE(VPT,4) 119 | 1
04 | FA | QCODE(VPT,6) 1191 |
05 | GUP | SuB 1 02 § o011l |
06 | NIL 1 O | | |
07 | 0P | PuR 1 054 o0Ll §
08 | UP | ADU | T) 0011 | _A
09 | SGV | SCUDE(SEG.As1) | | |
1S 1 -2 | | 1
1 mvto | | |
i2 I NIL | O | | |
13 | 0P | Puk | 13 4 %001 |
14 1S i -1 t |]
15) GP | ADO } 02 1 o001 |
16 | 0P | MDD I | Joor |
17T 1S | 0.0001 1] |
18 1 OP | GV I 02 | o001 !
19 1 A | QCODE(VE,LL) | 06 | |
20 | OP | ASGN | 02 | o001 |
21 | pOP | O | | |
22 | NLT | GCUDE(1,1)} } o1 |
23 | NT | QCODE(6+2) | i]
26 | NLY | QCUDE(Ls1) 1ol]
25 | NLY | JCUDEI3,1) | i [
i

-->

THE MAIN SEGMENT WAS REPEAFED 3 MORE TIMES I[N THE SAME WAY AS SHOWN
FUR THE FIRSY PASS. AT THIS PCINT, 3 MURE VALUES HAVE BEEN STURED
ANU THE 1s ENTRY CORRESPONDING TO THIS SEGMENT HAS BEEN EXHAUSTED.
THIS PUINT CORRESPCNDS TO VHE COMPLETIUN OF ®FOR 4%,

EXAMPLE 6~18% REGISTERS AFTER NEXT THREF PASSES THROUGH SEGMENT

= 9€T -

EXARPLE & ==~ E-MACHINE
REGISTER DUMP
NEWETY = 3 IORG = © FREG =" 0CGC00 FBASE = 00200

REL ORG LEN D/E IS FN NWT- QP
LS: #-c—mmpom et e mmm e pmm b= ¢

| o0t coo j o?s l clt o1 |-3 4001
{

-=>
EFFECTIVE ADDR = D240 IN M
TAG VALUE o VALUE LINK AUX
S e R e DL P LR S + QS:t----- L et e —prm +
| FMT | FCODE(-1,0sF) b -->1
=1 :

THE LAST FIGURE WAS THE END OF THE SEGMENT. THUS, {s WA S

STEFPED. SINCE IT OVERFLUWED, s AND LS WERE POPPED.,
DE-ACTIVATING THAT SEGMEMT CHANGED CONTROL FRGM THE €- TO THS D-MACHINE
AND THEREFORE QI WAS RESETV TO THE BEGINNING OF THE SEGMENT

JUST COMPLETED.,

EXAMPLE 4-193 REGISTERS AT CCHMPLETICN OF E-MACHINE EVALUATION.

MEMORY QUMP
ADDR CONTENTS ADDR CONBENTS ADDR CUNTENTS
- o o et o e e > - - - e - —— - - o - - - -
aPT RC=1 LEN=05 VPT RC=1 LEN=09 VE RC=1 LEN=17
+01 VB=VPE AB=000 +01 © +01 o©
+02. RANK=2' +02 90 +2 1
+03° R(11=004 0(1)=02 +03 0 +233 1
+04 R(21=CC2 D(2)=01% +04 | +4% 0
+05 1 +25 1
at RC=1 LEN=05 +06 0 «36. 0
+01 VB=VE AB=000 +07 | +27 0
02 RANK=2 _ +C8 1 +38 1
403 R(11=004 D(1)=04& +39 1
404" R({2}=00< D(2)=01 +10 o0
+1l 0
12 1
*s13 0
¢l O
s ¢
16 0

NOTICE THAT THE VALUES AT VE+9,10,11,12 HAVE CHANGED FROM EXAMPLE 6-2.
THESE CORRESPOND TO E(25), THE ENTIRE ROW OF £ TO Bt CALCLLATED.

EXAMPLE 6-20: MEMORY AT COMPLETION CF E-MACHINE EVALUATICN

in

. ‘."0_\-

APPENDIX A -

SUMMARY OF REGISTERS, ENCODINGS AND TAGS

This appendix summarizes the uses of all machine registers and details the
fields in the various stacks. In addition, the several encodings used as parametric
functions in the design description are outlined. Because of the parametric nature °
of the design, not much will be said about field sizes except to indicate the range
of the contents of a particular field or register. We assume that in any particular
incarnation 6f such a machine, all the fields are 'big enough” to contain their
contents, In the detailed algorithms of Appendix B, the registers are construed
as arrays of scalars with some kind of encoding imposed upon the contents, if
necessary: While not completely rigorous, this approach serves to show how the

machine works without having to explicitly encode and decode all references to

registers at each step.

A. Registers
1. LS (Location Counter Stack)

Field Column
Name Index 4 Contents

REL 0 Relative location in segment. Generally points to the next
instruction to be fetched.

ORG 1 Segment origin. For D-machine segments, this is relative to
FBASE. In the E-machine, the effective address is +/LS[LI-1;0,1]
and in the D-machine it is FBASE++/LS[LI-1;0,1].

—

LEN 2 Length of segment. For D-machine segments, this'is in words,
and for the E-machine, this is the number of QS entries for the
segment,

D/E 3 Segment mode. This field is 0 for the D-machine and 1 for E-
machine segments. .

IS 4 Iteration mark. Has value 1 if this segment is associated with
an iteration in IS; otherwise it is 0,

FN 3 Function mark. Has value 1 (else 0) if this is the main segment

of an active function. 7 o y
NWT 6 .NEWIT value, stacked when a new iteration is activated.
QP 7 ' QS pointer. Used by index unit for expression indexed from ,
QS rather than IS. (See Section E.) . _ A

2. IS (Iteration Control Stack)

Field Column
Name Index ' Contents

CTR ~ 0 Current iteration count. This value is always non-negative and
varies between 0 and the value in the MAX field in the d1rect1on
indicated by the DIR field.

MAX 1 Maximum ‘i_teration count.

DIR 2 Direction of count. (0 for positive, 1 for negative.) 'If positive,
then CTR is initialized to O;otherwise it is initialized to MAX

CH 3 Change. Used by STEPIS routine in main control cycle to mark

all IS entries which have changed since the last cycle.
MRK 4 Mark., Has value 1 for the outermost iteration of each nest.
Otherwise, it is 0. (See ISMK register, below.) 4

3. VS (Value Stack)

. Field Column

Name Index Contents
TAG 0 Tag field.. Identifies kind of entry in value field. -
VALUE 1 Value,

4. QS (Instruction Ruffer)

¥Field ‘Column

Name Index Contents
QP 0 " W-machine operation code, The QS containa inatructions deferrod
by the D-machine for later execution by the E-machine, Occas-
sionally this field will contain a tag, such as XT, for an entry »
which is a temporary value for the EM rather than an executable
instruction. :
VALUE 1 Value. Contains the va.lue in immediate instructions and the

operand for others.

- 138 -

LINK 2 Link, This is a signed integer used to reference other instructions
and entries in QS. It is taken relative to the QS index of the entry
in which it is found, By keeping links and segment origins relative
in QS, all deferred code is relocatable. '

-

AUX 3 Access mask, Contains an encoding (MCODE) of the iteration
indices to use in accessing an array expression.

5. NT (Nametable)

Field Column
Name Index Contents

INX 0 Symbol index. Since NT is content-addressable, the value of
INX must be carried with each entry., These indices (or names)
may be assigned in any arbitrary way. There is no built-in
restriction on their use,

TAG 1 Tag. Same as tag field in VS,

CONTENTS 2 X Value., Same as in VS.

6. M(Memory)

In the APL machine, M is considered to be a vector of length MLENGTH of words
which can be addressed between BOTM and TOPM. The particular encodings used
in M are not specified except as hecessary, e.g., in instructions such aé LDSEQG,
the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar
value is assumed to take up one machine word, as is each instruction. This is
clearly inefficient in space utilization, and it would be expected that any real
implementation would specify more reasonable and detailed encodings for various
kinds bof values. Nothing in the machine design is based on the word as the primary
unit of memory in the machine, so there should be no problem in making such |

modifications.

3 - 139 -

7. Other Scalar-Valued Registers ,

Register
Name Contents
LI LS index. (All stack indices point to the next available entry »
in the stack,)
I IS index.
\"2! VS index.
QI QS index.
NI NT indcx.
BOTP
TOPP POOL pointers for M allocation,
ARRAVAIL
DAAVAIL. Pointers to beginning of availability chains for M allocation. .
FREG VS index of innermost active function mark. When a function
is activated, the previous values of FREG and IORG are stacked
in VS in the function mark, and restored on return,
L3
IORG Index origin for innermost active function.
FBASE Function origin in M, Points to beginning of the segment
containing the innermost active function. Upon exit from a
funclivn, FBASE is restorved tv point to the correct base from
information in the stacked function mark,
NEWIT Iteration tag. Setto 1 at the beginning of a new nest of iterations,
and used by the index unit to keep indexing straight. NEWIT is
stacked in LS and restored from therc each time a new iteration
nest 1s avtivated, '
ISMK IS index of the marked entry closest to the top of the itcration
. stack., Used by IU.
B. Encodigg_ s
' The APL machine makes use of a few specific encoding functions. These are .
used for encodings which could be expected to fit within a single machine word,
»

Although this bias is built into the design, it is inessential to the basic ideas used

in the design, and could be changed if necessary.

- 140 -

«

1, SCODE org, len, m . This is the encoding of a segment déscriptor,

misOorl dépending on whether this segment is for the D-machine or the E-machine.

org is the beginning address and len is the length of the se:gment. The inverse
(decoding) functions are SORG, SLEN, and S'MOD.E, respectively. In the EM, if
a segment descriptor is in QS, org is relative toﬂ its QS-index,
2. JCODE leh, org, s . This is the encoding for a J-vector descriptor.
The inverse 'f{mctions are JLEN, JORG, J8S.
3. XCODE a, b; c 0 Enéoding ﬁsed for various purposes in the E-machine,
Generally, a and b are an index and its lifnit, respectively. c is always a single
bit quantity. It is conceivable that the functions -SCODE, JCODE, and XCODE
might be identical in a particular implementation of the APL Iﬁachine, as nﬁght
their inverses. The inverse functions for XCODE are X1, X2, and X3, resp'eétively.
4, QCODE a,b . This encoding is uséd in constructing ICB's during EM

executions, Each field is potentially as large as t'hé‘ machine's menﬁory and might

be signed. The decoding functions are Q1 and Q2.

5. MCODE mask . This is the encoding function which takes a 10g1ca.1
vector which is an access mask for an array and encodes it for storage in the AUX
field of QS, The inverse function is MX1,

6. FCODE freg, iorg, name . This is the encoding used in function marks

on VS. ’I:he iﬁverses are F1, F2, F3.

.- 141 -

C. Tags

This section summarizes the tags which can be used in VS and NT entries.

Tag VS NT Meaning

UT 1 1 Undefined value.

ST 1 1 Scalar Va_lue.

JT 1 1 J-vector, Such entries are moved to QS from VS almost

e - immediately.

DT 1 1 Descriptor array pointér, In VS means this is a result
to he assigned to, while in NT, all array values have this
tag. As with JT, DT entries will be deferred to QS as soon

‘ as they are notlced
FDT 1 0 Similar to DT, except the array is to be febched Same
- ' note applies;

FT 0 1 Function descriptor pointer,

SGT 1 0 Segment descriptor.

NPT 1 0 Name pointer, " This is an NT index,

FMT 1 0 Function mark,

RT 1 0 TInused (so far) reduction accumulator.

AT 1 0 Encoded M-address.

- 142 -

APPENDIX B

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE

The functional description of the E-machine which follows is written in an
informal dialect of APL, It differs from "standard'" APL only in its sequence-
controlling statements, Instead of using branches, more sophisticated, and more
easily understood, constructions are utilized. These are summarized briefly below:

1, BEGIN. .. END delimits a compound statement, as in ALGOL,

2, Likewise, coﬁdiﬁonal statements and expressions of the form

IF condition THEN . . . ELSE . . .
are as in ALGOL. However, 'in this description, the condition part
evaluates to 1 or 0, .corresponding to TRUE or FALSE in ALGOL,

3. The case construction, “

CASE n OF
BEGIN
81

2

Sk

END .

chobsés and executes the nm statement in the sequence. This description
has omitted some BEGIN's and END's in compound statements within the
CASE statement axid substituted typ-ographical grouping., Although this is
not syntactically rigorous, it renders the description more readable.

4, The REPEAT statement repeéts its range indefinitely, Within a repeated
statement, the CYCLE statement is used to resume the main (compound)

statement from the beginning, and LEAVE aborts the innermost REPEAT.,

- 143 -

] THE E-MACHINE -- A FUNCTIONAL DESCRIPTION

A MAIN CYCLE ROUTINE
REPEAT

n THIS IS THE CONTROL ROUTINE IN FIGURE 2, HOWEVER,
A ONLY THOSE PARTS RELATED TO THE E-MACHINE ARE SHOWN,
IE ~CASTOG THEN
IF LS[LI-1;012L0S[LI-1;2] THEN
" BEGIN A TOP SEGMENT ON LS HAS OVERFLOWED
IF LS[LI-1;41=1 THEN
BEGIN e ITERATION MAY RECYCLE

LS{LI-1:01+0

STEPIS
NEWIT <+ 0
IF STEPTOG THEN CYCLE
END
A DEACTIVATE TOP SEGMENT AND TRY AGAIUN
LPOP .
CYCLE

END
K « +/LS[LI-1;0,1]
IF ~QS[K;0]eIA,IFA,IJ,ISC,IXL THEN
LSTLI-1;0] « LS[LI-1;0]+1
END
CASTOG « © o
a IF ACTIVE SEGMENT IS FOR D-MACHINE THEN ACTIVATE DM
IF LS[LI-1;31=0 THEN DMACHINE ELSE :
CASE DECODE QS[K;01 OF @ GOES TO LABELS BELOW

BEGIN @ DELIMITS RANGE OF CASE STATEMERT

a 'LADELS' BELOW NAME E-MACHINE INTERPRETATION RULES
S) VPUSH ST,QS[K;1]

ITA) D « @S[k;11]

IFA) INX <« GINX K
QS[K;2,0) « QI, IF QS[Kk;01=TA THEU A ELSE FA
I « 3§« 0
T « IF LS[LI 137)=0 THEN NT ,NLT ELSE QU,QLT

A = GETDEL D,I a A
S « S+R<IF T[O]=NT T
QPUSH T[I="1+pINX],(
I <« I+l
END
w5fKk;1] « QCODE (GETVBASE D) ,S+GETABASE D
ERASE D

DELLT] FOR THTS ARRAY
AxISLINXCI131] ELSE O

E
CODE R,A),INX[IT,0

HEN
QCO

A) IV K
FA) VPUSH IF QS[K;01=A THEN AT,QSCK;1]
ELSE ST,FETCH QS[K;1]

- 144 -

.‘_.’)‘.

”

J) IVl X
OP) EXECUTE QS[K;1]1 =~ QS(K;1] ENCODES A SCALAR OP

RED) VPUSH RT,O
LS[LI-1;0] « K+QS[K;2]

DUP) IF X>VI THEN ERROR ELSE VPUSH VS[VI-X;]
VXC) IF VI<2 THEN ERROR ELSE VS[VI-1,2;1«VS[VI-2,1;]
POP) VPOP
IJ) INX « GINX K
5 « (JORG @S[K;1]1) + IF 0=J5 QS[K;1] IHEN -TORG ELSE
TORG + "1 + JLEN @QS[K;1]
QS[k;] « J,(XCODE 0,5,JS D),INX,0
IXL) QS[K;0,2] « XL,GINX K

XL) VPUSH ST, IF LS[LI-1;7)=0 THEN IS[QS[K;2];0] ELSE
JORG + X1 QS[@slk;2]:]

IRP) QSCK;1 « NIL,0,0,0

IRD) ERASE QS[K;1]
QSCK;] « NIL,0,0,0

MIT) ISMK <« II

IF VS[VI;01=SGT THEN LFAVE
ELSE IF VS[VI;01=5T THEN ERROR

IPUSH VSLVI;1],II=ISMK

END
LPUSH 0,(SORG Vvs{vr-13;11),(SLEN VS[VI-1;11),1,1,0,0
NEWIT + 1
SGV) T « QS[K;1] A RECALL THAT SEG DESCRS ARE RELATIVE

VPUSH SGT,SCODE (K-SORG T),(SLEN T),SMODE T
SG) LPUSHS K
ISC) QS[K;0,2]) « S5C,GINX K

SC) T « ISLQS[K;2]1;31ANENITVQS[K;2]2ISMK
IF T THEN LPUSHS X

LS[LI-1;0] « LS[LI-1;01+1

S « K+1-QS[K+1:2] '

n SET CHANGE BIT TO 0

QSTS;11 « XCODE (X1 QS[8;11),(X2 @sUsS;11),0

]
=
I

« 146 -

JMP) IF (QS[K;0]1=JMP)V((QS[K;0])eJO,JNO)AVS[VI-1;1]=0)

JO) V(QS[K;0]edJ1,JN1)AVS[VI-131]=1
J1) THEN LS[LI-1;0] « K+QS[K;2]
JNO) IF QS[K;0]eJO,J1 THEN VPOP

JN1)

CY) LS[LI-1;0] « LS[LI-1;2]
CCY) T « K+QS[K;2]
QS[T;1]1 « XCODE(1+X1 @QS[T;11),(X2 @S(T;1]),1
LSTLI-1;0] <« 0
RPT) LS[LI-1;0] « 0
LVE) LPOP
CA3) IE ~(VSIVI-1;0]1=8T)AVS(VI-131]e1QS[K;2]1 THEN ERROR
LS[LI-1;0] « K+QS[K;2]
K « K+VS[VI-1;1]
VPOP
CASTOG + 1
XSs) J <« K-QS[K;2]
I < vS(VI-1;1]-I0RG
VPOP
IF (I<0)vI>X2 @QS[J;1] THEN ERROR
ELSE QS[J;1] « XCODE I,(X2 QS[J;11),1

XC) J <« K-@QS[K;2]
QS[J ;1] « XCODE (X1 QS[J3;11),(X2 QS[J;11),1

LX1) VPUSH ST,X1 QS[K-QS[K;21;11]
LX2) VPUSH 5T,X2 QSUK-QS[K;2]31])

SX1) T « K-@QS[K;2]
QS[Tri1]) « XCODE VSLVI-1;11,(X2 @S[(T;311).1

SX2) T « K-QS[K;2]
QS[T:1] « XCODE (X1 QS[T;11),VS[VI-1;11,1

ORG) VPUSH ST ,IORG
END A END UALL STATEMENT RANGE

END a E-MACHINE INTERPRETATION RULES

- 146 -

0

AUXILIARY FUNCTIONS FOR E-MACHINE

INX « GINX K;R
a INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY,

A HIGHEST COORDINATE NUMBER (I.E. FASTEST VARYING) FIRST
R « IF LSCLI-1;71=0 THEN II ELSE QSCLSCLI-1373;2]

INX « O6((Rp2)721QS[K;3;3]1)/\R

LPOP
IF LI=0 THEN ERROR ELSE LI « LI-1
IF LSCLI;4)=1 THEN POPIS

IF LSCULI;51=1 THEN FNRET

NEWIT « LS[LI;6]

a IF THIS CHANGES MODES THEN CLEAN OFF QS
IF LSCLI;3)>LS[LI-1;3] THEN
REPEAT '
BEGIN

IF QI = LS[LI;1] THEN LEAVE ELSE QI +« QI-1
IF @QS[QI;0] ¢ IFA,TA,RDT THEN ERASE QS[QI;1]

POPIS
II <« ISMK
REPEAT

BEGIN

~ ISMK '+ ISMK-1 -
IF ISMK="1 THEN LEAVE ELSE IF ISLISMK;4)=1 THEN LEAVE

END

LPUSH V
IF LI=LIMAX THEN ERROR

LS[LI;\7) « (64V),NEWIT,IF O= 14V THEN ~14V ELSE LS[LI-1;7]
LT « LI+1 '

LPUSHS X -
IF 0=SMODE QS[X;1] THEN ERROR A
LPUSH 0,(X-SORG @S[K;11),(SLEN Q5(K;11),1,0,0,CO0RR X

~ 147 -

vV TUl1 K;T;5;R
A CALCULATE J-VECTOR ELEMENT IN FORM XCODE(CURR INCR,
T « LS[LI-1;7]
S + (X1 OS[K 1]1),0

SN)

IF T=0 THEN w» IF THERE IS A CHANGF USE NEW ITER VALUF

IF ISCUQS[K;2]);3)ANEWITVQSIK;2]12ISMK THEN
S « I1S[QRSlK;2];0],1

END :
ELSE IF 1=X3 QS[T+QS[K;213;11 THEN S <« (X1 QS[T+K;11),1
IF S[11=1 THEN | _
BEGIN
T « X3 QS[K;1]
S[01 « IF T=0 THEN S[0] ELSE -S[0]
QS[K;11 « XCODE SC01,(X2 QSCK3;11),T
END)
VPUSH ST,SC[O0J+X2 QS[Xs1]

V IU K3;IP;1Q:;5:;T;D
R INDEX UNIT
S « 0
IQ « K+QS[K3;21 A BEGINNING OF ICB FOR THIS ARRAY
T « LS(LI-1;7]
REPEAT

IP « QS(I1Q;2]1+T
IE T=0 THEN
BEGIN w THIS ARRAY THNDRXED RY IS
IF ISUIP:31ANEWITVIP2ISMK THEN
BEGID
IF (IS[IP;0]=0)AIS[IP;21=0 THEN
S « 5-91 @slIe;id

s°< 5v02 0sfra:11
ELSE S + 5-Q2 QS[IQ;1]

It=
1=
<

EGIN a THIS ARRAY INDEXED FROM QS

"~ IF 0=X3 @s[IP;1] THEN LEAVE ELSE
T D« (Q2 @S[IQ;11)xX1 QS[IP;1]
S « S+D-Q1 QSf1Q;11]
@S[IQ;1] <« QCODE D,Q2 QS[IQ;1]
END
END
IF QS[IQ;01eILT,QLT THEN LEAVE ELSE IQ«IQ+1
END
QS[K3;1] « QCODE (Q1 QS[K3;11),5+Q2 QS[K;1]
\

- 148 -

=
£T
i
1=

»

:iz'

v

v

v

FETCH X

R <«
n X IS A Q-CODED ADDRESS OF FORM QCODE(VBASE ,INCR)
R <«

MI1+(Q1 X)+Q2 X; 1]

EXECUTE CODOP

cODOP IS A DYADIC OR MONADIC SCALAR OPERATOR(ENCODED)

]

a EXECUTE DECODES CODOP ON THE ELEMENTS OF VS:
A

a IF ISDYADIC CODOP THEN

A BEGIN

A VSIVI-1;11 « VS[VI-13;1]) (DE

A VPOP

n END

A ELSE

a VS[VI-13;1] « (DECODE CODOP) VS[VI-13;1]

STEPIS 3 I;INCR

a STEP THE ITERATION NEST IN IS

an SET STEPTOG <« L[F DONE THEN O ELS
STEPTOG « O

I « II

REPEAT

IF ISCI;41 THEN LEAVE
IS(Ir;0,3] « IS[I;1
(1S[I;0]=15[T;1]1)AIS

ISCI;u] THEN LEAVE

BEGIN
STEPTOG + 1
IS[I;3,0) « 1,I8[1;01]
+ IF ISC
LEAVE

i 0 ELSE K - @

IPUSH ViMX

a V[0l IS COUNT (SIGNED); V[1]l IS
a CASE OF COUNT=0 CANNOT OCCUR

MX « “1+]|V(o0]

IF II=IIMAX THEN ERROR

IS[II;] « (IF V[0l<0 THEN MX ELSE

II « IT+1

- 149 -

E 1

7

ELSE
1,1

[r;21=0 THEN

ELSE IS[I;0,3] « 0,1

IT;21=0 THEN 1 ELSE 1

S[K;2]

MARK
(HANDLED BY D-MACHINE)

0),MX,(Vv[0]<0),1,V[2]

APPENDIX C

EXPANSION OF D-MACHINE OPERATORS FOR E-MACHINE

This appendix shows how the D-maclﬁne expands complex primitives into
deferred sequences of E-machine instructions. It is assumed that the constraints
noted for each operator are met, and that all operands have been testéd for domain,
conformability, and so forth before being submitted for expansion. This is not
an important constraint since, for example, thg requirement that an operand be
beatable can always be satistied by explicitly evaluating an unbeatable operand Lo
temporary space. |

Before the expansion of any of the dyadic operations, the value étack and the
instruction buffer are as follows: |

VS QS

OP VALUE LINK AUX

o o o e o * o o e o e o © o

SGT e— l—{ Code for right operand m2

SGT e)—{)ACode fpr }eft operand ml
where ml and m2 are the access masks for the deferred expressions, found in the -
AUX field of QS. In the sequel, segments in QS are delimited graphically by braces
and pointer or Greek letters are used to avoid confusion with explicit relative ad-
dressing.

1. GDF
The operands deferred in QS must be simple array values, The _ope'rand of

' a GDF instruction is a dyadic scalar operator, OPR. Expansion produces the

- 150 -

following:
VS QS

OP VALUE LINK AUX

° o ® s o o e © 0o o o o o o

(
SGT Code for right operand m2
h_l__' J Code for left operand ml!
\ IRD T1 m3

In the above, T1 poihts to a DA containing the result rank and dimension for the
GDF. ml' is m2 shifted left bsr the rank of the right operand. m3- is the logical
or of m1' and m2 (i.e., m3 ml' m2), Because of the requirement that the

operands be simple array values, the segments in boxes each consist of a single

" 1J or IFA instruction,

2. RED

By the time an expansion is to be done, any necessary transposes on the
reducee have been performed. The variable B has value 1 if the reducee is
beatable and is 0 otherwise, The "before' piéture is:

VS QS

o e e o e ° o © o o e o * o

SGT — >{' Code for reducee ml

The reduce operator is OPR, giving rise to the expansion below:

Vs OP QS
OP VALUE LINK AUX

SGT ; RED g
Code for reducee ml
o1
oP OPR T ml
{ sGv o1 | </

S -len

MIT

IRD @T1 - B -1m

- 151 =

where len is the length of the reduction coordinate and ‘I'l is a DA with the rank

and dimensions of the result,

3. DIOTA

' ’i‘he ranking operation, correéponding to dyadic i, requires that the left

argument be a simple vector array value. This is because this operand is evaluated

repeatedly during the E-machine execution of the following expansion.

VS

SGT -

. J

-

OP _VALUE

QS
LINK _AUX

, s 0. ° o L e 0o

Code fpr right operand m2

JMP

Code for 1eft operand ml

DUP

oP
o1 % JN1
POP
LVE

POP
IRP

2

NE

ADD

ol

len

@

len is the length of the left operand. It should be clear from working through the

above expansion that it is simply a literal interpretation in E-machinc code of the

definition of the ranking operator. It is assumed that the D-machine will have

checked for the case of an empty vector as either operand,. producing the correct

result automatically. If the rank of the result is 0, that is if the right operand is

- 152 -

.)

-y

k.

<

a scalar, the above expansion is executed immediately by the E-machine. The
IRP instruction is similar to IRD, except that it points to an instruction in QS
which contains dimension information instead of referring to an explicitly-created
DA.
4, EPS
Before expanding the membership operator, a check is made for the special
caseé of right-operand scalar.or 1-element quantity. In these cases the operation
done is A=B or A=(, B)[l], respectively, Similarly, if the left operand is scalar
then A=B is done, cherwise, the expansion is made in QS as below:

VS QS
OP VALUE LINK AUX

° o o ¢ o e o o o o e o LA

SGT ? (~ JMP X
01'{ .Code for right operand m2
Code for left operand ml |
N
RED 7 *—————j
, ~ DUP 2 :
! SG o1
o9 < OP EQ
oP OR
> < JNO 2
. . LVE
SGV o2 P
S lenl
S len2
S lenK
MmIT
VXC
POP
IRP . —/

where lenl, len2,...,lenkK dimension of right operand. As in thevexpansion for
DIOTA, the expaﬁsion of EPSis a straightforward E-méchine‘translatiori of the
definition of the membership operé.tor. |
5. SUBS

Before the SUBS expansion takes place, the subscripts have been examined
to see if they can be beaten into the subscriptee., If an expansion is needed, then

" there must be some subscripts left, " Before expansion, thebregisters contain:

_ Code for rightmost

SGT > { subscript mr
A - | Code for leftmost

SGT > { subscript ml

SGL ’ : > { Code for subscriptce mo0

The rank r of the subscriptee must be the same as the number of subscript
expressions, The rank of (he result is the sum of thc ranks of the subscripts
(counting empty subscripts as rank-1)., Some of the SGT entries on the VS may

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture

-'154 -

o

has changed to:

VS

01{

(-

Qs
OP VALUE LINK AUX

® o o & o o o o s

JMP — A

Code for rightmost
non-empty subscript

© o 5 o e o o

Code for leftmost
non-empty subscript

Code for subscriptee

XT XCODE(0,11,1)

XT XCODE(0,1r,1)

Calc subs 1
XS
Cale subs r
XS —_—
SG o1 B
IRD @T1 0 mr

Where 11, 12,...,1r is the dimension of the subacriptee, ininus 1, This field of

the XT entries is used for checking purposes in the IU (see Section E). f is the

QS index of the beginning of the XT back and @T1 is a DA with the rank and

dimensions of fhe result, mr is the access mask of the fesult. The link field of

8 contains r, the rank of the subscriptee, which is used in the initialization of IA,

IFA, 1J instructions. The lines in QS marked ""Calc subs k' are one of the

- 155 -

following:

OP VALUE LINK _AUX
ISC SCODE(SEG.K%;1) = 0 ‘m'
IXL o ' 0 m'

In the first case, the km subscript is to be computed explicitly, which is done by
activating SEG K', one of the non-empty subscript segments on QS. In the second
case, the segment that was stacked on VS for this subscript was empty, so the
actual subscript used is the same as that which was controlling this coordinate
from the outside. The mask m' in the AUX field specifies the index environment.
Example 4 in this chapter shows a spec.ific instance of an expansion caused by the
SUBS operator. |

The remaining operator expansions are similar to SUBS, in that they are all
special cases of it.
6. CMPRS °

The compressor (left operand) has been evaluated to a temporary space, if
it was not there already, and checked to see if it contains only 0 and 1 elements,
Tn addition, the number of 1's;call it DIMI, has been counled and Vil, the index
in V of the first non-0 value is known; call it XA. This process is unfortunately
necessary since we must know the rank and dimension of the result before deferral.
The same process must be applied to the expansion operator. Unless the com-

pressor falls into a special case which can be done immediately (i.e., scalar 1

- 156 -

or 0 or vector of all 1's or all 0's) then the following expansion is made:

SGT

VS

ol

02

QS
OP VALUE LINK AUX
JMP 0
"Code for compressee m2
Code for compressor ml

S oot

> >

o3<

O:

- 157 -

XT xcode(0,XA, 0) 1
XT xcode(0,11,1)

L o o o

XT xcode(0,1k, 1) -

° o o o s

XT xcode(0,1r,1) -«

mk!

OP SUB
OP SGN

DUP

OP SUB.

RPT

DUP
SX1

(R PP

XS
POP <

\. LVE

XL

ml'

XS

ISC 03

mk!

XC ~ e

e @ e aa

mr!

IRD @T1

where li,...1r are as in the SUBS expansion; ml' through mr' are the masks for
the individual subscripts with mk' being the mask for the compressed coordinate.
The first XT entry is used to hold XA and XL where XL is the last value of the
external index for the compressed coordinate. The algorithm used is as follows:
Algorithm for compression: We wish to find XT such that
(UK e oo T e] X[oeo XT;0 0l _

Let XL be the last value of I from which the last XT was calculated. XA is the
index of the first 1 in U, Then, the QS expansion for compression calculates the

new value of XT a.s' a function of the new I and uld XT and XL ao followe;

if 10 then
XL-0
XT+-XA
end
else
repeat
hegin
T+xXXL~I
if T=0 then loave
rcpeat
XT-XT-T
if TI[XT]=1 thon leave
end
XL ~XL-T
end
7. EXPND

The EX’PND operator is treated similarly to CMPRS. In particular, the
expandor (left dbera.nd) is checked to see that it is a logical quantity and the number

of 1's is compared to the length of the expansion coordinatc. If the expandor falls

- 158 -

into one of the special cases (all ones, all zeros) the result is calculated immediately. -
Otherwise, the QS expansion that follows is made to implement the expansion
algorithm below:

Let R be (U/[KJX)[.+.:I;...] Then we want to find LX such that R«~if Ulf}=0
then 0 else X[...;LX;...]. LU is the index of the last found 1 in U and LX is the
corresponding ‘X index (on the Kt—h- coordinate),

if U[[]=0 then R~0 else

begin
repeat
begin
T-—XxI-LU
if T=0 then leave
repeat
begin
LU-LU+T
if U[LU]=1 then leave
end
LX-LX+T
ﬂg gg_rgr_xigp_t main repeat;
R+X[...;LX5e 0 4]

end

- 159 -

VS

a2

N %P2

-

o |

Qs |
OP VALUE - YLINK AUX
JMP ® : .
Code for expandee m2
| Code for expandor o mk'
XT xcode(LiU,lu, 1) 1
XT xcode(0,11,1) . T
5('.]? . xcode(0,1k;'1) .
XT xcode(0,lr,1)
LX1 . .
XL mk!
OP SUB
OP SGN
JNO I
DUP 1
LX1 0
OP ADD |
XS . o .
SG 02 o
Jo - :
ILX1 v ’
OP ADD
X8 . v
RPT
POP 'l—-"
m"L , mll 3
XS B
XL . mr'
' A
SG ol i
SG 02 -
CAS 2
S 0
SG o3
IRD a mr

Note that the sequence of IXL and XS .‘mstructioﬁs starting at € does not contuin a

reference to the k£ll subsc ribt position as this has already becn computed at the

beginning of the segment activatéd by the CAS instruction,

Also, in the above, the

quantity fu in the X2 field of the pseudo-iteration stack at is the length of vector

UJ less 1,

- 160 -

8. ROT
Rotation is a special case of subscripting defined as follows:
If N is a scalar, then R«N¢[X]M means for each [FLT 1pM
R[3 /L1eM 5 /((K-1)+L) ,(IORG+(pM)LK] | (N-IORG)+1(pM)LK]) ,K+L]
If N is an integer array with pN<>(K=1ppM)/pM then
R[3 /L1>M ;/((K-1)+L) ,(IORG+(pM)LK]|(NL;/L"]*l_'QR_G)H(pM)[K]),K¥L]
where L'<>(Kz1ppM)/L.
Thus the expansion for ROT in QS is the same as for a general subscript with all
but the KE coordinate being IXL, XS pairs and the K—tlla coordinate being computed
according to the above deﬁﬁitioﬁ, The explicit expansion will be omitted since it

is similar to what has already been shown.,

- 161 -

APPENDIX D

POWERS OF 2

n -
2 n 2
1 0 10
2 1 05
4 2 0325
8 3 0125
If 4 0NNAR2 S
3z 5 0.031 25
64 6 0015 625
128 7 0.007 812 5
256 B 0.003 906 25
512 9 0001 953 125
1024 10 0.000 976 562 5
2048 11 0000 488 2B1 25
4 096 12 0.000 244 140 625
B 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0000 007 629 394 531 2%
P67 144 19 Q000 003 Bl4 £07 265 £75
524 288 19 0.000 D01 907 348 632 B12 5
1 D48 576 20 0000 953 A74 316 406 25
2097 152 21 0.000 476 B37 158 203 125
4 124 304 22 0.000 230 418 579 101 362 S
B 388 608 23 0.000 119 209 289 550 781 25
16 777 216 24 0.000 059 604 644 775 390 625
33 554 432 25 0.000 029 BOZ 322 387 695 312 5
67 108 B64 26 0.000 014 901 161 193 B47 656 25
134 217 728 27 0.000 007 450 580 596 923 B28 125
268 435 456 28 0.000 003 725 290 298 461 914 062
536 870 912 29 0.000 001 862 645 149 230 957 031

931 322 574 615 478 515
465 661 287 307 739 257
232 830 643 653 869 628
116 415 321 826 934 814
058 207 660 913 467 407
029 103 830 456 733 703
014 551 915 228 366 B51
007 275 957 614 183 425
637 978 BO7 091 712
B1B 989 403 545 856
909 494 701 772 928
454 747 350 886 464
227 373 675 443 232
113 686 837 721 616
056 843 418 860 808
020 421 709 430 404
014 210 854 715 202
W/ LS g2y 35/ BUL

552 713 678 BOO
00l 776 356 B3% 400

888 178 419 700

444 089 209 850

222 044 604 925

111 022 302 462

055 511 151 231

027 755 575 615

013 877 787 BO7

006 938 893 903

003 469 446 951

001 734 723 475
B67 361 737
000 433 680 868
000 216 840 434
000 108 420 217
000 054 210 108
000 027 105 054
000 013 552 527
000 006 776 263
000 003 388 131

1073 741 824 30 0.000
2 147 483 648 31 0.000
4 294 967 296 32 0.000
8 589 934 592 33 0.000
7 179 B69 184 34 0.000
34 359 738 368 35 0.000
68 719 476 736 36 0.000
137 438 953 472 37 0.000
274 B77 06 944 38 0.000
549 755 813 888 39 0.000
099 511 627 776 40 0.000
199 023 255 552 41 0.000
398 046 511 104 42 0.000
022 208 43 0.000
592 186 D44 416 44 0.000

35 184 372 OB8 B32 45 0.000

70 368 744 177 664 46 0.000
140 737 488 359 328 47 u.LWw
281 474 976 710 656 48 0.000
562 449 953 421 212 49 D.000

1 125 899 906 B42 624 50 0.000
2 251 799 B13 685 248 51 0.000
4 503 599 627 370 496 52 0.000
9
8

-
~N® A e
g

007 199 254 740 992 53 0.000
014 398 509 481 984 54 0.000
36 028 797 018 963 968 55 0.000

72 057 594 037 927 936 56 0.000

144 115 188 075 855 872 57 0.000

288 230 376 151 711 744 58 0.000
576 460 752 303 423 488 59 0.000

1 152 921 504 606 846 976 60 0000

2 305 843 009 213 693 952 61 0.000

4 611 686 018 427 387 904 62 0.000

9 223 372 036 854 775 B0B 63 0.000
18 446 744 073 709 551 616 64 0.000
36 B93 488 147 419 103 232 &5 0.000
73 786 976 294 838 206 464 66 0.000
147 573 952 589 67C 412 928 &7 0.000
295 147 905 179 352 825 856 68 0.000

§8888888¢6888888888

§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§

000 000

§888888888288888888888888¢E888888888888888888888888888

88888888838888888888888¢88
g

590 295 B10 358 705 651 712 €9 0.000 000 000 000 001 694 065
1 1BO 591 620 717 411 303 424 70 0©.000 000 000 000 000 B47 032
2 361 183 241 434 B22 606 848 71 0000 000 000 000 000 423 516
4 722 366 482 869 645 213 696 72 0000 000 000 000 000 211 758

- 162 -

25

625
812
906
453
226
613
806
903
951
475
237
118
059
o029
014
oo7
003
ool

250
125
062
031
515
257
628
814
207
953
976
988
994
497
248
624
312
156
578
789

547
473
236

25

562 5

281 25

640 625
320 312
660 156
830 078
915 039
957 519
478 759
739 379
869 689
434 844
717 422
HhH /11
929 355
464 677
232 338
616 169
308 084
654 042
827 o021
913 510
456 755
228 377
614 188
B07 094

201 773
100 B8&
550 443
275 221
137 610
068 805
034 402
017 201
508 600
254 300
627 150
813 575

25

125
062
531
765
882
941
970
485
242
621
810

452

363
181
590
295
647
B23
411
205
602
801

700
850
425
712
356
678
339
169
084

5
25
625
812
406
703
351
b/5
337
668
334
667
333
166
583
791
395
697
B48
9524
962
981
490
745
w2
186
093
546
273
136
068
534
767

125

181
8930
545
472
236
618

702
851
925

481
240
120
560

640
320

580
290
645
322
161
080

25

625
3125
656 25
328 125
164 062
082 031
541 015
270 5u7
135 253
567 626
783 813
391 506
695 953
347 976
173 988
086 994
043 497
021 748
010 874
005 437
002 718
001 359
500 679
250 339
625 169

5
25
625
812
906
953
476
738
369
684
342
171
085
542
271
135
567
283
641

-

25

125

562 5

281 25

140 825

570 312 5

285 156 25

142 578 125

571 289 062 5

785 644 531 25

392 822 265 625

696 411 132 812 5
848 205 566 406 25
924 102 783 203 125
962 051 391 601 562 S

820 981 025
910 490 512

695 BOO 781 25
B47 900 390 625

(s

CHAPTER V

EVALUATION

In this chapter we examine the design for an APL machine proposed in

- Chapter IV and compare its performance to more conventional architectures.

This is done by showing that the APLM is more efficient in its use of memory
than a less sophisticated computer doing the same task,
A. Rationale

In Chapter I, a number of design goals for the APLM were stated:

1, Machine language should be ''close' to APL,

2, Machine should be general, flexible.

3. Machine should do as much as possible automatically,

4, Machine should expend effort proportional to the complexity of its task.

5. Design should be elegant, clean, perspicuous.

6. Machine should be efficient. In particular, it should be parsimonious of

memory allocation and accessing. |

We can dispose of some of these in short order. To begin with, goals 1, 3, and
4 have ohviously been satisfied. Since the machine designed implements APL, to
goal 2 we can reply that the machine is general and flexible at least to the extent
that APL as a language is general and flexible. For example, even though the
APLM does not include all of the LISP primitiveé, if it is easy to write a LISP
interpreter in APL, then the machine should be able to handle them with ease,

Although I believe that the goal of elegance has been satisfied, this is not the
place to make such judgements, nor am I the one to make them, This particular
aspect will have to be decided by less prejudiced readers. A seventh, unstated
goal is that the design should indeed work. It should be clear to the reader who
has reached this point that the basic machine structure proposed is in fact sound

and thal an APL machine as described will produce corrcct answero.

- 163 -

This leaves the question of efficiency to be considered. Because we have not
detailed a complete machine, traditional measures such as encoding efficiencies
of comparisons of cycle times cannot be used. A major emphasis throughout this
work has been to minimize the necessity for temporary storage in expression
evaluation and simultaneously to minimize memory accéssing. ‘While these brob—

' lems are often of marginal importance in a conventional design, they are quite
significant in an APL machine, since operands are generally arrays. Thus a
temporary store is no longer a single word, but is potentially an array of indefinite
size. Similarly, the conventional problem of saving a single fetch where: a quantity
might be in a register, becomes the problem of saving 1000 fetches for an array
operand.

The remainder of this chapter is dedicated to the evaluation of machine ef-
ficiency. We take an analytic approach here, but cannot hope to have a simple
analytic model of the machine per se which would give clean, closéd—-form quanti-
tative data about the APLM. Instead, the analysis compares the performance of
the APLM to a fictitious 'maive machine, " which is simply a straightforward
interpreter of the semantics of APL,

The next section discusses the naive machine (NM) and outlines the assumptions
upon which the comparisons will be based. In the sequel, we will compare the two
machines by looking at the number of individual fetches, stores, operations, and
temporva"r'y stores needed to do a particular task. Ditferent tasks will be examined
with this in mind, At the end of the chapter, these results will be summarized

together with some conclusions.,

B. The Naive Machine

Although the APL machine proposed in Chapter IV has never been implemented,

" there exist concrefe examples of the naive machine. These include APL\7090

- 164 -

(Abrams [1966]), APL\1130 (Berry [1968]), and AP1)\360 (Falkoff and Iverson.
(1968]); Pakin [1968]). The main feature which disﬁ;lguishés the NM from the

APLM is that the APLM defers many computations while the naive machine
evaluates each subexbression immediatély after its operands have been evaluated.
The APLM, by contrast, does some of its evaluations immediately (e.g., scalar
results), defers some indefinitely (by drag-along), and does still others in a non-
direct way (e.g., beating).

The following list of assumptions clarifies in more detail the differences
between the APLM designed in this work and our ''standard' naive machine as
used in the rest of this chapter.

1. The naive machine uses the same representation for arrays as does
the APL machine. If the naive machine is APL\360, then this is approximately"
tr(le. In fact, APL\360 does not separate DA's from value parts in array rep-
resentations. On the other hand, APL\360 represents scalars as rank-0 arrays,
and is thus more inefficient in its handling of scalar values. We assume here
that the NM keeps scalar values in a value stack as does the APLM. We have
also (generously) assumed that the NM uses the J-vector representation for
interval vectors. In genéral, these assumptions cast the naive machine in a
better light than any current implementation of APL,

2, The naive machine generates a result value whenever an operator is
found and its operands are evaluated. (This is exactly the way APL\360 works.) _
Further, we assume that the NM will use temporary space allocated to one of

its operands for the result, if possible; e.g., if the expression A+B is to be
evaluated, a new temporary space must be found to accommodate the result,
However, if the expression is A+B+C; the subexpression B+C will be evaluated
first causing the creation of a temporary t which can then'be used as the result

destination for the value of A+t.

- 165 -~

3. In an assignment to a variable, as in A-—expression, the naive machine
performs the assignment simply by storing a pointer to the temporary for the
evaluated expression in the nametable entry for A. Again, this is consistent with
the functioning of APIL\360.

4, Each c;peration in either the NM or the APLM requires a fixed amount
of overhead (e.g., rank checking, domain checking, space allocation, setup,
drag-along, etc.). An analysis of the instructions for both machines shows that
these processes take approximately the same effort in both machines. Since
there is no way to compare this effort with the memory usage measures discussed
here, it will be omitted. For a single statement, this overhead appears as a
linear additive term.

5., Since scalars are kept in the value stack in both machines and since the
VS mechanism is not specified (e.g., it could be a hard-wired stack, or a fast
scratchpad memory, or it could be kept in memory with other array values), all
scalar fetches and stores will be ignored. The effort to evaluate array expressions
always dominates the effort for scalar expressions,

6. There are no distinctions made between data types in the APL machine.
We thus assume that both the APLM and the NM use the same representation for
individual data elements.

7. All scalar operations take the same amount of time to perform. That is,
an add or a multiply will each be counted as a single operation.

8. I'inally, it i8 assuted that both the naive machine ahd the ATL machine
are implémented in similar technologies so that the cost of memory adcesses,

storage allocations, and operations are the same for both machines.

~ 166 -

C. Analysis of Drag-Along And Beating

To begin the .analysis, let us "look at a subset of the operations of APL and
derive some analytic results comparing the APLM and the NM. The set to be
considered is

1. Selection operations

2, Monadic and dyadic scalar arithmetic operations

3. Inner products

4., Reductions of the above (this includes outer products)

5, Assignments of above to unconditioned variables or to variables conditioned

by selection operators.
We consider only those expressions which are array-valued, as scalar expressions
are done éimilarly in both machines. Each operation requires the machine evalu-
ating it to do a certain amount of work, summarized in Table 1 below. Tables
2A and 2B summarize the "effort" required to do.these manipulations.

In Table 2, some of the entries contain conditional terms or factors. TheseA
account for the different possible initial conditions when a subexpression is evalu-
ated. Also, notice that in Table 2B, some of the entries contain references to the
functions DOF, DOS, and DOO. These are functions which, given a deferred
expressiori as argument, return as values the number of fetches, stores, and
operations, respectively, necessary to evaluate the expression. Thus, for the
APL machine, Table 2B does not tell the whole story; we must also take into
account the efforts to évaluate the final deferred expression (by the E-machine).

Hence, it is necessary to give detailed definitions of the DOF, DOS, and DOO

functions.

- 187 -

TABLE 1.

Steps in Evaluation of APL Operators

NAIVE MACHINE APL MACHINE

A, Selection Operators -

1. Check rank, domain of operands. | 1. Check rank, domain of operands.

2, Get space for result DA, value. 2, Get space for result DA (if operand
' . is a variable).

3. Set up DA, M-headers. 3. Set up DA,

4. Set up copy operation. 4, Adjust VS, QS,

5. Do copy operation,

6. Adjust VS,

B. Monadic Scalar Operators

1. Get space for result DA, value 1. Defer operation to QS.
(only if operand is a variable). ‘

2. Set up DA, M-headers if space 2, Adjust VS, QS.

. was gotten in step 1.

3. Do the operation.

4, Adjust VS.

C. Dyadic Scalar Operators

1. Check rank, dimensions of 1. Check rank, dimensions of operands.
opcranda, , i .
2. Get space for result DA, value 2. If one operand is a scalar, move it
(only if both operands are to QS,
variables). .
3. Set up DA, M-headers if space 3. Defer operation to QS.
was gotten in step 2.
4, Do the operation, 4, Adjust VS, QS.

5. Adjust VS,

D. Outer Product

1. Get space for result DA, value, 1. If operands are deferred sub‘exp,res‘-.\ o
sions, then evaluate them to tcmp apace,
Z. Set up DA, M-headers. 2. Get space for result DA,
3. Do the operation. 3. Setup DA. "’ .
4., Adjust VS, 4, Defer operation to QS.
5, Adjust VS, QS.

- 168 -

Table 1 (cont.),

APL MACHINE

F.,

G.

NAIVE MACHINE

Reduction

1. Get space for result DA, value.
2, Set up DA, M-headers.

3. Do the reduction.
4, Adjust VS,

Assignment to Siniple Variable

1, If right-hand side is a temp then
go to step 6, otherwise do steps
2 through 7.

2, Get space for DA, value.

Set up DA, M-headers.
Set up copy operation,
Do copy operation.

. Adjust VS,

. Adjust Nametable.

M U W
o

Assignment to a Selected Variable

1. Check dimensions of LHS, RHS.,
2, Set up copy operation.

3. Do copy operation,
4, Adjust VS,

e o o

MU W

Get space for result DA,

If reduction coordinate is other
than the last, then do appropriate
transpose.

Set up DA,

Defer operation to QS.

Adjust VS, QS.

If right-hand side is a temp then
go to step 6, else proceed.

If the LHS* variable is already
defined and is of the correct size
and does not appear permuted as
an operand in the deferred RHS-
then go to step 5.

Get space for DA, value of LHS.
Set up DA and M-headers.

Defer operation in QS.

Adjust VS, QS.

Adjust Nametable.

Check dimensions of LHS, RHS.

If RHS contains deferred instances
of LLHS variable which are permuted
differently than LHS, then proceed
else go to step 6.

Get space for DA, value of RHS,

Set up DA, M-~headers.

Evaluate RHS to this temp.

Defer selected assignment to QS.
Adjust VS, QS.

*
LHS and RHS refer to the left-hand side
and right-hand side of an assignment
arrow, respectively.

~

- 04T -

TABLE 2A

Summary of Effort tc Evaluate Operators - NAIVE MACHINE

OPERATOR FETZHES STORES TEMPS OPEEBATIONS
SELECTION

(R I5: sel &) x/pR . 4+{ppR)+x/pR P1x(4+(ppR)+x/phR) 0
SCALAE MONADIC

(R IS: OP &) x/pR (F1x(4+ppR)+x/pR P1=(4=(ppR)+x/pR) x/pR
SCALAR DYADIC '

(R IS: &OFP%F) Nixx/oR (F2x(4+ppR))+x/pR P2=(4-(ppR)+x/pR) x/pR
QUTER PRODUCT ‘

(R IS: &-.0P%F) (x/p &)+x/pE U+(ppR)+x/pR L+{ppR)+x/pR . x/pR
REDUCTION

(R IS: OP/[K]&) x/p & U+(ppR)+%x/pR Y+{ppR)+x/pR x/p&
ASSIGNMENT ' :

A& Pixx/c& Pix(4+(pp &)tx/p &) F1x(4+{pp &)+x/p &) 0
ASSIGNMENT

(sel A<¢& x/p sel A x/psel 4 G 0

Notes: P1-— if £is a variable then 1 else 0, P2-—if & and Fare Lath variahles then 1 else 0,

N1-— if £and & are boih arrays then 2 else 1.

-~ *

= TiT -

~

TABLE 2B

Summary of Effort to Evaluate Operators - APL MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS
SELECTION
(R IS:sel & 0 N1x(3+ppR) N2x(3+ppR) 0
SCALAR MONADIC '
(R IS: OP &) 0 0 0 0
SCALAR DYADIC
(R IS: 80PF) 0 0 0 0
OUTER PRODUCT
(R IS: &0.0P%) (P1xDOF(&))+(P2xDOF(F)) | 3+(ppR)+(P1xD0OS(&)) 3+ppR (P1xDOO(&))
+(P2xDOS(F)) +(P2xDOO(F))
REDUCTION
(R IS: OP/LK1&) 0 3+(ppR)+P3xN1x(4+ppR) 3+(ppR)+P3xN1x(3+4ppR) 0
ASSIGNMENT '
A<& 0 Pux(4+ pp&) Pux(4+(pp&)+x/p&) 0
ASSIGNMENT ‘ .
(sel A)«& P5xDOF(&) P5x(DOS(&E)+4+(pp&)+x/p&) | P5x(4+(pp&)+x/p&) P5xDO0(&)

NOTES: Nl-— Number of array opnds in & '
P1-—if & contains ceferred operators then 1 else 0

P3—— if K#[/1pp& tken 1 else 0

P5— 1f &must be evaluated first- then 1 else 0

N2 ~—— Number of opnds with reference count >1

P2-— if ¥ contains deferred operators then 1 else 0

P4— l.f & is a temp or A is defined and of correct

then 0 else 1

'size and there are no indexing conflicts

For the set of expressions containing only selection operationé, scalar
arithmetic operations, outer products, reductions, a.nd assignment, it is relatively
simple to specify the DOF, DOS, and DOO functions., Recall that in the APL
machine, expressions aré deferred in 'QS, which contains an operation code and
an access mask for each entry. Let the function OP(I) be the operation code for
QS[I;] and MASK(I) have as its value the access mask in the AUX field of QS[L;].
Finally, for a given expression in QS, let RR be the dimension of the final result,
For each QS entry whose opcode is IFA, IA, OP, or GOP define the funct.ion
D(I) whosé value is a dimension vector as follows: 1f the entry is not within a
réduce segment then D(I) is RR. Otherwise catenate an element with the length
of each reduction coordinate;j the innermost reduction corresponds to the last
element pf D(I)c Thus, D(I) is the vector of limits of the iteration stack which
are active when instruction Qs|[I;] is executed by the E-machine, The idea here is
that D(I) represents the indexing environment of QS[I;}. If N(I) is the index of the
rightmost 1 in MASK(I) (that is, N(I)—-/(MASK(I))/tp MASK(I)), then the following
algorithm calculates the desired functions:

RF~—RS~—RO=0

I;—starting addr of deferred exp-ression in QS

repeat

begin
if OP(I) = IFA then RF — RF +x/N(I) { D(I)

else if OP(I)=1IA then RS—RS+x/N(I){ D(l)

else if OP(I)€OP, GOP then RO ~— RS+x/N(I) I(T)
I—1 ' | "
if I > segment ending addr then leave

end B

Then DOF(§)~—RF; DOS(€)~—RS; DOO(&)—RO.

- 172 -

)

D. Example — A Simple Subclass of Expressions

Since the input to either the naive machine or the APL Machine may be any
arbitrary expression,it is difficult to produce a closed-form comparison of the
performance of the two. However, we can look in detail at a simple subset of
expressions and obtain some estimates on how the two machines compare.
Consider the set of expressions of the form A+&, where &is an expression con-
taining only array-shaped operands combined by scalar arithmetic operators and
selection operators. As an aid to the analysis, construct the tree corresponding
to the expression &, and number all the nodes corresponding to operators, Then,
construct vectors RR, RD, TY, TV, N1 and N2 as follows:

For each node I, representing RESULT T+&', where &' is the subexpression
rooted at node I,

RD[IJ«x/pRESULT (Result Dimension of node I)
RRLIJ«ppRESULT (Result Rank of node I)

TY[IJ+ if operator is a select then "1 else if monadic then 1 else 2

VLI« if all sons of node I are variable names then 1 else 0

Ni[I« number of leaves in the subtree of node I

N2[I1« number of leaves in the subtree of node I accessible through a path

not including a select operation.

Finally, let R be the number of array operands in &

M be the number of monadic scalar operators in& (i.e., +/1=TY)

N be the number of dyadic scalar operators iné& (i.e., +/2=TY) 4

S be the number of selection operators in & (i.e., +/—i:TY)
Z be the number of elements in & (i.e., x/p&)
Y be the rank of & (i-€ey PP &)

P be: if APLM must get space for 4 then 1 else 0,

Note that in a wcll-formod expresegion N=k-1.

- 173 -

Then, from Tables 2A and 2B, and the definitions of DOO, DOS, and DOF,
we see that the effort for each machine to evaluate & is as follows: |
NAIVE MACHINE
fetches: +/RDx|TY
stores: . (+/RD)++/(-(—1=TY)VTVA(1STY})/('++RR)
temps: +/TV/(4+RR+RD)
operations: +/(1<TY)/RD

APL MACHINE

fetches: BxZ
stores: Z+(Px(4+Y))++/(1=TY)/N1x(3+ER)
temps: (Px(4+Y+Z))++/(1=TY)/N2x(3+RR)

operations: +/(1<77)/7

In general, each formula above is the sum of the relevant entries in Tables 2A
or 2B. As the fetch formulas are obvious, we show the derivation of the store
count for the NM. First, each operator in &calculates a result which must be
stored immediately which gives the term +/RD, Also, temporary space must be
allocated for selection operations and those cases of scalar operators in which
one of the operands is not itself a temporary. In such a case, another
4+ (result-rank) words mustbe stored. (All but one of these is for the new DA;
the other is for the header word for the value array.) The result ranks of the
operations in & are in the vector R, Thus, the compression selects those
elements of 4+RR which correspond to the conditions just stated. In particular,
("1=TY) is a vector having a one for each selection operator and TVA(1<TY) has
a one for each monadic or dyadic scalar operator whose evaluation requires
temporafy space to be allocated. The sum of these terms gives the formula

shown; the other formulas are derived similarly.

- 174 -

A

We can form the ratios of the corresponding quantities for each machine and
attempt to get some estimate of their values, RF , the ratio of fetches in the naive

machine to fetches in the APL machine,is given by:
RE «» HBDXITY 4/ZXTY inoe gopp.

RxZ RxZ
Zx+/|TY . Zx(M+S+2xN) . M+S+(2xR)-2 ~
AR e P — — because N=R-1

MtS5-2

ThUS, RF 2 2+ R

Hence, for fetches, the APLM does at least twice as well as the NM if there are

at least two monadic or select 6perators. The worst case is when M or S or V'

‘is 1 and the rest are 0,' in which case the ratio is 1. The above also shows that

the ratio increases (without bound) in proportion to the number of monadic and
select operators in the expression &.

The ratio of stores for the two machines, RS, is:

(+/BD)++/(("A=TY)VTVA(LSTY)) /(4+RR)
Z+(Px(u+Y))++/(1=TY)/N1x(3+RR)

RS <+

> (ZxpRD)++/(("1=TY)VIVA(1<TY))L(L+RR)
Z+(Px(4+Y))++/(1=TY)/N1x(3+RR)

+/((C1=TY)VTVA(L<TY)) /(4 +BR
. VA . .
(Px(4+¥))++/("1=TY)/N1x(3+RR)
7

(M+N+S)+

<>

1+

(SINCE pRD <> M+N+S)
But the numerators of the two fractions with denominator Z are bounded, ‘
whileZ can increase without bounds, Thus for large Z,
RS=M+N+S
That is, in expressions in which the.size of the operand arrays is large (i.e., at
least as many elements as there are operators) the NM requires more stores
than the APLM, approximately in proportion to the number of operators in the

exXpression.

- 176 -

In the case of temporary storage allocated, the ratio, RT, is:’

+/TV/(4+RD+RR)
(Px(4+Y+Z))++/(1=TY)/N2x(3+RR)

RT <«

+/TV/(pRD)p(44Y+7)
(4+Y+2)++/(1=TY) /N2x(3+RR)

- _ +/TV
1++/(1=TY) /N2x(3+RR)
H+Y+Z

Again, the lower bound is greater than 1, since (+/Tv)z1. In this case, the

ratio is of the order of +/TV,for large Z, which is a function of the tree structure
of & rather than an explicit function of its operatof éount, Note that in the case
whgre & contains no select operations and pis O,the ratio is infinite, since the
APLM requires no temporary storage.

For the case of operations the ratio, RO, is:

+/CA<TY)/RD
RO = Gz

But Z<RDand the compression in both numerator and denominator select the

Saine lerws, Thus, 021

E. Example — An APL One-Liner

APL makes it easy to produce simple one-line programs to do
some interesting task, One such is the program (expression) for find-
ing all the prime numbers less than or equal to N, as shown below.
(Index origin is 1)
PRIMES < (2=+/[1]0=(1N)e.|[1N)/\N
Although the algorithm used is clearly inefficient, such expressions are not
uncommon. Since the APLM purports to be an efficient evaluator of expressions,

it is worthwhile to look at this example in more detail. The machine code for

- 176 -

this expression is:

OP OPERAND COMMENTS

LDNF N

IOTA This gives the compressee, ¥

LDNF N

IOTA

LDNF N _

IOTA : These are the 1¥ operands of outer product ‘

GDF MOD (WN)o.|1N — Matrix of remainders of all
possible divisions ‘

LDS 0

EQ 0=(1N)e.|\N — Has 1 for each 0 remainder,
else 0

LDS 1 A .

RED 'ADD B +/[110=(1N)e. |\N — Add rows of this

' matrix '

LDS 2 ‘

EQ 2=+/[130=(1N)o.| 1N — Find which columns
have two 1 entries

LDS 1 -

CMPRS Do compression. These are the primes

L.DN PRIMES Assign result to PRIMES

ASGN

Since the number of scalar operations performed is the same for both
machines, this will not be measured. At the point before executing the LDS 1
instruction which precedes the CMPRS, the state of the APL machine is as

shown in Fig. 1.

- 177 -

Vs Qs _ |

OP VALUE LINK AUX
SGT e > 1J (LtN) 01
SGT e—— ~ RED | 8 e .
(" 13 (LN) 10
1J (LN) ‘ 01
GOP MOD 2 11
IRD @T1 11
S 0 ‘
AL .< OP EQ 2 11
_ OP ADD 7 11
SGV <«
s (-N)
MIT
IRD @T2 01 '
S 2.
- OoP EQ 2 01~

FIGURE 1--State of the registers before compress operator,

Up to this point, the NM used memory as follows;

Instruction Fetches Stores Temps

GDF NZ-IJN Nz 13N116 N2 18N 116 (N16 stores and temnps
' necessary to evaluate
each ¢N belovre GDF +

the space for result)

EQ Nz N2 0
RED N2 N++5 N+5
EQ N N 0

TOTAL 3N°+2N 2N2+4N+21 N2+3N+21

The count for the APLM at this point is 0 fetches, 9 stores, and 9 temps for the
descriptors T1 and T2. However, when the CMPRS operator is found, the left Y

operand must be evaluated as explained in Chapter IV. Thus, the long QS segment

- 178 -

must be handed over to the E-machine. This requires N2+N fetches, N+5 stores,
and N+5 temps. In order to do the CMPRS in the NM, the right operand (¢N)

must be evaluated,requiring N+5 each of stores and temps. The CMPRS itself
takes another N+P fetches, P+5 stores, P+5 temps in the NM,where P is the
length of the result. In the APLM, the CMPRS is expanded and deferred,as is

the ASGN which follows. The NM requires no work to do the ASGN. The APLM,
after this instruction, has its QS full of deferred code for the CMPRS and ASGN.
It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not

the correct size already). Passing the QS to the EM requires another N+P fetches

and P stores for the APLM. Thus the grand totals are:

FETCHES STORES TEMPS
NAIVE MACHINE 3N2+3 N+P 2N2+5N+P-l-3 1 N2-1-4N+P+3 1
APL MACHINE N2+2N+P N+P+23 N+P+23

Recall that P is really a function of N, the number of primes less than N,
which is asymptotic to —l-c-)—g-—N—- . Thus, we can evaluate the performance ratios
between the two machines in some specific cases. These ratios are RF, RS,
and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries,
respectively. Also of interest is RM, which counts all memory access (fetches
+ stores)and is the ratio of these two quantities, Table 3 below tabulates these
quantities for a few values of N,

TABLE 3
Performance Ratios for Primes Problem as a Function of N

N p RF RS RM RT
10 4 2.69 - 7.7 3.84 4.7
100 25 2,97 138,9 4,91 70,6
500 95 2.99 813.3 4,98 408.0
1000 168 2.997 1683. 6 4,99 843.2
5000 669 2.999 8788.8 4,998 4395.8
10000 1229 2.9997 17779.2 4.9992 8891. 0
50000 5133 2.99994 90656. 6 4.9998 45329.7
lim]olgN 3 2N 5 N
N o0 e :

- 178 -

- 08T -

NAIVE MACHINE

TABLE 4

Operation Count for OnePass Through Main Loop, Program REC

APL MACHINE
\

STATEMENT FETCHES STORES TEMPS FETCHES STORES TEMPS -
6 S 2545 5+5 0 S+4 4
7 2K 2E+5 K+5 K K+9 K+9
8 1.5K 0 D 1.5K 0 0
9 g 25 21 8 , 31 29
10 45+4 48+20 25+20 45+4 45+38 25+38
11 | 352+3S 252+25+5 524+5+5 s2+s 4 4
12 35+3 35+8 5+6 S+1 S+9 8
13 352+98+1 252+6S+22 52+45+22 252+48 S2+25+24 s2+25+24
14 252+28S 292+25+12 252+25+12 sZ+s s2+5+16 S2+5+16 |
15 S S+5 5+5 s S+9 S+9
TOTAL: 852+235+16 | 652+208+105 48%+125+101 4824128425 | 282+108+144 252+65+141
+3.5K +2K +K +2. 5K +K +K

The above table indicates that the APLM does significantly better than the
NM on this program. The RS figures may be deceptive since in terms of total
memory accesses the ratio approaches a limit of 5. This is still significant, as

is the RT ratio, which increases linearly with N (for large N).

F. Example — Matrix Inversion Programs

As a final example, we analyze the performance of both machines on a
standard example, a program which does matrix inversion by elimination with
pivoting. To avoid ché,rges of bias, the particular program used was taken from
the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19).
The program REC is shown in Fig. 2 and has been changed only by altering the
syntax of the conditional branch statements, This does not affect the measure-
ments made here and is done purely for esthetic reasons.,

Table 4 counts the memory accesses and temporary stores statement-by-
statement for one pass through the main loop in program REC. This loop is
executed S times, All but the terms involving the variable K are independent of
the iteration count. K varies from S to 1 from the first pass to the last. Tims, |
we can obtain the totals for all passes through the loop by multiplying non-K terms
by S and by summing the K terms. This gives the counts in Table 5 below:

TABLE 5

Total Operation Count For Main Loop, Program REC.

FETCHES STORES TEMPS
Naive ' .
Machine 855+24., 758 +17.758 655+2152+106S 455412, 5894101, 58
APL "
Machine 455413, 2552+14, 258 25%410.5524144.55 28°+6.55°+141, 58

=181 =

N

L2:

13
14
15
16

17

VB« RECA 3 P ;I ;dJd 3 K ; S)
A MATRIX INVERSION BY ELIMINATION WITH PIVOTING

IF (2=ppA)A=/pA THEN -L1
A ERROR EXIT

O « 'NO INVERSE FOUND'

RETURN

S IS DIMENSION OF 4

P RECORDS PERMUTATIONS OF ROWS OF A

K SELECTS SUBARRAY OF A FOR ELIMINATION
WK « S « 14p4A

ADJOIN NEW COL TO A FOR RESULTS
((Sp1),0)\4 :

v}
4D 4DDD

kN

R w#**MATN LOOPxxx (REPEATED S TIMES)
A INITIALIZE LAST COLUMN
Al3;5+41] + 1=.5 '
A FIND PIVOT ELEMENT, WITH ROW INDEX I
J « |A[vK;1]
I « dJ v [/J
A INTERCHANGE ROWS 1 AND I
p RECORD THE INTERCHANGE IN P
P[1,7] « P[I,1]
AC1,7;18] « ALI,1;15]
A CHECK FOR SINGULARITY
IF 1E730 > |A[131) + [/|,A THEN L2
o NORMALIZE PIVOT ROW
AC1;] « A[13] & A[1;1]

R FLIMINATION STEP
A « A-((12185) x AT1;]) e,x Al1;]

A ROTATE A I'O PREPARE FOR NEXT STEP

n THTS BRINGS 'ACTIVE' SUBARRAY TO UPPER LErIY
A« 19[1]1104
P « 1¢P

a ITERATE ON K

IF 0<K<K-1 THEN ~L3
A DO COLUMN PERMUTATIONS TO PRODUCE RESULT

B « A[;P115] '

v ,

: EXAMPLE PROGRAM: REC

- 182 -

In order to compare the performance of the APL machine to the naive machine,
~ let us form the ratios of the corresponding counts and see how they behave for
different values of S. (Recall that S is the dimension of the matrix being inverted
by the program under consideration.) The first derivatives of all three ratios are
positive for S>0, so that all ratios are increasing as S increases., Table 6 sum-
marizes the properties of the ratios as a function of S,

Let RF(S) by the ratio of fetches in the NM to those in the APLM, RS(S) be.
the ratio of stores, RT(S) be the ratio of temporary storage allocé.ted, and RM(S)
the ratio of all memory accesses (fetches + stores). Theh,

832+24, 755+17,75

RF(S) =
45°+13,258+14, 25

62+215+106
25%+10,55+144,5

RS(S)

1452 +45, 755+123. 5
65423, 755+158.75

RM(S) =

4Sz+12, 55+101,5
282+6. 55+141.5

RT(S) =

TABLE 6

Machine Comparison Ratios For Main Loop of REC

S RF(S) RS(S) RM(S) RT(S)
1 1.6 0,847 0.97 0.787
2. 1.75 0,99 1,18 0.878
3 1.82 1,15 1,36 0.978
5 1,89 1.46 1.64 1,18
10 1,95 2,04 1.99 1,54
100 1.996 2,94 2.31 1.99
1000 1.9996 2,995 2,332 11,9997
limit 2 3 21/3 2
S—»

- 183 -

An examination of Table 6 shows that for input arrays A of dimension greater
than or equal to 3,3 the APL machine does better than the naive machine by using
fewer fetches and stores. If pA is 4,4 or more, fewer temporaries are allocated

by the APLM. Finally, the entries for S=10 and S=100 show that these improve-

ments rapidly reach the theoretical limits. In the region S<4 the size of descriptor

arrays is approximately the same as the size of the value part of vectors of length
S and not much less than the size of arrays of dimension S, S. 'AI‘hu's for small S,
the extra overhead in the APLM for creating descriptor arrays in drag-along
predominates. However, as S increases, the APL machine improves significantly
compared to the naive machine in its economy of mémory usé.ge and access.

The program REC used in the previous discussion was taken stré.ight from
the literature and was changed only by altering the branch commands and by
replacing the operator o by an equivalent construction (bt;cause o is no longer a
defined operator in APL). Primarily, it is important to emphasize that. this is
not a specially prepared example designed to tout the virtues of the APL machine. In
some sense, this is a ''typical' program. By looking more closely at Table 4
we can get a clearer idea of where the APLM does better than the NM and where
it lags behind.

The APL machine does better (that is, uses fewer fe(ﬁhes, stores, and/or
temporaries) than the naive machine on statements 6,7,11,12,13,14 does the
same as the NM on statement 8, and worse on statements 9, 10, and 15, The
places where the NM does better than the APLM are precisely those statements
or expressions in which the more succe‘ssful strategy is to do an immediate
evaluation rather than defer the operation. All three are, in this example, state-
ments of the form variable - T variable, where T is an arbitrary permutation of

the subscripts of variable. In all three of these cases, the APLM does worse

- 184 -

ov

~4

only by an additive constant, which is the space (and stores) required for a DA

to describe the deferred right-hand side of the expression. The NM avoids tinis

by evaluating directly. The same number of fetches are done by both machines

for these statements. Of more interest are the cases where the APLM improves
on the NM. In all situations these are statemeﬁts involving more than one operation
on the right-hand side of the assignment arrow. By using drag-along and beating,
the APLM requires fewer temporaries for intermediate results, Which in turn
requires fewer sbores and consequently fewer fetches when the intermediate results
are used later in the expression. The most dramatic demonstration of the efficacy
of drag-along is shown in the use of temps in statements 6,11, and 12 and thé
stores in statement 11, In all these cases the APL machine uses storage in

proportion to the number of array operands while the naive machine requires

storage proportional to the size of the array operands. Also, with the exception

of stétement 10, the number of stores for each statement is proportiqnal to the
size of the result for the APLM while in the NM it is geﬁerally proportional to
both the size of the result and the number of a;rray operatioﬁs. .

As an interesting experiment to see how much thése meésureé of the inachine"s
operation are a function of the actual machine design and how much they depend
on the sample program, the author rewrote the function REC in the form shown
in Fig. 3, where it is renamed REC1. RECI is the same algox;ithm used in REC
except that the actual permutations of array A in lines 10 and 14 of REC have been
eliminated by using appropriate indexing instead. Also, statement 13 in REC
(which corresponds to statement 14 in REC1) is recast to eliminate unnecessary
operations and to minimize temporaries in both machines. An analysis of the

main loop similar to that for program REC is summarized in Table 7.

1l
=
o0

2

F WP

13

1y

15

16
17

L2:

L1

L3:

J
I

®P®DD®DDDP

++4>23@>2

R

« REC1 A ; I ;J + N ;R : S ;T ; W

MATRIX INVERSION BY ELIMINATION WITH PIVOTING
'OPTIMIZED' VERSION

THIS PROGRAM DIFFERS FROM REC IN THAT ARRAY

PERMUTATIONS ARE DONE BY CHANGING THE

PERMUTATION VECTOR, R, RATHER THAN ACTUALLY

PERMUTING THE MAIN ARRAY, A IS THEN ACCESSED

BY INDEXING WITH R,

(2=ppA)A=/pA THEN ~IL1
*NO INVERSE FOUND'

18 « (pA)[1]

S IS DIMENSION OF A

R RECORDS PERMUTATIONS AND IS USED TO ACCESI A
N COUNTS ITFRATIONS

0

ADD NEW COL TO A; BUILD RESULT IN LEFT COL
(Nn,Sp1)\4

*x*xMAIN LOOP*** (REPEATED S TIMES)

FIND PIVOT ELEMENT

|[AT(-N)Y+R;N+2])

J v [/d

INTERCHANGE BY ALTERING PERMUTATION VECTOR

R[1,I] « R[I.1]

A

INITIALIZE RESULT COLUMN .

AC;N+1] « RLI] = 8
IF 1E730 > |ACRC11;] = I/1,A THEN L2

W

T

A
<
fa
‘—

A

NORMALIZE FPIVOT ROW, AND SAVE IN W
ACR[11;] « ATRT11;] # ACRL1D;M+2]
I IS ACTIVE COLUMN '
AL;N+2]

ELIMINATION STEP

AC31+R;] « A[L1+R;] - T[14R] o,x W

L]

'ROTATE' A BY ROTATING R

R « 16R

IF
B
v

<

ITERATE ON N
S > N«N+1 THEN +L3
AL ;R S]]

FIGURE_3: 'OPTIMIZED' LXAMPLE PROGRAM: REC1

- 186 -

2)

(™

- L3T -

e

2 -
TABLE 7
Operation Count for One Pass Through Main Loop, Program REC1
NAIVE MACHINE APL MACHINE
STATEMENT FETCHES STORES TEMPS FETCHES STORES TEMPS
7 48-4N 3S-3N+10 28-2N+10 25-2N S-N+17 S-N+17
8 1.58-1.5N 0 0 1.58-1.5N 0 0
9 8 23 21 8 31 29
10 S 25+5 S+5 0 S+4 4
11 352+38 252+28+5 s24+8+5 s2+8 4 4
12 3S+3 35+8 . S+6 S+1 25+10 * 8 kx
13 S S+5 S+5 S S+4 * 4 REx
14 5S2+55-10 - 482+45+19 252+45+26 282445-6 s2430 31
15 S S+5 S+5 S S+9 S+9
TOTAL: 852+19.55+1 | 6S2+16S+80 382+115+83 382+11.58+3 | S2+68+109 25+106
-5.5N -3N -2N -3.5N -N -N
(+10 once). (+2S+11 once)

* +5 once for entire loop
** +5+6 once for entire loop
**% +8+5 once for entire loop

In this algorithm, as in REC, the inner loop is performed S times. The
counts shown in Table 7 are independent of the iteration number except for terms
involving variable N. Examination of the program shows that N goes from 0 to
S-1, increasing by 1 with each pass through the loop. Thus, as in the case of
REC, we can obtain total counts for the main loop by summing the N terms and
multiplying the others by S. The results are summarized in Table 8.

‘ TABLE 8

Total Operation Counts For Main Loop, Program REC1

FETCHES STORES TEMPS
Naive .
Machine 855+16. 755°+3. 755 65°+14.55°481. 55 355410524848
APL : ,
Machine 35°49.755+4. 758 P+5.552+109. 55+10 1.55%+108. 55+11

An immediate, rather startling observation from this table is that all of its
entries are strictly less than the corresponding entries in Table 5 which summarizes
the operations of REC. This is somewhat surprising because although the rewriting
of the program was dbne in order to optimize it for the APL machine, it unexpectedly
improved performance of the naive machine, as well. In any case, this simply
lends more weight to the data summarized in Table 9, where the performance
ratios are computed for the two machines operating on this program.,

For program REC1, based on the data in Table 8, the ratios are:

2o
REF(S) = B5+16.758+3. 75
35%+9. T55+4. 75
655414, 585481, 58
RS(S) = —
§3+5.55°+109. 58+10

N 1455431, 2552485, 258
RM(8) = ~gt 2t
45°+15.2587+114, 255+10

383+1082+84S
1. 582+108. 55+11

RT(S) =

- 188 -

J-

s

e

TABLE 9

Machine Comparison Ratios For Main Loop of REC1

S RF(S) RS(S) RM(S) RT(S)
1 1.63 0.81 0.91 0.8
2 1.91 1.04 1.23 0.99
3 2. 07 1.29 1.53 1.21
5 2.24 1.85 2.02 1,77
10 2,41 3.11 2.69 3.88.
100 2.64 5,177 3.44 120.2
1000 2.66 5.98 3.49 1871.3
Limit . 22/3 6 3.5 28
] '

G. Diécussion

In the preceding sections we look at a number of typical inputs to the APL
machine and find that in all but a few singular cases, it evaluates them more
efficiently than a corresponding naive machine. This is a fair kind of comparison
because although the naive machine mentioned here is hypothetical, _it is based
on the design of existing APL implementations, at least one of which is commercially
available. The important question, of course, is what kinds of conclusions may
we draw from these particular cases? I offer the following:

1. Section D derives lower bounds, all greater than 1, for the ratio between
memory accesses and temporary use on the two machines on a simple class of
expressions. From this and the previous section it appears that the APLM
evaluates expressions of the type analyzed in Chapter II more efficiently than

the NM.

2. Operations involving scalar operands are done equally well on both machines.

3. Sections E and F contain more realistic program examples which were

e

analyzed in detail. In both cases, the APLM improves significantly on the NM
in its use of memory. |
4, .The”only cases where the APLM does worsé are those expreésions ™
containing a single operator which does"not fit into the beating scheme, and for
which the best evaluation strategy is to evaluate immediately, rather than to
~defer. In these cases, the NM does slightly better than the APLM but only by
a small additifre constant. (This being the space and stores for the APLM to
construct a deferred descriptor.)
In view of the above, it is clear that in most cases, the AP'L machine design
proposed here is more efficient than a naive machine in the sense that for any
given program, the APLM uses fewer fetches, stores, and allocates fewer - 4

temporaries than the naive machine. *

[
A corollary worth noting is that there exist inputs (i, e., programs) for which “)
the APLM always performs worse than the NM according to the measures derived
here. However, this should be neither startling nor alarming and does not detract
from the general conclusion above.

- 190 -

i)

ety

CHAPTER VI

CONCLUSIONS

In this chapter, we will summarize all that has gone before and indicate some

)

- directions for future research on this subject.

A. Summary
Although the original goal of this investigation was to produce a machine

architecture appropriate to the language APL, some of the work QOne in pursuit
of this goal is intrinsiéally interesting in itself. In particﬁlar, we call attention
to the mathematical analysis discussed in Chapter II. In Chapter I, we find that
there is a subset of APL operators (the selection operators) whose compositions
are also selection operators. Further, compositions of these operators can be.
represented compactly in a sté.ndard form. Moreover, there is a set of trans-
formations sufficient to transform any expression consisting solely of selection
operators acting on a .éingle array into an equivalent expression in standard form,
By extension, similar results are described that apply to select expressions which
include scalar arithmetic operators, reductions, and inner and outer products.

One result, of at least théoretical interest, is that all inner products can be
represented as a reduction of a transpose of an outer product (Theorem Tb).

The general dyadic form is introduced in Chapter II as a vehicle for extending
the results about selection operators on single arrays or scalar products to
analogous results on inner and outer products.

In Chapter III, we show that if arrays are represented in row-major order
and if the representation of the storage access function for an array is kept separate
from the array value, then the result of applying a selection operator to an array
can be obtained simply by transforming the mapping function. This approach is

the basis for beating, one of the novel features of the APL machine. In mathematical

- 191 - ‘

terms, beating is equivalent to the following: if an array is construed as a fupction

(the storage access function S) applied to an ordered set of values A, and if FI,

F2, ..., FN are selection operators then the sequence

F1(F2(. . . (FN(S(A))))) c
is equivalent to some new function T(A) where T is a functional composition with o:
T+—(Flo(F20(... (FNo0S)))) .
Chapter IV describes a maciline i)ased on t}ie beating process and the drag-

along principle. The latter says tha}t all array cdcﬂaﬁons should be deferlred as

long as possible in order to gain a wider context of information about the expression

being calculated. This is done because of fhe possibility that extra iﬁorﬁaﬁon | :
‘ might allow the simplification of the expression to be evaluated, This is particularly
important when, as in APL, operands are array-shaped. In effect, a language. "
like APL which allows sophisticated operations on structured data to be encoded
very compactly, makes it possible to write expressions which, though innocent-
looking, require much calculation. In fact, one major goal of the machine design
is to minimize any unnecessary calculations in evaluating APL programs. Thus,
drag-along becomes an important way of doing so. Drag-along combines all
element-by-element operations in an incoming expréésion into a single, mor_e.
complex, element-by-element operation which need only be done once for each
element of the result array. This is based on the fact that for most APL operators, F,

A F B means for all L ELT1p(A E B) | '
\ (4 FE B)(;/L] = (F1 A);/L1 E (F2 D)L /L1T,

where F1 and F2depend on F and are normally the identity function. Simply g
stated, this says that a singlé element of an array-valued expression can be com-

puted by evaluating a similar expression of single elements.

- 192 -

[

v

The APL Machine is divided into two submachines, the Deferral Machine
and the Execution Machine, in order to facilitate drag-along and beating. Con-
ceptually, the DM is a dynamic, data-dependent compiler which examines incoming
expressions (rﬁéchine code) and their operand values (data) and produces instructions
to be executed by the EM. This code is deferred in an instruction buffer and can
also be operated upon by the DM. At appropriate times, control is passed to the
EM which executes the deferi'ed instructions, Since EM code must compute an
array-valued result, a stack of iteration counters are used by the E-machine to
produce all elements of the result one at a time. A feature of the APLM which
makes it easy for the DM to manipulate its own deferred code is that programs
(and deferred code) aré organized into segments which contain only relative ad-
dresses. Thus pieces of program can be referenced by descriptors, and these
pieces can be relocated at will simply by changing the descriptors and not the code.
This scheme leads to the use of a stack of instruction counters, each one of which
refers. to a currently active segment in either the EM or the DM, Thus it is easy
for the machine to change state and recover previous states, "thereby simplifying
the entire control process.

Chapter V contains a discussion of the machine design in which it is shown
that at worst, the APL Machine pertorms the same as a naive machine executing
the same program and at best shows a significant improvement. The primary
parameters used in the evaluation are measures of memory utilization, . Other
measures, such as encoding densities, are not appropriate, as this aspect of the
machine design has not been specified. Such measures should be taken into account,
however, if it is desired to implement a machine such as this. The evaluation of
a subset of APL containing only scalar arithmetic operators and select operators

shows that the APLM approaches the theoretical minimum of memory accésses

- 193 -

and temporary storage utilization for this class. Further, the ratio of accessing)
operations between the NM and the APLM are significant since the NM expends'

effort for fetching and storing in propo'rtion to the number of operators in an

expression while the APLM does fetches in proportion to the number of operands

and stores only once. Similarly, it is noted that for this class of expressions,

the APLM needs to allocate space only for the result of an expression wﬁile the

NM reqﬁires temporary storage which is a function of the lree siructure of the

expression heing evaluated.

In the same chapter, ananalysisof an APL "one-liner' and a matrix inversion
program containing a more general mix of opérators, shows that the APLM does
better than the NM by at least a factor of 2 on these measures., A final observation
is that the APLM described here is not significantly different in complexity from
’a naive machine. Thus, it could presumably be implemented with approximately
the same resources. Hence, it appears that this design is an improvement and
could profitably be used in tuture incarnations of machines for APL,

Although the APL machine is an improvement over the naive épproach, it
would be absurd to claim that it is the 'final solution' to the problem. Clearly,
it is not. There are still,some functions, such as compression or catenation,
which it handles awkwardly. Similarly, it is distasteful (and inefficient) to evaluate
operands of a GDF explicitiy if they are other than simple select expressions.
Ideally, there shduld be no temporary storage used for the evaluation of expressions
without side effects (such as embedded assignment). Thus, there is still work

to be done on this problem. R

N o

- 194 -

’i\‘

v}

B. Future Research

The ideas summarized here tend to fall into two classes — extensions or
refinements of the work already reported, and new problems suggested by the
current research,

In the second category is the area of mathematical analysis of APL operators.
The work in Chapter I of this dissertation barely skims the surface of this topic.
The general problem, of course, is at the heart of ""Computer Science, ' namely
the study of data-structures a;nd operations upon them, However, APL and its
extensions are rich in mathematical interest and this fieid deserves fﬁrther,
more concentrated investigation. Similarly, the results found in Chapter II as
well as the structure of the machine have implications for language design. An
important next step is to take some of the ideas which appear in the machine or

y
the analysis and att:;mpt to map them back into the programming language. As a
trivial example, the ease with which the machine evaluates select ekpres'sions
suggests that there ought to be the possibility of more general select éxpressions
allowed to the left of an assignment arrow, e.g., it shouldbe possible to s'ay
(1 18M)+A, meaning asSign A to the main diagonal of M. Again, the ease with which
the APLM does segment activation suggests that there should be some parallel
fac.ilityl in a programming language. At the very least, APL should contain some
more sophisticated sequence-controlling operations such as case, conditional,
and repeat constructs. A final possibility along these lines is suggested by the
similarity among the various selection operations. Simply that there exists such
a compact standard form suggests that there might be a different, perhaps more
general, set of selection primitives which would be desirable in a language like APL,

In the direction of refinements there are several areas of interest. One is

to try to add more parallelism to the machine., In this work, we have used the

- 195 -

implied parallelism of APL in drag-along and beating, but it appears not to be
fully exploited. For instance, there is the interesting possibility of making
the DM and the EM more independent, thus gaining an amount of parallelism.,
Thefe is no reason, for example, why there could not be multiple copies of both,
wofking simultaneously on different parts of an expression or program. Another
place where parallelism could be exploited is in the E-machine, Instead of doing
everything in serial, much could possibly be done on a grander scale.

It appears possible to extend the formulation of the standard form to include
more operators such as catenation, restructuring, rotation, compressién,
expansion, and explicit indexing. If such a general form could be found, the operation
of the machine could be simplified and perhaps made more efficient.

In order to have any real implementation of .the machine, it will have to be
extended to include instructions for input and output and other systems-type
functions. Also, as soon as an implementation is attempted, problems such as
encoding of data and instructions will have to be broached. Similarly, it will .
probably be necessary. to consider the question of data types in a real incarnation
of the APL machine. . Other machine extensions which might be considered is the
addition of a set of registers (possibly stacks) for eliminating some of the problems
of temporary storage in EM code which does not follow the stacking discipline of
VS. This, inturn, entails the addition of instructions to the machine's repertoire,
although these might not have to be visible to the programmer.,

Although on the one hand it is counter to the idea of a language-oriented
machine, it might be desirable to give the (systems) programmer more direct
control over the E-machine. In\particular, this would make it possible to ""pre-

compile' particular segments for the EM when enough information is available in

advance. An interesting extension of this is to allow the EM to call upon the DM

- 196 -

4)

N

¢

-+,

in the same way that the DM uses the EM. This would make the overall system
more symmetric and might increase its power and vérsatility°

A further area of investigation combines language and machine design. This
is the problem of extending APL to include more general kinds of data structures,
such as lists or records, and then attempting to fit these into the structure of the
machine, This problem, in turn, makes further demands on the mathematical
analysis of the language and its operators.

Finally, it is important to investigate the possibility of extending some of

the methods and results of this work to other languages and data structures.

C. Concluding Remarks

This chapter has summarized the mathematical analysis and machine design
reported in this dissertation and has indicated some directions for fruitful investi-
gations in the future. It is pleasing to be able to end this work with a feeling of
accomplishment, yet it is perhaps more satisfying to know that this is not really

an ending, but a beginning.

The Road goes ever on and on,

Down from the door where it began. :

Now far ahead the Road has gone, /
And I must follow, if I can,

Pursuing it with weary feet,

Until it meets some larger way,

Where many paths and errands meet.

And whither then?..,

I can not say.

J.R. R.Tolkien

- 197 -

REFERENCES

Abrams, P. S. [1966]. An Interpreter for "Iverson Notation.' Report No.
C$47, Computer Science Depértment, Stanford Univérsity (August 17).
Adams, D. A. [1968]. A Computation Model with Data Flow Sequencing. Report
No. CS117, Computer Science Department, Stanford University (December).
Amdahl, G. M. (1964 , The Structure of SYSTEM/360: Part Il — Processing
Unit Design Considerations. IBM Systems Journél, Vol. 3, No. 2, 144-164.
Amdahl, G. M., Blaauw, G. A. and Brooks, Jr., F. P. [19644]. Ar\chitecture
of the IBM SYSTEM/360. IBM Journal of Research and Development,
Vol. 8, No. 2 (April), 87-101.
Anderson, J. P., [1961 . A Computer for Direct Execution of Algorithmic

Languages. 1961 Eastern Joint Computer Conference, The Macmillan

Company, New York, 184-193,

Bairstow, J. N. [1969‘]., Mr. Iverson's Language and How It Grew. Computer
Decigions, Vol. 1, No. 1 (September), 4245,

Barton, R. S. [1961]. A New Approach to the Functional Design of a Digital

Computer. Proceedings of the Western Joint Computer Conference, 393-396.

Barton, R. S. {1965). The Interrelation Between Programming Languages and

Machine Organization. Proceedings of the IFIP Congress 1965, Vol. 2,

617-618,

Bashkow, T. R. ,1964]. A Sequential Circuit for Algebraic Statement Transla-

tion. IEEE Transactions on Elcotronic Computcra, Vol. EC 13 (April),
102-105.
Bashkow, T. R., Sasson, A. and Kronfeld, A. 1967 . System Design of a

FORTRAN Machine, IEEE Transactions on Electronic Computers,

Vol. EC-16, No. 4 (August), 485-499,

- 198 -

}?‘\

Bayer, R. and Witzgall, C. [1968]. A Data Structure Calculus for Matrices.
Report No. 20, Information Sciences Laboratory, Boeing Scientific. Research
Laboratories, Seattle, Washington, (May). |

Berry, P. [1969]. APL\360 Primer. Form No. C20-1702-0, International
Business Machines Corp. , White Plains, New York.

Berry, P. [1968}. API\N1130 Primer. Form No. C20-1697-0, International
Business Machines Corp., White Plains, New York.

Branin, Jr., F. H., Hall, L. V., Suez, J., Carlitz, R. M., and Chen, T. C.
[1965]. An Interpretive Program for Matrix Arithmetic. IBM Systems
Journal, Vol. 4, No. 1, 2-24,

Breed, L. M. and Lathwell, R. H. [1968]. The Implementation of APL\360.

Interactive Systems for Applied Mathematics, Academic Press, New York,

390-399.

Buchholz, W. [1962]° Planning a Computer System, McGraw-Hill Book Co.,

New York,

Burks, A.-W., Warren, D. W. and Wright, J. B. [1954]. An Analysis of a
Logical Machine Using Parenthesis-Free Notation. Mathematical Tables
and Other Aids to Computation, Vol. 8, No. 46 (April), 53-57.

Burroughs Corporation [1963]. The Operational Characteristics of the Proces-
sors for the Burroughs B5000. Burroughs Corporation, Detroil, Michigan.

Clark, E. R. [1967]. On'the Automatic Simplification of Source-Language Pro-
grams. Communications of the ACM, Vol. 10, No. 3 (March), 160-165.

Cohen, J. [1967]. A Use of Fast and Slow Memories in List-Processing Lan-
guages. Communications of the ACM, Vol. 10, No. 2 (February), 82-86.

Collins, G. E. [1965]. Refco III, A Reference Count List Proce'ssing System
for the IBM 7079, Research Report No. RC-1436, IBM Research Division,

Yorktown Heights, New York (May 11).

- 199 -

Davis, G. M. [1960]. The English Electric KDF9 Computer System. Computer
Bulletin, Vol. 4, 119-120.
Dijkstra, E. W, [1968]. Go To Statement Considered Harmful, (letter) Com-

munications of the ACM, Vol. 11, No. 3 (March), 147-148,
Elspas, B., Goldberg, J., Green, M., Kautz, W. H., Levitt, K. N., Pease,

M. C., Short, R. A., and Stone, H. S. [1966]. Investigation of Propagation-

Limited Computer Networks. Report No. AFCRL 64-376 (TII). Slunford

Research Institute, Menlo Park, California (June).
Falkoff, A. D. [1965]). Formal Description of Processes — The First Step in
Design Automation. Research Note No. NC-510, IBM T. J. Watson Research

Center, Yorktown Heights, New York (June).
[

Falkoff, A, D. and Iverson, K. E. [1968a]. The APL\360 Terminal System,

Interactive Systems for Applied Mathematics, Academic Press, New York,
22-317.

Falkoff, A. D. and Iverson, K. F. [1968h]. APL\360: User's Munuual, Intcr-
national Business Machines Corp,, Yorktown Heights, New York (July).
rFalkoft, A, D., Tvoraon, I, Ei wud Sussenguth, E, B, [1964]. A Formal De-

scription of SYSTEM/360. IBM Systems Journal, Vol. 3, No. 3, 198-262,

(Errata; lbid., Vol. 4, No. 1, 84).
Galler, B. A. and Perlis, A. J. [196Z]. Compiling Matrix Operations. Com-
munications of the ACM, Vol. 5, No. 12 (December), 590-594,

Galler, B. A, and Por]is, A, J. [1967]. A Prupusal for Definitions in ALGOL.

Communications of the ACM, Vol. 10, No, 4 (April), 204-219.

Hellerman, H. [1964]., Experimental Personalized Array Translator System,

Communications of the ACM, Vol. 7, No, 7 (July), 433-438.

- 200 -

4)

-~

«”

%

G

Hill, U., Langmaack, H., Schwarz, H. R. and Seegmiiller, G. [1962].

Efficient Handling of Subscripted Variables in ALGOL 60 Compilers. Pro-

ceedings of 1962 Rome S;ymposium‘on Syrrllbolic' Languages in Data Process-
ing, Gordon and Breach, New York, 331-340. |
Hillegass, J. R. [1968]. Burroughs Dares to Differ. Data Processing Magazine
(July).
Hoare, C. A.R. [1968] . Subscript Optimization and Subscript Checking. Algol
Bulletin, No. 29 (November) 33-44.

Tliffe, J. K. [1968]‘, Basic Machine Principles. American Elsevier Publishing

Company, New York,
Niffe, J. K. and Jodeit, J. G. [1962]. A Dynamic Storage Allocation System.
Computer Journal, vol. 5, 200-209.

Iverson, K. E. [1966]. Elementary Functions: An Algorithmic Approach,

Science Research Associates, Inc., Chicago, Illinois.
Iverson, K. E. [1964]. Formalism in Programming Languages. Communications
of the ACM, Vol. 7, No. 2 (February), 80-88,

Iverson, K. E. [1962]. A Programming Language, John Wiley and Sons, New

York (1962).

Iverson, K. E. [1963]. Programming Notation in Systems Design. IBM Systems
Journal, Vol. 2, No. 2 (June), 117-128. |

Jodeit, J. G. [1968]. Storage Organization in Programming Systems. Com-
munications of the ACM, Vol. 11, No. 11‘(November), 741-746.

Knuth, D. E. [1967]. The Remaining Trouble Spots in ALGOL 60. Communica-
tions of the ACM, Vol. 10, No. 10 (October), 611-618,

Knuth, D. E. [1968]° The Art of Computer Programming, Vol, 1: Fundamental

Algorithms, Addison Wesley, Reading, Massachusetts,

- 201 -

Korfhage, R. R. [1965}, Deeply Nested Iterations. Communications of the

ACM, Vol. 8, No. 6 (June), 377-378, {
Lawson, H. W. [1968], Programming-Language-Oriented Instruction Streams.

IEEE Transactions on Computers, Vol, C17, No. 5 (May); 476—485. “
Lesser, V. R. [1969]. A Multi-Level Mirco Computer Architecture. Report

No. CGTM-87 , Stanford Linear Accelerator Center, Stanford University,

Stanford, California,
Lowry, E. S. and Medlock, C. W. [1969]. Object Code Uptimization, Com-

muunicatlons of the ACM, Vol. 12, No. 1 (January), 13-23,
McCarthy, J. [1963]. A Basis for a Mathematical Theory of Computation.

Braffort, P. and Hirschberg, D. (eds.), Computer Programming and

Formal Systems, North-Holland Publishing Co., Amsterdam, The Netherlands. r

McCarthy, J. [1966]. A Formal Description of a Subset of ALGOL. Steel, Jr.,

T. B. (ed.), Formal Language Description Languages for Computer Pro- Py

gramming, North-Holland Publishing Co., Amsterdam, The Nethcrlands, 1-7.
McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P, and Levin,
M. I. [1962a). Lisp 1.5 Programmer's Manuai. MIT Press, Cambridgoe,
Massachusetts.
McCarthy, J. [1962b]. Towards a Mathematical Science of Computation.

Proceedings of the IFIP Congress 1962, North-Holland Publishing Co. ,

Amsterdam, The Netherlands,
McKeeman, W. M. [1966]., An Approach to Computer Language Design. Report -

No. C$48, Computer Science Department, Stanford University, (August 31).

McKeeman, W. M. [1967]. Language Directed Computer Design. 1967 Fall Joint \

Computer Conference, Thompson.Books, Washington, D. C., 413-417,

Meggitt, J. E. [1964]., A Character Cemputer for High-Level Language Inter-

pretation, IBM Systems Journal, Vol. 3, No., 1, 68-78.

Melbourne, A. J. and Pugmire, J. M. [1965]. A Small Computer for the Direct
Processing of FORTRAN Statements. The Computer Journal, Vol. 8 (April),
24-28,

Mendelson, E. [1965). Introduction to Mathematical Logic, D. Van Nostrand Co.,

Princeton, New Jersey.
Mikhnovskiy, S. D. [1965a], Addressing of Elements of a Block Using Address

Scales. Glushkov, V. M. (ed.), Problems in Theoretical Cybernetics,

Naukova Dumka Publishing House, Kiev, U.S.S.R. Translation: JPRS
Washington, D. C. (1966), 71-80.

Mikhnovskiy, S, D. [1965b]. A Method for Abbreviated Notation of Blocks of
Data. Ibid., 38-44. |

Mullery, A.-P., Schauer, R. F. and Rice, R. [1963]. ADAM: A Problem

Oriented Symbol Processor. 1963 Spring Joint Computer Conference,

Spartan Books, Washington, D. C., 367-380.

Myamlin, A. N. and Smirnov, V. K. [1968]. Computer with Stack Memory.

IFIP Congress 68, D91-D96.

Naur, P. (ed), [1963]0 Revised Report on the Algorithmic Language ALGOL 60.
Communications of the ACM, Vol. 6, No., 1 (January), 1-17,

Pakin, S. [1968]. APL\360 Reference Manual, Science Research Associates,
Inc. , Chicago, Illinois.

Randell, B. and Russell, L. J. [1964]. ALGOL 60 Implementation, Academic

Presé, London.,
Satterthwaite, E. [1969]. MUTANT 0.5, An Experimental Programming Language.
Report No. CS120, Computer Science Department, Stanford University,

Stanford, California (February 17).

- 2038 -

Sattley, K. [1961]., Allocation of Storage for Arrays in ALGOL 60. Communica-
tions of the ACM, Vol. 4, No. ‘1 (January) 60-65.
Senzig, D. N. and Smith, R. V. [1965]. Computer Organization for Array

Processing. 1965 Fall Joint Computer Conference, Spartan Books,

Washington, D.C., 117-128,

Sugimoto, M. [1969]° PL/I Reducer and Direct Processor. Proceedings of the

24th National Conference, Association for Computing Machinery, New York.

Wagner, R. A. [1968]. Some Techniques for Algorithm Optimization with Ap-
| plicailon to Maﬁ;i.x Arithmetic Expressivns., Computer Science Department,
Carnegie-Mellon Uuiversity (June 27).

Weber, H. {1967]. A Microprogrammed Implementation of EULER on IBM
System/360 Model 30. Communications of the ACM, Vol. 10, No. 9
(Seplember), 549-558.

Wilkes, M. V. [1965]. Slave Memories and Dynamic Storage Allocation. IEEE
Transactions on Electronic Computers, Vol. EC-14, No. 2 (August), 270-271,

Wirth, N, [196'1]. On Certain Basic Concepts of Programming Langnages. Rcport
No. C365, Computer Soicnce Depuartment, Stanford University, Stanford,
California (May 1).

Wirth, N. and Weber, H. [1966]. EULER: A Generalization uf ALGOL and its
Tormal Definition, | |
Part I: Communicatlons otthe ACM, Vol, 9, No. 1 (January), 13-23;

Part TT: Communications uf the ACM, Vol. 9, No. 2 (February), 89-90;
Errata: Communicationsofthe ACM, Vol, 9, No, 12 (Decembér), 878.
Wortman, D. W, [1970]. PL/T Directed Language Design (to appear).

Yershov, A. P., Kozhokhin, G. 1. and Volushin, U, M. [1963]. Input Language

For Automatic Programming Systems, Academic Press; Londom,

-204 -

