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ABSTRACT 

I 

This dissertation proposes a design for a machine structure which is  ap- 

propriate for APL and which evaluates programs in this language efficiently, 

The approach taken is to study the semantics of APL operators and data 

structures rigorously and analytically. We exhibit a compactly representable 

standard form for select expressions, which are  composed of operators which 

alter the size and ordering of array structures. In addition, we present a set  

of transformations sufficient to derive the equivalent standard form for any 

select expression. The standard form and transformations a re  then extended 

to include expressions containing other APL operators. 

By applying the standard form transformations to storage access functions 

for arrays, select expressions in the machine can be evaluated without having 

to manipulate array values; this process is called beating. Drag-along is a 

' . . second fundamental process which defers operations on array expressions, 

making possible simplifications of entire expressions through beating and also 

leading to more efficient evaluations of array expressions containin; several 

operations. 

The APL machine consists of two separate sub-machines sharing the same 

memory and registers. The D-machine applies beating and drag-along to defer 

simplified programs which the E-machine then evaluates. The major machine 

registers a re  stacks, and programs a re  organized into logical segments. 

The performance of the entire APL machine is evaluated analytically by 

comparing it to a hypothetical naive machine based upon presently-available 

implementations for the language. For a variety of problems examined, the 

APL machine is the more efficient of the two in that i t  uses fewer memory 

accesses, arithmetic operations, and temporary stores; for some examples, 

the factor of improvement is proportional to the size of array operands. 
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CHAPTER I 

INTRODU CTION 

an optimist is a guy that has never 
had much experience 

Don 'Marquis, archy and mehitabel 

The electronic digital computer has progressed from being a dream, to an 

esoteric curiosity, to i ts  present pervasive and indispensable role in modern 

society. Over the years, man's uses of computers have become increasingly. 

sophisticated. Of particular importance is the use of high-level programming 

languages which have made machines more accessible to problem- solvers. 

In general, the use of problem- oriented programming languages requires a 

relatively complex translation process in order to present them to machines. . 

Although this can be done automatically by compilers, there is a wide gap to 

bridge between the highly- struc tured concepts in a programming language such 

a s  ALGOL, PL/I, or APL and the relatively atomic regime of today's computers. 

In effect, there exists a mismatch between the kinds of tasks we want to present 

to machines and the machines themselves. One possible way to eliminate this 

difference i s  to investigate ways of structuring machines to bring them closer 

to the kinds of problems people wish to solve with them. 

A, A Programming Language 

A particular programming language in which this mismatch with contemporary 

machines is especially obvious is APL, based on the work of KO E. Iverson 

(Iverson [1962]). APL i s  a concise, highly mathematical programming language 

designed to deal with array-structured data. APL programs generally contain 

expressions with arrays as operands and which evaluate to arrays, while most 



other languages require that array manipulations be expressed element-by-element. 

To complement its use of arrays a s  operands, APL is rich in operators which 

facilitate array calculations. Also, i t  is highly consistent internally both syntac- 

tically and semantically, and hence could be called "mathematicalv. Because of 

i t s  use of structured data and its  set of primitives which are  quite different from 

those of a classical digital computer, APL does not fit well onto ordinary machines. 

It is possible to do so, and interpreters have been written for at least three dif- 

ferent machines (Abrams [1966] ; Berry [1968] ; Pakin [1968] ). Finally, because 

of i ts  mathematical properties, i t  i s  possible to discuss the  semantic.^ of the 

language rigorously and to derive significant formal results about expressions in 

the language. 
I 

B. The Problem 

The problem considered in this dissertation is to design a machine structure 

which is appropriate to APL. f'Machine structure" here means a general func- 

tional scheme and not a detailed.logica1 design. The expected result is not a set 

of specifications from which a circuit designer could produce a working device, 

but. rather a eujerstsucture into which the features of the . language .. fit cleanly, 

Thus, this design must in some sense. be natural for the language. For example, 

the primitive operations and data structures should include those of APL, In 

addition, the machine should take advantage of dl available informatton in order 

to execute programs as  efficiently a s  possible. We use the word flmachine" in 

a very broad sense: what i t  really means here i s  "algorithm" and not necessarily 

any particular physical device. Such a machine could be implemented as  a con- 

ventional program o r  as  a hardwired device or a s  a microprogram .ill an appropriate 

system. For the purposes of this work, i t  doesn't really matter. 

- 2 - 



"APL" means any programming language which includes the semantics of 

A P L \ ~ ~ O '  (Pakin [1968]). We shall not be concerned with the particular syntax 

of APL, although this currently appears to be the best way to represent the 

semantic ideas of the language. In short, the machine should be able to handle 

array-structured data with ease and should be able to evaluate functions on such 

data using the operators of APL a s  basic primitives. 

The approach taken is to invest a considerable amount of effort in the analysis 

of the mathematical properties of the operators and data structures of APL and 

to exploit these results in the design of the machine. Thus, a major part of this 
- 

work will be dedicated to a rigorous, mathematical investigation of APL expres- 

sions. This study is contained in Chapter 11. In Chapter 111, the work of Chapter 

II is related to the design of a machine, and the design goals a re  set  forth in 

detail. Chapter IV discusses the proposed machine design, and Chapter V is an 

evaluation of the machine with respect to the goals of Chapter III. 

It should be emphasized that the goal of designing an APL machine is a rather 
, 

broad one. Although there are  clearly practical applications of such a design, 

that is not the major focus of this work. Rather, we hope that by investigating 

this language and machine in detail, it  will be possible to learn something about 

the basic processes in computing and find ways of reflecting these processes in 

a machine structure. The results summarized in Chapter VI and the new research 

problems suggested by this work indicate that this goal has been fulfilled. 

C . H i s  torica.1. Perspective 

  or the purposes of this dissertation, we are  primarily interested in previous 

workin the area of language-directed machine design ( ~ c ~ e e m a n  [l967]; Barton [1965]). 

To some extent, all machine design can be considered to be language-directed, in 

that one wishes to implement some particular (machine) language in a piece of 



hardware, However, let us  consider only the class of machines which might 

better be called "higher language inspired"; that is, machines which are  based 

in some way on languages capable of expressing concepts at a higher level than 

a re  normally associated with assembly code. 

The f i rs t  such machine was reported in 1954, and was a relay device capable 

of directly evaluating logical expressions (Burks, Warren, and Wright [1954]). ' 

In addition, this machine used input in parenthesis-free (Polish) notation, thus 

doubling i ts  historical interest. 'Yhe logic macldnt! typifiea one major olnss of 

language-inspired machine designs In that i ts  machine language is identical to the 

high-level source language. The other major class of language- inspired designs 

is more concerned with the processing o.1 the semantics of thc source language, 

rather than direct acceptance of the exact language by the machine. In fact, most 

designs fall between the two extremes, as  even those which acccpt the source 

language directly do some preliminary transformations on i t  to produce a simpler 

0 ther language-inspired machines accepting source language directly i~~clucle 

an ALGOL 60 machine (Anderson [1961]), two FORTRAN machines (Bashkow, 

Sasson and Kronfeld [1967]; Melbourne and Pugmire [1965]), the ADAM machine, 

based nn x special symbol- oriented language ( Mullery, Schauer and Rice [19~3] ; 

Meggitt [1964]), and a machine for EULER, a generalization of ALGOL (Weber 

[1967]), Of these devices, some were to be implemented in hardware (e.g., 

Bashkow et dl, ; Mullery -- et a14 wlllle others were irnplemenled in microprogram 

(Meggitt; Weber). 

Machines which are more concerned with semantic processing to the extent 

that their machine languages a re  significantly different from. a higher-level 

language include the Burroughs I35000 (Barton [1961] ; Burroughs [1963]) which is 



essentially an ALGOL machine, a PL/1 machine (Sugimoto [1969]) and the Rice 

University computer (Iliffe and Jadeit [1962]). Current work in this area includes 

a PL/I machine (Wortman [1970]) and a micro-computer capable of emulating 

high-level processes easily (Lesser [19 691). 

Most of these efforts are  not directly relevant to the work in this dissertation 

and are  thus reported here only for completeness. The common aspect of all these 

designs is that they are  concerned with the processing of more highly organized 

information and programs than are  found in the conventional von Neumann 

type architectures. 'Most of them include generalized addressing schemes using 

some modification of descriptors, a s  well as  at least one stack. 

Although the Burks, Warren, and Wright machine was the f i rs t  to use Polish 

notation as  a machine language, the first  commercially produced devices to do so  

apparently were the -English Electric KDF9 (Davis [1960]) and the Burroughs B5000. 

Both of these machines included stacks. Other related efforts not yet mentioned 

are  two machines based on lower-level machine languages, but intended to deal 

with high-level primitives. One' of these (Iliffe [1968]) is based on extensive use 

of descriptor logic for both programs and data, while the other (Myamlin and 

Smirnov [1968]) is somewhat more closely oriented toward higher-level languages. 

The latter, in particular, does run-time evaluation of infix arithmetic expressions. 

Aside from the work of Burks - e t  -O al , none of the designs in the literature seem 

to be derived from explicit mathematical analysis of their input languages. Further, 

except for simulations or actual performance, none of the papers in the Literature 

present satisfactory evaluations of their designs. This is not to say that the 

designs are  not satisfactory: to the contrary, the success of the Burroughs family 

of computers and the KDF9 show that language-inspired designs a r e  a viable ap- 

proach to the development of new machines. On the other hand, nobody seems to 

havo o ~ t a b l i ~ h o d  oxaotly how viablc ouch dcoigno really are. 

- 5 -  



Do Conclusion 

Having briefly reviewed the developments of language-inspired machine design 

to date, they can now be left in the background. The present approach is different 

from those in the past in that it is based on a mathematical analysis of the seman- 

tics of the source language. Also, the evaluation of the resulting design is analytic, 

and gives a clear comparison of this A P L  machine to other similar devices. There 

are,  of course, similarities to the designs of the past. In particuiar, the Use of 

program segments, data descriptors, and slacks is not novel in itself, although 

the machine developed here is substantidy diuerenl from those nientioned in the 

last section. 

!'The thing can be done, l 1  said the Butcher, "I think. 
The thing must be done, I am sure. 

The thing shall be done! Bring me papcr and ink, 
The best there is time to procure. l '  

Lo Carroll, The Hunting of the Sriark 



CHAPTER I1 

MATHEMATICAL ANALYSIS OF APL OPERATORS 

This chapter examines the mathematical properties of some of the APL 

operators. Mathematical definitions of the operators a re  given from which i t  is 

possible to deduce their properties. We show that there is a standard form for 

expressions containing selection operators, and that there is a complete set of 

transformations to obtain it. A similar form which generalizes inner and outer 

products is introduced with transformations appropriate to obtain it. Finally, 

the relation between these operators and others in A P L  is  discussed. 

This kind of analysis is important for several reasons. First, in its own 

right i t  contributes to the understanding of the operators and data-structures in 

APL. Second, and most important for this work, it provides a strong mathematical .. 

basis for the design of the machine to be discussed later. In particular, the ideas 

discussed here a re  reflected in the drag-along and beating processes, which a re  

fundamental in the proposed machine design. 

A.' On Meta-Notation 

APL is a programming language, and a s  such is best suited for describing 

processes, while mathematics is primarily concerned with discussing relations 

rather than processes. Thus, in order to do mathematics with APL, it is neces- 

sary to use some notations that a re  not available in the language itself. Some of 

these meta-notations a re  actually extensions of the language which might well be 

included in A P L  to make i t  more powerful, while others a re  necessitated by the 

analytic approach, and do not reflect shortcomings in APL. In the next section, 

definitions of objects - not in APL are  clearly noted as such. 



B. Preliminary Definitions 

The definitions to follow a re  given partly in APL and partly in meta-notation. 

Hence this and the remaining sections in this chapter assume a minimal "reading 

howledge" of APL. The APL summary in Appendix A will be helpful to the reader 

not fluent in this language. Also recommended a re  the APL\360 Primer (Berry 

[1969]) and A P L \ ~ ~ O  Reference Manual (Pakin [1968]). At first, it might appear 

that defining APL operators in terms of other (intuitively but not formally defined) 

APL operators is elliptical. In fact, there is no oiroularity sincc thc definitions 

could be given in more primitive forms, but at  the cost of less perspicuity, Since 

the goal here is not the development of a coherent theory of APL expressions but 

rather the illumination of the behavior of these expressions, the current mode of 

explication was chosen. The use of "undefined" APL operators is made advisedly 

and no special o r  esoteric applications of them are  made in the following definitions. 

The basic problem here is that of using a formalism to describe a formalism. 

At some point i t  is necessary to assume a previous knowledge of something in 

order to avoid an infinite regress, "Nothing can be explained to a stone; the 

reader must understand something beforehalid. I t  (McCarthy [1964], p. 7) 

The definitions will be numbered Dn for easier reference. Theorems and 

transformations will be numbered Tn and TRn, respectively. In APL expressions 

to follow, the convention that unparenthesized subexpressions associate to the 

right will be used wherever this does not lead to confusion. Material which can 

be skipped in the first  reading is' enclosed in heavy brackets. For the most part, 

this includes formal statements in definitions which a re  necessary for proving . 

theorems and correctness of transformations, but which are  not essential to 

understanding the content of this chapter. 



DO. . Identity: (Meta) If ,d and 3 are  expressions, then - 

means they have identical values, 

The sign h' is used for identity because the more traditional equality 

sign '= l is reserved for use a s  a dyadic scalar operator in APL. 

Dl. Conditional Expression: (Meta) The conditonal expression 

, 
IF B Z I m  A ELSE C -- 

has a s  its value the value of A if B * 1, the value of C if B - 0, and is 

undefined otherwise. 

McCarthy [1963] discusses formal properties of conditional expressions, 

some of which a re  used in the proofs in this chapter. 

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in 

APL expressions. It will be referred to a s  I a G .  

In general, this work attempts to show explicit dependencies on index origin. 

However, to do so throughout simply complicates many expressions without adding 

insight. Whenever i t  is unstated we use 1-origin indexing. 

m. Intcrvnl Function: If N is a uun-negative integei. scalar, the interval 

function of N,denoted by I N ,  is a vector of length N whose first element is  

GO, and whose successive,elements increase by 1. 

[Formally, IN - IF N-0 zgm EMPTY VECTOR E K E  ( I N - 1  ) . I+=-1. 1 
Thus, one representation for the empty vector is t 0 .  

D4. Odometer Function: (Meta) If R i s  a vector of non-negative integers, the - 

odometer. function of R , denoted by I R ,  is a matrix with dimension ( x / R  ) , pR 



whose rows a r e  the mixed-radix representation to base R, of the ( x / p R )  

consecutive integers, starting with 1UHC;. 'I'hs extension 1s llul a part: 

of APL, but is useful for discussing individual subscripts of an array. 

Example : 

, 

D5. Row Membership: &g is a function whose left operand is a vector and - 
. . whose right operand is a matrix, defined a s  follows: 

That is, the relation is true (has value 1) if and only if the left operand 

vector is identical to one of the rows in the right operand matrix. 

D6. List:(NTeta) If L is a vector, then the list of 4 denoted by ;/L, is a - - 
subscript l ist  made up of the elements of L. That is ,  

; /L  - LCll;LC21;. . . ;LCpLl .  

Example : fi ; /151 * MC1;2;3;4;5] 

D7. Ravel: The ravel of M, denoted by, M , is a vector contailling the elements - 
of M in row-major order. The dimension is 

0 ,M x / p M  

If M is a scalar, then ,M is a one-element vector. 



f i  [Otherwise for each I E I X / P M ,  ( ,M)CII * MI;/( 1pMlC1; 1 1  I 
Example : ,1 3 

'i; 5 7 * 1,3,5,7,9,11 
9 11 

D8. Reshape: Let R be a vector of non-negative integers. Then the R reshape - 
of M , denoted by R ~ N  is an array with dimension R, whose elements a r e  

taken from M (possibly with repetition) in row-major order. 

for each L E g  t R ,  I (RpM)C ; /LI * ( y M ) C I m + ( x / p M )  IRIL-IORGI 

Example : (3,2)p16 * 1 2 
3 4 

5 6 

D9. Partial Subscrj.,>ting: (Meta) MC C Kl Sl denotes the partial subscripting 
-. 

th 
of array M along the K - coordinate. In other words, 

MCCK] Sl * M C ;  ...; S ;  ... ;I 
.I. . .In 1. 

1 K PPM 

I and for each L ELT ~ P M C C K ]  S]. 

I and if S is a scalar, then 



D10. Subscripting: If M is a rankK array, then for any S1 ,S2, . . . ,SKMl ,SK - 
MCS1;. ..;SKMl;SK] * ( .  . .((M[[ppMI SKI)CC(~~M)-IJ SKM~]). ..)LC11 S11 

The above simply gives a formal definition for array subscripting. It looks 

more complex than it really is because APL uses a different syntax for subscripting 

than for other operators. If we write SK XCKI M instead of MC CKI Sl , then the 

value of the above expression can be rewritten as: 

Sl x[ll . . . SKMl XC(ppM)-g SK XCppMl M .. 

Dl 1 ,  J-Filnction: Let LEI be a non-negative Integer, ORG ali integer, turd 3~ 0 , l .  - 
T l p ~ l  J J Z N ,  Ol7G.C io an intorval vector of length rtZN whose least element 

i s  ORG; if S ct 0 then successive elements increase by 1, else they decrease 

by 1. Furmnally, .I 

- IF S=O'THEN ORGt(1LEN)-IORG ELSE (LEN+ORG-~)-((IL&N)-IORC;). 
? 

J-vec tors a r e  a generalization of the interval function. In particular, J-vec tors 

can have any origin, are'iiivarlant under cllarrges of IORG, and can run forward 

or hnnlraatard. 

Example: J 4 , f , 6  2,3,4,5 

J_ 4,2,1 * 5,4,3,2 and these relations are truc for any JB. 

U12. Subrrzry: ( M c k )  Let A4 be any array and Fan assay with dimensinn - 
( p p ~ j , ~  Then the aubarray aolooted b y B  , denoted P A M ,  is 

FDM -MCJ FC1;l;J FC2;l; ... ;JFCppM;Il 
where the elements of Fare  assumed to be in the domain of the above 

expression. 



A subarray selected by this function is compact. The subarray function will be 

used to provide a standard representation for all the various ways of selecting 

compact subarrays. 

Example: Let pM c+ 10~15 

and F - 4 3 0  

3 5 1  

then FAM * M € J  4,3,0' ; J 3,5,11 

D13. Whole Array: (Meta) For any array M, the whole array of M, denoted - 
by AM, produces a s  a result the F such that FAM * M. 

[Formally, AM * ~(3,ppM)p(p~) , ( ( ~ P M ) P ~ ~ )  Y (PPM)~o] 

Example: If pM* 6,10,32, then AM* 6 1 0  

and I m  ++ 1 10 1 0 32 1 0 

D14. Cross Section: (Meta) Let M be any array, F an array with dimension - 
(ppM),2 such that 

(i) FC ;11~0,1 

(ii) (-FC;lI)/FC;21 * (+/-FC ;ll)pO 

(iii) (FC;Il/FC;21) ELT IF[ fll/p~ 

Then the F cross section of M , denoted by FAM , is: * (-FC ;ll )/PM 

and for each L E x  I ~ F A M ,  (FAM)C ;/Ll * M I  ;/(x/~)t(-~C;ll)\~l 

Cross scction is used to formalize the subscripting of arrays by scalars. The 

first column of F contains zeros for coordinates to be left intact. Condition (ii) 

require's that if FC J; 1 I * 0 then FC J ; 21 - 0 . This is primarily to make some 

of the theorems easier to prove. Entries of 1 in FC ; 11 correspond to coordinates 

indexed by scalars in the corsesgonding element of FC ;?I . 



Example: Let pM c+ 4 ,7 ,13  

then F_aM ++ M C 2 ;  ;I01 

D15. Take: Zf M is any array and A is an integer vector with PA t, p p~ and - - 
( ( A ) IM , then A1.M is an array of the same rank of M , as  follows: for each 

IE ~ppM, if A [ I ] > o  then include the f i rs t  A C I ]  elements along t h e ~ f i  coordinate 

of M ;  otherwise if A L I J  <O then take the last I A C I ]  elelnellls. 

D16. Drop: If M and A a re  a s  above,  then^+^ is similar to the take except that - 
for each coordinate, the first; (or last)I~C11 elements a re  ignored. 

Formally, A+M tt GAM r , 
lh D17.. m: If M is any array then ~ [ K ] M  is the reversal of M along' the k- - 

coordinate. 

If the subscript on the operator is elided, i t  is taken to be PPM.  

Example: Let M ++ 1 2 3 
4 5 6 

7 8 9 



D18. Transpose: If M is any array and A  is an integral vector satisfying - 

(i) PA ++ P P M  

(ii) A / A E  ~ p p ~ '  i. e.,A contains only coordinate numbers of M 

(iii) A / (  I ~ / A ) E A  i. e. , A  i s  dense 

then the transpose AQM of M byA is  defined a s  follows: 

1. ppAQM 1+( r/A)-al&? 

2. For each I E  IPPAQM, 

3. For each L  E x  ~p AQM, 

(AQMIC ; / T I ]  * MC ; / L C A l l  

In other words, A  permutes the coordinates of M .  Transpose can also 

specify an arbitrary diagonal slice. 

Example: Guppose M is  a ~~ratrlx with p M  tt 5,6. Then if R  tt ( 2 , l  )QM , and 

I ~ G  - 1 wehave p p ~  tt 1+2-1 ct 2  . Further, ( p R ) C 1 1  ++ L / ( 1 = 2 , 1 ) / 5 , 6  - 6  

(pRIC21  - L / ( 2  - 2 , 1 ) / 5 , 6  - 5 andforeach L  E a  1 6 ~ 5 ,  Hf ; / L l  c+ a;/( , ~ ) C 2 , 1 1 1  

or  RCLCl];  LC211 - MCLC21; LC111. 
<?\ 

Thus, R  is the ordinary matrix transpose of M . 
Now suppose M is same a s  above and R  - ( 1, l  )QM. .Then, ppR tt i + i - 1  o I .  

So the result is a vector. Then ( p R ) [ l ] . t t  L / ( i = 1 , 1 ) / 5 , 6  ct 5 .  



Then for each LE15, We haveRCLl ++ MC ;/( ,L)C1,1Il 

t-. MCL ; L l  

So R is the main diagonal of M . 

D19. Compression: If x is any vector and U is a logical vector of the same - 

length, thenu/x is the result of suppressing from X al l  elements whose 

corresponding entry in U is 0 .  For an arbitrary array X, U/C I] X compresses 

th 
X along the I - coordinate. 

Formally,forvector X ,  pU/X - + / U  and for  e a c h I ~ l ~ U ,  

I F  - U [ I ] = 1  THEN(U/X)C+/I+UI * X C I l  

This is not a constructive formula for ( U / X ) C I ]  ; however, such a 

formula is too complex to be useful here. For any arrayx , I U/CIJ x * XCCII ~ / 1 ( p X ) C I l l .  

D20. Expansion: If X is any vector and U iS a logical veul;or with + / U  * PX, - 
then U \ X  ia a vector with (1, elem.ents wherever u has, and whose other 

elements a r e  taken from X in order. 

The definition of expansion is extended to higher-dimensional arrays  in 

the same way a.s fnr compression. 

Formally, p U  \X * p U  and for each IC I pU,  

i u\x>cri ++ IF UCII T= XC+/I+UI  E&~E n 1 
Example: (1,1,0,1,0)/1,2,3,4,5 ++ l , 2 , 4  



C. The Standard Form for Select Expressions 

In this section the selection operators considered a r e  take, drop, reversal, 

transpose, and subscripting by scalars or  J-vectors. Because of the similarity 

among the selection operators, we might expect that an expression consisting only 

of selection operators applied to a single array could be expressed equivalently in 

terms of some simpler set  of operators. This expectation is fulfilled in the 

standard form for select expressions, to be discussed below. 

Jf the existence of a standard form is to be a t  all useful, there must be a way 

to decide whether a particular expression has a standard form representation and 

if so, there must be an effective method to obtain it. In the sequel we show that 

every select expression has an equivalent standard form, and exhibit a set  of 

formal transformations which a re  sufficient to derive the standard form from an 

arbitrary expression. 

It may at f irst  seem strange to include subscripting in the set  of selection 

operators, since its parameters a re  of a different kind than those for the other 

select operators. In the other select operators such a s  take or drop, the left 

operand is a count, which is independent of ways of accessing the argument array. 

On the other hand, in subscripting the arguments act like maps rather than counts. 

For example, an expression like A1.M has meaning out of context, a s  long a s  the 

values of A and M are  known. Contrariwise the expression MC1; 3 I cannot be 

evaluated without knowledge of the index origin. In the theorems and proofs to 

follow, the major complications often come from this dichotomy in the way of 

specifying select operations, rather than from the actual content of the material, 

Subscripting is included because its effect is similar to the other selection 

operators, all  of which change only the dimensions and orderings of their operands. 



D21. Select Expression: Let & be any (well-formed) array-valued expression. - 
Then Sis a s  a select expression on & if it is a well-formed expression 

consisting of an arbitrary number (including 0) of the following operators 

applied to 8: 

(i) Take 

(ii) Drop 

(iii) Reversal 

(iv) Transpose 

(v) Gubooripting by scalars of - J-vectors 

By extension, we will also include the subarray and cross section operators 

in this class. 

Example: Let M be a rank-3 array. Then by W 2 1 ,  

(2,1,3>Q(@C21(4,-6,3)+~)C; ; J6,2,11 

is a select expression on M ,  but 

- M C ;  ; 5,7,3,11 

is not because i t  contains the scalar operator ' - ' and the subscripti~lg is no2 by 

a scalar o r  - J-vector. The definition also admits M a s  EL select expression on M. 

D22. Equivalence  rans sf or mat ion: An equivalence transformation on txprssalo~rs - 
is a rule of the form: 

if set of assertions then E =>S - 
where Band H a r e  expressions. If the set of assertions is  true, then expression 

8 may bc rcplaccd by c x p r u s ~ i o r l . ~  x11d lho lrulli 01 tlse assertions guarantees 

that 8= >.% 

For example &f X is any vector - then @@x=>x ) is an equivalence transformation, 

since it is always true that i f  X i s  any vector, @@x tt X. 



For any given transformation, i t  is necessary to prove that it i s  indeed 

equivalence-preserving. If this is the case the transformation i s  said to be 

correct. Note that the notions of expression and transformation and standard 

form used here a r e  informal ones. It is possible to make them rigorous, so  a s  

to be acceptable to a logician, but that is  irrelevant to the current aims and would 

only serve to obfuscate the important mathematical relationships we a r e  trying 

to explicate. The correctness proof for each transformation will be called 

D23. Standard Form: A select expression on an arrayM i s  in standard form - 
(SF) if i t  i s  represented a s  AQFAGAMwhere A ,F ,G a re  a l l  of the correct 

size and domain. 

In the remainder of this section, we introduce a se t  of equivalence transfor- 

mations sufficient to transform most select expressions into standard form. In 

the process we prove the correctness of each transformation. The effect of this 

process is a proof of the following important theorem: 

COMPLETENESS THEOREM 1: If Q is any select expression on an a r ray  M, 

then 8 can be transformed into an equivalent expression S i n  standard form. 

In order to obtain an SF representation of an arbitrary select expression, we 

must f i rs t  be able to eliminate the operators take, drop, reversal and subscripting. 

The f i rs t  four transformations below #do this. 

TR1. If M 1s any array and A is conformable to M for take, then A1.M => FAM - 

where F * Q(3  , p p M ) p (  1.A) , ( ~ R G + ( A < O ) x ( p M ) - I A ) , ( p p ~ ) p ~  . 



T q .  If M is any array and A i s  conformable to M for drop, then AJ-M => FAM - 
where F t-t Q ( 3 , p p ~ ) p (  (;MI- I A ) , ( I ~ + o ~ A )  , ( P P M ) P O .  

TR3. If M is any array then +[KIM => FM - 
where F Q(3,ppM)p(aM)C;1IY(M)C ;21,K=lppM. 

These three transformations a re  obviously correct, a s  they follow directly from 

the definitions of the operators take, drop, and reversal. Their proofs will thus 

be omitted. 

'TR4. - If M 1s any army then WCCK'I J LEN,OEG,SI -> FMl 

where FCK;] * LEN,ORG,S and ( K t ~ p p M ) / [ l l ~  - ( K t l p p M ) / [ l ] a M  

That the above is  an equivalence transformation requires a small proof: 

Proof of TR4: 

We must prove that for any array M, 

MCCKI J LEN,ORG,S] c+ FAM 

whcrc F is a s  given in TR4. In order to prove the identity, we show first  that both 

quantities have the same dimensions. Then we show that corresponding elements 

of each are  identical. 

Let R c-. NCKI J LEN,ORG,SI. 

1. By definition, p d +  ( ( K - l ) + p M ) , ( p  d LEN,ORG,S),KJ-pM 

. . 
i+ ( ( K - 1  ) + p M ) ,  LEN ,K.tpM 

and ~FAIW*FC;I ] .  

t+ ( (K-l)+(aM)C;11),LEN9KJ-(aM)C;11 

,- ((K-l)+pM),LEN,KCpM 

- PR 



2. For each L EL2 I pR, 

RC ;/LI - MC ;/( (K-I)+L) ,( J LEN,ORG,S)CLCKII,K+LI 

and (FAM)C;/Ll - (MCJ FC1;l ; J FC2;l ;. ... ; J ~CppM;llC;/Ll - MC(J FC1;I)CLClIl; . . . ; (J FCppM;l)CLCMIll 
(by L3 in ~ppkndix B) . 
But for each I*K, . (J FCI;I)CLCIll c+ (J ( p ~ ) C ~ l , ~ ~ ~ ~ , ~ ) C ~ ~ I 1 l  - LC I I (by L4, Appendix B) 

and(J  FCK;l)CLCKll c+ (J LEN,ORG',S)CLCKl1. Therefore, 

(FAM)C;/Ll - MCLC11 ; LC21 ; . . . ; LCK-11 ; ( J _  LEN,ORG,S)CLCKl]; 

LCK+11; ... ;LCppMIl 

-+F MC ;/( (K-1 )+L), (J LEN,ORG,S)CLCKII ,K+LI 

t-. RC;/LI &ED. 

The preceding proof of TR4 is reasonably simple, and is representative of 

the kind of proof required. Although similar in style, the proofs of the remaining 

transformations a re  more complex. Since they add little to the exposition, they 

are  given in Appendix B. 

The following transformation makes it possible to reduoe the number of 

occurrances of adjacent subarray operators in an expression. 

TR5. If M is any array and F and G are  conformable for subarrays, then - 
FAGAM => HAM 

where PH ++ pF and for each Ie~ppM, HCI;] c+ L,OR,S 

where J LsORyS ++ ( J GCI;I)Cj P C I ~ I I  

Transformations TR1 through TR4 a r e  used to eliminate instances of the 

operators take, drop, reversal, and indexing from select expressions by trans- 

forming them into equivalent expressions involving subarray and cross section 

ogeratnrs. TR5 shows how to coalesce two adjacent occurrances of subarray into 

- 21 - 



one. The remaining transformations, TR6 through TRlO are  similar in spirit 

and a r e  used to permute the remaining operations into the order . . required by the 

standard form. 

TR6. If   is any array and FandG areconformable, then FAGAM => GIAFIAM, - 

where G' ++ ( -~C; i l ) /C i l~  

and FIC ;I]  ++ FC ;11 

E " [ ; z ' ]  4-b 

F[;11x(G[;2]+((~~[;3])x~[;2]-~~)+(~~ ;31x(GL ; l ~ t l ~ + - l - ~ [ ; ~ ~ ) ) )  

TR7. If M is any array and F  and^ a re  conformable toM for cross section, - 
then FAGN =r HM 

where H[;1]  ++ G C ; ~ I V ( - G [ ; ~ I ) \ F C ; ~ I  

TR8. If M is any array and F,A are  conformable to M for suharray and transpose, - 
respectively, then 

FAAQM => AQFCA; ]AM. 

TRS. If M is any array, Q a scalar, J E  IPPAQM then . .-- 

TRIO. If M is any array and'B and A are  conformable for transpose, then - 
BQAQM => CQM 

where C t+ BC A I. 



Now that we have transformations TR1 through TRlO which a re  proved correct 

in Appendix B, we can outline a proof of Completeness Theorem 1. First  

note that for any array M, M ++ (lppM)Q(AM)A( ( ( p p M )  ,2)pO)&V. 

1. Let & be any select expression on M which satisfies the hypotheses of the 

theorem. Apply TR1, TR2, and TR3 to 8 enough times to eliminate all instances 

of the operators take, drop, and reversal. (In order to be absolutely rigorous, 

we would have to prove a replacement theorem which says that i f  in an expression 

A, an occurrance of a subexpression 93 is  replaced by an equivalent subexpression 

3' (i.e., 33- 3 '), then the resulting expression&? is equivalent t o 4  only 

df  tjd . Call the result of this operation 8'. Note that &' contains only 

subscript, A ,  and 4 operations. Clearly 8' * &' because we have applied 

only equivalence transformations. 

2. Now for each instance of an indexed quantity, substitute the equivalent 

expression using partial indexing, a s  per definition D10. Write this using the 

IX notation mentioned there and apply TR4 to eliminate all instances of J-vector 

subscripts and call the resulting expression 8". It should be obvious that 8" 

has the form S1 81 5 2  02 . . . Sfl ON M ,  where the S quantities a re  left operands 

for the operators 8 and the 8 ' s  a re  A ,  4 and IX in arbitrary order. Finally 

substitute the expression ( I~~M)@(AM)A( ( ( p p ~ )  ,2)po)&V for   and note that t h i s  

subexpression, call i t  YN, is in standard form. Call the resulting expression gN, 

and again note that ZN* 8. 

3. Consider the following algorithm: a t  each step, the input is 

5 * SI 81 S2 82 . . . SK 0K pK, where 9 is in standard form, i. e., K 

SjK * AKQFKAGKAM . 
(a) If K - 0 then the algorithm is terminated. Otherwise, look a t  the operator 

OK. Do step 1, 2, or 3 below depending on whether 8K is 4, A or I X  , respectively, 

and return to @hey (8). 



1. BK i s  transpose, Q . Apply TRlO to the expressionSKQ3 +-> SKQAKQFKAGKF, 

to get the equivalent WFKAGKLIJ, where QK * SKLAKS and call lhis gKK1 . 
2. BK is subarray, A . Apply transformations TR8 and TR5 to SKA3 to 

get SKA,% - SKMKQFKAGKM = > AKQSKCAK; I AFKAGK-&V => AKQFK AGKLIJ, where FK 

is obtained by TR5. 

3. BK is indexing by a scalar, IxCJI . Apply transformations TR9, TR6, 

and TR7 to SK IXCJI%, getting 

SK l ' X C  J I AKQPKAGkg! = > Ali QBK~FlfAGIf@l 

Jn each of steps 1, 2,  3 above, a set of transformations was applied to the 

subexpressionS~ B K ~ ~  of ?TK. Call the resulting subexpression gK - Since all 

transformations were equivalence transforms, i t  is clear that SK BKS& - 9 K-1' 

Let TK;(-l be the resulting expression from plugging LZK - into TKO Clearly 

gK-l ++ g7 . Finally observe that each B is in standard form. Hence, in N steps, 
K K 

the algorithm wil l  terminate with result % * 9, ++ . . . ++ * 8, and % - Yu, N 

which is in standard form. This is the cleslrecl result. QED. 

So far, we have defined a standard form for a subset of select expressions 

and exhihitea a complete set of transformations for obtaining the standard form 

representalu~l ul ail arbitrary oxpression i n  this class. Moreover, the proof of 

the completeness theorem gives an algorithm for obtaining the SF of an expressi.on. 

Note that there a re  alternate ways of formulating U I ~  standard form. For irastn.nno, 

an equivalent formulation says that an expression is in standard form if i t  is 

represented as ACPR+CJ.@CKI DLIJ with R,C non-negative and K a vector of indices 

so  that the definition of @CKl extends in the obvious way. The choice of using 

the meta-notation formulations was made for two major reasons. First, fewer 



transformations and therefore fewer proofs a re  needed to establish completeness. 

Second, this formuhition is closer to the way these results will be used in the 

design of the machine. 

Another point to note i s  that the standard form could be made more general, 

by allowing more operators to be included in the set of selection operators. In 

particular, compression and expansion might be included, as  well a s  reshape 

and catenation. The general rotation operator at  f irst  seems to be a possible 

candidate for inclusion, but in fact does not fit in cleanly. This is primarily 

because rotations involve taking residues of subscripts, which do not compose in 

a simple way. A further extension would allow arbitrary indexing of select 

expressions and perhaps extend operations on select expressi.ons to operations 

on their subscripts, as in the case GVCS]  ct V C G S I .  

A final point concerns the significance of the SF and completeness results. 

These results a re  important in that they establish formally some of the relation- 

ships between APL-like operators which informally may appear obvious. This 

not only provides a useful tool for the programmer, who may make formal trans- 

formations on his programs without a.second thought, but i.t also provides a formal 

basis for automatic transformation of programs and expressions. This second 

property is heavily used in the design of the APL machine. Also important is 

that results such a s  we have described aid in the understanding of array operators, 

which might be used in generalizing them further o r  in strengthening the theoretical 

foundation for operations on array data. 

D. The Relation Between .=- Selcc t Operators anrl Redi~c? tion 

Obviously there is more to APL than just selection operators. If the results 

of the previous section a re  to be generally applicable, we must look into the 

relationships between select operators and some of the other kinds of opem.tors 



in an array language. One result that has been used implicitly in some of the 

proofs in Section C is that selection operators a re  distributive with respect to 

scalar arithmetic operators. For instance, (A+B)CSI * ACSltBCSl and 

-+V tt +-V. This property follows immediately from the definition of scalar 

arithmetic operators and the definitions of the select operators, and is stated 

formally in the theorem T1 below: 

T1. Let A a.nd B be arrays with the sdme dimensions and _M and _D be monadic - 
and dyadic scalar arithmetic operators and _T a selection operator; then 

(i) if A _D B is defined, 

T  ( A  D _  B )  * ( T  A )  D_ ( T  B )  - - 

(ii) if g A is defined 

T M A - M ~ A  - 

T1 contains the restriction thatA D _  B and M A be defined, in order to deal 

with cases like ( (1  , I  , I  )+I , l  , o ) [ i ,  23 in which the result is undefined a s  written 

but is defined after distributing the indexing operator. 'l'h~a result is i11 k c 1  mure 

general than as skled. It should bc oloar that the opemtnr T can also be rotation, 

cam]3ression, expansion (for some scalar operators) or  operators such a s  ravel 

or  reshape. A similar result holds if one of Aor B is a scalar. 

One of thc most important constructions in APL is reduction which applies a 

dyadic scalar operator between all elements of a veului, Reduction ia not an 

operator in the sense we have been using, bul is more Like n funational. A s  will 

be shown below, i t  is possible to change the order of select operators and reductions 

a s  well a s  to permute the coordinates of the reducee. As in the previous section, 

these facts w i l l  have direct use in the APL machine. Thc renlainder of this section 

defines reduction formally, and presents a set  of equivalence transformations 

for expressions involving reductions. 



D24. Reduction: I f J  is a dyadic scalar operator and V  is a vector, then the Q - 

reduction of V ,  written - D / v ,  is a scalar defined a s  follows: 

D/V * IF ( p V ) > l  K 1 1  D_ I T 2 1  D_ . . . Q VCppVl  - 

ELSE I F  ( p V )  = 1 VC 1 1  ELSE (IDENTITY OF D_) 

In the expression above, the operators Q associate to the right, a s  usual. 

The identities of the scalar dyadic operators a r e  listed in Appendix C. 

th 
If M is any array and is a s  above then the Z, reduction over theK - 
coordinate of M is defined a s  follows: 

pD_/CKl M * ( ( K - l ) + p M ) , K + p M  

and for each L  &_T t pD_/C K l  M 

(Q/CKl  M ) C  ; / L l  * D_/F_aM 

where F C ; l l  tt KtlppM AND FC;21  ++ FC;II \L  

I f  the subscript K  is elided in the expression D_/[KI M, i t  is taken to be 

the last coordinate of M ,  which is p pM in 1-origin and T / I p p M  in general. 

In order to do some of the proofs required by this section, we will need to use the 

membership and ranking operators, so these operators a re  defined formally first. 

D25. Membership: If A is a scalar and B is any array, then the membership - 
relation AEB has value 1  if a t  least one of the elements of B is identical to 

A , otherwise the value is 0, The dimension of the result is the same a s  

that of A, and the definition is extended element-by-element on A. 

L ppB TIMES J 

D26. Ranking: If B is a vector and A is a scalar, then B t A  denotes the index - 
of A in B, namely the least subscript I of B such  that^ t, B [ I ]  . 



\ 

From the expression above, it is clear that if -AEB then the result is ' , 

l + r  / 1pB . The operation is extended to arbitrary arrays A element-by- 

element. 

if A is any array, then for each L E X  I PA, 1 
An interesting question about reductions is under what circumstances can the 

coordinates of the reducee be permuted, with reduction carried out on a different 

coordinate, and still have the result remain the same? It is intuitively ubviuus, 

for exsmple, that +/TI 1 M - t / r21  (2.1)QM. when M i s  a matrix, since adding 

the rows is the same a s  adding the columns of the transpose. Theorem T2 shows 

that this kind of permuting can be carried out a s  long a s  the coordinates that a re  

left after reduction ace in the same order. 

T2, Let Mbe any array, D _  any scalar dyadic operator, K a scalar, and P any - 
permutation of 1 p pM. ' Then, 

if and only i f  

Proof: See Appendix B. - 
The complicated condition in T2 is a formal statement of the requirement 

that permutation by P does not disturb the ordering of the coordinates in  other 

than PL 

Example: Let M be a rank-4 array. Then, by theorem T2, all of the following 

a r e  true: 

+/[21M ++ +/[I]  i2,1,3,4)4M 

++ +/C31 (1,3,2,4)QM - +/[41 (1.4,2,3>QM 



No other values of P satisfy the condition in T2. For instance if P - 4,2,1,3, 

PC21 * 2and PIIPP - 3,2,4,1. So(2t1,2,3,4)/3,2,4,1 * 3,4,1 whichis 

not ( 2#1,2,3,4 / I ,  2 ,3 ,4 - 1 ,3 ,4. This theorem suggests the following trans- 

formation: \ 

TR11o If M i s  any array and Qis a dyadic scalar operator, then 

DICK] M ++ Q/CLASTI A4M. 

where LASTis the index of the last coordinate of M (PPM for 1-origin and 

r/~ppM in general) and A - ( tK-l),LAST,( ( ~ - l ) + ~ ( p p ~ ) - K l  

TRl l  above and TR12, TR13, and TR14 to follow can be used to transform a 

select expression on a reduction to a reduction along the last coordinate of a' 

select expression. 
1 

TR12. If M is any array and Q a dyadic scalar operator then - 
AQD/M - => Q/(A,l+r/A)QM. 

TR13. Zf M i s  any array, Q a dyadic scalar operator, then 

GAQ/M => Q/GfAM 

where G f  - (pm)p( , G ) , ( - ~ + ~ M ) , ~ G , o .  

TR14. If M is any array, g a dyadic scalar operator, and g a scalar, - 
then (D_/M)[CJlQl => Q/MCCJIQl. 

Proofs of TR11, TR13, TR14: Immediate from theorems T2, T3, T4. 

Proof of TR12: See Appendix B. 

Transformation T R l l  forces all reductions to be along the last coordinate of 

their operand array. TR12, TR13, and TR14 permit reduction to be "factored 

outff of select expressions. 



\ 

Given these transformations, we can extend the completeness result of the previous 

section as follows: 

COMPLETENESS THEOREM 2: If B is an expression on an array M containing 

only selection operators and reductions, then i t  can be transformed into an 

equivalent expression .gof the form _Dl /_D2/.' . .QK/ g where the gI are  the reduction 

operators in f f ~ e  order they appeared in W and where@ is in standard form. 

Since the proof of this thearenr I s  siiililar to that for b e  first. nnmp1e~;eeess theorem, 

it will be omitted. Such a proof depends on the correctness of transformations 

T R l l  through TR14, which follow from the theorems below: 

T3. I€ M is any array, Q a dyadic scalar operator then - 

GAQ/CKlM ++ Q / C K l c l ~  

where (K*IPPM)/C~IG' - G AND GICK;I * (nM)LK;] 
Proof: see Appendix B. 

, 

T4. For any array M and D a dyadic scalar operator, - 

GAQIM * Q/G1aM - 

where G 1  * ((ppM) ,2)p( ,G),OYO 

Proof: See Appendix Be 

The following example takes an expression and derives the sta~ldard form of 

Completeness Theorem 2. 

Example: Let pM * 6,10,12,19 and consider the select expression with 

reductions : 

8- (2,1)Q+/[11(3,7,-4)+x/C41~ 

In each step, we note the transformations applied. 



where F +.+ 3 1 0  

7 1 0  

4 9 0  

where G tt 3 1 0 

7 1 0  

4 9 0  

1 9  1 0  

where H tt o o by definition of A 
0  0  

0  0  

0 0  . 

The above expression is in'SF. 

E. The General Dyadic Form - A Generalization of Inner and Outer Products 

In APL there a re  three ways of applying dyadic scalar operators to a pair of 

operands. The simplest, the scalar product, is the element- by-element application 

of a scalar operator to corresponding elements of conformable arrays. The next 

simplest is the outer product, in which the result is obtained by applying the 

operator to all  possible pairs of elements, one from each operand array, in a 

specified order. Finally, the inner product is n generalization of ordinary matrix 

product in linear algebra, except that arbitrary (conformable) arrays may partici- 

pate a s  operands and any pair of operators may be used. Before proceeding, let 

us present the formal definitions of inner and outer products. 



D27. Outer Product: If   and N a re  arbitrary arrays and D is any dyadic scalar - - 

operator, then the _D outer product of M and N ,  written iv o .li_ N, is dcfined 

a s  follows: p~ 0 .D - N ct ( P M )  ,PN. Then for each L EL9 1pM 0 .Q N ,  

( M  0.Q N)[;/LI t, MC;/(ppM)+Ll Q NC;/(ppM)+LI. 

D28. Inner Product: If M and N a re  any arrays such that -1 + p ~  tt 1 + p ~  and if - 
Q and  are two dyadic scalar operators, then thee-_F inner product of 

~ a r l d N w r i t t e n M Q . ~  N ,  isdefinedasfollows: p M Q . E N *  i - l + p ~ j , l + p ~  

and for each L 1pM D_.g 1, CM D_.l N ) C  ;/Ll +.+ Q/(GAA!) F HkN, 

where GC ;I] - ((-1tpp~)pl) , O  GC ;21 t-+ (.(-i+pp~)+~) , O  

If one of M orN is a scalar, i t  is extended to a vector of the same length a s  

the reduction coordinate. In the sequel, we assume that all operands of inner 

product a r e  array-shaped (ur 11ave alrcady been exterrded). 

Example : (1,2,3) 0 . x  4,5 ++ 4 5 

8 10 
j - 2  1 5  

If M and N a re  conformable matrices, then 

is the ordinary matrix product of h e a r  algebra. 

Although these three product forms appear to be different syntactically and 

also in their effect, they a r e  in fact intimately related, and can be considered 

a s  aspects of the same thing. This section shows the close relationship between 

scalar, inner, and outer products, and introduces a new (meta) form which 



includes these a s  special cases. We also investigate the effect of select operations 

on this new construction called the general dyadic form (GDF), and show that it, 

like the standard form on select expressions, is closed under application of select 

operations. 

The key to the relationship between these apparently diverse constructions 

is the generalized transpose operation. By applying a transpose to an outer product, 

i t  is possible to write an expression which specifies a diagonal slice of the original 

outer product. For example, if V is a vector, M a matrix, then the expression 

1 1 2QVo .  +M describes the result of adding V to each of the columns of M. It 

would be desirable to understand this expression to mean the result it describes, 

namely the result of adding the vector V to the columns of M, rather than the process, 

that is the transpose of the outer product of V and M. The difference is important 

for two reasons. Using the firs$ interpretation in a situation where the expression 

must actually be evaluated, a s  in a program, requires only the pertinent elements 

of the result to be computed. This is especially important when the operands a r e  

large arrays. Second, some information is lost by ignoring the partial results. 

For example, the expressidn ( (I. 2 ) t( 1, o ) )[ 11 is undefined in the literal sense 

but the apparent intended interpretation gives the value 1. Both in the case of 

select expressions and in transposes of outer products this is a serious problem, 

a s  i t  is in direct conflict with the' semantics of APL. Formally, the definition of . 

the language renders expressions such a s  the one just mentioned undefined, yet 

this is really a matter of taste and style. My contention is that a t  worst this 

kind of situation should be an ambiguous one, since it is essentially an instance 

of a side effect. That is, the programmer writing such an expression should not 

depend on the processor of his program to indicate that a domain er ror  occurred. 

in the evaluation of an irrelevant partial result. If that is what he wants, there 



a r e  direct ways of expressing it, such a s  writing A+(1,2 )i (1,o ) , followed by AC 11. 

In any case, I have taken the view that what should be evaluated is the intent of 

an expression, i f  this is perceivable, rather than the literal expression itself. 

Except in cases which produce side effects, both approaches compute identical 
1 

values. 

Theorems T5 and T6 which follow, establish the essential connections among 

the product forms and the transpose. 

T5. If Aand B a re  conformable for scalar. product, and if Q is  a dyadic scalar - 

Proof: See Appendix B, 

T6. If M and N a re  two arrays conformable for inner product and D_ and F a r e  - 

dyadic scalar operators, then M Q .F N * D_/AQM .F  N, 

where A - (1-l+ppM),(2p L A S T ~ ) , ( - ~ + ~ ~ M ) + I - ~ + ~ ~ N  

and LAST1 is the index of second- to-last coordinates in M . E fl 

(in 1-origin this is ( p p ~ ) t ( p p ~ ) - i  and ~ / I ( ~ ~ M ) + ( ~ ~ N ) - I  in general). 

Proof: See Appendix B. 

Example: (T6) If A andB a r e  matrices then 

A +.x B * +/(1,3,3,2)QA 0 . x  R .  

We can see this a s  follows: 

(+/(1,3,3,2)QA 0 . .  B ) L I ; J J  



::In previous sections we have looked into the effect of select operators on 

single arrays and scalar products. A natural question then is, what is the effect 

of the select operators on inner and outer products. In order to approach an 

..answer, it was necessary to discover an alternate formulation of these constructions, 

which facilitates this kind of analysis. Such an alternative is the general dyadic 

form, defined below. 

D29. General Dyadic Form: An expression on two array operands R and S, - 

with dyadic scalar operator Q is in general dyadic form (GDF) if i t  is 

expressed in the form: 

I 
AQR' 0 .Q S' 

and the following conditions a re  satisfied; 

(i) R '  and St a re  the standard forms of select expressions on R andS.' 

(ii) A is a conformable transpose vector for which each of ( ppR '  )+A 

and ( ppR1 +Aare in ascending order, and each contains no duplicate 

values. 

(iii) (pAQR'0 .Q S')CAI (pR') ,  

The last condition guarantees that if A takes a diagonal slice of the outer product 

R ' 0 . g s ' , then the length of corresponding coordinates in R 1  and St  a re  the same. 

This can always be done by performing a take operation affecting these coordinates 

(see TR17). 

Example: If V i s  a vector, M and N matrices, then the following a r e  in GDF: 



but the following a r e  not in GDF because the conditions on A a r e  not satisfied: 

(1,3,3,2)QM 0.Q N 

(1,1,1)QM 0.Q V 

From definitions D27, D29 and Theorem T5, it is clear that the scalar prod'uct 

and outer product of R and S by D _  are  special cases of the GDF, obtained by taking 

A * ( ~ppR), IppSand A ct I (pp~)+ppS, respectively; D28 and T 6  indicate that 

an inner product can be expressed a s  a reduction of a GDF. 

In dioouo~ing the.effeot nf select opekatatoks An G ~ F ~ s ,  we w i l l  j.Jres&iit a iicriss 

of transform.ations, with proofs of their correctness in Appendix B. In the followi@ . . 

transformations, let 

TR15. Jf W ++ AQR1 0 .Q S T  is in GDF then HAW'=> AQu 0 .Q v where 

U is the SF of R"-- HCF;lARr 

V is the SF of S" * HCG;1AS1 

TR16. If Wis a s  above and &?is a scalar, then w C C J I Q I  => BQU o.Q V 

where B*(J#A)/A-J<A arid 

U is the S F  of IF JEF T m  RIC [FIJI &I ELSE R' 

v i s  the SF nf a JEG TLEg SICCG~JI & I  ELSE S' 

TR17. If W is a s  above then BQW => (F' ,GI) QU 0 .Q V 

wlisre F1-(McBrFI)/M 

G' *- ( MEBCGI ) /M M * I(~/B)+I-IORG 

U is the S F  of Rv -- (F'IBCFI)Q(~BQW)CBCFII+R' 

V is the S F  of S" * (G' IBCG~)Q(~BQW)CBCGII+S' 



TR18. If M and N  a re  conformable for inner product and D _  and F are '  dyadic scalar 

operators, then M  L2.E N  => Q/A4M1 S F  N' 

where A  t+ ! l-ltpp~), LASTI ,(-l+ppM)+~ppN 
/ 

M' is the SF of M 

N' is the SF of ( L A S T N , I - ~ + ~ ~ N ) Q N  

LAST1 is the index of the second- to-last coordinate of M  O .F fl. 

( (ppM)+(ppN)-1 in 1-origin; r/I(ppM)+(p~N)-l ingeneral) 

. . LASTIV is the index of the last coordinate of N -  

( .PPN in 1-origin; r / I p p ~  in general). 

These transformations a re  sufficient to establish: 

COMPLETENESS ,THEOREM 3 : Let E be an expression consisting only of 

reductions and select operators applied to a scalar product, inner product, or 

outer product of expressions d and 3, where &? and 3 a r e  select expressions 

on arrays . A  and B respectively. Then Q can be transformed into an equivalent 

expression Sof  the form Ql lo2 / . . . Q ~  /.F1, where l?F' is in GDF and the LIl Is a r e  

the reduction operators appearing in 8, in the same order. If the original 

expression 8 contained an inner product, QK is the first  operator of the inner 

product. 

Proof: Similar to Completeness Theorem 1. - 
F. Conclusion 

This chapter has discussed some of the formal mathematical properties of 

the operators found in APL. Of particular interest a re  the completeness theorems, 

which give conditions under which a subset of APL expressions can be put into 

standard form. The general idea of the standard form is that sequences of selection 



operators on an expression can ,be transformed into a shorter sequence of opera- 

tions on the same expression. In other -words, if & is an e?rpression and S_1, . . . ,SK 

a r e  selection operators, then there is a process for finding A ,  F, ' and G such that 

21 22 . . . S_K& * AQFAGA&. 

Completeness Theorem 3 further shows that, in essence, selection operations on 

inner, outer, or scalar products can be absorbed into the individual operands. 

Also by Completeness Theorems 2 and 3, reductions 'can be fac1;ored out of seleot 

expressions. 

Clearly, the whole fitory has uot been told at  this point; indeed, the contents 

of this chapter barely scratch the surface of the general problem of analysis of 
' )  

APL semantics. Even so, the results discussed a re  n sufficient base for the 

design of the APL machine discussed in the next chapters. In particular, thc 

analysis here' provides a formal basis for the beating and dtrag-along prucesses, 

which a re  the tdo foundations. upon which the APL Wachfne design rests. 

. . 
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form f B  

1 

Name 

P lus  

Negative 

Signum 

Reciprocal  

C e i l i n g  

Floor  

Exponential  

Natura l  
l o g a r i  thrn 

Magnitude 

F a c t o r i a l  

Roll  

P i  t i m e s ,  

Not 

Monadic 

Def in i t ion  
o r  example 

t B .  ++ O t B  

- B  ++ O - B  

x B  ++ ( B > o ) - ( B C O )  

t B  ++ 1 % ~  

B  

- 3 . 1 4  

3 . 1 4  

Dyadic 

Name 

P l u s  

Minus 

T i m e s  
\ 

Divide . 

Maximum 

Minimum . 

Power 

Logarithm 

Residue - 

Binomial 
c o e f f i c i e n t  

Deal 

C i r c u l a r  

And 

form A f B  

D e f i n i t i o n  
o r  example 

. . 

2 t 3 . 2  +t 5 . 2  

- 
2 - 3 . 2 .  ++ 1 . 2  

2 x 3 . 2  ++ 6 . 4  

2  + 3 . 2  +-c 0 . 6 2  5  

3 l -7  ++ 7  

3 1 7  ++ 3  

2 * 3  ++ 8  

A o B  ++ Log B  base A 
A e B  ++ ( e B  ) 2 e A  

A ! B  ++ ( ! B ) s ( ! A ) x ! B - A  

2 ! 5  ++ 1 0  3 ! 5  ++ 1 0  

A Mixed Function (See 
Table 3.8) 

See Table a t  l e f t  

* B  ++ ( . 2 . 7 1 8 2 8 . . ) * B  

O*N ++ N ++ * e ~  

1 - 3 . 1 4  ++ 3 . 1 4  

!O ++ 1  
! B  ++ B x ! B - I  

o r  ' ! B  ++ G a m a ( B t 1 )  

?B ++ Random choice  
from t B  

OB ++ B x 3 . 1 4 1 5 9 .  ... : 
-0 ++l -1 ++ 0  

.- 

TB 
4  

- 3  

, ( - A ) o B  
' ( 1 - B * 2 ) * : 5  

Arcsin B  

Arccos B  

Arctan B  
( - l + B * 2 ) * . 5  

Arcsinh B  

Arccosh B  

U c t a n h  B  

LB 
3 

- 4  

Table of Dyadic o  Functions 

A  

0 
1 

2  
3  
4  

5  
6  
7  

O r  
Nand 
Nor 

0 

AOB 
, ( I - B * 2 ) * . 5  
Sine  B  

Cosine B  
Tangent B  

( 1 t B * 2 ) * . 5  
Sinh B  

Cosh B  
Tanh B  - 

L e s s  
Not g r e a t e r  
Equal 
Not less 
Grea te r  
Not Equal 

Re la t ions  
Resul t  i s  1  i f  t h e  
r e l a t i o n  holds ,  0  
i f  it does not:  

3 5 7  ++ 1 
7 s 3  ++ 0 



3  4 p 1 1 2  ++ E 

1 0  l / . C l I K  ++ 1 2  3  4  ++ 1 0 its 
9 1 0  11 1 2  

1 0  1 l , l \ X  ++ 

VCII of r e s u l t  I I Q B + +  1 6  I1 

6 0  6 0 1 3 7 2 3  ++ 2 3  

Primitive Mix+ FumUons 

1. Res t r i c t ions  on argument ranks a r e  indicated by: S f o r  
e ~ a l a r ,  v f o r  vector ,  M f o r  matrix, A f o r  Any. Except a s  
t h e  f i r s t  argument of Y I A  or b i ~ l ,  a aealau may bo uoed 
ins tead  of a veotor. A one-element a r ray  may replace  any 
sca la r .  

7 ,  A r m y r  used 1 2 3 4  ABCD 
i n  examples: P ++ 2 3 5 7 E ++ 5 6 7 8 Y r- EFOII 

9 1 0  11 1 2  I J K L  
3. F'unction depends on index o r ig in .  

4. El i s ion  of  any index s e l e c t s  a l l  along t h a t  coordinate. 

5. The function i s  a p l i ed  along the  l a s t  coordinate;  t h e  
symbols t ,  f ,  an$ a are e;lu~vaLent to /, \ ,  nnd O ,  
respect ively ,  except t h a t  t h e  function i s  appl ied along t h e  
f i r s t  coordinate. I f  CSI appears a f t e r  any of  t h e  symbols, 
t h e  re levant  coordinate is  determined by the  s c a l a r  S.  
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Scalar 
Vector 
Matrix 

Dimension and Rank' Vectors 

Inner Products for Primitive Scalar Dyadic Function6 f and g 

P A  

U 
U 

T U  

T U V  

Outer Products for Primitive Scalar Dyadic Function g 

OB 

V 

V 
V W  

U V W  

T U V W  

t 

P A  

U 
U V  

T U  

T U V  
T U 

Transposition 

pAo.gB 

V 
u 
U V  

V W V w  
T U  

U V W U V W  
T U V  
T U V W 

pB 

V 

V W 
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Definition 
Z+Af .gB 

Z+f /AqB 
Z+f /AgB 
Z+f /AgB 
Z+f/AqB 

ZCIl+f/AgBC ;I1 
ZC I]+£ /A[ I; IgB 
ZCIl+f/AgBC ;I1 
ZCIl+f/ACI; IgB 

Z C I ; J I + ~ / A C I ; I ~ B C ; J I  

oAf.gB 

W 
T 
W 
T 
T W  

Definition 
Z+Ao .gB 

Z+AgB 
ZCIl+AgBCIl 
ZCIl+ACIlgB 

ZCI;JI+ACII~BCJ] 
ZCI;Jl+AgBCI;Jl 
ZCI; Jl+ACI; JlgB 

Z[I;J;K~+ACII~BCJ;KI 
Z[I;J;K]+ACI;JI~BCKI' 

z[I;J;K;LI+ACI;JI~BCK;LI 

Definition 

R+V 
R+M 

RCI;JI+MCJ;I] 
RCII+MCI;II 

R+T 
RCI;J;K~+TCI;K;JI 
RCI;J;KI+TCJ;K;II 
R[I:J;K~+TTK:I;J~ 
RCI;JI+TCI;I;J] 
RCI;J]+TCI;J;I] 
RCI;JI+TCJ;I;I] 
R[I]+T[I;I;I] 

Case 

H+lQV 
R+l 2QM 
R+2 1QM 
~ + l  IQM 
R+l 2 3QT 
Rc.1 3 2bT 
R+2 3 1QT 
R+3 1 2BT 
Rcl 1 2QT 
R+l 2 1QT 
R+2 1 1QT 
R+i 1 1QT 

Conformability 
requirements 

U=V 

U=V 
U=V 
u=v 

P R 

P v 
P M  
(pM)C2 11 
L/PM 
pT 
( V T ) C ~  3 2 1  
(pT)C3 1 2 1  
(pT)C2 3 13 
(L/(pT)Cl 2I).(pT)C31 
(L/(pT)Cl 3I).(p~)[21 
(L/(pT)C2 31).(pT)[11 
L /oT 



APPENDIX B 

This appendix contains proofs for the transformations and theorems which 

were deferred from the main part of Chapter 11. They were omitted from the 

text because they do not substantially contribute to the exposition of the material, 

and a r e  included here for completeness. ' 

The various proofs a r e  trying to establish the identity of two expressions 8 

and S. This is generally done fn two steps: in step 1, p8 pgis S ~ I U W ~  and 

in stop 2, i t  is shown that the expressions are identical element-by-element, 

Lernm.n.s T d l  through L9 slate results used in thc rost of. this appendix. Sj.n(?c! 

they a re  al l  intuitively obvious, and since.their proofs follow from the definitions, 

these proofs will be omitted. . 
3 

L1. If M is any array and V is a vector, then - 

(MCCKI V1)CCKl Ul ++ MCCKI VCUII 

L2. If M is any array, I<J , and ii and V are vectors 61 scalxrs, Lllexl - 

L3. Let M be any array altla SI , 52 ,  I . . ,SK be subscript vectoris6 Thcn - 
for  each L U I ~ M C S I ; S ~ ; .  . .;SKI, 

where T is a vector with TCII - SI[L[III 
for ench Ic ~ p p M ,  

. . 

L4. For any integral A (scalar or  array) satisfying A 2 I S  and (A-IORG)<LEN, - -- 

a. ( J  LE~~,ORG,O)CA] * UkC;+A=I(jii'Gic -- 

b. ( J _  LEN ,ORG, 1 c A I ++ ORG+LEN+I~+-I -A 



e. K+ J LEN, ORG ,S t-, J LEN, ( ORG+K) , S if K i s  an integer . 
f, +J LEN ,ORG,S - J_ LEN ,ORG,-s 

L5. If FDM is defined, then - 
(a) pFAM * FC;lI 

(b) for each L ELT tpFAM, 

(FDM)C ; / L I  t-+ MC ;/FC ;2I+( (-FC ; 3 I ) x ( L - ~ ~ ) ) + ( F C ; 3 I x ( F C  ;~]+IoRG+-1-L))] 

L6. a. U/XCSl * XCUISI - 
b. U\U/X * UxX (if X is numeric) 

f. U/( X D_ Y - ( U/X)  D_ ( U/Y for g a dyadic scalar operator 

g. If D_ is a dyadic scalar operator with 0 Q 0 * 0, 

then U \ i X  Q Y )  * ( U \ X )  D_ ( U \ Y )  

L7. If O I O R G 1 - r n  and ( ORGl+LENl -Im) <LEN then - 

a. ( J  LEN,ORG,O) C J  LENl,ORGl,SI * J LENl,(ORG+ORGl-IORG),S 

be (J  LEN ,ORG, l  ) [ J _  LEN1 ,ORGl ,S] * J_ LEN1 ,(ORG+LEN+Ia-(ORGl+LENl) ) ,-S .- 

L8. Jf [land V are  logical vectors with pV t.-t +/-U - 
then - (UV( -U) \V)  - (-U)\-V. 

L9, .a. Id:B. isavectorandifforanyA.A~Bisal lones,  thenBCBtA1 - A .  - 
b. If P is a permutation of tppthen if R * PttpP, PCRl * RCPI * tpPand 

P c-t R I  t pR. In other words, for permutation vectors, the ranking 

operator is its own inverse, 



Proof of TR5: 

1. pFAGaM * pFC;lJ * pHAM (by L5) 

2. Foreach L E x  1pFAGmy (FAGaM)C;/Ll - (GAM)C;/SI 
where SCI] * ( J _  FCI;I)CLCIII , 

and (GaM)C ;IS] .c-+ MC ;/TI 

where TCI3 * ( J _  GCI;I)CSCIII 

-- ( J _  GCI;I)C(J PCI~l)CLCIl11 

* ( ( J  GCI; l > C J _  FCI;ll)CLCIll 

~ u t  (HaM)C;/Ll ++ MC;/UI 

where UCI] * ( &  HCI;l)CLCIll 

t+ ( ( J  GCI; I>CJ PCI;II)CLCIll 

* TCII 

Thus,T ++ U and (FAGAM)C;/LI ++ (H~)C;;L]. QED. 

We can give explicit formulas for H in TR5. First, HC ;I] - F C ; I I  and 

~ [ ; 3 3  * F[;3J+GL;3]. 'i;'Pm.lly, for each It~pphI, IICI;2] ++ IF 0=1;61;31 - 
T m  F[I;~]+GCI;~]-IORG ELSE ( I O R G + + / G C I ; ~ , ~ ] ) - + / ~ L ~ ; ~ , ~ ~ .  

Proof of TR6: 

1. ~ F ~ G A M  - (-FC ;I] )/PGAM 
* (-FC ;II)/GC ;I] 

'.L G1[;l] * p G v A F I N .  

2. For onoh L H s  lpFI\GAM, 

(FAG~M)C:/LJ * (GdM)L;/L13 where L' * ( x / F ) + ( e . - b 1 C ; 1 3 j \ ~  (byD14) - MC ; /S1 



where (by L5), 

S * G[;2]+((-GC ;31)xL1-Im)t(G[ ;3lx(GC ;11+1mt-l-~' 

* GC;21+( (-GC;3l>x(x/F)+((-FC;ll)\L)-I~) 

+(G[;~]x(G[;~]+IoRG+-~-( (x/F)+(-F[ ;I] )\L) 

(GIAFt@l>C ;/Ll - (F '@l)C ;IT] 
where T - G ~ C ; ~ ~ + ( ( - G ~ [ ; ~ ~ ) ~ L - I O R G ) + ( G ~ C ; ~ ~ ~ ( G ~ C ; ~ I + I ~ ~ - ~ - L ) )  
Thus, (G'AF1AM)C ;/Ll * fl ;/Ul 

where U * (x/F1 )+(-Ft C;ll)\T 

* (x/F')+(-F'C ;1l)\(G1C;21t( (-G1C;31)xL-m) 

+ ( c ' C ; ~ I ~ ( G ' C ; ~ I + I ~ + ~ ~ - L ) ~  

To complete the proof, we need to show that S * U. 33y lemma L 6 g ~  

'? 
X\A+B ++ (X\A)+(X\B), 

and X\AxB - (X\A)x(X\B 1. 

Thus, writing E * -FIC;ll *-FC;lI, andsubstitutingforFt, 

U * ( F [ ; ~ ] ~ ( F [ ; ~ ] X G [ ; ~ ] + ( ( - G [ ; ~ ] ) X F [ ; ~ ~ - I ~ )  

+(GC ;3lx(~C ; l l t ~ t ~ l - F C ; 2 1 ) ) ) )  

+(E\G1C;21)+((E\-G1[;31)x(E\L)-IOR6) 

+(E\G'[;~])~(E\G'[;~])~I~+-~-E\L 

But E\Gr[;KI - ExG[;K] * (-F[;l])xG[;K]f0rK~1,2,3. 
Making this substitution and commuting .terms, 

U * ((FC ;I]+-FC;ll)x(GC ;21+( (-GC ;3l)x-Im)+GC ;3lxGC ;11+10~-1) 

+((-GC ;3l)x(FC ;lIxFC ;21)+(-FC;ll)x(-FC ;1l)\L) 

c '+G[ ;3]x(F[ ; l ] x - F [ ; 2 ] ) + ~ ~ F ~ ; l ~ ) ~ - ( ~ F ~ ; l ~ ) \ L  

m t  F[ ;I ] +-FC ; 1 I - i pPC ; 1 1) pl and does not contribute to the product in the 



f i r s t  term. Also, 

(-F[;l])x(-FC;lI)\L * (-FC;1I)\L. 

U * ~[;21+( (-GC ;31)x(x/F)+( (-FC;lI)\L)+m.) 

+G[;3]xGC ;~I+IORG+-I-( (x/F)+(-F[;l])\L) 

* S QED. 

Proof of TR7: 

1. pF&G_nM t, (-F[;ll )/PC@! + (-~C;11 )/(-'GC )/PM 

H. ( (NGC ;II)\-PL ;IJ)/PM (by I 4  

++ pE'nc;-OM 

2. For each L h x  1pFhGp1, 

(FkG&V)C;/L] * (GM)C;/(x/F)+(-FC;11)\Ll * fl ;IS] 

where S t+ (~/G)+(-GC;~I)\(~/F)+(-FC;~I)\L 

(H&v)C ; / L J  * MC;/C~/H)+(~HC;~I)\LI '< JfC ;/2'1 

where T * ((G~:~~V(~-GC;~I)\FC;~I)~(G[;~J+(-G'S ;11 j\~C;21)) 

+(-(GC;l)v(-GC ;lI>\FC ;Ill )\L 

Expanding the products, and noting that 

GC;1 ]v(-GT;ll)\F~;ll * GC;11+(-GC;lI)\FC ;I], 

we get 

T c - , -  (r:/~)+(G[;l]x(-C;[ ;I ~)\P~;~])+(GC;~I~(-GC ;~I)\FC ;I]) 

+(((-G[ ; ~ ~ > \ F L ; ~ I ) ~ ( ~ G c ; ~ ~ ~ \ F ~ ; ~ J ~ Q ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~  



So we must show that S T . In simplifying T , we use the following, in 
. 

order: If U and V a re  logical vectors, 

Ux(-U)\X - (pulp0 
tU\X>x(U\Y> - U\XxY (L6g) 

u\nx - (U\V)\X 
Also recall from the definition of A that GC ;2 1 contains zeros wherever 

GC ; 1 I does, Thus, we rewrite T: 

T - (x/G)+(GC ;2lx(-GC;lI)\FC;l])+( (-GC ;ll)\(x/F))+((-G[;1l)\-FC;1~)\L 

But the second term goes away because of GC ; 2 I 's zeros. 

T * ( ~ / C ) + ( ( ~ G C ; ~ I ) \ ~ X / F ) ) + ( - G C  ;I])\(-FC ;lI)\L 

* (x/G~+(-GC;1l~\((xlF)t~-FC;1I)\L) 

* s. QED. 

Proof of TR8: 

Clearly the ranks of both expressions a r e  identical. 

1. pFAA4M * FC;11 
/ ' 

(by L5) 

Now, for each IE I ppA4FCAt; ]OM 

(pA@FCA;IAM)CIl * L/(A=I)/pFCA;lAM * L/(A=I)/FCA;l] 

2. For each L ELT IPFAAQM, 

(FAAQM)C;/LI * (A4M)C;IQl * MC ;/&CAI1 

where QCII c+ ( J  FCI;l)CLCIll 

(A4FCA;laM)C ;/LI * (FCA;laM)C;/LCAII ++ MC;./Sl 

where SCI1 * (J (FCA;l)CI;I~C(LCAl~CIll 

* (J FCACIl;l)CLCACIlll 

* QCACIII * (QCA1)CIl 



Proof. of TR9: The case of ( p ~ ~ ~ )  tt 1 is trivial and will be omitted. Otherwise, 

1. pp(AQM)CCJIQI * (ppAQM)-1 t+ (r/A)-1 ' (inl-origin) 

ppAiQB@ * r/Ai t+ r/(A#J)/A-J<A * ~/((A#J)/A-A<J)CL,E,GI ( * I  

where L,E,Gexhausts ~pAand such that A/ACLI<J and 

A/A CEl=J and A/ArG]>J . (This is possible by commutativity of, r .) 

( * )  * r/(J#ACL,E,Gl)/ACL,E,Gl-J<ACL,E,Gl 

* r/( ( (pACL1 >pl> ,( (pACE1)pb) , ( P A C G ~ ) / ( A C ~ I , ~ C ~ I , ~ C ~ I ~  

( ( p ~ ~ ~ , ~ ~ ) ~ o )  ,(~ncci)~i 
, - r/flC~l,(ACG]-l) - ( r / ~ c ~ i ) r  (r/ALGi)-I 

Zf J t-t r / A  then ACGI * 10 and the result is [/ALL1 * ([/A)-1. Otherwise, 

A[G] is non-empty and r/ACGl ++ [/A, so the result is still ( [/A ) -1 , since A 

exhausts IPA, by definition. Thus the ranks of both expressions a r e  identical. 

We now show the dimensions to be indentical, 

For  each %~l(r/A)-l, 

(pA1QBg)CII * L/(I=A1)/pBN * L/(I=(Az~T)/A-J<A)/(A#J)/~M 

* I/( (AtJ)/I=A-J<A)/(AtJ)/pM * L/( (A*J)hI=A-J<A)/pM (by L6e) 

By case analysis, we 1111~1 L~ML 

(A*J)AI=A-J<A * IF I<J I=A E m  (1+1 )=A - A=I+I2J 
Thus, ( pAt4B&M)CII * L/(A=I+IrJ)/pM * (pAQM)LI+IUl (by D18) 

and (P(AQM)CCJIQI)CII <-> ((J#tpA)/pAQM)CPI 

++ (QAQ,FII)C((J:~'LP~~)/L~~AWI)CII~ 

* (pAQM)CI+IUI - (pAi4B&V)CIl 
Therefore both expressions have the same dimension, 





NOW I=BCAI - (I=B)CAl sinceI  is scalar. Also note that ((I=B)CAl)CKl * 1 i. 

if and only if ACKIeT. Thus, I=BCAI * ACT and 

( p ~ ~ ~ ~ ~ ~ ) ~ ~ ~  L/(I=BCAI )/PM - 
7 

* L/(AeT)/pM *' (pB4AQM)CIl. 
. . 

2. For each L ~2 I ~ B Q A Q M ,  

(BQAQM)C'';/LI -A= (AQM)C;/LCBlI . '  

tt M C ; I ( T ~ C P l ) G A l l  

+i M L ; I L L ~ L A J J J '  

QED. 

Proof of 'l'hcorcm T2: 

The only if part is easiest, a s  it depends only on the dimensions of the expressions 
. . 

involved. Only if part: 

By hypothesis, D/.CKI M - / C P C K I  I PQM. 
Thus, the dimensions of both expressions a r e  identical. Specifically, ' 

and PD_/CPCK]I M * (PCKlt~ppPQM)/pptp~ 
. . 

But, since P is a permutation of ~ p p M  then pP ct p p ~  

and PPQM ( PM)CPI I ~ ~ M I  - ( ~ M I C P I I ~ P I  

'Also, ppPQM ppM. Honoo, 

f i n i r P r K i 1  M tt I P C K I + ~ ~ ~ M ) : / ~ ~ M ) C P ~  I p ~ ~  

* ( ~ M ) C ( P T K ~ ~ I ~ ~ M ) / @ I :  I ~ P I  ( * )  ' (by L6a) 

and PD_/CKIM ++ (PMIC ( ~ * ~ p p ~ ) / ~ p p M l  C**) 

~ u t  ( *  ) ++ ( ** by 11ypotliose~. TIIUE, t h ~  aubaclbipt~ 01 ( p ~ )  arc i~ldentictil 

for each expression, i. e. , 

(PCKlt~ppM)lPl I P P  - ( K t ~ p p M I l ~ p p M .  



We now proceed with the difficult part.of the proof: 

Lf part: 

1. We nus t  shuw llrat pQ/Ch'I W - pg/CPCKll P ~ M ,  

~ u t  ppP4M ++ r/P ++ p p ~ .  So for each IE I P ~ M ,  

since P has exactly one element equal to I. - ipM)CPlII (by D26) 

Hence, pPQM ++ (pM)CPl 1pP1. Now, 

pQ/CPCKll P4M * ( P C K I ~ I ~ ~ P Q M ) / P P Q M  ++ ( P C K I * I ~ ~ M ) / ( ~ M ) C P I I P P I  - (pM)C ( P C K I * I ~ ~ M > / P I I ~ P I  ++ ( P M ) C ( K * I ~ ~ M ) / I ~ P M I  

by hypothesis 

++ pQ/CKl M. 

Thus, the dimensions a re  identical. 

2 .  The two expressions a r e  identical element-by-element. 

For each L E L 2  ~pg/CKl M, (Q/CKl M)C;/LI ++ Q/Fig 

where FC;ll ++ K;t~ppM 

and FC;21 ++ FC;ll\L 

(D/CPCKlI PQM)C;/L] - Q/GAPQM 
where GC ;11 ++ PCKl*tpp~ 

and GC;2I*GC;ll\L 

Let us examine these two reducees element-by-element. First  note that 

they have the same rank. For, pF_aM ++ ( K =  I ppM)/pM - ( pM) CKI 
and pGAPQM++ ( P C K I = I ~ ~ M ) / ~ P Q M  

++ (pP4M)CPCKll 

++ L/(PCKl=P)/pM 

4. ( p M ) T K ' I .  



where R * (x/F)+(-FC;lI )\I 

where S - ((L,I)C(~PCK~-~),(~+~L),(P~KI-~)+~(~L)-(PCKII-~)~~CP~ 
( ( L , I ) C ( I P C K I - ~ ~ , ( ~ ~ M ) , ( P C K ~ - ~ ) + I ~ P P M ) - P ~ ~ ~ ~ ~ ~ ~ ~  

To complete thc proof, we must show that R * S. 

In order to look more closely a t  S ,  we must find out more about P. Let 

T - PI 1pP. 

Thcn by hypothesis, 

(PTKlzippMIlT - (Kti,r,pM)/~ppM - (IK-~..,K+I(OPM)-K. 

Since p i s  a permutation, A /  ( 1pP)tP and w e  would expecl lu lavl= A /  ( I ~ T ) c T .  

The above equation gives all  of T except for the element which equals K. 

There a re  pT places in T that K could occur, falling into three cases. By 

examining each of these cases, we can deduce the structure of F , and thus the 

value of S. 

(a) PCKI - K. Then9 * (tK-1),KYK+~(ppM)-K * ~ p p M .  

Thus, P 4 ~ p p M  and S - R.  

(b) PCKIM. Then, T * (IPCK~-~),K,((PCK~-~)+I(K-~)-(PCKI-~)),K+~(~~M)-K 



and by lemma L9 

and then 

(c) PCKl>K. In this case, T * ( tK-1) ,(K+IPCKI-K) ,K,PCKI+I (ppM)-PCKI 

Then, S * (L,I)C( IK-l),(ppM),( (K-~)+IPCK]-K) , ( P C K I - ~ ) + I ( ~ ~ M ) - P C K I I  

Hence, in all  cases S ++ R and therefore'FAJ * G g Q M  

for each L lpD_/CKI M ,  

and thus Q/CKI M * D_/CPCKIl PQM. QED. 

Proof of TR12: 

1. The ranks of both expressions a re  clearly equal. Then, for each I E  I ppAQD,/M, 

But also, for each I E I P P ( A  ,l+r/A )@My 

( ~ ( A , ~ + ~ ~ A ) Q M ) L I J  * L/(I=~,ltr/Al/pM L/((I=A)/-~J.~M),(I=~+~/A)/-~+~M 

- 
SO pD_/(A,l+r/A)QM * lJ.p(A,ltr/A)QM * pAQD_/M 

2. For each L ELT I pAQQ/M, 

(AQQ/M)C;/LI * (D_/M)C;/LCAII * 13_/F\M 

where FC;13 * (r/lppM)#~ppM ( ( - l + p p ~ ) p l )  ,O 

and FC;21 * FC;ll\LCAl * LCA1,O 

(D_/(A,l+r/A)QM)C;/L] * D_/Gh(A,l+r/A)QM 



where G[;lI - ( r / ~ p p ( ~ , l + r / ~ ) Q ~ ) # ~ p p ( ~ , l t r / ~ ) Q M  - ( (-l+pp(A,l+r/A)QM)~~l) ,O 

.- ( (ppAQQ/M)pl) $0 

A typical element of this reducee is 

(GA(A,l+rIA)QM)CIl * ((A,l+r/A)QM)C;/(x/G)+(-GC ;11)\II 

* ~ ( ~ , l t r / ~ > Q ~ j 6  ;/(L,O)+( t P ~ ) p 0 )  ,I] 

t. MC;/(L,I)CA,l+r/Al - M C  ;/LCAl ,I] ++ (F&V)CIl 

Thus, the two reducees a re  equal, QED. 

Proof of Theorem T3: 

1, pGAQ/CKl M * GC ;ll 

pQ/C.Kl G'AM * (KzlppM)/pG'AM 

* ( K # I ~ ~ M ) / G ' C ; ~ I  GC;lI * pGAQICK1 M 

2. For each %, E x  I ~ G A D _ / C K I  M, 

(c;ng/rKi M)C ; /LI  - (DICK] M ) L  ;/SI - U_/P&V 

where S . . * G C ' ; ~ I ~ ( ( ~ G [ ; ~ ~ ) X L - I . I ) + G C ; , ~ ~ X G ~ ; ~ J + I ~ + - I - L  

and FC;ll * K z ~ p p M  . 

and FC;2I * F[;I]\s 

(D_/CKI C I M ) [  ; / L I  - L) /FIAG'AM 

where GI' * (-1*"C;13j/C11C1 - (@f)CK';l 
and F1'C;11 - FfC;3,.1 * ~ [ ; 1 1 ,  

pn[;2] ct ~'[;l]x~~[;2]+((-~'[;3])x~'[;21-1m)+~'~;3lx~'C;1l 

+ I ~ + - I - F ' C  ;21 



But F'C;llxF'C;21 * F1C;21 

and for J~1,2,3. 

F'[;l]xG1 C;Jl * FC ;ll\GC;Jl 

Thus, distributing the . F ' C ; 1 I term and substituting, 

Ft1C;2] * (FC;lI\GC;21)+( (FC;ll\(-GC;3I))x(FC ;lI\L)-=) 
\ 

+ ( F [ ; ~ ] \ G C ; ~ I ) ~ ( F C ; ~ I \ G ~ ; ~ ~ ) + I ~ R G + - ~ - F ~  ;ll\L 

- F C ; ~ ] \ G C ; ~ I + ( ( - G C ; ~ ~ ) ~ L - I ~ ) + G C ; ~ I ~ G C ; ~ ~ + I ~ + ~ ~ - L  

* 'FC;lI\S - FC;21 
Hence F" * F 

and Gt'AF'lN * Gf1AF_aM * F N  QED. 

Proof of Theorem T4: 

* (-GC ;I I )/-l+p~ * pGG/M 

2. For each L E x  lpCg/M, 

(G@/M)C ;L1 +) (D_/M)C ;/(x/G)+(-GI: ;lI)\L] * Q / F N  

where FC;11 * (r/~ppM)#~ppM 

FC;21 * FC;l]\(x/G)+(-GC;l])\L * (x/G' )+  FC;l]\(-GC;l])\L 

Further, (D_/G1_aM)C ;/LI * Q/F'AGIN ++ Q / H N  

where FIC;ll c-, (r/~ppG'@)#~ppG'N 

and F1C;21 * F"C;~]\L 

and, by TR7, HC;II * G ' L  ;~IV(-G'C;~I)\F'C 

H[;21 t, G'C;~I+(-G'C;~I)\F'C;~I 



NOW for each Ic lppF_aM, 

(F&V)CII * MC;/(x/F)+(-FC ;])\I] 

* M[;/((~/G~)+FC;~~\(-G~;~~)\L)+(-F~;~~)\~I 

* MC;/((~/G)+(-GC;~])\L),~I 

since FC ;ll * ((-l+ppM)pl) ,O 

and (-GIC;ll)\F'C;ll* ((-~~;ll),l)\~'C;l] 

* (G[;21,0)+((-GC ;I]>\-l+F1[ ;21),0 t. (GC ;21+(-GC ;11)\L) ,O 

and so HAM * F N  . 
Therefore G@/M * Q/G l_aM. QED. 

Proof of Theorem T5: There a re  two main cases. 
.. 

tL. Onc of II or  B is a soalar arld is extended to the size of the other op~mnd. 

Suppose A is scalar, 'rhen, A 0 .Q B ++ A Q 23, by defilllllun, alJ 

(. ~ p p A  :) , tppB tf i t U 1, tppB * t p p ~ ,  which is the identity transpose, and 

similarly if B is a scalar. 

b. A and B a r e  arrays of identical dimension. Then 

* (r/tppA)+l-I.I * ppA 

and for each IE I p pA , 



2. For each L E x  1pA D_ B, 

(((~ppAl,~ppBlQA 0 . Q  B)C;/LI * (A 0.Q B)C;/L,LI * AC;/Ll D_ BC;/L] 

* (A Q B)C;/Ll QED . 
Proof of Theorem T6: 

1. ppAQM 0 . F  N * (r/A)+l-IBG c+ r/~(ppM)+(ppN)-1 * l+ppM D_.F N 

For each I E I ~ A Q M  0 . F  N, 

(pAQM 0 . F  N)CII * L/(I=A)/pM 0 . F  N * L/(I=A)/(pM),pN 

* IF I E I - ~ + ~ ~ M  THEN (pM)CIl ELSE IF ~ ~ ( - l + ~ p M ) + ~ - l + p p ~  

(pN)C?+I-ppM1 ELSE L/(-i+p~),i+p~. 

So, pAQM 0 . F  N * (-14-pM) ,(l+piV) ,-l+pM 
- 

and therefore pD_/AQM 0 .  F N * 1 +pAQM 0  . F N 

* (-l+pM),l+pN ++ pM D_.F N 

2. For each L E x  1pM D_.F N, 

(M Q . F  N)C;/Ll * D_/(GM) F H N  

whereG andH areas inD28.  Also, (Q/AQM 0 . F  N)C;/LI * QIEUQM 0 . E  N 

where EC;11 * ((-l+pp~QM 0 . F  N)pl) ,O * ((ppM Q.F N)pl) ,O 

and EC;21 * EC;lI\L * L,O 

To complete the proof, we must show that the two reducees above a r e  identical. 

Clearly both have the same dimension, namely -l+pM. 

Then for each IE I p-1 +PM, 

( ( G M )  F HM)CII * (GNICII F (HANICII 

++ MC ; / (  (-I+P~M)+L) ,I] F NC;/I,(--I+~~N)+LI 

( E U W  0 . F  N)CIl * (AQM 0 . e  N)C;/L,II * (M 0 . F  N)C;/(L,I)CAll 

- (M 0 . z  N)C ; / ( ( - ~ + ~ ~ M I I . L )  ,I,I,(--~+~~N)+LI 

.-. MC ;/((-I+PPM)+L) ,I] F NC;/I,(--I+~~N)+LI 

* ( ( G a l  F HANICII 



Thus, ( G M )  g HAN - EUQM 0 .g N , and so  the) reductions of each a r e  

identical. QED. 

Proof of TR15: 

1. The ranks of both expressions a r e  the same since the subarray operator 

does not affect ranks. So for each IE IPPW, 

(pAQU 0 .Q V)CI1 * L/(I=A)/pU 0 .Q V. 

pU 0.Q V - (HCF;lARf) 0.Q HCG;1AS1- But 

* (~HCF;IA??'>,~HCCI]AS~ 

* H r F ; I  1 , H C I : ; i  I tL> HCP,G; I  J * HLA ;1I 

~ h u s ,  (pAQU 0.Q V)CIl * L/(I=A)/HCA;lI * L/HC(I=A)/A;l] * HCI;11 

andtherefore PAQU 0.Q V * HC;lI * PHAW. 
?' 

2. For each L E a  1 PHAW, 

(HAW)C;/Ll * (AQR' 0.Q S1)C;/P1 * (R' 0.D - S f  > C  ;/P[All 

* RvC;/PCFIl Q S1C;/PCGI1 

where P * H [ ; ~ I + ( ( ~ H [ ; ~ I  )xL-IoR(;)+HC;~IXHC . ;~I+IoRG+-I-L 

(AQl.1 Q ;I, V)L;/EJ ++ ( R "  0 ,D_ Slf)C ;/LCAll 

++ (HCF;IAR~ )C ;/LCFII Q (HCG;IAS~ )C;/LCGII 

* RIC;/Tl Q SfC;/Tfl 

where T +> HCP;23+( ( - H C F ; ~ ~ ) ~ L C F ~ - I ~ ) ~ H C F ; ~ ~ ~ ~ I . I C ~ ; ~ ~ ~ I ~ ~ ~ ~ ~ ~ - L C F ~  
F 

* PCFI and similarly, 

T' * PCGl 

Then (AQU 0 . Q  I/)C;/Ll * R1C;/PCFl1 Q SIC;/PCGll ++ (HAW)C;/L]. 

Finally, the result is in GDF since U and V a re  in SF and the value of A still 

satisfies the required conditions. QED. 



Proof of TR16: 

1. pWCCJ1 &I * (Jt~ppW)/pW. To determine pBQU o.D_ V we must first  find 

pu 0 .Q v. 

pU * pRll* IF J E F . ~  pR1CCF~J1 &I ELSE pR' 

There a re  two cases: 

a. JEF. Then, 

pRW pR'CCF1JI &I * ( (FIJ)#I~~R')/~R' 

* ((FIJ)#I~~R')/(PW)CFI (by D29) 

* (~W)C((FIJ)#I~F)/FI 

* (pW)C (F#J)/Fl 

* ( ((J-1 ).t.pW), (pW)CJI ,J.+pW)C(F#J)/FI 

++ ( (  (J-i )+pw) ,J+~w>c(F~J)/F-J<FI 

since J does not occur in ( FtJ) IF 

* (pWCCJ1 Ql)C(F*J)/F-J<Fl 

b. If -JEF then (FzJ) * ( pF )pl . So in this case, 

pR1' ++ pR' ct (pW)CF] * (pWCCJ1 QI)C(F*J)/F-J<FI 

SO p u  - (pWC CJI &I )C (F~J)/F-J<PI and similarly, 

pV * (pWCCJ1 Ql)C(G*J)/G-J<Gl. 

Therefore, pU 0 .Q V - ( p H  CJI &I ) C ( (F*J)/F-J<F), (G*J)/G-J<G] 

t. ( ~ W C C J I  QI)c(J~F,G)/(F,G)-J<F,G~ 

++ (PWCCJI QI)C(J%A)/A-J<AI 

Then for each -IE~PPBQU o -Q V, 

(pBQU ,o. Q VICII * L/(I=B)/pU 0.Q V 

* L/(I=(J*A)/A-J<A)/(~W[[J~ Q])C(J#A)/A-J<A 



and thus pBQU 0.Q V * pWCCJ1 &I. 

2. For each L I~WCCJI Ql, 

(WCCJI Ql)C;/LI * PC;/( (J-l)+L)yQy(J-l)+LI 

where T * ((J-l)+L)yQy(J-l)+L. 

(BQU 0 .Q V)C ;/Ll * (Rfl o .Q S")[ ;/LcBll 

Consider the R" term above. There a r e  two cases, a s  before: 

a. -JEF. Then, 

b. JtF. 

because P i s  in ascending order and + / J = F  * 1 

<-+ R'C ;/Lc(-I+FIJ)+F~ ,Q,LC-~+(FIJ)+FII 

because of .F order 

* RIC;/TCFll 

And similarly, SllC;/(ppR1l)+LCBll ++ SIC;/TCGll 

Finally, i t  is clear that the result is in GDF since U and V a r e  in SF and B 

satisfies the necessary conditions. &ED. 



Proof of TR17: 

1. pp(F1 ,G1 )QU 0.Q V * ([IF' ,Gf ) + l - I B  

++ (r/M)+l-Im ct ( r / ~ ( r / B ) + i - I m ) + i - ~  

++ ( ( ( r / ~ ) + l - I O R G ) + I O R G - ~ ) + I - ~  -- * (r/B)+l-Im * wBQW 

For each I€ IPPBQW, 

(pBQW)CII <-+ L/(I=B)/pW 

and (p(F1,G1)QU 0.Q V)CII * L/(I=F',G')/~u 0.Q V 

* L/(I=F1 ,G1 )/(pRfl) ,pS" 

So we must findpR" and pS1'. 

pR1' ct p(F1tBCFl)Q(pBQW)CBCFIl+R' 

p p ~ ~ '  * (r/FftBCFl)+l-Im * (r/tpF1 )+l-I- * pF' 

Then, for each JE ~PPR", 

( ~ R ~ ~ ) C J I  c+ L/( J=F' IBCFI ) / p ( p ~ q ~ ) ~ ~ ~ ~ ~ ~ + ~ l  

ct L/(J=F'~BCFI)/(~BQW)CBCFII 

++ L/(~BQW)C(J=F~ ~BCFI)/BCFII 

* L/(pBQW)C(F1 CJI=BCFI)/BCFII 

ct (pBQW)CF1CJl1 

Hence pRfl * (pBQW)CFf1 

and similarly, pS1' ct ( pBQW) CG' 1, 

and thus (p(F1 yG' )QU 0 .Q V)CIl t-t L/(I=Ff ,G1 )/(~BQw)cF' ,G1 I 

++ L/(pBQW)C(I=F1 ,Gf )/Ff ,Gf I 

++ (pBQlJ)CIl 

and therefore p(F1,G' )QU 0.Q V t-t pBQW. 



2. For each L E x  lpBQW, . , . . ,  . ,  . 
. . 

(BQW)C;/L] +-+ (R' 0 .Q S13C;/LEBCAlll . . 

t-. R' C ;/( ppR1 >fLCBCAlll Q.S1 C.;/( ppR1 )+LCBCAlll 

t. RIC;/LCBCFlll Q SIC;/LCBCGlll 

((F1,G1)4U 0.Q V)C;/LI --:(Rf1 0.Q S")C.;/LCF1,G11'3 

t-. Rf1C;/LCF1l1 Q S1'C;/LCG113 . .  
. 

> 

So wo muot oalouhto tho R" and S l1 terms above, 

R"[ ;/LIF1 11 * ( (F1 IBLFI >Q(PBQW)CBCFII+R~ ) C  :/LIF1 11 

* ( (pB4W>CBCFllfR1 )C ;/LCF1 CF1 IBCF-1.111 

-M= ((pBQW~CBCFIIfR1)C;/LCBCF,ll . 

* R1C;/LCBCFl11 

since L E X  1 pB4W 

implies LCBCFIJ E x  I-(~BQw)CBCFII . 

Similarly, Sit[ ;/LCG1 11 --,S1 C;/LCBCGl11 

Tllus, ((F1 ,GI )@I/ u.D_ V)C;/Ll t-, R 1  C;/LCBCFlll Q 5°C ;/LCBCI~I]I 

t-. (BQW)C;/Ll 
., 

Finally, obsesve t b t  the result is in GDF since U and V are  in SF and F 1  and 

G a re  in order and contain no duplications by construction. QED. 

Proof of TR18: 

Immediate from T6. 



APPENDIXC , 

IDENTITY ELEMENTS 

Identity Elements of Primitive Scalar Dyadic Functions 

Dyadic 
Function 

Times x 

Plus + 
Divide 5 

Minus - 
Power * 
Logarithm e 
Maximum r 
Minimum l. 
Residue 
Circle o 

' Out of ! 
Or v 
And A 

Nor Y 

Nand * 

Reprinted hy permlsslon from APL\ 360: User's Manual @ 1968 by Internntlonal mslness Mnohlnes Corporntlon. 

L R 
L R 

Identity 
Element 

1 
0 

1 
0 

1 

-7.237...~75 

7.237.. .E75 

1 0  

1 
0 

1 

Left- 
Right 

L R 
L R 

R 
R 
R 

None 
L R 
L R 
L 
None 
L 
L R 
L R 
None 
None 



CHAPTER 111 

STEPS TOWARD A MACHINE DESIGN 

Never do today what you can 
Put off till tomorrow. 

William Brighty Rands 

procrastination is the 
a r t  of keeping 
up with yesterday 

Don Marquis, archy and mehitabel 

A s  demonstrated in Chapter 11, there is a high degree of power and internal 

consistency in the APL operators and data structures. ,This makes i t  possible to 

write simple expressions which have the same semantic content as  several state- 

ments in comparable programming languages. This chapter discusses how to 

exploit these features in the design of an APL machine. 

In general, A P L  programs contain less detail than corresponding programs 

in languages like ALGOL 60, FORTRAN, or  PL/I. For instance, the maximum 

value in a vector, V , of data can be expressed a s  r / V  in APL while ALGOL requires 

the following: 

MAX :smalles  tnumberinmachine ; 

frrs: = 1 step 1 until N do - - - 
i f  V[I]>MAX then MAX:=V~I~:  

While this aspect of APL often makes programs shorter and less intricate than, 

ray, ALGOL programr, i t  also requires that an evaluator of APL be illote conlplex 

than one for ALGOL, especially if such expressions a re  to be evaluated efficiently. 

On the other hand, a machine doing APL has greater freedom since i ts  behavior i s  

specified less explicitly. In effect, APL programs can be considered a s  descriptions 

of their results rather than a s  recipes for obtaining them. Further, the language 



renders many of these descriptions obvious, both to the human reader and to a 

machine, as in the case of T I V ,  while other languages encode them so intricately 

that the original intention of the programmer is hidden, In the example above, 

an APL machine can choose any method i t  pleases to find the maximum value 

while an ALGOL machine doesn't know what result is expected. 

This feature of APL also has some drawbacks in that some expressions for 

results require unnecessary computations if calculated literally a s  written. For 

instance, the expression 3 + (  2 x - V )  specifies a result which is the first  3 elements 

of twice the negative of V. Presumably the programmer is only interested in these 

three elements, However, the literal interpretation of this expression proceeds 

as  follows: 

1. Negate V (and store it somewhere). 

2. Multiply the previous result by 2 (and store it). 

3. Take the first  3 elements of the last result. 

In case V is large, this process is grossly inefficient. The negation requires ( p V )  

fetches and stores as well as  ( p V )  spaces for the value to be stored. The multi- 

plication requires another ( p V )  fetches, stores, and multiplies. In fact, the 

desired result could have been found simply by negating the first  three elements 

of V and multiplying by 2. Clearly, we would like the APL machine to be able to 

evaluate such programs efficiently! 

A. Drag-Along and Beating 

One approach to efficient and natural evaluation of APL expressions is to 

exploit the mathematical properties of the language to simplify calculations. In 

the machine, this approach is embodied in two fundamental new processes: drag- 

along and beating. 



Drag-along is the process of deferring evaluation of operands and operators 

a s  long as  possible. By examining a deferred expression i t  may be possible to 

simplify i t  in ways which are  impossible when only small parts of the expression 

a re  available. In effect, drag- along makes the. machine context- sensitive, while 

most machines a r e  context-free. 
/ 

Consider the drag-along evaluation of the example in the last section. If we 

assume a stack machine, the machine code for this expression might be 

1. LOAD V 

2. NEGATE 

3. LOAD 2 

4. 'MULTIPLY 

5. TAKE 3 

The immediate execution of this sequence was already shown. Suppose now that 

we temporarily defer instructions in a buffer instead of executing them a s  they 

appear. After the f i rs t  instruction, the buffer contains 

LOAD V 

After instruction 2, we have 

* I T  I NEGATE 
I 

where the pointer connects the negation with i ts  deferred operand, V. After 

instruction 4, the buffer contains 

The evaluation of the TAKE is different from the previous operators since i t  is a 

selection operator. TAKE can examine the contents of the buffer and change them, 



a s  below. Note that the deferred expression is equivalent to the original expression. 

The process of making the changes in the buffer is called beating. 

LOAD 3tVI ) (Note change in this instruction) 

O D  i MULTIPLY 

When values must finally be computed, only the desired elements w i l l  be accessed 

and used. ) ~ h u s ,  drag-along facilitates beating. 

The other aspect of drag-along is that i t  eliminates intermediate array-shaped 

results with consequent savings of stores, fetches, and space. In an expression 

such a s  A+B+C+D the literal execution proceeds in three steps: , 

If the variables A ,By C,D are vectors, each step above requires a vector-sized 

temporary store and the last two steps require fetches to get the previous results 

as  operands. With drag-along, the entire expression is deferred finally to be 

evaluated element-by- element as: 

for x+l step.1 ..until P A  do - - - 
T3CIl+AC 11+BCI l+CCI]+D[: I1  

This requires no kxtra fetches, stores, or temporary space to obtain the desired 

result. 

In the machine, drag-along will be applied to all array operands 8 and S a n d  

to dl monadic and dyadic opcratoro Ira~ and D~ for which 

(MoE E > C ; / L l  * flOl(F18 > C  ; / L 1  

and 



where F1. and F2 are  simple functions of arrays and MOPt and are  similar to 

MOP andBE . An example of a function which is not dragged-along by the machine 

is grade-up which is essentially a sort of i ts  operand. Grade-up obviously does 

not fit into the above scheme since F1 also becomes a sorting function which is 

not simple as required. I 

B. Beating and Array Representation 

Bcating is the machine equivalent of calculating standard forms of select ex- 

pressions. If the effort to do beating followed by an evaluation of a standard form 

is less than that to evaluate an expression dmectly, then the process is worthwhile. 

We will see in the following chapters that this is in fact the case. 

In order to apply beating we must specify a representation of the standard 

form. One possibility is to maintain the A , F ,  and G values for each array in an 

expression to allow calculation of the standard form 

,?QFAC@! 

as defined in Chapter II. However, these arrays contain redundant information 

and it is desirable to find a more compact representation. 

If we choose to represent arrays in row-major order we can utilize the rep- 

resentation of the storage access function a s  the representation of standard forms. 

In this way, beating will consist of applying the transformations of Chapter 11 to 

the mapping functions for arrays. 

In the following discussion we can assume without loss of generality that the 

index origin is zero. Situations where i t  is different reduce to the zero case by 

subtrac tin? I O R G  from all subscripts. Let A be a rank4 array. 'I'hen, assuming 

I 
that each element in A is to occupy one word in memory, the element AC ; / L  I will be 

located at  

VBASEt  ( pA ) 1L  ( * >  



where VBASE i s  the address of AC 0 ; o ; . . . ; o I. Thus, subscripts of arrays stored 

in row-major order a re  representations of numbers in a mixed-radix number 

system (Knuth [1968] p. 297). This representation is especially suitable for arrays 

in APL because APL arrays a re  rectangular, dense, and homogeneous. Further, 

this representation does not favor any array coordinate over another which is 

essential in APL. 

We can generalize the access function slightly by writing i t  in the form: 

where ABASE is an additive constant, in this case zero, andDEL is the weighting 

vector used to calculate the base value in (*) above. DEL is computed by 

DELC N l + l  

DELCI~+DELCI+~I~(~A)CI+~I for each IE  I N - 1 .  

Example: Let M be a matrix with dimension 2,3. Then DELc+3,1 and we set ABASE-0 . 

The layout of M in memory is 

VBASE 

Given this formulation of the storage access function, i t  is only necessary to 

t r a ~ s f o r ~ n  ABASE and DEL in Order to obtain the effect of evaluating selection opera- 

tions on an array. 

Example: T f M  is the matrix in the previous example, then the mapping function 

for ( 2 , l  )QM has the same VBASE. For the transpose we use ABASETc+O and DEL '*I, 3. 

Note that the change in DEL corresponds to permuting it by 2 ,I. This new function 

uses the same values that were stored forM, but accesses them a s  if they were 

the transpose ( 2 , l  )QM. To verify this, notie that the address for ( ( 2 , I  )QM) C I; J ]  



tt VBASE+ABASE++/DELxJ, I 

which is the location of MCJ;II * ((2,l)QM)CI;JI. 

This can be done for any selection operator by using transformations analogous 

to those in Chapter 11. Appendix A shows the beating transformations on accessl 

functions for arrays. In  the machine, beating is also appli.ed to expressions con- 

taining reductions, scalar operators, md inner iuld outer products, based on thc 

results in Chapter 11. 

C. Summary 

At this point we have outlined the framework of a machine for APL. It is 

pleasing to know that it will work since it is justified by theoretical results 

developed earlier. The remainder of this dissertation discusses the structural 

details of a machine based on the beating and drag-along processes and gives an 

evaluation of its effectiveness. Let us outline some goals that such a design should 

satisfy: 

1. The machine language should be close to APL. That is, it should contain 

all prfmitives in the language and in a similar form. While it i s  well-known how 

to design a machine to accept APL directly there is no particular advantage to 

doing so. We a re  primarily concerned with processing the semantics of the 

language, not i ts  syntax. Thus there is no loss of generality in letting the machine 

language be aPolish string version of APL. This has the further advantage of 

freeing the machine from the particular external syntax of APL. 



2. The machine should be general and flexible. In particular, i t  should 

not be so deeply committed to evaluating APL a s  to be useless for other purposes. 

3. The machine should do as  much a s  possible automatically. This includes 

storage management, control, and simplification of expressions. The programmer 

should not have to be aware of the structure and internal functioning of the machine 

at a level much beyond that specified in an APL-program. 

4. The machine should do simple things simply and complex tasks in pro- 

portion to their complexity. In other words, the work required for the machine 

to execute a program or  expression . .  . should, be related in some straightforward 

way to the program's complexity. 

5. The machine should be efficient. This is perhaps the most important 

focus of this work. Of course, the question of efficiency is related to the current 

technology; at present, a major bottleneck in evaluating array-valued expressions 

is use of memory. Thus we concentrate on reducing memory accessing and tem- 

porary storage space in the evaluation of APL programs. 

6. The machine design should be elegant, clean, and perspicuous. 



APPENDIX A 
\ ' 

TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY 

SELECTION OPERATORS 

1. The storage access function for an array M contains the following information: 

RAiVK - PPM 

R VEC - PM 

VDASE loca.tion of first  element of ,M 

ABASE constall term of aooess po~.ynom.id 

DEL vector of coefficients of access polynomial 

Then, the element MC ; / L  1 is located at 

' VBASE+ABASE++/DEL~L 

2. This section lists the transformations on storage access functioils which are 

used to effect beating of selection operators. These transformations are  given 

a s  program segments written in index origin zero. It is assumed that the parameters 

to the various selection operators are conformable and in the proper domain. 

ABASE t .ARASEtPBL+ . x ( Q< 0 )xRVEC- I 6? 
RVEC 4 I Q 

AaclSE + ABASE+DEL+ . x (  Q>O ) x I & 
RVEC 4 RVEC- I Q 

ABASE 4 ABASE+DEL [ J ]  x( RVECC J ]  -1 ) 

DELCJI + -DEL[JI 



R + RVEC' 
+ DEL 

RANK + I t (  [ / A )  
. I t 0  

DEL -+ RANKfDEL 

RVEC + RANKfRVEC 
RANK REPEAT 

BEGIN -- 
RVECCII -+ L / ( I = A ) / R  
DELCII + + / ( I = A ) / D  
I + It1 

ABASE + ABASE~DELC J I  XSCALAR 

DEL + ( J t  IRANK) IDEL 
RVEC + ( JZ I'RANK /RVEC 
RANK + RANK- 1 

ABASE + ABASEtDELCKlxORGt(LE2V-1) 
RVECCKI -+ LEN 
IF S = l  DELCKI + -DEL[K] 



CHAPTER IV 

THE MACHINE 

This chapter contains a functional description of a machine designed to process 

the semantic content of APL programs. 

In general, the description will be given in English, although algorithmic 

descriptions w i l l  be used a s  necessary to provide clarifications. The section will 

be written in the style of a programming manual, with the addition of explanations 

and rationales as required, 

The APL machine (APLM) is conceptually composed of two separate machines, 

each with i ts  own language, sharing the same registers and data structures. The 

D-machine (DM) accepts APL-Like machine code and does all the necessary analysis 

on expressions. The DM produces code for the E-machine (EM), and in the process 

does some simplification of incoming expressions using drag-along and beating. 

The E-machine does all the actual computations of values in the system. By using 

a stacking location counter based on the organization of machine cnde into segments, 

the overall control scheme for the machine is quite simple. 

The current chapter consists of five sections which present the APLM in a 

logical sequence. Section A discusses the data structures and other manipulable 

objects in the machine, and explains how they are  managed in the machine's 

memory. Section B continues by explaining the stacks and other registers in the 

machine, followed by a discussion of t h e  overa,lS. m.achine control, in Sec#on C. 

FinaJly, the details of the D-machine and the E-machine are  set forth in Sections 

D and E, respectively. Examples a re  used liberally throughout, to clarify opera- 
, . 

f tional detaiJs of the APL machine. 



A. Data Structures and Other Objects 

The manipulable objects in the machine fall into three main classes: data 

values, descriptors and program segments. This section will describe these 

three kinds of objects and how they are  represented in the machine. 

Scalars are  the simplest kind of data. In APL, a scalar i s  an array of 

rank- 0. In practice, a scalar is a different kind of object than an array, and is 

so treated in the machine, Although arrays a re  stored in the memory, My of the \ 

machine, scalars are not. They appear only in the machine registers, in particular 

the value stack, and as  immediate operands in a code string. In a real machine, 

scalars would have an attribute of type, determining the kind of representation to 

use for encoding and decoding them. In this work, we will  assume that this is 

handled automatically, and that all scalar data are  the size of a single machine 

word. 

The most important data structure in the APLM is the array. The represen- 

tation of an array is divided into two parts. The first  is the - value array which .is 

a row-major order linearization of the elements of the array, The second part 

is a descriptor array (DA) for an array, which contains the rank, dimension, and 

storage mapping function for the array. This separation makes i t  possible to have 

multiple DA1s, not necessarily identical, referring to the same value array, which 

makes beating possible. In this chapter, descriptor arrays will be shown in the 

form: 

@ARR i s  the address in memory of the first  word of the descriptor array for the 

array named ARR, which is shown above. The first word contains a reference 



count (RC) and a length (LEN) field, a s  e x p l ~ n e d  in the discussion on memory 

in the APLM. The rank of the array is recorded in the thirdaword of the DA; 

words after that contain the elements of the dimension vector, labeled R(1). Thus 

in this case, pARR is 3, 2. The second word in the DA encodes the base address 

of the value part of the array (labelled VB for VBASE) and the constant term in 

the storage mapping function (here labelled AB for ABASE). Finally, the DA 

contains the coefficients of the storage mapping polynomial, DEL (labelled D(1) 

here). ~ e c d l  that for an array ARR, the element ARR[;/L] is located at  

VBASE + ABASE + +/DEL x (L-IORG); 

This formula is the storage mapping function for any array. 
1 

In addition to array descriptors, the machine contains descriptors for 

J-vectors. Recall from Chapter I1 that a J-vector is a vector of consecutive 

integers which can be specified by a length, an origin, and a direction bit. We 

assume that these three quantities can be encoded into a descriptor by the 

function JCODE(length, origin, direction) and that there are  appropriate decoding 

functions. (See Appendix A. ) 

Finally, programs in the machine are  represented internally a s  program 

segments. A program segment is any sequence of machine commands and operands, 

and is referenced by a segment descriptor. Segment descriptors contain an 

encoding of the beginning address of a segment (relative to the beginning of the 

function they are  a part of) and the length of the segment, There is also a bit 

which indicates the execution mode for the segment (see Section C). 

Each defined function (program) is a segment, and logical subparts of the 

function may also be represented as  segments. A s  will be seen later, i t  is easy 

to activate and'de-activate segments in the APL machine. Briefly, the advantages 

of organizing programs in segments is that these a re  the logical units of a program, 



while other organizations, such as  paging, do not allow this kind of natural cor- 

respondence of form and function (pardon the pun!). An important property of 

APLM instructions is that they contain no absolute addresses except for references 

to NT, which remain constant in any compilation. A l l  internal references to 

other parts of a program are relative. Thus, all programs a re  relocatable. 

Each function has a corresponding function descriptor, which is similar to 

a DA. A function descriptor contains the following information: 

FVBASE location in M of beginning of function segment 

FLEN , 

FIORG 

FISR 

length of function segment 

index origin for this function 

logical variable-1 if function has a result 

FPARS number of parameters 

FLCL total number of local names 

In addition, the rest of the function descriptor contains a list of all local names 

in the function, in the order: result (if any), parameters (if any), local variables 

(if any). The function descriptor for a function is used in calling and returning 

from fun.ctiona, as will be discussed in Section D. 

Main memory in the machine is a Linear array of words named M. The only 

objects which reside in M are arrays, DA1s, and program segments. A l l  other 

objects are  stored in the machine's registers. In addition to M, there is an array 

NT, the Nametable, which is an abbreviated symbol table, Every identifier in the 

active workspace has an entry in NT, which contains descriptive information and 

either an actual value or  a pointer to where i t  can be found in M. Scalars and 

J-vector descriptors a re  stored directly in NT. Thus, all references to variables 

and functions in the machine go through the NT. This organization allows for 

dynamic allocation and relocation of space in M, without having to alter any 



program references. The operation of N T  is described more fully in the next 

section under machine registers. Constant array values within a function are  

stored as  part of the program segment; they are  addressed relative to the beginning 

of the function, and so, too, remain relocatable. 

Within My two different allocation mechanisms are  used, one for functions 

and array values, and one for descriptor arrays. The reasons for this a re  that, 

because of drag-along and beating,DAts a re  expected to have a shorter lifetime 

khan functions or array values. Further, in a given function, locally at least, it  

is likely that DAts will be of similar sizes, Thus, i t  is feasible to keep an 

available space list for DA1s, with the hope that erased spaces can be reused 

intact, We would therefore expect more efficient use of M by DA1s than by array 

\ 

values. 
\ 

The free memory space (M) is arranged as  follows: functions and array 

values are allocated from the lowest address (BOTM) towards the top of M and 

DAts are dlocated from the top (TOPM) down. The space in the middle is the POOL, 

with boundaries BOTP and TOPP. Each entry in M has a header word containing 

an encoding of a reference count (see Collins [1965]), the length of the entry, alld 

a filler count. The latter field is used when space shghtly larger tlim necessary 

is allocated, Each time a reference to an entry is added o r  deleted, the reierence 

count field is adjusted. Wnen a reference count goes to zero, meaning that there 

a r e  no uses of the entry anywhere in the system, the entry is made available in 

ono of two ways. If i t  is adjacent to the POQT-o, i t  i s  merged with POOL. Other- 

wise, it is added to the appropriate availability list, of which there are  two, one 

for DA1s and one for functions and array values, 

The availability lists a re  doubly linked, and each entry contains a header 

similar to those for active entries. Wnen space is needed, the appropriate 



availability list is searched using the first-fit method (Knuth [1968] 436, ff). If 

a fit is found, the space is allocated and the availability list adjusted. Otherwise, 

space is taken from the POOL. If a request for M-space is made which cannot 

be honored because there is not enough contiguous space available, a garbage 

collection is made. The two halves of M are  garbage-collected separately. In 

collecting array space, all the DA1s are  scanned and a linked list is set up which 

ties together all DA1s pointing to the same entry. Then arrays are  compacted 

towards BOTM, with the links used to adjust the VBASE fields in the referent DA1s. 

If enough space is still not available, the DA1s are  also compacted, using a 

similar algorithm. Some coalescing of available space is also done by the al- 

location algorithm, GETSPACE. Figure l illustrates how M is structured. 

Be Machine Registers I 

This section describes the registers and register-like structures in the APL 

machine, The present description covers only the logical functions performed by 

these registers and does not make any demands on how they are  actually to be 

implemented. Although most of the registers a re  not directly accessible tothe 

programmer, fhorough knowledge of their use is important to understanding the 
\ 

functioning of the machine. 

'I'here are  several registers related to memory accessing and allocation. 

The most important of these is the Nametable, NT, NT is an associatively ad- 

dressed stack, each entry of which contains a name field, a tag, and a value. 

The name field of an entry contains an index for the identifier associated with the 

ent,ry. Permissible tags in NT a r e  ST, for scalar quantities, JT, for encoded 

J-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions. 

ST and JT entries contain the actual value in their value field, while DT and FT 

entries have descriptor addresses in their value fields. 
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When a function is called, an entry is pushed to NTfor each of the function's 

local variables and parameters, a s  listed in the function descriptor. Similarly, 

when a function is de-activated, the reverse process occurs. Each time a variable 

is accessed, NT is searched associatively from the top (latest entry). If a hit is 

not found, then the desired variable must be global, and it is entered into NT. 

This mode of maintaining the NT makes identifier behavior correspond to APL's 

"dynamic block structureft and facilitates recursive function calls. 

The most important registers in the APL machine are  four stacks. The use 

of stacks permits elimination of addresses from most instructions and simplifies 

the evaluation of recursive and nested programs. 

1. Value Stack (VS) 

VS is the main stack in the machine and is used in the evaluation of expressions 

and in function calls. Each VS entry consists of a tag and a value part, a s  in NT 

entries. In addition to scalars and function or  DA pointers, VS can contain seg'ment 

descriptors, partially-evaluated addresses, function marks, and names. 

2. Location Counter Stack (LS) 

Recall that machine code is organized into segments, ch.a.racterized by a 

starting address and a length. Each LS entry contains the starting address of a 

segment (ORG), i ts  length (LEN), a relative count, pointing to the next instruction 

to be executed (REL), and control information. Each time a segment is activated, 

i ts  beginning address and length are  p ~ s h i d  to LS, and the REL field is set to zero. 

The address of the next instruction is then determined from the REL and ORG fields 

on the top of LS. After each instruction fetch, the REL field at the top of LS is 

incremented. When this value is equal to the length of the segment, the segment 

is terminated by popping the top of LS, thereby reactivating the next entry. The 

control information in LS is used to coordinate i t  with the other stacks in the machine. 

. . 
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3. Iteration Control Stack (IS) 

Array-valued APL expressions implicitly specify an index set for the expres- 

sions. In this machine, IS is used to control (nested) iterations over this index 

set  in the element-by-element evaluation of array-valued expressions. The 

operatioil of IS is coupled with LS a s  follows: when a set of iterations is begun, 

the Limits of the iteration a re  pushed into the iteration stack, and a segment is  

activated containing the range of the iterations, Then, for each instruction in 

the code segment, the necessary index values are taken from JT;T; When tho nngmcnt 

is completed, the entries in IS are  stepped and if the required iterations are  not 

exhausted, the segment is re-initialized and repeated with the new IS values. 

Eventually, the iterations a re  completed and the segment i n  the range also is 

completed, in which case IS and LS are  both popped, returning the machine to the 

place i t  was to resume after the iterated code was completed. (See Section D.) 

The IS behaves essentially like a nest of FORTRAN DOt a. Each entry contains 

a counter (CTR) (to origin zero), the maximum value of the counter (MA,X), 

direction bit (i. e., count up o r  down) (Dm) and control information. Although 

the IS is partially accessible to the machine code, i t  is for the most part main- 

tained automatically. Like LS, IS could probably be incorporated into the value 

stack, since ffiese three stacks generdly work in parallel. However, by separating 

these stacks by their functions, the machine design becomes cleaner and more 

perspicuous. 

4, Instruction Wiffer ( Q S )  

Unlike LS and IS, the instruction buffer QS is logically separate from the 

value stack, QS is not strictly a stack, since it is possible to access* and alter 

information at places other than its  top. In the D-machine, instructions a re  

fetched from M, some of which are  executed immediately, and others of which 



a r e  either evaluated by beating or  a re  deferred in QS by drag-along, In entering 

instructions in QS, the DM may change other related QS entries. When the 

E-machine is activated, instructions a re  fetched from QS and executed directly, 

generally in conjunction with VS and IS. QS contains operation and value fields, 

similar to VS, a LINK field used to reference other deferred instructions, and 

an AUX field, which is a logical vector acting a s  an access mask for array entries 

(see Section E). 

A final four regfsters in the machine are  mentioned primarily for completeness. 
- 

These are: 

IORG Index origin of current active function 

FBASE Base address in M of current active function 

FREG VS index of function mark for current active function 

ISMK IS index of topmost IS entry containing 1 in i ts  MARK field. 
\ 

The use of these registers is shown in the examples in following sections. 

C. Machine Control 
\ 

The purpose of the APL machine is to transform a set  of data (the input) into 

a secoi~d set (the output) according to encoded transformation rules (the program) 

which are  interpreted according to a predetermined scheme (the machine). This 

entire process is called the evaluation of the program and input. 

In the APL machine, programs are  evaluated in two separate but related sub- 

machines. The D-machine takes i ts  instructions from main memory, M, in the 

form of Polish APL code, and does all the necessary domain testing and storage 

allocation for the various operands. In addition,. the DM does simplification of 

incoming expressions by drag-along and .beating. The output of the D-machine is 

values in VS and transformed code in the QS, in the form of instruction segments 

for the E-machine. A t  critical points, determined either by the programm.er and 



the DM, control is passed to the E-machine, which executes the simplified 

instructions in QS, producing values in VS and M. When done, the EM passes 

control back to the DM, which resumes where i t  left off. 

The division of labor between the two submachines is logically similar to that 

between a compiler and i ts  target machine. The DM plays the role of the algebraically 

simplifying compiler, whose source language is essentially APL, and whose 

target language is E-machine code. The E-machine a s  the target of the DM'S 

transformations is a conceptually simple computer which does nothing but compute 

values, Given this scheme, a question which naturally arises is,  Why bother with 

the D-machine at  all? Why not use a separate compiler in software and let  i t  

produce code for a machine similar to our E-machine? Unfortunately, this is 

impossible', since the behavior of the D-machine is dependent not only on the 

source code (program), but is also dynamically dependent on the data.  ori instance, 

consider a simple APL expression such a s  A + B. We would like the source code 

for this expression to be some thing conceptually like 

LOAD A 
\ 

ADD (i. e. , add the values on top of the value stack aid leave the 

result there. ) 

The problem here is that we would like the machine to do different things depending 

on the data. In particular, if both A and B a re  scalars at  the time the above code 

is executed, I1 woulcl be desirable l;o have Ll~e LOAD inotruotioes push the ac01a.l. 

scalar values to the stack, and to have the ADD do the actual addition. But if A 

and B a r e  conformable arrays, the desired action i s  to defer the entire operation 

(both LOADS and the ADD) in the instruction buffer, to be performed later by the 

E-machine. 



No compiler would be able to make these decisions - a priori unless i t  knew 

what data was to be used in running the program, o r  unless variables were suf- 

ficiently restricted by declarations. Further, much of the work done by the D- 

machine i s  domain testing, including rank and dimension checking, on dynamically- 

specified variables. Since this process i s  data-dependent, i t  must be performed 

dynamic ally. 

Both the D-machine and the E-machine share all the registers and.the memory 

of the entire A P L  machine. Further, both a r e  controlled by a central cycle 

routine, shown in Fig. 2. The key to the overall control of the APLM is the 

location counter stack, LS, which contains active segments for both the DM and 

the EM. In Fig. 2 we see that a major machine cycle takes the form: 

a. Check to see if the current active segment has been completed. If not, 

proceed to step by otherwise see if this segment is under control of the 

iteration stack, If i t  is, then step the iteration stack; in case IS does not 

overflow, then reset the REL field to the beginning of the segment and 

repeat this step, If the segment is not under control of IS or  if i t  is and . 

the iteration stack overflowed, then de-ac tivate the segment and repeat 

this step. 

b. Calculate the effective address of the current instruction and update the 

location counter stack. 

c. Select the appropriate machine, determined by the D/E bit in the current 
, 

active segment, If the DM is selected, then defer any arrays referenced 

on the tog of the value staclr to the instruction buffer; also, fetch the 

instruction and (if necessary) thc secolld word of the instruction from 

memory. Finally, decode and interpre't the instruction and return to 

step a. 
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D. The D-Machine 

The D-machine evaluates programs written in lfmachine language" by generating 

instructions in QS to be executed later by the E-machine. A s  discussed in Chapter 

111, the use of a Polish string for the machine language rather than "rawn APL frees 

the APLM from the particular concrete syntax of APL without sacrificing any of the 

semantic content. 

Most of the instructions in the APLM correspond directly to the APL primitives; 

those which do not are. the control instructions, which comprise a more powerful 

set in the machine than are  provided in the source language. Al l  operands in DM . 

instructions are  either relative addresses within the program segment or a re  NT 

references or are  immediate values. A s  a result, all programs in the machine 

are  relocatable. Since only constant data is contained in function segments, 

\ 

programs are  likewise re-entrant. 

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The 

instructions a re  divided into three classes : storage management instructions, 

control instructions, and 'operator instructions. It is clear from Table 1 that no 

systems functions a re  included in the D-machine's repertoire. In a real imple- 

mentation of an APL machine, these instructions would have to be provided, 

although for the current work, they are  irrelevant, The remainder of this section 

discusses the instructions of the D-machine, with examples to clarify the details, 

0. A Guide to the Examples 

The examples used in this chapter include program listings, register dumps, 

and memory dumps. In showing program excerpts, we generally also show the 

APL source expression, and give values, or at  least attributes, for the operands. 

Programs are  shown in assembly language format, except that absolute addresses 

a re  given. Although nothing has been said of the manner in which D-machine instructions 



Storage Manag,ement and Control Instructions 

Opcode Operand Description ......................................................................... 

A. Storage Management Instructions 

LDS scalar 

LDSEG seg-desc r 

LDJ jcode 1, o, s 

LDIS K 

LDCON K 

LDN N 

LDNF N 

AWN 

ASGNV 

B. Control Instructions 

JW K 

JMPO K 

JMJ?! 

LEAVE 

RETURN 

ITM 

DO 

DO1 

Load scalar 

Load segment descriptor 

Load J-vec tor 

Load iteration stack counter, K from top of IS 

Load constant array, starting at FBASE +K 

Load name N 

Load name N and fetch value 

A s 6 i . p  (and discard value) 

Assign and leave valuc 

Jump by K (signed) i.n current segm.ent 

Jump by K in current segment only if top 

of VS is 0 

Pop VS i n  either c a s e  

Same a s  JMPO except test for 1 

De-actfvate this segment 

(i. e ,  , pop LS and also IS if necessary. ) 

Return from current function 

Iterate and mark 

Call E-machine to work on top of VS 

Same a s  DO except that tempora~y space is 

allocated for the result, if any, and the result 

is left on top of VS 



TABLE 1-2 

Scalar Arithmetic Operators 

Operator APL Definition ............................................................................ 
A. Dyadic 

ADD + Add 
SU B - Subtract 

MUL x Multiply 
DIV - Divide 

'MOD I Modulus, 

IMN L Minimum 

'MAX r Maximum 

' PWR *' Power 
LOG t~ Logarithm 

CIR o Circular functions 

DEAL ? Random deal 
COMB ! Binomial coefficient or beta function 
AND A Logical and 

4.. OR.  v Logical or 

NAND fi Logical nand 
NOR v Logical nor 
LT < Less than 

el LE I Less than or equal 

EQ 
- - 
1 

Equal 
GE Greater than or equal 

GT > Greater than 

NE 7' Not equal 

PLUS 
MINUS 
SGN 
RECIP 
ABS 
FLOOR 
CEIL 
EXP 
LOGE 
PI 
RAND 
FA C 
NOT 

Plus 
Minus 
Signum 
Reciprocal 
Absolute value 
Floor 
Ceiling 
Exponential (base e) 
Logarithm (base e) 
P i  times 
Random number 
Factorial or gamma function 
Logical not 



TABLE 1-3 
. f  

Hemaining Operators in %Machine 

Operator APL Definition ............................................................................. 
A. Selection 

TAKE 

DROP 

REV K 

TRANS 

INX K 

+ Take 

+ Drop 

4CK1 
th 

Reverse along K- coordinate 

Q Generalized transpose 
th 

C CKI Index on K- coordinate 

B. Evaluated Immediately 

BASE 

REP 

GDU 

GDD 

CAT K 

RAV 

U M U  

DRHO 

TTTCPTA 

Base value (Decode) 

Rep re  senlal lu~~ (Euc ude) . . 

Grade up 

Grade down 

Catenate (top K on VS) 

Ravel 
I 

Dimension 

Res tsucture 

PRt&sval 

C. Deferrable 

ROT K ~ J C  XI 
th 

Rulale u11 K- cuurdl~rate 

EPS F Mem..her ship 

DICvrA I Rank 

CMPRS K /r KI  
th 

Compress on K- nnnrdinat.~! 

EXPND K \ [Kl  
th 

Expand on K- coordinate 

SUBS K C Subscript with K expressions in VS 

D. Compound 

RED K OP OP/CI~I  Reduce along K~ coordinate by OP 

QDF O P  - - - Gc11cru.1 dyudic h r l n  will1 OP 



are  encoded, we have chosen, for purposes of illustration, to show them as  one or  

two word quantities, depending on whether or  not they have operands. A l l  operand 

addresses a re  shown symbolically and comments a re  used to explain the program 

structure. In the register dumps, most of the material is self-explanatory, Field 

headings a re  summarized in Appendix A, The top of each stack is indicated by an 

arrow. Descriptor array addresses, which are  pointers to the memory, a re  in the 

form @A, for variable A, and value addresses in M are  of the form VA. Again, in 

the real machine, these would in fact be numerical addresses, but the symbolic 

form is much clearer for examples. Fields in DAts a re  labelled mnemonically. 

Segment descriptors in VS or QS are shown in the form SCODE(SEG.X, m), where 

m is 0 or  1 depending on whether the segment is a DM or an EM segment, and X 

is the segment symbolic name (arbitrary). EM segments a re  delimited by llbrakketsfl 

along the right side of the QS display, in the format XY, meaning that segment X 

starts here and segment Y ends here. The LINK field of QS contains relative pointers 

and is interpreted according to the opcode. The contents of the AUX field is to be 

interpreted as  a logical vector, although in fact i t  may be encoded differently in an 

actual APLM. 

1, Storage Management Instructions 

This class includes all instructions concerned primarily with the storing and 

fetching of data. Each of the load instructions pushes a value to the value stack. 

\ 
Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their 

operands to VS with tags ST, S T ,  JT, and NPT respectively, LDIS K loads as  a 

scalar the current value of the CNT field of the iteration stack element K entries 

from the top of IS* LDNF N refers to variable N in the nametable, and enters the 
- .  

current value of the variable (from NT) into VS. In the case of NT entries with tag 

DT (i. e., arrays), the reference count of the DA is increased by 1 when i t  is 



I 

entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used 
. . 

to  access a constant array stored in a function segment. Its operand K is a pointer 

relative to the function origin pointing to the beginning of the DA for the .constant 

value. This DA is copied to the DA area of My its VBASE is set to the beginning 

of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to 

VS with tag FDT. 

~ l t h o u ~ h  all the load instructions just described push a value to VS, such 

values do not always remain there. At the beginning of each D-machine cycle, the 

top of VS is examined for tags FDT, UT, and JT (see Fig. 2'). If one of these is 

present, then the entry is deferred in QS, because it is array-valued. This is 

done by pushing an E-machine instruction to QS of the form 
\ 

OP @ARR o MASK. 

OP is lVA, IA, o r  Id, depending on whether the VS tag was FDT, IYT, or  JT;  

@ARR is the DA pointer that was in the VS value field, and MASK is an access 

mask. The access mask in this case is a logical vector whose last K hits a re  1 

when ARR is a rank-K array, It w i l l  be used by the DM in beating and by the EM 

in accessing this array. The LINK field in E-machine instructions of this type is 

unused, and thus is shown a s  0 above. The VS entry is then replaced by a segment 

descriptor with tag SGT pointing to the one-word QS segment containing the deferred 

I 

operand. In general, this entire process is invisible in the examples below, and 

'the load instructions which generate array values can be thought of a s  doing the 

deferral themselves. 

Although ASGN and ASGNV,are operators, they are  included as  storage 

management instructions because they have the side-effect of causing values to 

be stored. These instructions expect the top of VS to contain a destination, either 

a s  a name (tag NPT) or  a s  a QS descriptor pointing to a segment containing only 



TABLE 2 

Interpretation of ASGN and ASGNV in the D-'Machine 

Top of VS 

a. tag=NPT or 
tag= SGT.and 
deferred ex- 
pression has 
one element 

b. tag=NPT 

e. tag= SGT and 
deferred seg- 
ment consists 
of a QS' entry 
with opcode IA 

(TOP-1) of VS 

tag = ST 

tag = SGT and 
deferred segment 
is a J-vector 

tag = SGT and 
deferred segment 
is a single DA 
with reference 
count of 1 and 
value also has 
reference count 
of 1 

tag= SGT and 
deferred segment 
is any arbitrary 
array expression 

tag= 9GT and 
deferred segment 
is any arbitrary 
array expression 

Action 

Do immediate assignment. That is, store 
the scalar value in NT or  in My as appro- 
priate. 

Do immediate assignment. 

Do immediate assignment, 

Allocate space for a DA and value of the 
size necessary to store the result. Defer 
the assignment in QS, a s  for scalar arith- 
metic operators. 

Check ranks and dimensions for conformability. 
If the ~hs variable is a J-vector, it must first  
be explicitly evaluated. If the rhs  expression 
contains instances of the lhs variable with dif- 
ferent permutations, then the rhs expression 
is evaluated to temporary space. Finally, 
the assignment is deferred a s  above. 



an IA instruction; the second entry in VS is the right-hand side of the assignment. 

There a re  several possible actions taken by the DM in interpreting assignments, 

depending on the VS contents. These cases a re  explained in Table 2, We have 

assumed that llevil" side effects do not appear in the code; their treatment is 

straightforward, but uninteresting. Also, it should be noted, that althoqgh. the 
. . 

strategies outlinedin Table 2 could be modified toL alter the machinet; performance, 
. . 

.. . 

the case analysis remains the same. . .  . 

The final storage management instructions are  INPUT and OUTPUT, which 

a re  left further unspecified, ~ h e s e  could be conceived of a s  read-only and write- 

only (serial) strings, which a re  used a s  primitives for writing functions such a s  

0 andm 0 

2, Control Instructions 

The control instructions of the APLM are  all concerned with directing the 

flow of control among statements at the source-language level, and are  all evaluated 

by the D-machine. 

The three jump instructions, JMP, JMPO, and JMPl a re  used to alter the 

flow of control among statements in a function, Since no jumps are  allowed out- 

. side of a function, there is little difficulty in specifying this operation. All that 

is necessary is  to change the value of the relative pointer in the current segment 

on LS. CYCLE is a special case of JMP, which sets the relative pointer to 0, 

causing the current (&mode) segment to be repeated. LEAVE pops LS and also 

IS, if the segment is involved in an iteration. RETURN performs similarly 

in returning from a call on a function, In addition, i t  automatically erases the 

locals for the current function from NT. 

The interpretation of the DO instruction depends on the top value on VS. If 

the top of VS is a scalar then the DO acts a s  a no-op. If the tag is SGT, then the 



segment described on VS is activated by pushing the segment descriptor to LS, 

with VS being popped. In case thetag is NPT, the corresponding NT tag is examined, 

and if the tag is FT, then the named function is activated, as described in the next 

paragraph; all other cases a re  no-ops. The DO1 instruction is similar to DO 

except that if the top is VS and has tag NPT, the value referenced is copied to new- 

space, while if the .tag is SGT, temporary space is allocated for the result and 

the segment is evaluated. Thus, after executing a DOI, the top of VS contains an 

entry with tag ST, JT, . o r  FDT. 
. . 

When a DO instruction encounters a function name on top of VS, the following 

actions take place: 

1. The function descriptor, referenced by the NT entry for the function, is 

fetched. I t  is expected that all parameters to the function have been evaluated 

and placed on top of VS, so that the, topmost value is the leftmost parameter. The 

parameter count, FPAR, in the function descriptor is fetched, and the top of VS 

checked to see that there a re  that many values already there. If not, an e r ro r  is 

signaled. Otherwise, the machine goes through the list of local variables in the 
. . 

function descriptor, making an entry in NT for each one. Each new tag in NT is 

set to UT, for undefined, unless it corresponds to a parameter. Parameter values 

a re  placed in NT and popped from the value stack in order. 

2. A function mark entry is pushed-to VS, with tag FMT containing an 

encoding of the current values of FREG, IORG, and the name of the function being 

activated. 

3. IORG is set to the value in the function descriptor, and FREG is set to 

the VS index of the function mark. 

4. An entry is pushed into LS for the segment described by FVBASE and 

FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process 



The segment just activated contains all the code for the function. When a RETURN 

is executed within this function, the following occurs: 

1. LS is popped, thereby de-activating the function. 

2. The function name, encoded in the function mark onVS, is used to access 

the function descriptor and then popped. If there is a result, the value is pushed 

to VS, and its NT entry erased. A l l  other NT entries for locals in the function, 

together with their values, a re  also erased. 

3. FREG and IQRG a re  restored from the values in the function mark oii VS. 

The function mark is deleted and the result, if any, is moved into i ts  place. 

4. Finally, FBASE is set to point to the current active function (if any) by 

accessing its function descriptor through i ts  name in the newly-exposed function 

mark. 

3. Operator Instructions 

The operator instructions correspond to the primitive operators in APL. 

They can be considered in four groupings, and are  so discussed in the rest  of this 

section. Part  a discusses the scalar arithmetic operators (Table 1-2); part b 

contains a description of the selection operators which are  evaluated by beating 

(Table 1-YA); part c describes those operators which are  generally executed 

immediately (Table 1-3B); and part d covers remaining deferrable operators as  

well as  the compound operators ('Sable 1-3C, D). 

a. Scalar arithmetic operators 

If the top of VS contains two scalar values (or  one if thc opcrn.tnr i~ mnnndin) 

then the operation is done immediately, leaving a result in VS and popping the 

operand(s). This process is illustrated in Example 1. In fact, the operation is 

pushed to QS and the E-machine i s  activated to perform the actual evaluation, but 

this micro-process is invisible to the user. 



The' other possible cases occur when the top two elements of VS a re  segment 

descriptors for deferred code in QS or when one is a segment descriptor and the 

other is a scalar. If one of the operands is a scalar, it is entered into QS and i ts  

VS entry is replaced by an appropriate segment descriptor, reducing it to the 

case of two segment descriptors in VS, 

The D-machine compares the ranks and dimensions of the two operands for 

conformability and signals an error  if they don't match. Otherwise, the operation 

is deferred by drag-along in QS and the top of VS adjusted so that i t  contains a 

segment descriptor pointing to the entire deferred expression in QS. Because of 

the stack discipline in the machine, the deferred code for both operands will 

always be contiguous in QS. The link field of the QS entry for the operator (with 

opcode OP) is a relative backwards pointer to the earliest deferred operand in 

the deferred subexpression. The AUX field is the same a s  the AUX field of the 

two operands (see Example 2). 

be Selection Operators 

The selection operators a re  evaluated in the D-machine by beating, the process 

of performing a selection operation on an array-valued expression by changing 

the storage mapping functions of its constituent array operands. The mathematical 

a.na.lysjs of Chapter I1 legitimizes this approach, and guarantees that the trans- 

formations used in beating produce the correct results. Before proceeding, let 

us define what i t  means for an array-valued expression to be beatable, 

An array-valued expression deferred in QS is beatable if any of the following 

conditions apply : 

(i) It is a single QS entry with opcode IFA o r  IJ. 

(ii) It is a consecutive pair of QS entries of the form 

S' scalar 0 0 

IRD per 0 R a 



EXAMPLE 1  - SCALAR DPERATURe  S C 4 L A K  O P E R I I I I S  - ------------------ - ---------- ----- --- 
R E G I S T E R  DUMP 
N E l l T  - 0  I I R G  = 0  FYEG, = ODGZO F B e  = 3 0 2 0 0  

R E L  ORC L E N  D / E  LS F N  N l l  CW 
I S :  ----- -----. ----- *--*---*---*---r 

I 0 1 0  I ooc I I O C  I 0  1  0  I I I 0  I cca 1  
--> 1  

E F F E C T I V E  1 1 O R  = 0 2 1 0  I N  4 

T A G  .VALUI? U P  WALUE L I N K  A L X  
rs:. ----- ------------------ ,,s: *-----,--------------- -----* ----- + 

I EXAMPLE 1 -1 :  BEFORE E X E C U T I N G  A.>D A 1  M I Z I C !  

2 .-L ----------------------------------------------------------.----------- 
W 

R E G I S T E R  DUMP 
I h E Y I 1  = 0  I O Y G  * 0  FYEG = 0 0 C 0 0  F b A i E  = COZOC 

Y E L  O R C  L E N  D I E  I S  F N  hh7 QF 

LS: ,----- ----,----.---.-- ---.--- +--. 
I 0 1 1  I C O D  1  1 0 0  1  0  I J I I I 0  I GC I 
I QGO I COO 1  0 0 1  1  1 I J I 0  I 0  I OC I 

--> I 

E F F E C T I V E  U O R  = 0 0 - 9 0  I h  OS 

TAG V A L U t  OP  XALUE L I N K  4 U  
ys:.-----*-----------------+ QS:*----*--------------.---*-----+ 

I .. I ... I 0 0  I OP I L D U  I 1; I 
I S T  1  256 I --> I 
I ST 1  32 I 

-->I 

rn t  ~ o o  lnsraucrlcn rr r t 2 1 0 1  U A S  ace. ~ t r c n ~ u .  o ~ c c o ~ o ,  
A N 0  DEFERRED I N  OS.  S I N C E  8 O T H  U P E R W S  A C i  SC&ARS. 
THE  DEFERRED SEGMENT I S  A C I I V A T E O  I M W O l d T t L Y .  I N D T E  L i l  

t X A M P L P  1  - S C A L W  U P E R M O R .  SCALaR OPERANDS ------------------------------------------------------------------------------- 
R E 6 1 S T i R  OUHY 
YEWIT  = 0  I O f f i  = 0  FREG = OOOOC FUPSE = OOZCO 

- & E L  ORG L E N  W E  I S  FiYl h i 1  QP 
LS:  .-----*-----*-----*--*---,---*---,----. 

I 0 1 1 I 0 0 0 1  1 0 0 1 3 1 C I 1 I 0 1 0 0 1  
I 0 0 1  1  GOO 1  C Y 1  I I I 0  I 0  I 0  1 0 0  1  

--> I 

TAG VALUE U P  VALUE L I N K  AUI .  
*>:*-----r-----------------• "S:,----*----------------*---r----.--r 

I .I I .*. I 0 0  I OP 1  ADO I I I 
I S T  1 ' 2 8 8  I --> I 

-->I 

EXAMPLE 1-3: A F I E *  E - M A L i l h E  E X k C U I I O N  OF  A U O i  QS S E G M t N i  E X H A U S I E D  ' 

----------------------------.--------------------------------------------------- 
R F G I S T E R  OUMP 
N E C I T  = 0  I U R G  = J FPEG * 0 0 0 0 0  FBASE = 0 0 2 0 6  

REL  ORG L E N  D.'E I S  F N  N l T  QP 
LS:  *----.-----.---*--*---,----*---*----, 

I o l l I o o o I L o O I * 1 0 1 I I O I o O I  
--> I 

TAG VALUE OP  VALUE L I N K  A U I  
vs:*----.----------------* g j :  r----* -----------------.----,--- + . . . I .. 1  I --> I 

1  5 1  1  2 6 8  I 
-->I 

EXAMPLE 1-4: A F l E C  RETURU T C  b - ~ l c . H l h E .  Y E S U L I  OF  ADD I S  ON V S  

EXAMPLE 1-2:  A F I E R . D E C O D I N G  4 0 0 ;  U P E R A T I O Y  UEFECUEO I N  OS  



EXAMPLE 2 - SCALAR OPERATOR*  ARRAY OPFRANDS 
-----------------------------------------------------------------------------. 

R E G I S T E R  DUMP 
N E W I T  = 0 I O R G  = 0 FWEG = 00060 F B A S t  = 00200 

R E L  ORG L E N  D / E  I S  F N  N h T  OP 
L s :  ----- + ----- + ---- +---+---+---+---+ ---- + 

I 0 1 0 I 0 0 0 I  l c o I o 1 o I 1  I O I O O I  
--> I 

E F F E C T I V E  ADDK = 0210 I N  M 

TAG VALUE OP VALUE L I N K  AUX 
Vs:+-----+------------------+ QS:+ ----- + ------------------ + ---- --+ 

I .. I ... I 0 0 1  I F A I  &A 1 I 0111  I AA 
I SGT I SCODEISEG.A,~) I 0 1  I IFA 1 3 0  I I 0111 I ea 
I SGT I S C O D E I S E G . B , l )  I --> I 

--> I 

ARRAYS W I T H  D A ' S  AT  1000 AND 1010 A H k  OF &ANK 3 ( N O T E  U S  AUX F I E L D S ) .  
N E X T  I N S T R U C T I O N  I S  ADG AT M(210)  

EXAMPLE 2-1: BEFORE E X E C U T I N G  ADD 

............................................................................ 
R E G I S T E R  OUMP 
h E k I T  = 0 I O R G  = 0 FHEG = O O C O O  F B A S E  = OOZOC 

R E L  OKG L E N  D / E  I S  F N  N h T  U P  
LS: +-----+-----+-----+---+---+---+--A +----* 

I o l l I o o o I l o o l o I o I 1  I O I O O I  
--> I 

E F F E C T I V E  AODR s o 2 1 1  I N M  

T A G  VALUE OP V A I  IIF L I N K  AUX 
v s : +  ----- + ------------------ 0s: + ----- + ------------------ + ---- --+ 

I ... I . . . I 00 I I F A  1 J A  I I 0111  I C, 
I SGT 1 SCODE(SEG.Ce1)  1 01  1 I F A  I d B  1 I 0111 1 

-->I 02 1 U P  I ADD 1 02  1 3111  1 ,C 
--> I 

EXAMPLE 2-2: AFTER D E F E R R I N G  ADD 



(iii) It is a QS segment consisting of a scalar monadic operator operating 

on a beatable subsegment. That is, i t  is of form: 

code for operand :::I 
OP optype . 1 R . , 

'. . 
(iv) It is a QS segment consisting of a pair of beatable operands combined 

by a dyadic scalar operator, One of these operands c& optionally 

be a scalar value, The form is: 

code for right opnd 

code for left opnd 

* a -  

(v) It is a pair of beatable operands combined by GDF. The form is 

similslr to case ( i v )  above. 

(vi) It is a reduction of a beata'ble operand, in the form: 

BRED 0 k 0 

A - code for reducee :::I 
OP reduce-op - A 

SGV Sl3G.A 
k : 

S -length 



(vii) In addition to (i) through (vi) above, a single QS entry with opcode IA 

is beatable, although i t  does not enter into the recursive definition. 

When a selection operation is interpreted by the D-machine, the array-valued 

operand is f i rs t  checked for conformability. If the operand is beatable, then it 

is beaten, according to the transformations shown in Chapter III, Appendix A. In 

this process, if a DA to be transformed has a reference count of 1, indicating that 

it is a local temporary result, then the DA can be modified directly. If the reference 

count is greater than 1, then a copy must be made, and the copy is beaten. If the 

result of a beating operation is a scalar value, then the segment is turned over to 

the E-machine, which evaluates i t  and leaves the scalar result on the top of VS. 

When the operand of a selection operation is not beatable, there are  two 

possible strategies to follow: In the case of the TRANS operation, there i s  no 

choice: the operand must be evaluated by the E-machine and a temporary value 

stored, which is then beaten a s  above. Otherwise, the selection operation can 

be treated a s  a special case of subscripting, in which case an appropriate set of 

.E-machine instructions is dragged-along in QS. (See Section d. for an explanation 

of subscripting. ) The choice of strategies is a second-order design decision, 

and need not be made at  this time, since either approach is viable. Example 3 

illustrates both beating of se1ect;ion operators and drag-along of scalar operators. 

The DM code shown for the statement is a straightforward translation of the 

- 
APL statement into Polish. Note that the vector 2 ,  2 is a constant and is 

'?compiled" into the function segment. This approach avoids having to keep array- 

valued constants in the memory with other array quantities; to do so would require 

having an entry in NT for each such constant, and would complicate the storage 

management functions. In Examples 3-1 and 3-2, the state of the machine before 

executing the sample code is shown; the values of the variables M and N are  not 



EXAMPLE 3: DRAGALONG AND BEATING IN THE D-MACHINE 
, 

Consider the APL expression 
/ 

R+( 2 , 1 ) Q ( @ C l I ~ ) t ( 2 , - 2 ) + ~  

At the time this is to be evaluated, pM-2,2 and pN-3,4 . Assume that R 

has no current value. The machine code for this statement is shown as follows, 

starting at location 250 in memory. 

Addr Operand Comments 

LDNF N 

LDCON 90 Refers to constant 2 ,-2 with DA at 290 

TAKE 

LDNF M 

REV 0 (Recall 0-base in all machine code) 

ADD 

LDJ JCODE(2,1, 1) This is the vector 2 , 1  

TRANS 

LDN R 

A SGN Assign (and discard value) 

290 RC=1 IAEN=4 DA header \ 
291 VB=O AB=94 I DA for constant vector 2 1-2. 

See Section A for description 
u1 fubir-uto 

294 RC=1 LEN=3 Header for value array 



given, a s  they are irrelevant for this example. LS contains a descriptor for a 

D-machine segment of length 100, which is the main segment of the function F. 

The effective address is the sum of the REL field of LS and FBA SE, the beginning 

of the value part of function F. VS contains a function mark for F which w a s  

. . 

placed there when F was called. 

In 3-3 and 3-4, the LDNF and LDCON instructions have been executed. Note 
. - 

that each caused the deferral if  ~ ~ I F A  instruction (fetch array element in the E-machine) 

in QS. Also, for eachdeferred instruction, a QS segment descriptor was pushed 

to VS. The LDCON instruction allocated space and made a copy of the descriptor 

array for the constant which w a s  in the function segment; the new DA is named TI. 

The VBASE for the constant is 200, the same as  the FBASE of the function. 

The TAKE operation (3-5,6) is evaluated by the DM using beating. The 

descriptor array T2 was created for the result, and w as  derived from the DA for 

N by the transformations listed in Chapter III, Appendix A. It is easy to see that 

this DA is in fact the correct one. Also note that T1  is no longer needed, and has 

been erased. At this point, VS contains a segment descriptor which points to the 

QS segment describing the result of the computation to data, which is the evaluation 

of the subexpression ( 2 ,- 2 ) +N . 
Examples 3-7 through 3-9 show the next LDNF instruction and the evaluation 

of the reversal operation by beating. The process in this case is similar to that 

for the TAKE. The ADD operation is deferred in 3-10. because both of i ts  operands 

were array values. The LINK field of the ADD in QS is 2, referring to the operand 

2 elements earlier in QS. The top of VS now contains a descriptor for the entire 

subexpression in QS which has been evaluated at this point. The LDJ instruction 

(3-11) is executed similarly to' LDNF and LDCON in that it defers a value in QS. 



The TRANS instruction takes the transpose of thc cntire expression which 

has been dragged along so  far. In this case, since its operand is a sum, the 

transpose is applied to both terms. Notice that although the deferred code in QS 

has not been altered (3-12), the DA1s which it references have been (3-13). The 

LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction 

is an ASGN (3-15). This instruction notes that R was undefined (see NT, in 

Example 3-1) and allocates space for its DA and its value array, The space is 

allocated based on the knowledge of the size of the result deferred in QS, h 

3-15, we see the deferral of the assignment. The POP instruction in QS disposes 

of the value after i t  has been assigned (in deferring ASGNV, no POPS are used). 

In 3-16, the state of memory shows the new DA for R; also note that the address 

of the DA for R (@R) has been entered in NT by the ASGN evaluation. 

c. Other Operators (Executed Directly) 

The "other operatorsff include all those APL primitives which cannot be 

deferred conveniently, or  which are  evaluated immediately in the D-machine. 

aASE is in this class because it has a scalar result, while REP, GDU, GDD are 

included because they require rather complex calculations involving their entire 

operands simultaneously, which are  impossible or  difficult to do element- by-element, 

URHO is easily done by the D-machine, and so is not deferred, a s  is UIOTA, 

which produces a J-vector a s  result. The catenation operator, with operand K, 

is a direction to catenate the top K elements of VS to form a vector. This is 

donc immcdiatoly (with tho rocult boing put in t o m p o r q  ~paoe). The remainder 

of the operators in this class a re  dealt with differently, depending on the values 

of their operands. 



EXAMPLE 3 - ORAG-ALGhG A N 0  B E A T I N G  

AOOR CONTENTS ADOR C U N T E h T S  NT :  TAG C U h T E N l S  
----+------------------ ---,---*----------------- 
i M  Y C - l  L t N - C S  AN R C - I  LEN.05 F F T  i F  
r01 v B = V n  A8=OC3  r O 1  V B s V h  A n - 0 0 0  M 0 1  OM 
1 0 2  YANK-2 + 0 2  RdNK-L  N U l  d h  
r 0 3  R l l I * O G Z  O l l 1 = 0 2  * O >  Y 1 1 1 = 0 0 3  0 1 1 1 = 0 4  R UT  0 
r O 4  ~ ( 2 ) = 0 0 2  O l Z I = O l  b C 4  R l 2 l = 0 0 +  0 1  2 1 - 0 1  

EXAMPLE 3-1:  MEMOYV a t F O R E  E X E C U T I h G  EXEMPLE CUOE 

REGISTEW OUMP . 
h E U l T  - 0 I O Y G  = I +REG = 0 0 0 0 G  F b A S t  = COZOO 

R E L  ORG L E N  D I E  I S  F h  k h T  UP 
L s :  .----- *--'---,---- r ---. ---*- --,---. + 

I 0 5 J  1 0 0 0  1 1 2 0  I 0 I 0 I 1 I 0 1 00 1 
--> I 

I E F F E C r l V E  AOOR = 0 2 5 0  I N  N 

TAG VALUE OP VALUE L I N K  AUX 
"S:.-----*----------------* QS:+-----.-----------------*----*------+ 

I FMT I *FN  MAUL FO* F *  I --> I 
- - > I  

k X A N P L E  3 -2 :  L E G I S T E L S  BEFOCE t X E C U T I N G  EXAMPLE CODE . 

N E G I S ~ E U  o u n p  
h E h l 1  = 0 I O R G  = I FREG 1 0 0 0 0 0  FBASE = 0 0 2 0 0  

R E L  O k G  L E N  O l t  I S  t N  N i l  GP 
LS:  -----.----- *-----*---*---*---*---t 

I O ~ S I C O O I ~ ~ C ~ J I O I I  I o I ~ O I  
--> I 

EFFECT l V E  AUOR = 0 2 5 4  I h  n 

TAG VALUE U P  VALUE L I N K  AUX 
"S:.-----*----------------* gS:.-----*------------------*----*------* 

I F M 1  I * F N  *ARK FUR F *  I 0 0  I 1 F A  I JN I I O O l l I A A  
I SGT I SCUOEISEG.A. l I  1 0 1  1 I F A  I d T L  I I 0 0 0 1  U B d  
I S G l  I SCOOEISEG.B.LI I --> I 

-->I 

LONF PUSHEO 0 5 1 0 ;  I AN0  V S l  I; I 
LOCON PUSHEO U S l l i l  A N 0  V S l 2 ; l  

EXAMPLE 3-3:  AFTER LONF ANC LOCON 

EXAMPLE 3 - D R A G - U U N G  A N 0  1 )EAT lNG __________________---------------------------------------------------------------- 
PECOYV OUMP 

AOOR C O N l E N l S  AOOR CCNTENTS AOOR C O N T E N I S  
----*------------------ ----.----------------- 
SM WC.1 L E N - 0 5  W RC=Z L k N - 0 5  d l 1  R C - I  L E N - O I  

r o t  VU-VM AB=OO0 r O l  Vd=VN 11)-000 *Oh V0 -200  4 0 - 0 9 4  
* 0 2  RANK-2 r O 2  Y A N K - I  r 0 Z  RANK-1 
+O3  R l L l = C O Z  O I L I = O Z  , r 0 3  Y l L l = O G 3  0 1 1 1 - 0 4  * 0 3  Rill-002 O l l l = O l  
1 0 4  R I Z I = 0 0 2  O I Z ) * O l  t O b  A l Z ) = 0 0 +  0 1 2 1 ' 0 1  

t X A P P L k  3 -4 :  M tMOYV AFTER LOCGN 

U E G I S I E I  DUMP 
L E C I T  * 0 10RG - I FREG D JOCOO FUASE - 0 0 2 0 0  

#EL  UYG L t N  D I E  I S  F N  NUT 3 P  
LS :  .----- + ----- + ----- * ---.---.--- ---,---- 

1 0 5 4 1 O C O I  I C O 1 3 1 O I l  I O I G C I  
--> I 

E F F E C T I V E  AUOR - 0 2 5 1  I h  M 

I A G  V A L U t  U P  VALUE L I N K  AUX 
ys:*  - - - - - re - - - - - - - - - - - - - - - -  + ',s:.---+ ---.------ 

I FMT I *FN  MARK FUR F* 1 0 0  1 I F A  I a T 2  1 I 0 0 1 1  I A* 
I SGT I S C O O E I S E G ~ A ~ L I  1 --> I 

-->I 

I H E  TAKE HAS A L I E R E O  THE U A  FOR h e  C R E A T I N G  A NEW COPY. 

EXAMPLE 3-5:  Y E G I S T E N S  A F l E Y  1 b K E  OPERATUR 

MEMOYV DUMP 

AUOR COhTENTS AOOR CONTENT S AOUR C O N I E N T S  
----*------------------ ----*------------------ ----.------------------ 
d M  Y C = l  L k N = 0 5  iY( R C - I  LEN.05 9 1 2  R C - l  LEI(IO5 

r o l  vt ) -VM AB.000 * O l  vB -VN  A B = @ 9 0  * 0 1  V&VN 48.002 

+ 0 2  P A N K s Z  t O Z  RANK=2  r 0 2  YANK-2 
+ 0 3  a l l ) - 0 0 2  u I I l = O Z  r O 3  n l l l - 0 0 3  ~ 1 1 1 - 0 1  r 0 3  Y l l l - 0 0 2  0 1 1 1 - O I  

t o 4  R 1 2 ) = 0 0 2  0 1 2 l = 0 1  r O 4  R l 2 1 - 0 0 4  O ( 2 l - 0 1  * O I  R l Z ) = 0 0 2  0 1 2 ) - 0 1  

THE N E n  UA A T  arz COLTAINS THE S T O R A G E  ACCESS FUNCIION FOY THE 
TAKE J P E R A T I U N  ON N. U l l l i H  MAS PRGOUCEO BY BEAT ING.  NOTE I N  P U l I C U L A R  
THAT THE VBASE OF 1 2  I S  VN. U H I C H  P O I N I S  TO THE V A l U t  ARYAY OF N. UIO 
I H A T  THE D I M E N S I O N  OF 1 2  I S  2 ~ 2  AS S P E C I F I E D  BY  THE TAKE OPERATWI. 
rnt ABASE HAS CHANGED FRO* o ro 2 ,  TO A C C O U ~ T  FUR rn t  - 2  ELEMENT IW T n E  
PARAMETER I1.E.  I A K E  FRDM THE €NO). F I N A L L V .  NOTE 1 h A T  THE  VALUE OF O t L  
I N  1 2  I S  THE S A M t  AS I h & T  FOY N. 

EXAMPLE 3-6: NEMORV AFTER TAKE OPERATOR 



EXIIMPLE 3 - 03AG-ALOhG ANU 8 f6T I f f i  

R E G I S T E R  UUMV 
N E C l T  = 0 I O R G  = 1 F W t i  = OOCCC FEASE = OOZOC 

R E L  M G  L E N  D I E  I S  F &  N h I  OP 
LS: *-----*----.-----1---*---,---*---.----. 

1 0 5 6 1 ~ 0 1 1 0 0 1 0 I C 1 U I C 1 C O I  
--> I 

E F F E C l l V ?  AOOP - 0 2 5 6  I N  M 

TAG VOLUE U P  VALOE L I N r i  CU: 
"5:. ----- ------------------, U1: + ------ 

I FMT I *FN  MARK FOR F *  I JC8 I I F A  I d l ?  I I C G l I  I L A  
I S G r  I S;OOEISEG.A.II . JI I I F b  I dM I I C O ! l  I i t l  
I SGT I S C O O E 0 E G . b . l l  i --> I 

- - 3  1 

R E G I S l t R  OUPP 
h E u l T  = 0 I U R G  = I I , < t G  D OCCOC F B L S E  = 0 0 2 C 3  

I 
REL  URC L E N  D I E  15  F %  h i 1  OP 

L,.: + ----- ----- r -----.---,---,--- *---..- ---. 
I O S 8 1 0 0 0 1 1 0 0 1 O I  3 1 1  I D 1 0 0 1  

--> I 

E F F E C T I Y i  AUOR 2 C Z 5 B  I h  m 

TAG V L L U t  OP YhLuE L I N K  4k.X 
\Is: ,----- ------------------ a<: .---- -----------4--- - .----. . - -- 

I F M I  l WFh MPdK F W  F* I CO l l F b  l 3 1 2  
I S G ~  I ~ C U O E ~ S E ~ . A , I I  I 01  I IFC 
I S G I  I ' LCOEISEG.B I IE  I --> I 

ELAMPLE  3-8:: AFTER REV ' 

EXAMPLE 3 - DRAG-ALONG 4NO 8 t A T l N G  

MEMOR'I DUMP 

AOOR L O N l E h T S  AOOR CGNTENTS AOUR CCNTENTS ----.------------------ ----*------------------ 
a* R C = l  L E U = ~ ~  aN R C = l  L t N - 0 5  d l 2  RC.1 L E N - 0 5  

r 0 1  V0-VM bt)=W9 t O 1  VB=VN A b = D W  r O L  VL)=VN b 8 - G O 2  
t 9 2  RANKXZ +C.z u b h r - 2  *O2 RANK=.? 
r 0 3  R I I l = 9 0 2  C ~ 1 1 1 = 0 2  r 0 3  K l l l = 0 0 3  O I 1 1 = 0 1  r 0 3  R 1 1 1 = 0 0 2  O I l I = O 1  
tnlc R i Z I - O G 2  C # I ? l = 0 1  r C 4  U l 2 1 = 0 0 4  O I Z l = O L  + 0 1  P i Z l = 0 0 2  O l Z I = O L  

ICOTICE I H E  N u  DAn  d l 3  . U H l C H  CONIAIPdS T H t  ACCESS F U N C I I J N  FOR I H E  
R t V E R S A L  UbI M . THE P A R 1 5  d H I C H  n A V t  CHANGE0 FYOM T H t  OA AT ARE 
A B A S t .  N H l l H  I S  N o h  2. AND O t L i l I .  G H I C H  I S  - 2  I N S T t A U  CF 2. T d t S E  
C H A N G ~ S  AC:CUNI FIR THE R E V E R S A L  OF  n , A N A L O G O U ~ L Y  ru 'MAY r n E  OA 
A T  a 1 2  A:CUUNIS  OR ru t  T A K E  O P ~ ~ P I I U N  ON N . 

6 r A q P ~ t  3-9:  AFEEY REV 

RCL UUG L E N  O I E  15 F N  N h T  4 P  
L S ;  *-----+----*----'---*---*---*---.----* 

1 0 5 S 1 O O C I E C C 1 O I O 1 L  I O I O C I  
--> I 

I A G  VALUE U P  VALUE L I N K  A U I  
ys :+  ---- + ------------------. 0s:. ----- ------------------.---- + ------ 

I F I T  I * F h  * \ Y &  FCL  k *  1 0 0  1 I F A  I J 1 Z  1 L O O 1 1  I C -  
I SGT I SCuiE(SEG.O. . l l  1  O l  I I F A  I d l 3  I I C O l l I  

- - > I  0 2  I OP I ADO I 0 2  I 0 0 1 1  I -C, 
--> I 



EXAMPLE 3 - DIIAG-ALONG ANC B E A T I N G  -_________----_________----_---------_-_------_----_---------------------- 
REGISTER OUMP 
 EMIT - 0 I O R G  = 1 FREG I OOCOO F B A S E  - 0 0 2 0 0  

REL ORG L E U  D I E  I S  F N  L h T  J P  
LS; . -----.-----.-----.-- + --.--.--.---- 

1 0 6 1  1 0 0 0  1 LCC I 0 1.0 I 1 I 0 1 0 0  1 
--> I 

EFFECT,IVE AODR = 0 2 6 1  I N  q 

TAG VALUE OV VALUE L I N K  WX 
rs:.-----*----------------* QS:.----.----------------*----*------* 

I F I T  1 *FN  MARK FOR F *  1 0 0  1 I F A  1 5 7 2  I I O O l l I C -  
I SGT I SCOOEISEG.C.lI 1 0 1  l I F A  1 4 1 3  I 1 0 0 1 1 1  
I SCT I SCUOElSEG.O.ll I 0 2  1 ,0P I ADD, 1 0 1  1 0 0 1 1  1 -C 

->I 6 3  I I J  I J C O O E I Z ~ l t l l  I I 0 0 0 1  I OD 
--> I 

I 
EXAMPLE 3-11; AFTER L O J  

P 3 -------------------------------------------------------------------------- 
R E G I S T E Y  DUMP 

I h E Y I T  - 0 1 0 1 6  = 1 FREG = O M 0 0  F B A S t  - 0 0 2 0 0  

REL  OPG L E N  O l E  I S  F N  I U T  U P  
L s r  -----.-----.----.-- +-- -.---.-- -.----. 

1 0 6 2  1 0 0 0  1 1 0 C  I 0 , I  0 I 1 I 0 1 0 0  1 
--> I 

TAG VALUE O P  VALUE L I N K  AUX 
*c**----*--------------* 0s:---.---------------.----.------* .-- - 

I FMT I OFN MARK FOP F *  1 00 1 I F A  1 d l 2  
1 SGT I SCOOEISEG.L, I l  I 0 1  I I F 1  I a T 3  

-->I - 0 2  I QP I ADO 

EXAMPLE 3 - ORAG-ALCLG AND B E I T I N G  ---------------------------------------------------------------------- 
CEMORV DUMP 

AODR CONTENIS  ADOR CONTENTS AOOR C C N I E N T S  ----.------------------ ---.----------------- ----.----------------- 
aM ac- I  L E N - ~ ~  aN RC-1 L E U - 0 5  i t 2  RC.1 L E N - ~ ~  

r o ~  VB-VM AB-000 r01 VB-vu ~ 8 . 0 0 0  r o k  VB-VN AB-OOZ 
r 0 2  RANK.2 4 0 2  RANK-2 * 0 2  RANK=,? 
t o 3  ~ 1 1 1 - 0 0 2  0 1 1 1 = 0 2  r 0 3  Rill-003 O I l I = O I  r 0 3  1 1 1 1 - 0 0 2  O l L l = O l  
+ 0 4  R l 2 l - 0 0 2  D l . ? )=OI  + O I  P t Z l - 0 0 1  D I Z I - 0 1  *O4 R I Z I - 0 0 2  D I 2 ) = 0 4  

r n E  EFFECT OF r n E  r a u i s v u s E  M A S  TO u r e a  ru t  OA'S A T  a 1 2  AND a13 .  
THE CHANGE I N  BOTH CASES d A S  10 INTENCHANGE a l l 1  # I  TH a t 2 1  ANU 
OCII YITH 0121 .  IT s n o u L u  BE l N T u l r l v E L v  CLEAR r n A T  THESE O A ' S  MILL 
NO* ACCESS THE IYANSPOSES UF T H E I R  PREVIOUS VALUES, 

EXAMPLE 3-13:  MEMORY A F T t Y  TRANS (NOTE A L T t R E O  D A ' S I  

-------------------------------------------------------------------------- 
R E G l S l E n  DUMP 
L E Y 1 1  = 0 IORG = 1 FREG - 0 0 0 0 0  FBASE - OOZGO 

I E L  ORG L E N  O I E  I S  F N  N b T  OP 
L S *  .-----.----.-----.--+--.---.---.----. 

I C 6 I 1 0 0 0 1  l O C I O I C I 1  1 0 1 0 0 1  
--> I 

E F F E C T I V E  AJOR = 0 2 6 4  1 6  M 

TAG VALUE OP VALUE L I N K  A U I  
"s:.-----*------------------. "SI.-----.------------------.----.----* . . 

I F I IT  l * F N M A R U F O I ~ F *  I i0 l IFA l a 1 2  1 I O O l l 1 C -  
I S G I  I SCUOEISEG.C.11 I 9 1  I I F 1  I a 1 3  I I O O l l I  
I NPT I R I 0 2  I U P  I A 0 0  ' I 0 2  I 0 0 1 1  I - C  

-->I --> I 
EXAMPLE 3-12: REGISTERS *?ED TRANS 

EXAMPLE 3 - I * :  AFTER LON n 



EXAMPLE 3 - DRAG-MGkG AND eEA'INC --------------------------------------------------------------------------------- 
RFG 1 STER OJMP 
hEWlT = 0 IORG = 1 FREG = 0.3000 FBASE = 0 0 2 0 0  . 

REL ORG LEN D I E  LS F N  hhT  UP 
LS: 4- ----*-----,-----+---.--- +---+---+ ---- + 

1 0 6 5 1 G O O 1 3 C O 1 3 1 O i I l O 1 0 0 l  
--> I 

EFFECTIVE AOOK = 0265  I H  M 

I A G  VALUE OP VALUE LIWlC AUK 
vS:+-----+------------------+ QS: +-----+----------------+---+-----+ 

1 FWT I *FN MARS FOR FI 1 0 0  I I F A  I 9 1 2  I i O o l l I E -  
1 S,GT I SCOOE(SEG.Ev1J I 0 1  I I F A  1 i i T 3  I I 0 0 1 1 1  

->I  0 2  I OP I ADD I o r  I 0011 I 
33  1 I F A  I dR I I 0 0 1 1  I 
04 I 06' I ASGN I 02  3 0011 I 
3s I POP I 0 I i l O O L l I , &  - -  I 

EXAMPLE 3-15: REGl jTERS AFTER LSGN 

ADOR CiJNTE&TS AOOK CUNTErdTS NT: TAG CUNTtNIS 
----+----------------- ---+---------------- 

a~ .KC= : L E N = ~ ~  ar2 RC=I L E N = ~ ~  F F I  a~ 
t o 1  v s = u n  ne=ooo  * Q L  VB=VH A ~ = O O ~  . M OT d n  
* 0 2  KANK=2 " .+Q2 RCNK=2 N OT aN 
t 0 3  A ( l J > = 0 0 2  . D ( l l = O Z  +03 K ( 1 ) = 0 0 2  O (  l l = O L  M OT mR 
* 0 4  R ( 2 ) = 0 0 2  D ( 2 1 = 0 1  M 4  R ( 2 ) = 0 0 2  D t 2 ) = 0 4  

EXAMPLE 3-16: NEMOkY AFTER ASCN 



RAV and DRHO a re  difficult to defer in general because of the complex 
.. .. 

calculations necessary to access an arbitrary element of the result,. However, 

there a re  special cases which a re  easy to defer, a s  follows: 

(i) The right operand is a scalar or  single-element quantity. The RAV 

of such a value is a J-vector if i t  is an integer, o r  a t  worst is an 

explicit one-element vector. Similarly, the DRHO of .such a value 

is deferred in QS a s  follows : 

S value 0 0 .  

IRD T1 0 R 

where @ T I  is a DA for the result and R is the encoding of the rank. 

The IRD instruction is essentially a note to the D-machine that the 

result has dimension described in TI. 

(ii) The right operand B is an expression deferred in the form of (i) above. 

In this case, all that has to be done is change the descriptor array 

@ TI. 

(iii) The right operand is of the form 

IFA @W 0 R , 

and @ W points to a DA which has not been altered by any select 

operations which upset the ordering of the value part. That is, if 

W is the array specified by @W and D is the vector containing the 

value part, then wc ; / I ,  ]-DL ( PC LL 1 for all appropriate values of L 

In this case, RAV is evaluated by providing a new DA with rank 1 and 

dimension /pw . DRHO can be deferred if /PA , where A is the 

left operand of the DRHO, is less  than or  equal to x / p C  also by 

providing a new DA with dimension A .  

If none of the above apply, then RAV and DRHO a re  evaluated immediately by 

creating temporary vduca in MA, 



d. Other Operators and Compound Operators (Deferrable) 

The D-machine evaluates this subclass uf uperator inctructions by deferring 

E-machine code in QS. The expansions are  detailed in Appendix C and should be 

easy to understand with a knowledge of the way the E-machine works. We w i l l  

here discuss only the SUBS instruction and the compound operators, as  their 

behavior is somewhat more complex. 

The SIJRS M operation corresponds to the symbol C in an APL program. 

m e n  decoded, i t  expecls the top of V S  to contain a QS segment descriptor far a 

rank-K quantity and the next K entries on VS to be either scalars o r  QS segment 

descriptors for the subscript expressions. An empty subscript position is created 

by the LDSEG instruction with i ts operand a segment descriptor SCODE(O,O, 0) of 
,&, 

length 0. 

There are two important cases to consider: , 

(i) If the subscriptee is beatable, then the subscript expressions are  

examincd in turn, starting; from the rightmost (deepest in VS) tu  

th 
find scalars o r  J-vectors, If found for, say, the I- cnordinate, 

the equivalent of 1NX I with tha1 upel-and ia porforlned on the. s u b  

scriptee by beating, causing new DA1s to be created f u r  11. Tllt VE 

entry for this subscript is then deleted if it was a scalar. If it was 

a J-vector, then the VS entry is changed to the empty segment and 

the QS entry is deleted by moving all of QS down 1 to f i l l  in the space 

(with apprupriate adjuatmcnt~ tu descriptorn). If, after all snhscrigts 

have becn examined i t  is found that the remaining stacked subscripts 

are either empty or  non-existent, then the result already exists, in 

standard form, in QS. In this case, the remaining empty segment 

descriptors are  removed from VS and the result is the QS descriptor 



at the top ,of VS. Otherwise, the remaining subscripts a re  treated 

a s  in the second case, described in tkie next paragraph. 

(ii) If there a re  explicit non-scalar or  non-J-vector subscript expressions 

and/or the subscriptee is not beatable, then the subscripts must be 

dragged along in QS. This is done by creating temporary index ac- 

.curnulators (opcode XT) in QS and generating E-machine code to 

activate the. necessary subscript evaluations at the right times. If 

the subscriptee is a reduction, QS is transformed according to the 

transformation (OP/A) [9) ---* OP/A@? J and evaluation continues 

a s  above. The details of the subscript expansion are  shown in 

Appendix C. Example 4 illustrates the process which has just been 

described. 

In evaluating a GDF, the machine first  examines the operands. If they contain 

deferred operators; then they are  evaluated to temporary space first. This is 

done to avoid unnecessary recalculation of subexpressions necessary to compute. 

a GDF. It also guarantees the possibility of applying SF' transforms to GDF ex- 

pressions by beating. Then all that is necessary is to alter the access masks i n  

the AUX fields of the deferred left operand in QS to provide the proper access 

method for the E-machine. This is illustrated in Example 5 below. If the GDF 

reduces to a simple case, e.g., if one of the operands is a scalar, then the ex- 

pression is treated as  a normal scalar operator expression (see part a above). 

Efficient evaluation nf reductions along coordinate K of the reducee R (in.the 

E-machine) depend nn transformation T R l l  (see Chapter II) which allows permu- 

tation of the reduction coordinate by transposing the reducee. In evaluating a 

REDUCE along coordinate K the reducee is first  checked to see if it  fits into one 



of the special cases of reduction: 

(i) Empty reduction coordinate, The result is then an array with value 

( ( j y ; t I p p ~ )  / p ~ ) p ~ ~ ~ ~ ~  where R is the reducee and IDENT i s  the 

identity element for the reduction operator. 

(ii) Reduction coordinate of length 1. The result is then R [ [ K ]  

II reducee is a scalar, the result is R .  

(iii) Reducee is a vector. In this case, the reduction is activated im- 

mediately in the E-machine, since the result is a scalar.. 

If none of the special cases is satisfied, the reduction is deferred by first doing 

the transpose of T R l l  if necessary, and generating the deferred code in QS as  

shown in Appendix C. 

EXAMPLE 4: SUBSCRIPTING IN D-MACHINE . 

Consider the A P L  expression A[ I 4 ; ; 2 ; V I where A is a rank-4 array with 

pA*5,4,6,3 and v - 3 , 2 , i ,  2 , with the index origin IORG * I. The D-machine 

for evaluating this' expression is 

2 52 LBS 2 SCdar 2 

2 54 LDSEG SCODE(0, 0,O) Empty subscript 

256 LDS 4 Scalar 4 

368 IlmTA Gives ~4 
. 

259 LDWF A .  Array A 

261 SUBS 4 Do the subscript, expected operand rank is 4 

263 . O O 1  

The following memory and register dumps show the steps the D-machine goes through 

,A, 
to evaluate this expression. 



EXAMPLE 4 - S U B S C R I P T I N G  I N  0-MACHINE 

MEPORY DUMP 

A 6 D R  CONTENTS AOOR C C N I E N T S  NT:  TAG C U N T E N I S  
----*----------------- ----.------------------ --.---*----------------- 
O A  R C - I  L E N - 0 7  dV R C - I  L E h - 0 4  fa 0 7  d A  

r o t  V 8 = v l  A b - O r 0  * e l  v B = v v  AB-JOO v 01 d v  
* 0 2  RANK-4  + 0 2  YANL-1  
t o 3  R l I l " 0 0 5  O I l I ~ 7 2  *'33 R l l l ~ O O 4  O l l l ' O l  
* 0 4  R 1 2 1 ~ 0 0 4 .  0 1 2 1 ~ 1 8  
+ 0 5  R O I = 0 0 b  0 1 3 1 - 0 3  
* 0 6  R l 4 l e 0 0 3  0 1 4 1 = 3 1  

EXAMPLE  4 -1 :  MEMORY BEFORE E X E C U T I N G  EXAMPLE CODE 

M E G I  STEY DUMP 
h E b I T  = 0 ' I O R G  = l FYEG = 0 O C I O  F t l A S t  = OOZOC 

REL  URG L t N  D I E  I S  F N  NUT 'iP 
LS:  .----,-----,----*---.---*---*---.----* 

1 O 6 1 ~ C O O ~ 1 O C I O I O ~ L ~ C ~ O O ~  
--> I 

E F F E C T I V E  AUOR = O Z b l  I h  M 

I A i  VALUE U P  VALUE L I N K  AUX 
" S: . - - - - -* - - - - - - - - - - - - - - - - - r  "S:.-----*------------------,-----.------* 

I .. I . . . I 0 0  I IFA I a v  I I O O O I I J A  
I SGT I S C O O E I S E G . A ~ L 1  I O l  I I J  I JCUOEIS. I ,OI  I I O O D I  1 d B  
I S 1  1 2  I 0 2 I I F A I T A  1 I 1 1 1 1  I i C  
I SGT I S C O D E I S E G . N I L ~ O 1  I --> I 
I SGT I S C U O E l S E G . B ~ I I  I 
I SGT I SCOOEISEG.C11 l  I 

--> I 

v s  C O N T E ~ T S  A R E  x n E  W B s c r l P r s  AW SU~SCRIPTLE. hurt THE A C C E S S  MASKS 

IN r n C  AUX FIELU OF as. T H E Y  INOICAIE THAI v ~ l u o  ~ 1 4 t  J-VECIOL AYE 
VECl lJaS.  AND A I S  A YANK-4 ARYAV. 

EXARPLE 4-2:  AFTER ALL BUT r n E  s u e s  o P t v r r u R  

EXAMPLE 4 - S U B S C R I P T I N G  Ih  0 -MACHINE  ____--__-___-___--_---------------------------------------------------------~~~- 
R E G I S T E R  DUMP 
h E Y I T  - 0 I O R G  = 1 FREG = OOCOO FBASE - 0 0 2 0 0  

REL  ORG L E N  O I E  I S  F N  N b T  OP 
LS:  ,-----.-----*----+--.---.---.---,----, 

I O 6 3 I O O O I l O C I O l 3 1 l I 6 I O G I  
--> I 

TAG VALUE 6 P  VALUE 
vs:.----.------------------+ QS:.-----*--------------. 

I .. I . . . 1 ,DO 1 JMP I 0 
I SGT 1 S C O U E l S E G . O ~ L l  I 'D l  I I F A  I d V  

-->I C 2  I 1 6 4  I -11 
0 3  1 X I  I XCOUE10 .3 . I l  
3 4  1 X I  1  x C 0 0 E l 0 . 3 , l l  
0 5  I XT I x C O o E l 0 ~ 2 . L I  
Ob  1 I k L  I 0  
0 7  I XS I 0 
0 8  I I X L  l cr 
0 9  I XS I 0 

L I N K  AUX .--* ---- ------. 
1 O b  1 I 0- 
I I 0 0 0 1  1 I t  
I I O I l l I F F  
1 0 3  1 I 
I I I 
I 1  I 
I I O I O O I  
I 0 4  1 I 
I I O O L O I  
I 0 5  I I 
I I 0 0 0 1  I 
1 O b  1 1 
1 0 9  1 I 
I I 0 1 1 1  I -0 

V S  A N 0  0 s  HAVE 0 t E N  IRAhSFORMEO BV THE  SUBS UPERAT ION.  THE SCALAR 
S U B S C Y I P I  REOUCEO I H E  R I N *  OF A t iY 1, AND THE I U I E R V A L  VECTUR 
SHORTENED THE F I R S T  COORDINATE  ( S E E  UA A 1  a l l # .  THE Y t S l  OF THE 
CCOE GENERATED I N  OS I S  FOR C A L C U L A I I N G  E X P L I C I T  S U d Y R I P T  VALUES. 
unlcn A Y E  ~ E P T  IN I n E  XI ENTUIES. THESE ENIMIES COLSIITUT~ A 
P S t U O 9 - I I E R A T I O N  STACK. I S t E  S E C T I O N  E l  

E X 4 S P L E  C-3: REGISTEMS A F T t Y  SUBS 

MEMORY OJMY 

AUOR CONTENTS ----.------------------ 
aA R C - l  L E h - 0 7  

* O l  VU.VI A B = o r O  
*OZ RANK.4 
* 0 3  ~ 1 1 1 - 0 0 5  0 1 1 1 = 7 2  
r O 4  R I 2 1 - 0 0 4  0 1 2 1 - 1 8  
1 0 5  R l 3 1 - 0 0 6  0 1 3 1 = 0 3  
+ O b  R l 6 l - 0 0 3  O l 4 I = O I  

AOOR C O N T E N I S  - - - - . - - - - - - - - - - - - - - - - - - 
av RC-2 LEN-04 

r 0 1  VD-VV AB.OOC 
r O 2  R A N K - I  
* 0 3  R l I l * 0 0 1  D l l l - 0 1  

AOOR C C h T E N l S  - - - - . - - - - - - - - -- - - - - - - - - 
2 * O l  R C - I  VB* L E N 1 0 6  

he-COO 
t o 2  RANK=3 
* 0 3  R l l l = 0 0 4  D l  I l - l b  
* 0 4  R l 2 1 - 0 @ *  0 1 2 1 - 0 4  
* 0 5  R I 3 1 - 0 0 1  0 1 3 1 - 0 1  



EXAMPLE 5: GDF IN D-MACHINE 
.. . 

In the example expression, M o  . x N  , both M and N are  matrices with pMt t4 ,3  

and Nctp3,2. D-machine code for this expression is 

250 LDNF N 

2 52 LDNF M 
. . 

2 54 GDF MSJL Do GDF 

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the 

GDF operation has been deferred in QS.  Notice that the access mask of M 

in the AUX field of QS has been changed. The IRD entry, whose operand DA gives 

the dimension of the result, contains 1111 in its AUX field, which instructs the 

E M  to use a 4-level iteration stack to evaluate the expression. The 1100 AUX for 

M says that M-indices come from the two highest iterations, while the 0011 AUX 

. for  N indicates that N is to use the two lowest. 

An equivalent formulation of fhe contents of QS at this point is that It represents 

the GDF in the form: 

for I := 0 step 1 until 3 do - - - -  

for J := 0 step 1 until 2 do - - - -  

for K := 0 step 1 until 2 do - - - 

for L := 0 step 1 .unJil 1 do - 7 - 
KESUL~P [I; J;K;LJ := M[I;.J] XNP;LJ; 



I 

t-' 
t-' 
Cn 

---EX?ZII-1-1-4.0F-!WWD-2!snEf _------------------------ f-f---fff- ---- --------- 
R E G I S I E R  DUMP 
N E U l I  - 0 l O a G  * 1 FREG * 0 0 0 0 0  FB1SE * 0 0 2 0 0  

REL  ORG L E N  C I E  I S  F N  N h l  UP  
LS:  .-----*-----c---*-+--+--*---.----+ 

I 0 5 6 1  0 0 0 1  ~ c c  1 0 1  o I I 1 0 1 0 0 1  
--> I 

A VALUE OP VALUE L I N K  A U I  
vs:+-----+------------------* "S:*-----.----------------*---.------* 

I .. I ... 1 0 0  1 l F A  l d 3  1 I O O l l I A A  
I S t 1  I 5COOEISEG.A.IB 1 0 1  I I F *  I dM 1 I 0 0 1 1  I 0 8  
I SCT I SCODEISEG.BIIB I --> I 

-->I 

E X A l l P L E  5 - 1 8  Y E G l j l E R S  BEFORE GOF 

______________---__-------------------_-----_----------------------------- 
MEMURV DUMP 

AOOR C O N T E N I S  U)OR C O N I E N I S  ----*------------------ ---+---------------- 

9 1  BC*1  L E W O 5  Vl YC-1 L E N - 0 5  
*O1  Y8 -V l l  - A 8 = 0 0 0  ' r 0 1  VB*VN A b - 0 0 0  
+ 0 2  RANK-2 r 0 2  RANK-2 
r 0 3  1 1 1 1 - 0 0 6  0 1 1  1 -03  6 0 3  U l 1 ) - 0 0 3  0 1  I l * 0 2  
* O 6  R I L I - 0 0 3  0 1 2 1 - 0 1  * G I  R l Z h - 0 0 2  O I Z l * O I  

ENAMPLE 5 - 2 1  MEMOPV 8 E F W . E  GOF 

EXbMPLE 5 - GOF I N  D-MACHINE 

I E G  I S T E R  OUMP 
N E h l I - 0  I U R G - I  F I E G - 0 0 0 0 0  F B A S E - 0 0 2 0 0  

REL ORG L E N  D I E  I S  CN N U 1  QP 
LS:  .-----.-----*-----.---*---+---.----r 

I O S b 1 0 0 0 1  I O O I O I O I I  I 0 1 0 0 1  
--> I 

E F F E C T I V E  AOOY - 0 2 5 6  I N  

TAG ' V A L U E  OP VALUE L I N K  AUX ,----- ------------------ * QS,.---.---------------.----*---, 

I .. I ... 1 0 0  1 I F A  I U1 1 I O O L l  I C, 
I S G I  I SC00EISEG.C. I I  1 0 1  1 I F A  I U( I I I I O O I  

->I oz I c o p  I MUL I I I l l 1  I 
0 3  I I R O  I d l 1  I I I L L 1  I -C 

--> I 

EXA l lPLE  5-3:  AFTER GOF - M I T E  CUANGEO A U I  F I E L O S  1M QS 

MEMORY OUl lP 

b o o n  CONIENIS N O R  CONIENTS ----.----------------- ---.--------------- 
i n  RC-2  L E N - ~ ~  a~ RC-2  L E N = ~ ~  

+O1  VB-VM A B - 0 0 0  +OL VB-VN 4 8 - 0 0 0  
+OZ R A N I - 2  * 0 2  RANK-2 
r 0 3  R I I l * 0 0 6  0 1 1 1 - 0 3  + O 3  R l 1 1 - 0 0 3  0 1  1 1 - 0 2  
+Oh R l 2 l * 0 0 3  O I Z 1 * 0 1  + O 6  n 1 2 1 - 0 0 2  0 I Z l - 0 1  

A O W  ---+------------- C O N I E N T S  

a11 BC*1 L E W O l  
r01 WLW A B - 0 0 0  
roz  NANK-6 
r 0 3  Rill-006 0 l 1 1 - 1 8  
+ 0 1  1 1 2 1 - 0 0 3  O l 2 I * O 6  
+ 0 5  R l 3 l * 0 0 3  0 1  3 1 - 0 2  
+ob a t r ~ * o o z  o t r ) - o ~  

a r l  urs c a r A r E o  s l r p L r  r o  RECORO r n c  RAM ANO OIII~~SIM VKIOR OF 
r n E  RESULI OF OOING I n E  OUIER PIOOUCI. IUE OICOOE INO III as13111  
S I G N I F I E S  I H A I  1 1 5  OPERbMO OA I S  O E S C R I P l l V t .  AN0  I S  N O 1  TO B E  
E I t C U l E O .  I M  TWE E-MALUlNF.~ llD I S  IGNORED. 



E. The E-Machine 

The E-machine is a simple stack- oriented computer which evaluates array- 

valued expressions by iterating element-by-element over their index sets. The 

EM takes its instructions from the instruction buffer (QS), where they were put 

by the D-machine. Other machine registers a re  used in the same way a s  in the DM. 

The central task of the EM is to access individual array elements in computing 

array-valued expressions. As most of the complexity of the E-machine is related 

to this task, we hrst afscuvv Llre xccooing meohanisms in the, EM, Given Illis, 

i t  io  a simple matter to emlitin the instruction set of the machine. 

1. Array Accessing 

a. Indexing Environment 

Array reference instructions a re  entered in QS in the form 

IFA @VAR 0 MASK 

where @VAR is the address of a DA in My and MASK is a logical access mask. 

When such an instruction i s  first  entered in QS by the D-machine, it is done Without 

regard to its context in the input eqresslu11. T l ~ e  E-machine must, in order to 

evaluate it, determine i ts  context, which takes the form of an indexing environment 

for an array reference. The indexing environment of an instruct~on in Q S  Is: 

determined by how the segment containing the instruction was activated, which in 

turn relates to the form of the original expression input to the D-machine. 

(i) If the QP field of the top 01 LS is zero, then the environment is simple, 

and array references within this Begmcnt art, based djrcctly on the 

iteration stack. A simple environment arises in variables not affected by 

explicit ai~hsnripting or  which are  not operands in expressions which cause 

expansions to be made by the DM. Fur example, in the statement A+BtC, 

all variables have simple environment. 



(ii) If the QP field of LS is non-zero, then the environment is complex, and 

array references in this segment a re  controlled by a pseudo-iteration 

stack. In the statement A+B+CC V ;  Wl , A and B wi l l  have simple environ- 

ments, but C will be complex as  the reference to C is embedded in a 

segment resulting from the expansion of the subscript operator. Note 

that this concept is recursive. For example, we can also say that the 

environment of the subexpression CC V;WI is simple. This recursiveness 

allows arbitrary levels of subscript nesting to be handled by the drag- 

along scheme of the D-machine. 

The segment containing the IFA @C instruction is activated in the 

EM by an SG instruction referring to a sequence of entries in QS of the 

form: 

XT XCODE(a, ml ,  c l )  

XT XCODE(b, m2, c2) . 
Here, a and b are  indices for C calculated from the subscripts V and W 

by the expanded subscript code in QS. These quantities are, in turn, 

computed from the current values in IS. m l  and m2 are  the maximum 

permissible values of a and b derived f rompc,  and c l  and c2 are  change 

flags. Thus, these XT entries correspond to the CNT, MAX, and CH 

fields of the iteration stack, and are  therefore called a p s e u d o - i t e r w  

stack (pseudo-IS). 

b. Initialization of Access Instructisl~s 
b 

Each array accessing instruction must be bound to its indexing environment 

when first  executed. This process is described below for IFA instructions and 

.-* 

is analogous for IA and IJ. 



(i) Determine index sources 

The encoded access mask in the AUX field of an instruction i s  used 

to determine i ts  indexing environment. For  example, if the environment 

is simple and the bit pattern in AUX is 0101 and the IS i s  four deep, then 

the index sources a r e  determined by ( O , l ,  0,1)/0,1,2,3 which i s  the vector 

1,3. Call this vector INX. Had the QP field of LS indicated a complex 

Indexing environment, then INX wvuld have k e a  based on the length of the 

pseudo-IS rather than on the length of IS. 

(ii) Set up iteration control block 

An iteration control block (ICB) is established at the top of QS, 

containing the coefficients of the storage mapping function from the DA 

for the array (DEL) and the INX vector, calculated above. An ICB contains 

one word for each coordinate of the array being accessed, a s  shown below. . 

The fields marked Q1 and Q2 a re  both encoded into the VALUE field of 

th 
QS using the function QCODE (see Appendix A). The cvilte~lts of the I- 

ICB entry are; 

field contents I 

OP - if simple environment then NT else  QT 

LINK m-z [€I 

A I X  0 

Q2 DEL [I] 

91 if simple environment then BEL [P] x (MAX field of IS 

entry selected by LINK Geld) else 0 

In addition, the last entry in an ICB is given opcode NLT or  QTiT, depending 

on i ts  environment. 



(iii) Initialize QS entry 

The Q1 fields of the ICB just established are added to the ABASE 

found in the array's descriptor array to produce the sum S. VBASE is 

also fetched from the DAY and the DA is lferased" from QS by subtracting 

1 from its reference count, The original IFA entry is then replaced by 

FA QCODE(VBASE, S) IPTR 0 

where IPTR is a pointer to the beginning of the ICB for this array. 

This completes the initialization of array references, In effect, what has 

been done i s  to replace the context-independent reference created by the D-machine, 

by information which binds the reference to i ts  indexing environment, and which 

contains all information necessary to access the array (in the ICB), 

c. The Index Unit 

The index unit (IU) i s  invoked by the E-machine every time i t  executes an: 

array-access instruction that has been initialized a s  above (i. e., FA, A ,  J), 

Using the information in the instruction, i ts  ICB,and IS' or a pseudo-IS, the IU 

accesses the appropriate array element and pushes it to VS. The IU functions 

differently, depending on the indexing environment: 

(i) Simple environment 

In this case, we know - a priori that the elements of the array w i l l  

be accessed in a simple order, determined by the way IS i s  cycled, and this 

information can be used to minimize the re-computation of the storage 

mapping function for each element of the array. The IU looks at  the 

iteration stack entries for this array (specified in the ICB), starting at 

the right-most coordinate. If the IS entry has changed (noted by CH bit) 

but not recycled, then the IS adds the DEL component from the ICB to S; 

if there was a change and a recycle, the Q1 field is subtracted from S. 
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The new S value is stored back in the instruction. This process continues 

until an IS entry with no changes is found, in which case none of the 

higher IS entries contain changes either. If the iteration is going backwards, 

a s  in a reduce, then addition and subtraction are  interchanged. 

(ii) Complex environment 

In the complex case, there is no way of predicting in advance how the 

iridices w i l l  proceed and each change requires an explicit evaluation of 

part of the mapping function, This is done similarly to the simple case, 

by examining the pseudo-IS for each coordinate of the array. If a change 

is recorded (in the X3 part of the XT entry) then the new index (XI part) is 

multiplied by UEL. 'i'his result i s  added to S and the Q1 field of the IC B i s  

subtracted from S with the new S stored back in QS.  ina ally, the product 

just found is stored in the Q1 part of the ICB. This field thus records 

partial values of the mapping polynomial. 

The behavior of the machine in array accessing, as described above, is 

illustrated in Example 6 ,  

2, lnstruction Set 

Instructions in the E-machine can be considered in three groups: 

a. Simple instructions 

b. Control instructions 

c. Micro-instructions, used prinlarily for maintaining pseudo-iteration stacks. 

In addition, a s  seen in the previous section, the instructions buffer contains entries 
1. 

for pseudo-iteration stacks (opcode XT) and iteration control blocks (NT,  QT, NLT, QLT). 

Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed 

algorithmic description of the E-machine's behavior. The remainder of this section 

discusses these instructions in both functional and "programmingff terms. 



a. Simple instructions 

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA 

fetches an array element according to its operand DA and the indexing environment, 

and pushes i t  to VS with tag ST; similarly, IJ pushes an element of a J-vector to 

VS, while LA pushes an address of an array element (tag AT), These instructions 

can be considered simply at the programming level, a s  just described, although 

the mechanism which they invoke is much more complex, a s  was seen in the previous 

section, 

The instructions OP and GOP have as  operands the names of arithmetic 

functions in the EM (monadic or  dyadic). Executing an OP or GOP invokes the 

named function, which operates on the top of VS, deleting the operands and pushing 

the result, with tag ST. (This process is illustrated in Example 1.) NIL is a 

No-op, and does nothing. R e c d  from Section D and Appendix C that IRD and IRP 

are generated by the D-machine to keep track of intermediate results in doing 

drag-along. A s  they have no use in the E-machine, they are  changed to NIL when 

first  executed. 

b. Control instructions 

The main control instructions are  9GV and SG, whose operands are  QS 

segment descriptors. SGV pushes this descriptor to VS (with tag ST) a id  is thus 

analogous to LDSEG in the DM. SG activates the named segment by pushing an 

entry to LS; in this instruction, the LINK field is sigmficant, in that i t  can change 

the indexing environment, JMP, JO, J1, JNO, and J N 1  are  simply relative jumps 

within QS; RED is also a. relative jump, but in a.ddition, it pushes to VS an entry 

with tag RT, to be used a s  an accumulator for a reduction, (RED is generated by 

the DM only in conjunction with reductions. ) 



MIT is used primarily to activate reduction segments. It takes ST entries 

from the top of VS and uses them to push new iterations to IS. When the MIT 

execution reaches an SGT entry on the top of VS, the referenced segment is activated 

by pushing the descriptor information to LS. (See Appendix C for a description 

of how reduction segments a re  deferred in QS.) 

c. Micro-instructions 

 he set of micro-instructions a re  used by the E-machine to maintain pseudo- 

iteration stacks in QS. 'I'hey result from D-machine expansions of subscripting 

and related operations. The micro-instructions are  fully explained in Table 3-C, 

and the DM expansions in Appendix C illustrate their use. 

TABLE 3 

E- Machine Instruction Set 

Notes: 

a, Each instruction is in the for~l l  

UP VALUE LINK A U X .  

In the discussion,  i is the address of the instruction in QS. 

b. Instructions starting with the letter "Ift are "uninitialized. That is, they 

have not yet been bound to their indexing environments. They are  changed to 

similar instructions without the leading "I" when first  executed. 



TABLE 3-A 

E-Machine - Simple Instructions 

Operation Name Definition 

S Load Scalar Push VALUE to VS, with tag ST, 

IFA Load Array 
FA Element 

Load Array 
Address 

Load 
J-Vec tor 
Element 

O P  Scalar 
GOP Operator 

NIL No Operation 

'\ 
IRD Result 
IfiP Dimension 

IFA causes initialization, as  described in 

Section E. 1. B., and the instruction becomes 

FA. F A  fetches an array element determined 
/ 

by the indexing environment and pushes the 

value to VS with tag ST. 

LA causes initialization and the instruction 

becomes A. A is similar to FA except that 

the (encoded) address of the selected element 

, is pushed to VS with tag AT. 

IJ is similar to IFA, and becomes J after 

initialization. The VALUE field i s  an encoded 

, descriptor of a J-vector, the correct element 

of which is computed and pushed to VS with 

tag St'. 

The VALUE field is the name of a scalar 

ai-itllmetic operator, This is invoked and 

takes i ts  operands from the top of VS, leaving 

a result there after deleting the operands. 

No operation. 

These instructions are  used by the D-machine 

and are  left in QS' when a segment is turned 

over to the E-machine. Since they are  of no 

use to the EM, they are  changed to NIL the 

first  time encountered. 



TABLE 3-B 

E-Machine - Control Instructions 

Operation Name Definition 

SGV Load Segment 
Descriptor 

Activate 
Segment 

JMP Jump 
J O  Jump if 0 
J1 Jump if 1 
JNO Jump if 0 

nondestructive 
J N 1  Jump if 1 

nondestructive 

. . 
The VALUE field i s  a QS segment descriptof; with 

addresses relative to K. Make these addresses ab- 

solute and push the descriptor to VS with tag>SGT. 

The VALUE field is a s  in SGV, and LINK, i f  non- 

zero, points to a pseudo-iteration stack in QS. 

Activate the segment by pushing an ent:i.y to LE, 

usi.ng t'h.e LINK information to alter tihe QY field uf 

LS if necessary. 

Potential jump destination is K+LINK, where LINK 

is considered as  a signed numbcr. JMP is unconc1j.- 

tional. 

The others a re  conditional.on the value on top of 

VS. JO and J1 also pop VS. 

RED Begin Push an element with tag RT lo V9 to act as n ro- 
Reduction 

duc l i u ~  accumulator, and jump to K+EINK. 

I\OT Mark and Scalar  values on top of VS are  used to start a new 
Iterate 

iteration nest in IS. The absolute value of the VS 

value, less 1, is the MAX field in IS; the iteration 

direction (DM) is fo~ward (0) lf VS ib: positivc, 

otherwise backward (1). The CNT field of IS is 

initialized to 0 o r  MAX, depending on whether DIR 

is 0 or  1. Moreover, the first  entry in IS' has'its 

MRK bit set to I; all others are 0. Each VS value 

is popped. Finally, when an S T  entry is found i t i s  

popped and the named segment is activated in LS. 



TABLE 3-C 

E- Machine - Micro-Instructions 

Operation Name Definition 

POP POP Pop top element of VS. 

DUP Duplicate Fetch the VS entry, LINK elements from top of VS, and 
push it to VS. (Does not disturb original copy. ) 

ORG . Load IORG Push current value of IORG register to VS (tag ST). 

LVE 

RPT 

CAS 

VXC 

Cycle 

Leave 

Repeat 

Case 

Exchange 

Load from 
Pseudo-IS 

Store in 
Pseudo-IS 

Index load 

Step IS and repeat the current segment if IS hasn't 
overflowed. 

De-activate the current segment, erasing any associated 
IS entries. 

Repeat current segment from beginning, (Does not affect IS. ) 

If top of VS is not an integer scalar, then e r ro r  else if the 
value is N, then pop VS and execute the instruction at K+N 
and resume execution at K+LINK. 

Interchange top two entries on VS. 

LINK fields a re  relative pointers to XT entries. Push X1 
(or X2) field of referenced entry to VS, tag ST. 

Store top (ST) entry on VS in X1 (or X2) field of referenced 
XT entry. Pop VS. 

K L  is initialized to give XL, in which the LINK field points 
to IS or a pseudo-IS element. XL gets the current iteration 
value, adds IORG, and pushes the result to VS with tag ST. 

XS Index Store Subtract IORGfrom ST entry on top of VS; store in X1 field 
of XT entry at  K-LINK in QS; if the value just stored is 
negative or greater than the X2 field of the same word, 
signal an error. Set the X3 field (change bit) to 1, and 
pop VS. 

ISC 
SC 

Index Change Set the change bit (X3 field) of the referenced XT entry to 1, 

Activate ISC is initialized to SC in same way a s  IXL. The VALUE 
Segment field of the instruction is a QS segment descriptor. If the 
Conditional change bit in the referenced IS or pseudo-IS entry is 1, 

then the segment is activated. Otherwise, the change bit 
of the XT entry referenced by the following instruction is 
set to 0, and this instruction is skipped. 



EXAMPLE 6: 

This example illustrates typical behavior of the E-machine. Consider the 

A P L  statement 

E[I;l+EP> I-l+( +/(I 2 2 QPT0.-PT[I;])*2)*0.5 

and suppose i t  is ellcountered by the machine when the variables are  a s  below:. 

EP is 0.0001 

I is 2 

i s  U E i s U  1 1  O 

0  1  1 0 0 1  

1 0  0  0 0  0 ,  

1 1  0  0  0  0  

The D-machine code for this statement is as  follows: 



D-Machine Code f o r  Statement i n  Example 6 : 

Addr Op Operand Comments 

2 00 LDS 0.5 

2 02 LDS 2 

204 LDSEG SCODE(0, 0,O) Empty subscript  

2 06 LDNF I - 

208 ' LDNF P T  

210 SUBS 2 Result  is PTC I ;  I 

2 12 LDNF P T  

2 14 GDF SU B PTo . -PT[ I ;  I 
2 16 LDCON 5 0 '  Constant vec tor  1,2,2 

218 TRANS 1 2 2 QPTo,.-PTCI;] 

2 19 PWR ( 1  2 2 QPT0.-PT[I;])*2 

22 0 RED 1 ADD +/(I 2 2 QPT0.-PT[I;3)*2" 

223 PWR (+/(I 2 2 QPT0.-PTCI;l)*2)*0.5 (Call  thisR ) 

LDS 

ADD 

MOD 

LDNF 

GT . 

LDSEG 

LDNF 

LDN 

SUBS 

A SGN 

-1 
- 
1tR 

I-ltR 

E P  

EP> I -1 +R 

SCODE(0, 0,O) Empty suhsc r i p  t 

I " 

E 

X E L I ;  I 

E C I ;  I+EP> I-1tR 

0 0 0  

RC=1 LEN=4 Header f o r  DA of constant 1,2,2 

VB=O A B=54 Res t  of DA - 

RA NK= 1 . 

R(1)=3 D(l)=l 

RC=1 LEN=4 Header f o r  value of constant 1,2,2 

1 

2 Value a r r a y  

3 



Example 6-1 shows the instruction buffer containing the deferred code to 

evaluate the sample statement. The transpose operation was evaluated in the D- 
. . 

machine using beating, and i ts  results a re  manifested in the access masks (AUX 

field) in the instructions at locations 3 and 4. 

Four temporary descriptor arrays were created by the DM as follows: 

@TI DA for PTC 2;  1 . (Recall that I is 2 in this example. ) 

@ T2 DA containing dimension of the result of the GOP operation, 

in this case 4,2. 

@T3 DA containing dimension of the reduction result, in this case 4. 

@T4 DA for EC2;l 

The deferred code is equivalent to the following: 

for J F 0 Step 1 until 3 do - - -  
begin 

REDUCE := 0; 

for  K :- 1 s tep  -1 ~1~111 0 du - - - -  

REDUCE := REDUCE -I. (FT€J;I<] P T ~  ;1(l)*3; 

end - 

The remainder of the example shows the D-machinets progress through the code 

in Q S ,  and contains comments which explain the machine's actions at each step. 



- 
E U M P L E  6 -- t - M A C H I N E  .------------------------------------------------------------------------------- 

' a i G I S T E Y  DUMP 
Y % l T  - 1 I = 0 F U t G  - 0 0 C 0 0  F t lASE  * C 0 2 0 0  ISMK = 0 0  

R E L  0 R G  L E N  D I E  I S  F N  NmT U P  C I A  MAX D l Y  C H  MUK 
-5: *-----*-----.-----t--.--.---*---*----. 1s :  +---+----*--,---.---. 

I C 4 C I C ~ O O I O 7 5 I O I O I I 1 3 1 0 0 I  I O W l O O 3 l O I I I l I  
I 00.3 I 0 0 0  I 0 2 2  I1 1 I I I 0 1 3 I 3 0  I --> I 

--> I 

EFFECT  l V E  AUOR = 0LW.J I h  US 

TAG V A L U t  OP  VALUE L I N *  4UK 
,i: ----- -------------- + 0s:. ----- --------------- ---- ------. 

I FMT I F C U O E I - 1 1 0 1 F l  I 0 0  1 S 1 J.5 I I I 
--> I C I  I R E 0  I J I 0 8  I I 

0 2 1 s  1 2  I I I A- 
03 I I F A  I a11 I I ' IUOII 
0 6  I I F A  I & P I  I 1 9 0 1 1  1 
95 1 CUP I SUB 1 0 2  1 ~ 1 0 1 1  1 

I 0 6  1 I R O  I i T 2  I 1 ' 3 0 1 1  1 
C l  I OP I PNY I 0 5  I 9 0 1 1  I 

CI 0 8  I U P  I 9 0 0  1 0 1  1 J O l l  I -A 
)3 0 9  1 SCV I SCOUElSEG.A.1I  I I I 
cD I 0  1  s 1 - 2  I I I 

J 
1 1  I M I 1  I 0 I I I 
1 2  1 I R U  I d l 3  I I 00C . l  I 
13 I nu I rhn I 13  I 0001 I 
1 4  1 5 1 - 1  I I .  1 
1 5  I OP I A 0 0  I 0 2  1 OUC,l I 
I 6  I OP I MCO I I 3 O C l I  

1 1  1 S 1 0 . 0 0 3 1  I 1  I 
l a  I OP I GT 1 0 2  1 0 0 0 1  I 
19  I IA I a l c  I 1 3 0 ~ 1 1  
2 t  I OP I ASGN 1 02 1 O O C l  I 
2 1  I POP I 0 I I I 

--> I 

THE 0-MICHINE' H A S  J U S T  PPSSEO CONTROL I U  THE E - W C H l h E .  NO E X E C U T I U N  
HAS TAKEN PLACE Y ~ T .  T F E  FUNCTION M A ~ K  UN vs M A S  PLACEO THERE 8.1 
A C T I V A T I N G  F U N C T l ( H  F. W E  C O h l E N T S  J F  THE  M A R L  ARE THE P * t V I O U S  
VALUES OF  FREG (-:I) A N 0  I O & G  101 .  I N 0  I H E  NAME DF THE F U N C I I O N  I F ) .  

SEGMENT A U I T H l h  PS EVALUATES THE R k O u C T l 5 N  FOUNO I N  THE SOURCt  
CUOE. r H E  I T E R A T I O N  STACS I S  SET UP TO 0 0  THE C 9 U l V A L t h T  OF THE 
*FOR J :- 0 STEP  I U N T I L  3. I T E R A T I ~ N .  

EXAMPLE 6 -- E-MACHINE 

MEMORY OUM? 

AUOR CL'NTENTS AOCR C C N l k h T S  N l :  TAG CONTENTS 
----*------------------ 
VYT YC-2  L E N - 9 9  P I  RC.2 L t N - 0 5  t F T  dF 

+ o h  o + o i  VU=VPT AU=OOO I ST  z 
+ 0 2  0 r 0 2  RANK-2 P T  0 1  a p r  
+ 5 3  6 . +O>  R l 1 1 = 0 0 4  0 1 1 1 - 0 2  E 0 1  i I E  
t C I  I + 0 4  U I 2 l - 0 0 2  U I Z I - 0 1  E P  ST 0 . 0 0 0 1  
0 I 

R C - 1  LEN.04 
VB-VPT A B = O O I  

YANK- 1 
Y l l l = o O Z  o I l l = O l  

R C - 1  LEN=O4  
vB=  AB-OdO 

R A N K - I  
kill-CO4 0 1 1 1 = 0 1  

NOTE r H A T  I N  THE  NbMETAeLE .  THE t N T R V  FOR T H t  I U E h T l F I E R  F P O I N T S  
TC dF.  THE TAG OF THE ENTYV I D E N T I F I E S  I T  AS A F U N C T I O N  NAME. 
a F  I S  THE AUOUESS O F  THE F U N C T I O N  U t S C R I P T U R  FOY 6 .  U H l C H  I S  NOT SHOhN. 

E X I M P L E  6 -2 :  S T A l t  OF MEMCYV BEFURE E X E C U T I U N  



EXAMPLE 6 -- € -MACHINE  
--------------------------..----_------_---____-----___---____--__________________ 

REG I S  I E R  DUMP 
L E U I T  - 1 I O R G  - 0 F a E G  = OOCOO F B A ' i i  = m 2 0 0  l s r r  - CG 

R E L  ORG L E U  O I E  1 5  t N  L b T  OP  
LS: * ----- -----*----- r---• ---.--- c--,--* ---.- 

cm MAI OIR cn mar 
1s: +--- *---- - *---.-- 4 ---. 

I 0 1 0 1  0 0 0 ' 1  0 1 5  I 0 1  0 I 1  1 3  1 0 0 1  1 0 0 1  0 0 1 1  0 1  1 I . I I  
I 0 0 1  I 0 0 0  I 0 2 2  I I 1 I I 0 I 3 I 0 0  I --:* I 

--> I 

E F F E C T I V E  ArlDR = 0 0 0 1  I N  a S  

I A G  VALUE OP  'VALUE L I N K  A U  
vs:.----.---------- ------, QS:. ----- -.----------------.---- ------- 

I FMT I F C O O E I - 1 1 9 . F l  I *:.*OS aUCHAf f iEO* * *  
1  ST I 0.5 I 

--> I 

EXAMPLE 6 - 3 :  A F l E R  S 

----------------------------------------------------------.------------------- 
I R E G I S I E *  OUMP 

Y 
NEYIT - I IUWG = 9 F ~ E G  = o e o o o  F U A ~ ~  m z o o  ISMK - 

TAG VALUE OP '*ALUE L I N K  A U I  
v s : r - - - - - r -  ---------------- * ;',S: .---- ------- 

I FMT I FCOUEI - I .O .F l  I *'.*a5 UYCHAff iEO***  
I ST I 0.5 I 
I l l 1  I 0  I 
I SG1 I SCOOEISEG.A . l l  I 
I ST 1 - 2  I 

-->I 

T H t  B E U  O P E I A T C Y  P b S H E C  I F 6  RT  t l l P - .  TO d t  U S E 0  A S  .IN A C C U M U L L I ~ R  
FO.( THE WECUCTIGNt A N 0  AUPCEO 1 0  0 5 1 3  I .  i.€ SGV I ~ . T R U C I I U N I  ( A -  3 1  
PUSHED I T S  OPERAND I l H t  OE!CRIPTOR F O E  S E G E r N I  & I  TO V'.. 
THE s INSTMUCIION I A T  1 2 1  P u s n t o  THE - 2  VAL* r c  v;. 
T M e s E  ruo ENTRIES WILL UE ~ S E O  01 IFIE MII I N S ~ ~ U C I I J ~  TO AC-IIULIE 
I H k  YEDUCTION SEGMENT. 

EXAMPLE 6-4:  AFDER YEO*  SGV. A h U  S 

E X A M P L E  6 -- E - U A C ~ I ~ ~ E  
-------------------*--------------------------------------------*------------------ 

L E G I S I E R  DUMP 
L E w I T  = 1 I O R G  . 9 FREG - 0 0 0 0 0  FBASE - 0 0 2 C C  I S M K  - 01 

R E L  ORG L E N  01E I S  F N  N b l  OP CTI M A X  0 1 ~  cn WK 
,s: *-----+-----*-----.--*---.---*---r 1 s :  ----- -----*--- ------ + 

I O 4 0 1 ~ 0 0 l 0 1 5 I U I  J 1 1  1 3 1 0 0 1  I O O O 1 0 0 3 1 O I l  I 1  
I 0 I 2 1 0 0 0 1 0 2 2 1  1 . 1  I I 0 1  3 1 0 0 1  1 0 0 1 1  0 0 1  I 1  l l 1 l 
1 0 0 0  1 0 0 2  I 0-27 I I .  I 1 I 0 I 1 1 0 0  1 --> I 

--> I 

E F F E C I I V E  AOOR = O J O Z  I N  F S  

T A G  VALUE OP VALUk  L I N K  AUX 
y S z +  ----- + -----------------. 45:. ----- + ------------------ + ----. ----- + 

I F M I  I FCOOt l -1 .O. f  I I * * * G S  JNC l iANGEO** *  
I S 1  I 0.5 I 
t a r  1 0  I 

-->I 

M I 1  U S E 0  I H E  S C A L A t  - 2  CN TOP OF VS T J  S I A Y I  A N k Y  I T E C I 1 I U : d .  
THE LENGTH J F  I H E  I l E R A T I O . *  I S  2. A N 0  I W S  I H E  MAX F I E L O  I N  T H E  B T E R A l l O N  
S T A C K  IS SET  10 I.  HE NEGATIVE SIGN OF r n E  v s  E ~ I Y Y  SIGNIFIEIO THAI I H E  
I r E * I I I O N  I S  T U  RUN BACKYARDS l D I R = l I ;  H t N C E  CTR STARTS AT 1 IWS'EAO OF 0. 
THE NEXT  VS ENTRY MAS A SEGMENI J t S C R l P l U Y  FOR SEGMENT A I N  2s. 
* I 1  U S E U  T H I S  TO A C T I V A T E  I * €  SELMENI .  BY P U S H l h G  A NEW t h T Y V  1.3 LS.  
%OIE r n A r  IN IHE h ~ b  LS  ENIRV. T n E  N.I $11  IS I; r n t s  W A S  mi PYEVIOUS 
V A L U t  OF NEWIT.  N m I T  I S  NO* 8 dECAUSE A N E b  I I E Y A l l U N  H A S  B E E 4  S I A W I E O .  

EXAMPLE 6 - 5 :  A F I E Y  M I 1  

I l E G I S I E U  DUMP 
N t h 1 1  = I I U N G  0 FREG - 0 0 0 0 0  F I A S E  - 0 0 2 0 0  I S M &  = G I  

YEL  OWG L E h  OAE I S  F N  h Y T  (iP CTY  M A X  O I R  Ct4 WYK 
1 s ;  .-----*-----.-----*--+----.---.---.----. 1s :  r-----r-----*---.---r---* - - 

1 0 4 1 1 0 0 0 1 0 1 5 I C I O 1 I  I 3 1 0 0 1  I G O O I C O 3 I O I  i l l 1  
I O l 2 1 0 0 3 1 9 2 Z I L I  1 I O I > I O O I  I O O L I E O I I  1 1  1 1 1 1  
I 0 0 1  I OCZ 1 0 0 1  L n I 1 I 0 I I l 0 0  I --> I 

E F F E C T I V E  AOOR C 0 0 1 ,  Ih  CS 

TAG 
"5: .----- *- 

I F M I  I 

VALUE . OP VALUE L I N K  A U K  .----------------* "S:*-----+------------------*---+-----, 

F C O O t l - 1 . O o F l  I ***CIS UNCHANGED*** 
I S l  1  0.5 I 
I R I  I 0  I 
I S 1  I ?  I 

-->I 

T i iE  F I N S T  I N S T R U C I I P N  C F  I H E  h E d L I - A C I I V A T E O  SEGMENT 1SEG.A) I S  S . 
A 1  O S 1 2 i l .  T H I S  I N E T R U C I I O N  PUSHED I T S  UPERANO I 2 1  10 VS. 



EXAMPLE 6 -- E-MACHINE ------------------------------------------------------------------------------ EXAMPLE 6 -- E - M A C H I M  --------------------------------------------------------------------------------- 
R E G I S I E 3  DUMP REGISTER OUMP 

N E Y I l  I 1 10RG = 0 FREG - 0 0 0 0 0  FBASE * OOICC I S M  . 0 1  N E b l l  - 1 IURG = 0 FYEC . 0 0 0 0 0  FUASE - 0 0 2 0 0  I S I W  0 1  

REL ORG L t N  D I E  I S  F N  N b l  UP  CTR MAX OJY CH W K  
L S *  ----- + -----,-----.---.--- *---*----r 1s :  c----.- ---- c-+---.---a 

I O I O 1 0 0 0 1 0 1 5 1 O l J I 1 1 3 1 C O I  1 0 0 0 1 C O 3 I O I 1 I 1 I  
I 0 1 2 1 0 0 0 1 0 i 2 I 1 I 1 1 0 1 3 1 0 0 I  I O O l I O O l I L I L I 1 I  
1 0 0 1  I 0 0 2  I O C I  I I I 1  I 0  I I I 0 0  I --> I 

--> I 

E F P E C l l V E  AOOR = 0 0 0 3  I N  US 

1AG VALUE OP VALUE L l h G  AUX 
"S,+-----*------------------. gS:*----.-----------------*----,------+ 

I FMT I FCODEI-11J.61 1 0 0  1 S 1 3.5 I I I 
1 5 1  1 0.5 I 0 1  I PEO I 0 1 GU I I 
~ a r  1 0  I 0 2 1 s  1 2  I I I A- 
I S 1  I 2  I 0 3  1 F b  l i l C W E l V P T . I I  I 1 9  I I 

-->I 0 1  1 I F A  I d P 1  I I D o l l  I 
0 5  I CUP I SUB I 0 2  1 0 0 1 1  I 
0 6  1 I R O  I a 1 2  I 1 0 0 1 1  I 
0 7  l L P  I P.R 1 0 5  1 0 0 1 1  I 
0 8  I CP I A00  I 0 1  I 0 0 1 1  I -A 
0 9  1 SGV 1 S C O D E l S S i . A s L I  I 1 I 
1 0  1 5 1 -2  I I I 
11 I WIT I o I I I 
1 2  I I R O  I d l 3  I I O O O L I  

2 0  I OP I ASGb 1 0 2  1 0 0 0 1  I 
2 1  I PUP I C I I I 
2 2  1 N L T  I P C U O E l l ~ 1 1  I 0 1  I 1 

R k L  ORG L E N  U I E  I S  F N  NbT 9 P  CIR r r x  OIR cn MRK 
,s: *-----,-----*-----*---+---*---em--+----. I s :  .-----*-----t--.---*---• 

EFFECTIVE ADUR = CGOI  I N  US 

TAG VALUE UP VALUE L I N K  AUX 
,S,+-----.------------------+ gS:.-----.-----------------*----,------. 

I F M I  1 FCODEI-1.O.FI I DC 1 S 1 3.5 1 1  I 
. I S l  1 0.5 I 0 1  I R E 0  I 0 I 0 8  1 I 

I R T  I 0  1 0 2 1 s  I 2  I I I A- 
I S 1  1 2  I 0 3  l F b  l WO€lElYPT,Sl I 1 9  I 1 
I S 1  I 0  I 0 4  I I F A  I dPT I I 3 0 1 1  I 

-->I 0 5  I COP 1 SUB 1 0 2  1 0 0 1 1  I 
0 6  1 I R O  I d l 2  I I 0 0 1 1  1 
0 7  I OP I P r R  1 0 5  I 0 0 1 1  I 
0.9 I OP I 4CO I 0 7  I 0 0 1 1  I - A  

3 9 1 S G V I S C O U E l S E G . A ~ l l  I I I 
LO 1 s 1 - 2  I I I 
1 1  I M I 1  I U I I I 
1 2  1 1 1 0  1 d l 3  1 I 0 0 0 1  I 
I 3  I O P  I PbR I 1 3  I 0 0 0 1  I 
LC 1 s 1 - 1  I I I 
1 5  I OP I AUO I 0 2  I 9 0 0 1  I 
1 6  I OP I W O  1 . I 0 0 0 1  I 
I T  1 S 1 O.JJO1 I I I 
1 8  I UP I G I  1 0 2  1 0 0 0 1  I 
1 9  I I A  I d l 4  I I ' I O O L I  
2 0  OP I ASGN i oz i o o o i  i 
2 1  I POP I 0  I I I 
2 2  1 N L l  I F C J U E I L . l I  I 0 1  I I 

L O C A I I O N  3 I N  US, WHICIW PREVIOUSLY C O N I A I N E 0  I N  1FA I N S T ~ ~ U C T I O N I  d A S  
BEEN L N I l I A L l Z m  TU FA. I H E  VALUE F I E L D  NONi CONTAINS VPT . THE B I S C  
AOMESS YEFEREKEO IN WE UA A T  a l l .  ANU r H E  n e a s  I=II FROM THAI JA. 
I N  A O O I I I O N I  THE L I N K  C I E L O  OF 9 S 1 3 i l  I S  Nil. L R E L A T I V E  POINTER 1 0  
O S I 2 2 ; l .  IIHICH : I S  THE I l E R b T l O N  C U N l R U L  BLUCK FON 1 k t S  AYRAY. THE jECUN0 
ELEMENT UF 1HE I C U  ENTYY 1I.E. THE 9 2  F I E L O I  I S  THE OEL FGR T H I S  ANdAY. 
T4KEN FRUM 4 1 1 .  I S E E  E'XAMPLE 6 -2 .  FOR CONTENTS OF 1 1 1 .  THE F I Y S T  E L i M t N 1  
IOI FIELOI IS OEL TIMES r n E  a r x  VALUE IN THE IOP ENTRY ON IS. 

L S  HAS NO1 CHANGE0 * E l  B tCAUSE THE NENLY-CaEATEO F A  I Y S T P U C l l O N  H A S .  
N C I  YET U C t N  EXECUTED. THE I N l l l A L I L A I l U N  P U C E S S  ALSU ERASEU THE 0A  
S T A R I l f f i  A 1  a l l .  WHlCM I S  NO LONGER YtFEUENCED ANYWHERE I N  1HE MACWIbE. 

THE AOORESS I N  9 S l 3 ; l  H 4 S  BEEh  UPDATE0 0 1  THE I K I E X  U N l 7  AND THE V A L U t  
I T  REFERS 1 0  HAS BEEN PLSHEO 1L VS. THUS THE VALUE 1 0 1  UN 1UP UF VS 
A 1  T H I S  POINT I S  P T l Z i l l .  I R E C A L L  THAT 1He E F F E C T I V E  ADDRESS OF AN - 
A R R A Y  ELEMENT R E F E R ~ N C E C  IN AN FA INSTRUCTION IS r n E  SUM n~ 11s COOEU 
PAYTS. PLUS 1 1 1 0  C U W E h S A l E  FUN THE U IRAV HEAUER NCROI I. 

\ EXAMPLE 6 -8 :  AFTER FA 

EXAMPLE 6 - 7 1  AFTER I F 1  
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EXAMPLE b -- E-MACHLNE ----___-_____-_--_--------------------------------------------------------------- 
OEGISTER W M P .  
h E h l T  = L I O R G  . 0 FREG 1 0 0 3 0 0  F,BASE - 0 0 2 0 0  I S M I  - 01 

- REL  ORG L E N  D I E  I S  F N  N h l  U P  CIR M A X  OIU CH WK 
LS .  .-----,-----.-----,---*---.---.---,----. 1s :  .-----,-----r--*---*---, 

I 0 ~ 0 1 0 0 0 1 0 7 5 1 0 I 0 I 1 1 3 1 0 0 I  1 0 0 0 1 0 0 3 1 0 I l I ~ 1  
I o I Z I C o o I o 2 z 1 l I I I O 1 3 1 C o I  I 0 C 1 I 0 0 1 I 1 I 1 I . I  
I 0 0 6  1 0 0 2  1 0 0 1  I I I I 0 1 1 1 0 0  1 --> 

--> I 

E F F E C T I V E  ADOR = 0 0 0 8  I N  0 s  

TAG VALUE O P  VALUE L I N K  AUX 
VS:+----+----------------+ QS:+-----*--------------.----c-----+ 

I FMT I F C O O E ~ - I . O I F I  I * * *US  U N H A N G E U * o *  

I ST 1 0.5 I 
I R 1  I D  I 
1 s r  1 0  I 

-->I 

PYR ( A T  P S l l i l l  MAS A P P L I E D  1 0  THE TOP 2 ELEMENTS ON THE VALUE STACK, 
0 A N 0  2 i THESE OPERANDS r E L E  DELETED ANL! THE  RESULT  OF I H E  U P E R A T I O N  
H A S  BEEN PUSHED I 0  PS. I d  2 * 0 1  

EXAMPLE  6 - 1 1 :  AFTEW BUR 

___________________________________________-------------------------------------- 
REGISTEO DUMP 
h E L i l T  . I I O R G  - 0 FREG - 0 G C 0 0  FBASE = OOZOC I W K  - 0 1  

REL ORG LEN UIE IS FN U ~ I  UP C T R  MAX 0117 cn r a r  
LS: ,----,-----+-----+--- + --,--- *---• ----. 1s :  ,-----+-----*---.---,-- , 

I O L O 1 O 0 0 1 3 1 5 1 O I O I l I 3 1 O 0 1  1 0 O O ~ O O 3 1 O ~ l I l I  
I 0 1 2 l 0 0 0 1 0 2 2 I I I I I o I 3 I ~ o I  I O o l 1 0 0 1 L l I l l l I  
1 0 0 1  1 0 0 2  1 9 0 1  1 I I I 1 9 1 I 1 0 0  1 --> I 

--> I 

E F F E C T I V E  AUOR - COOP LN  OS 

T A 6  VALUE OP  V4LUE L I N K  AUX 
~s:+----+----------------+ QS:+-----+-----------------+----+------, 

I FMT I FCUDEI-I.O,FI I ***as UWIANGEO*** 
1 ST 1 0.5 I 
I S 1  1 0  I 

-->I 

EXAMPLE b -- E-MACHINE  .-------------------------------------------------------------------------------- 
OEGlSTER DUMP 
N E Y l I  = 0 I O R G  = 0 F I E 6  - 0 0 0 0 3  FUASE 0 0 2 0 0  I S M &  = 0 1  

REL  URG L E N  D I E  I S  F N  N U 1  QP C I R  MAX O I R  C H  I R K  
LS :  .----*-----*----*---.--+---.----. 1s :  ----*-----*--,--*--. 

1 O s O I o o o I o 1 5 1 o I D I I  I 3 l O O l  I o o o I o o 3 l o I  I l l 1  
I 0 l 2 1 0 0 0 1 0 2 2 1 1 I  l I O I 3 1 0 0 1  1 0 0 0 1 0 0 1 1  I I I I L I  
1 0 0 0  1 0 0 2  1 0 0 1  1 I I 1 I 0 I I 1 0 0  1 --> I 

--> I 

E F F E C T I V E  AOUR = 0 0 0 2  I N  CS 

T I G  VALUE U P  VALUE L I N K  AUX 
VS:+ -----, ------------------ r 0s:. ----- ---------------- c--.--+ ------ + 

I F L I  I FCOOEI -1 ,016 )  I * o * a s  urtcnrffiro*** 
1 S I  I 0.5 I 
I S 1  1 0  I 

- - > I  

I N  THE L A S r  FRAME. THE  SEGMENT M A S  COMPLETED1 S I N C E  I T S  R E L A T I V E  
ADDRESS U A S  THE SAME A S  1 1 s  LENGIH .  W Y E V E R ,  S I N C E  THE I S  0 1 1  
*AS  SET FOR THAT SEGMENT. THE I S  ,AS S T E P P E 0  B U T  U I O N ' I  UVERFLOY. 
THUS. L S  WAS R E - I N I T I A L I L E O  TO THE a E G l N N l N G  OF  THE  SEGMENT. I 0  
LIE R ~ P E A T E D  YIIH T n E  NEW IS VALUES. n o r €  vnrr h E u i r  NOW IS 0. 
A F  rn l s  p o i n r .  THE E W I V A L ~ N T  OF THE ALWLIC =REDUCE :- R ~ O V C E  + ...= 
H A S  BEEN OONE FOR J - 0  A h 0  K.1. 

THE SECCNO P ~ S S  rnaoucn r n E  n t D u c r l u N  SEGMENT PROCEEOS SIMILARLY 
TG THE F I R S T .  EXCEPT T H A I  NO F U U I H E U  I N l T l A L l L A I l U N S  N E E 0  B E  OONE. 
AT THE END OF T H I S  I T E R A I I U N .  REL'LEN I N  L S  AND. A S  BEFORE. I H E  
I T E R A T I O N  STACK b l L L  B E  STEPPED. HOUEVER. T H I S  T I M E  I T  OVERFLObS.  
SO BOTH L S  A N 0  I S  ARE POPPED*  R E I U R N I N G  THE MACHINE  I 0  THE 
M A I N  SEGMENT. ( S E E  NEXT  F I G U R E )  

EXAMPLE 6 -13 :  B E G I N N I N G  U F  SEGMENT U I T H  S T E P P E 0  I S  

THE AOO UPERA~ION. SEEING THAT I T S  SECUNO W ~ R A N U  nrs r A s  RI. 
GIVES AS I T S  RESULI m E  F I R S T  OPERAND, d l r n  r A c  ST. rnls IS 
ACCORDING TO TAE  O E F I N L T I O N  OF  REJUCT IUN.  

EXAMPLE  6 -12 :  AFTER A 0 0  



EXAMPLE 6 -- E-MACHINE .--------------------------------------------------------------------------- EXLMPLE 6 -- E-MACHINE ----------------------------------------------------------------------------------- 
REG I STER DUMP R E G ~  S T E M  DUMP 
N t b I l  - 1 IORG - 0 F W G  - 0 0 0 0 0  FGASE - 0020C ISM& = 0 0  N E N I Z  - 1 IORG - 0 FREC - OOGOO F8ASE - 0 0 2 0 0  ISMK - 0 0  

REL (1116 L E N  O I E  1 5  F N  NbT 2P 
L S *  *-----.----*---.---.--.---+-.----* CTR MAX 0 1 R C M  d R L  

[s :  r-----.-----.---.--.---+ 

I O I O 1 o D O I O ? 5 1 O I J I l 1 3 I l O I  1 O O O 1 0 0 3 1 O ~ l I l I  
I O l 2 I 0 0 o I o ~ 1 l I L I O I 3 I l O I - > I  

--> I 

ECFECTIVK AOOR - 0 0 1 2  I N  4 5  

TAG VALUE OP V I W E  L I N K  Y I X  
"s:.-----*----------------& gS;.-----.--------------+---.-----. 

I F I T  I F C J O E I - l v 0 , F I  I 0 0  1 5 1 0 . 1  I I I - 
I ST 1 0.5 I 0 1  I R E 0  I 0 . I 0 8  1 I 
I S T  1 1  I 0 2 1 5  1 2  1 I I 4 -  

->I 0 3  l F A  l O C M € t V P l t I l  . I I 9  I I 
OC l F A  I P L t X E l V P T r O l  I 1 9  1 1 
0 5  I COP . SUB I 0 2  1 
0 6  1 N I L  0 I I 
0 7  l OP PMK 1 0 5  1 
0 8  l OP ! AUO I 0 7  l 
0 9  I S i V  I S C ~ ( S E G . A ~ l l  I I 
1 0  1 5 - 2  I I 
1 1  I  MI^ 0 I I 
1 2  1 I 1 0  173 1 I 
I 3  I OP I PYR I I 3  I 
I+ I s -1 I 1  
15 I UP I ADO I 0 2  I 
16 I OP I MOO 1 I 
11 1 5 1 0 .0131  I 1  
18 1 OP I GT 1 0 2  1 
1 P  I I A  1 4 1 4  I I 
2 0  I OY I ASG4 1 0 2  1 
2 1  I PUP I 0 I I 
2 2  1 PJLT I OCO)EIL.LI  I 0 1  I 
2 3  1 NT I OC03El6 .21  I I 
2 6  I N L l  I 4 C U J E ( l r L I  I 0 1  I 

--> I 

REDUCE SEGMENT I S  DONE. I T S  R E S U L l  4 1 1  I S  ON TOP O F  VS. 
N O I E  THAT N E Y I T  WAS RESIOREO T U  1 Y E N  L i  MAS P O P P E Q  

OJOL 
0+309 

OJOL 
0 ~ 1 0 1  

rnls s r & E  C o n n E s P o N o s  10 T ~ E  COMPLETIOM OF TWE -FORK- LOOP WITH I)-0. 

EUA3VLE 6-14:  AFTER RETURN FPOM REOUC71(3.. 

REL ORG LEN OR IS IN NWT OP C T R  MAX OIR CN m n r  
LS: .-----.-----*-----,--.---,.---*---*----. 1s :  .-----.-----.---*---.---* 

1 0 6 0  1 0 0 0  1 0 1 5  i 0 1 . 0  1 1  3 1 GO 1 I 0 0 0  1 0 0 3  1 0  I I I 1  I 
1 0 2 0  1 0 0 0  1 0 2 2  1 L 1 1 P 0 I 3 I 0 0  I --> I 

--> I 

E F F k C l l V t  AOOR = OCZO I N  OS 

TAG VALUE OP VALUE L I N K  AUX 
VS:.----.----------------. CS:.-----.-----------------.----,-----* 

1 F M l  1 FCOOE(-1.OeEI I C,O I S 1 0.5 I I I 
I S T  1 1  I c 1  I R E 0  I 0  I 0 8  I I 
I AT I OCOOElVE.8l I C Z l S  I 2  I I I A- 

-->I C 3  I F A  I OCGOElYPI ,+ I  I 1 9  I I 
C 4  I F A  I UCODtlYPT.Ob I I 9  I I 
C5 I W P  I sun 1 0 2  1 0 0 1 1  I 
C 6  I N I L  I 0 I I I 
C T  l OP I PUB I 0 5  I 0 0 1 1  I 
C 8  I OP I A00 I 0 1  I 0 0 1 1  I -A 
'09 1 SGV I SCOOEISEG.Ar l I  I I I 
L O I S  1 - 2  I I I 

a i s  IO.WOI 
Ld I OP I G I  
LV I A I o c c o o t l v c . 8 1  

Zl I POP I 0 

i 0 2  i 0001  i 
I 0 6  I I 
I 0 2  I OOOL I 
I I I 

Z? l NLT I QCC4UElL.ll i 0 1  i I 
23 1 N l  I Q C W E ( 6 e Z I  1 I I 
2% I NLT I O C U ) E I L I I I  1 0 1  1 I 
'ZS I N L I  I I P C ( P E ( 3 e l l  I I 1 

OSIIZIOI T~RWGII ~ I L J ~ I  +YIE.BEEN EXECUEO. NOTE TWT rnr IA rr  Q S ( L ~ ~ )  
MAS TRANSFORMEO T O  L M r n A r  I T S  RESULT IS l n t  cooro r o c i a r s s  v l rn  
TAG 'AT' ON 1 0 P  OF #S. 

I 
EXAMPLE 6-15: OEFORE A S 2  



EXAMPLE 6 -- E-MACHIME .----------------------------------------------------------------------- 
REGISTER OUMP 
N E w l T  - 1 1 0 R G  - 0 FREG - 0 0 0 0 0  FBASE 0 0 2 0 0  ISMK - 0 0  

TAG VALUE OP VALUE L I N E  AUX 
VS:* ----- ---------------. 'Js: *---- ---------------- ---- ------* 

I FMT I FCWEI-I.O.FI I ***as UNCHANGED*** 
-->I 

AFIER ASGN AND VPOP. i H E  VALUE CN v s  HAS BEEN STUREO A r  v E * l * a  IN MEMURY. 

SINCE rut SEGMENT HAS BEEN'COMPLEIEU, THE 1 s  WILL BE S ~ E P P E O  LNG 
L S  W I L L  BE RESET TO 1 H E  B E G I N N I N G  S I N C E  THERE I S  NO OVERFLOW. 
rnls STAGE CURWESPONO~ TO ONE PASS THROUGH rut  =FOR J. RANGE, WITH 1-0. 

F .,,---------------------------------------------------------------------------- 
W 
Cn 

MEMORV DUMP 

I AOOR CONTENTS N O R  C O N l E h l S  & O W  CCNTENIS  
----*-------------- ---*------------------ ----*----------------- 
P RC-1 LEN-05 VPT R C - I  L E N - 0 9  VE R C = I  L I N - I 1  
*01 VB-YPI  Ae-OCO * C l  0 * 0 l  0 
* 0 2  RANK*?. * l l Z  0 * 0 2  I 
+ 0 3  R l l l ~ 0 0 4 O l l l ~ 0 2  * 0 3  9 * 0 3  1 ' 

r 0 1  1 1 2 1 - 0 0 2  0 1 2 1 - O I  *34 I * 0 1  0 
* 0 5  1 r 0 5  1 

i E  RC-L L E N - 0 5  *36 0 * 0 6  0 
* 0 1  VB-YE A B = 0 0 0  * 0 T  I * 0 T  0 

* 0 2  RANK-2 0 8  1 * 0 8  I ' 

* 0 3  R l 1 1 * 0 0 1  U l l l - 0 1  * 0 9  I 
* 0 4  R 1 2 1 - 0 0 1  0 4 2 1 - 0 1  * I 0  0 

e l l  0 
* I 2  0 
* 1 3  0 
I 0 
* I 5  0 
* I 6  0 

E N T R I E S  FOR )TI , .  . ..ill0 NOW HAVE REFCOS OF 0, ANU HAVE BEEN AUOEO I 0  THE 
L I N K E D  A V A I L A B I L I T Y  L I S I .  AL IHOUGH T H I S  I S  NGT S W b N  HERE. 
r n E  ENTRY IN THE VALUE ARRAY FOR E . A T  V E * ~  IN MEaoav ,  HAS BEEN 
CHANGE0 TO I BY THE ASb>N OPERATION. T H I S  t N l ' 9 Y  I S  E ( 2 i O ) .  

EXAMPLE 6-17:  STATE OF M A F I E R  F I R S T  T I M E  T H R O U M  THE SEGMENT 

EXAMPLE 6 -- €-MACHINE __________-____--_--_------_-----_---_--------------------------------- 
REGISTER DUMP 
NEWIT  - 0 IURG - 0 FREG - 0 0 0 0 0  FBASE - 0 0 2 0 6  I S M K  - 0 0  

REL  ORG L E N  U I E  I S  F N  NUT OP CTR MAX O I Y  C H  )(RK 
Ls :  *-----*-----*-----*---*---*---.---*----* 1s:  *----+---c-+---*---• 

I M ~ 3 1 0 0 0 1 0 7 5 1 0 1 0 1 1 1 3 1 0 0 1  1 0 0 3 1 0 0 3 1 O I L I L 1  
I 0 2 2  I OCO 1 0 2 2 1  1 1 . 1  I 0  1 3  I C O  I --> I 

--> I 

E F F t C T I V E  AOOR - 0 0 2 2  1 h  QS 

TAG VALUE OP VALUE L I N K  AUX 
\s:* ----- --------------- "5: *----- -------------- *---+-----* 

I FNT I FCf lOEl-1eO.FI  1 0 0  1 S 1 0.5 1 1  I 
-->I 0 1  I RED I 0 1 0 8  1 I 

0 2 1 5  1 2  I 1  I A- 
0 3  I F A  1 P C O O E l V P T o 4 I  . I 1 9  I I 
0 6  I F A  I O C O O E ~ V P T I ~ I  I 1 9  I 1 
0 5  I GUP I SUB 1 0 2  1 0 0 1 1  I 
0 6  1 N I L  1 0 I I 1 
0 1  I OP I P r R  1 0 5  1 0 0 1 1  1 
0 8  I U P  I I O U  1 01 1 0 0 1 1  I - 4  
0 9  I SGV I SCUDEISEG.Ae1I  I I 1 

t 2  I N I L  I 0 

I 9  I A I ' X O O E I V E I L I I  I 0 6  1 I 
2 0  I OP I ASGN I 0 2  I 0 0 0 1  1 
2 1  I PUP I 0  I I I 
2 2  I N L T  I r Y U O E l I ~ 1 l  I 0 1  I 1 
23 1 NT I W O U E l b . 2 1  I I 1 
2 1  I N L T  I X U D E I L I I I  I 0 1  I I 
2 5  1 N L T  i d C U O E 0 r l l  I I 1 

--> I 

EXAMPLE 6-10:  REGISTERS AFTER NEXT THREF PASSES TUROUGH SEGMENI 



R L G l S T E W  DUWP 
h E W I T  = 3 I O R G  = C F R t G  = ' 0 0 G 0 0  F B A S E  = 0 0 2 0 0  

REL URG LEN DIE IS FN N ~ T  UP 
L s :  + ----- + ----- + ----- +---+---+---+---+ ---- + 

I ocm I c o o  I 07s I c I o I I 1. 3 I oo  I 
--> I 

TAG VALUE O P  V A L U E  L I N K  AUX 
y5:+ ---- + ----------------- + 0s: + ----- + ----------------- + ---- + ------ + 

I FMT I F C ~ D E I - ~ ~ O D F )  I --> I 
--> I 

T H E  L A S T  F I G U R E  I l A S  THE END OF T H E  SEGMENT. T r U S r  I S  MA5 
STEFPED. S[NCE I T  OVERFLOWED, I S  A h 0  L S  WEHE POPPEO. 
O E - U C T I V A T l b G  T H I T  SEGMEhT C H A N C t O  CONTROL FWOP THE E-  TO T H 3  D-MACHIN€ 
AND THEREFORE Q I  WAS R E S E I  TO THE B E G I t 4 N I N G  OF THE SECM€YT 
JUS6 COMPLETED. 

EXAMPL,E 6-19 :  R E G [  S l E d S  A T  C C k P L E T Y  C N  OF k - M h C H L N E  E V A L U A T I O N .  

-------------------------------------------------------------------------------- 
MfMOXY DUMP 

ABOR CONTENTS ----,----------------- 
APT H C = 1  L E N = 0 5  
*OL Vt)=vPl  A B = 0 0 0  
t o  2 R A N K = 2  
+ 0 3  R ( l l = 0 0 4  O(  l ) = 0 2  
+ 0 4  R ( Z I = O G Z  D ( 2 ) = O I  

& D o n  CONIENTS 
----+---------------- 
VPT R C = l  L E N = 0 9  

+ 0 1  G 
+ 0 2  0 
+ 0 3  0 
+ 0 4  I 
+ 0 5  L 
+ 0 6  0 
+ 0 7  1 
+ C 8  1 

AUDR C O N T E N T S  --- ,---- - ------ ------- 
V k  RC=1 L E N = l 7  
+01 0 
+92 1 
+33 1 
+.54 0 
+35 1 
+36 0 
+07 0 
+38 1 
+39 1 
+LO 0 
+ L L  0 
+ L 2  1 
+ L 3  0 
t L 4  0 
t L 5  C 
* L b  0 

N O T I C E  Tk'AT THE b A L U E S  AT V E + 9 r l O r l l r l 2  H A V E  CHANGED FROM EXAMPLE 6-2 .  
T H E S E  CORRESPOND T O  E ( 2 ; B t  T H E  E N T I R E  ROW O F  E TO BE C A L C L L A T E O .  



APPENDIX A 

SUMMARY OF REGISTERS, ENCODINGS AND TAGS 

This appendix summarizes the uses of all machine registers and details the 
s. 

. . 
. . .  

fields in the various stacks. In addition, the several encodings used a s  parametric 

. . functions in the design description a re  outlined. Because of the parametric nature 
. . 

of the design, not much will be said about field sizes except to indicate the range 

.. . .  
of the contents of a particular field or  register. We assume that in any particular 

. . 

incarnation of such a machine, all the fields are  "big enough" to contain their 

. . contents. In the detailed algorithms of Appendix B, the registers a r e  construed 

. . .  
. . .  as  arrays of scalars with some kind of encoding imposed upon the contents, if 

I 

necessary. While not completely rigorous, this approach serves to show how the 
,::.*. : . . . . .. 

machine works without having to explicitly encode and decode all references to 
. .. . 

' . .. 

, . .  
. . 

registers at each step, 
.: 0: ', .. : 

. . . .  . . 

A .  Registers 
. . 

1. LS (Location Counter Stack) 

. . 
Field Column 
Name Index Contents 

RE L 0 Relative location in segment. Generally points to the - next 
. . instruction to be fetched. 

ORG 1 Segment origin. For D-machine segments, this is relative to 
FBASE. In the E-machine, the effective address i s  +/LSC L I - 1 ;  O , 1  I 
and in the D-machine i t  i s  FBASEttILSC L I - 1 ;  0 , l  I .  - 

LEN 2 Length of segment. For D-machine segments, this is in words, 
and for the E-machine, this is the number of QS entries for the 
segment, 

v 

Segment mode. This field is 0 for the D-machine and 1 for E- 
machine segments. 

Iteration mark. Has value 1 if this segment is associated with 
an iteration in IS; otherwise i t  is 0. 



FN 5 Function mark. Has value 1 (else 0) if this is the main segmen.t 
of an active function. .- , . .  

. . ,  

NWT 6 , NEWIT value, stacked when a new iteration is activated, 

&p 7 QS pointer. Used by index unit for e.xpressibn indexed:from 
QS rather than IS. (See Section E. ) 

. . . .. . . 

2, IS (Iteration Control Stack) . ' . :  , ' : , . .  . 

Field Column 
Name Index Contents . . . .  

CTR 0 Current iteration count. This value is dways rion-negative and 
varies between 0 and the value in the MAX field, in the direction 
indicated by the DIR field. 

MAX 1 Maximum 'iteration count. 

DIR 2 Direction of count. (0 for positive, 1 for negative. ) 'If positive, 
then CTR is initialized to 0;otherwise it is initialized to MAX. 

CH 3 Change. Used by STEPIS routine in main control cycle to mark 
all IS entries which have changed since the last cycle. . ' 

MRK 4 Mark. Has value 1 for the outermost iteration of each nest. 
Otherwise, it is 0. (See ISMK register, below.) 

3. VS (Value Stack) 

Field Column 
Name Index Contents 

TAG 0 Tag field. . Identifies kind of entry in value field. ' ' 

VALUE 1 V due. 

4. Q 6  (In~tmction T\uffer) 

Yield .Column 
Name Index Contents . ' 

\ 

OF 0 .R-machinc nficrn.iinn nndc. Thc QS aontn.i.no inatru3tion.o dbfcrrcd 
by the D-machine for later execution by the E-machine. Occas- 
sionally this field will contain a tag, such a s  XT, for an entry 
which is a temporary value for the EM rather than an executable 
instruction. 

VALUE 1 Value. Contains the value in immediate instructions and the 
operand for others. . . 



LINK 2 Link. This is a signed integer used to reference other instructions 
and entries in QS. It is taken relative to the QS index of the entry 
in which it is found. By keeping links and segment origins relative 
in QS, all deferred code is relocatable. 

AUX 3 Access mask. Contains an encoding (MCODE) of the iteration 
indices to use in accessing an array expression. 

5. NT (Nametable) 

Field Column 
Name Index Contents 

INX 0 Symbol index. Since NT is content-addressable, the value of 
INX must be carried with each entry. These indices (or names) 
may be assigned in any arbitrary way. There is no built-in 
restriction on their use. 

TAG 1 Tag. Same a s  tag field in VS. I 

CONTENTS2 . Value. SarneasinVS. . , 

In the APL machine, M is considered to be a vector of length MLENGTH of words 

which can be addressed between BOTM and TOPM. The particular encodings used 

in M are not specified except a s  necessary, e. go ,  in instructions such a s  LDSEG, 

the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar 

value is assumed to take up one machine word, as  is each instruction. This is 

clearly inefficient in space utilization, and it would be expected that any real 

implementation would specify more reasonable and detailed encodings for various 

kinds of values. Nothing in the machine design is based on the word as  the primary 

unit of memory in the machine, so there should be no problem in making such 

modifications. 



7. Other Scalar-Valued Registers 

Register 
Name Contents 

LS index. (All stack indices point to the next available entry 
in the stack. ) 

I1 IS index. 

VI VS index. 

&I ' QS index. 

BOTP 
TOPP POOL pointers for M allocation. 

ARRAVAIL 
DAAVAIL. Pointers to beginning of availability chains for M allocation. 

FREG 

IORG 

FBASE 

VS index of innermost active function mark. When a function 
is activated, the previous values of FREG and IORG are stacked 
in VS in the function mark, and restored on return. 

Index origin for innermost active function. 

Function origin in M. Poi11t.s to beg'ilu~ng of the segment 
containing the innermost active function. Upon exit from a 
IuluLiun, FBASE is reslored to poir~l to the correct base from 
information in the stacked function mark. 

Iteration tag. Set to 1 a t  the beginning of a new nest of iterations, 
and used by the index unit to keep indexing straight. NEWIT is 
stacked in LS and restorcd from thcrc each time a new iteration 
n w t  it: autivat~d, 

IS index of the marked entry closest to the top of the iteration 
stack. Used by IU. 

B. Encodings 

The APL machine makes use of a few specific encoding functions. These are  

used for encodings which could be expected to fit within a single machine word. 

Although this bias is built into the design, it is inessential to the basic ideas used 

in the design, and could be changed if necessary. 



1. SCODE org, len, m . This is the encoding of a segment descriptor. 

m is 0 or 1 depending on whether this segment is for the Dmachine or the E-machine. 

org is the beginning address and len is the length of'the segment. The'inverse 

(decoding) functions a re  SORG, SLEN, and SMODE, respectively. In the EM, if 

a segment descriptor is in QS, org is relative to its QS-index. 

2. JCODE len, org, s . This is the encoding for a J-vector descriptor. 

The inverse 'functions are JLEN, JORG, JS. . ,. 

3. XCODE a, b, c . Encoding used for various purposes in the E-machine. 

Generally, a and b a re  an index and its limit, respectively, c is always a single 

c 

bit quantity. It is conceivable that the functions SCODE, JCODE, and XCODE 

. ,. ,.. . 
might be identical in a particular implementationof the APL machine, a s  might 

their inverses. The inverse functions for XCODE are XI, X2, andX3, respectively. , 

4. QCODE a, b . This encoding is used in constructing ICB1s during EM 

executions. Each field is potentially as large a s  the' machine's memory and might 

be signed. The decoding functions a re  Ql and (42. 

5, 'MCODE mask . This is the encoding function which takes a logical 

vector which is an access mask for an array and encodes it for storage in the AUX 

field of QS. The inverse function is m1. 

6. FCODE freg, iorg, name . This is the encoding used in function marks 

on VS. The inverses are F1, F2, F3. 



C. 'I'ags 

This section summarizes the tags which can be used in VS and N T  entries. 

Tw VS NT Meaning 

UT 1. .; .I. Undefined value. 

ST 1 1 Scalar value. 

JT 1 1 J-vector. ,Such entries are  moved to QS from VS almost 
immediately. 

DT 1 1 Descriptor array pointer. In V S  means thls is a result 
to h e  a.ssjgned to, while  in NT, a11 array va111es have khis 
tag. A s  wit11 JT, DT entries will be deferred to QS a s  soon 
as  they are  noticed. 

FDT 1 0 Similar to DT, except the array is to be fetched. Same 
note applies; ' . . 

FT 0 . ' 1  Function descriptor pointer. 

SGT 1 0 
. . 

Segment descriptor. 

NPT . 1  ' 0  " Name pointer. This is an NT index. 

FlWT 1 '  0 Function mark. 

1 0 RT TTnnser! (so far)  rkdu~btion accumulator. 



APPENDIX B 

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE 
- .. 

The functional description of the E-machine which follows is written in an 

informal dialect of APL. It differs from "standard" APL only in its sequence- 

controlling statements, Instead of using branches, more sophisticated, and more 

easily understood, constructions are utilized. These are  summarized briefly below: 

1. BEGIN . . . - END delimits a compound statement, as  in ALGOL, 

2. Likewise, conditional statements and expressions of the form 

IF  condition THEN . . . ELSE . . . - 
are  as  in ALGOL. However, in this description, the condition part 

evaluates to 1 or 0, corresponding to TRUE or FALSE in ALGOL. 

3. The case construction, 

CASE n OF - - 
BEGIN 

END - 
. . 

th 
chooses and executes the F statement in the sequence. Thi s  description 

has omitted some BEGIN'S and END1s in compound statements within the - 
CASE statement and substituted typographical grouping. Although this is 

not syntactically rig.orous, i t  renders the description more readable. 

4. The REPEAT statement repeats its range indefinitely. Within a repeated 

statement, the CYCLE statement is used to resume the main (compound) 
\ 

statement from the beginning, and LEAVE aborts the innermost REPEAT. 



A THE E-MACHINE - -  A FUNCTIONAL DBSCRJP TION 

n MAIN CYCLE R O U T I N E  

REPEAT 
BEGLN 
A T H I S  I S  T H E  CONTROL ROUTINE IN FIGURE 2 ,  HOWEVER, 
A ONLY THOSE P A R T S  RELATED TO THE E-MACHINE ARE SHOWN, 

LE -CASTOG THEN 
Bgl?lB 

rg L S C L I - I ; O I Z L S C L I - I ; ~ I  z ~ m ~  
BE_GIg A TOP SEGMENT OM L S  HAS 0.VERFLOWED 

IE L S C L I - 1 ; 4 1 = 1  T H E n  

S T E P I S  
N E W I T  t n 
IE STEPTOG THf!g CYCLE  

EAlD . --- 
A DEACTIVATE  TOP SEGMENT AND TRY  AGAIPI 
LPOP u 

CYCLE 
END --- 

K 4 + / L S [ L I - 1 ; 0 , 1 1  
Jg -&SCK;OIEIA,IFA,IJ,ISC,IXL T''EN 

L S C L I - 1 ; 0 1  + L S [ L I - 1 ; 0 1 + 1  

END 
CASTOG + 0 
A I F  A C T I V E  SEGMERT I S  FOR D-MACHINE r&Ea A C T I V A T E  DM 

XF L S C L I - 1 ; 3 ) = 0  THEN DMACHINE g&7g 
C A S E  DECODE Q S [ K ; O I  QE n GOES TO L A B E L S  BEEOW ---- 
Bg_C_Ig R D E L I M I T S  RANGE OF CqgE STAZ'EMEWT 
R ' LADGLS'  BELOW NAME E-)!ACHfUE I N T E R P R E T A T I O N  RULF49 

I A  D + Q S C K ; l I  
I F A )  I N X  + G I N X  K 

Q S C K ; 2 , 0 3  + Q I  I_F Q S [ K ; O I = T A  zH&J A E68E FA 
I + S + O  
T 4 _I_F L S C L I - 1 ; 7 1 = 0  z_Hgg NT,FJLT E L S E  QY',&LB' 
( 0 I N X  1 BgPEkT 

E N D  
USCK; 1 1  + @CODE ( GEY'VBASK 1)) ,S+Ch7TABASE D 
E R A S E  D 

A )  I U K  
F A )  VPUSH hE Q S C K ; O l = A  _THE& A T , Q S C K ; l l  

E L S E  ST ,FETCH Q S C K ? 1 1  ---- 



J) IU1 K 

OP) EXECUTE QSCK;11 a QS[K;11 ENCODES A SCALAR UP 

RED) VPUSH RT,O 
LSCLI-1;Ol 4 K+QSCK;21 

d.. 
DUP) LF K>VI TREfl ERROR EkSE VPUSH VSCVI-K;] 

VXC) IF -- VI<2 ---- THEN ERROR ELSE ---- V S C V I - ~ , ~ ; I + V S C Y I - 2 , ' 1 ; 1  

POP) VPOP 

IJ) INX 4 GINX K 
S + (JORG QSCK;11) + LE O=JS QSCK;11 TBEN -IORG 

IORG + -1 + JLEN QSCK;l] 
QSCK;] + J,(XCODE O,S,JS n),mx,o 

XL) VPUSH ST, LF LSCLI-1;71=0 TYEN ISC&SCK;21;01 ELSE 
IORG + XI QSCQSCK;21;1 

* 
IRP) QSCK;] 4 NIL,O,O,O 

IRD) ERASE QSCK;11 
QSCK;] + NIL,O,O,O 

MIT) ISMK 4 11 

IIE_PEA__T 
B E E U  

VI4VI - 1 
6' vsc v.r; o I =SGT m ~ g  L E A  VF: 

lg VSC VI ; 0 I *ST ERROR 
IPUSH VSC VI; 1 I ,  II=ISNK 

END --- 
LPUSH O,(SORG VSCVI-1;1]),(SLEN VSCVI-1;1]),1,1,0,0 

SGV) T 4 Q S C K ; ~ ~  ,n RECALL THAT SEG DESCRS ARE RELATIVE 
VPUSH SGT,SCODE CK-SORG T),(SLEN T),SMODE T 

SG) LPUSHS K 

SC) T + I S [ Q S [ K ; ~ I ; ~ I A N E W I T ~ Q S [ K ; ~ ~ ~ I S W K  
LE T l''EN LPUSHS K 
ELSE LF QSCK+~;OIEXS,XC TEE& 

S 4 Kt1-QSCK+1;21 
A SET CHANGE BIT TO 0 
QS[S;i1 4 XCODE (XI QSCS;1I),(X2 QSCS;ll),o 

El0 
- 146 - 



JMP) LF (QSCK;OI=JMP)v( (QSCK;OIEJO,JNO)AVS[VI-1;11=0) 
JO v(QSCK;OlrJ1.JNl )hVSCVI-1;11=1 
J1 ---- THEN LSCLI-1;Ol + K+QS[K;21 
JNO) LE QSCK;O~EJO,J~ THEN VPOP 
JN1) 

CY) LSCLI-1;Ol 4 LSCLI-1;21 

CCY) T + K+QSCK;21 
QSCT;ll + XCODE(l+Xl QSCT;lI),(X2 QSCT;11),1 
LSCLI-1;Ol 4 0 

RPT) LSCLI-1;Ol + 0 

&VB .) LPOF 

CA3) LE * - ; ( Y S C V I - I ; O I ~ u " T ) ~ i r S C V I - 1  11le\&SCII;21 ZHllN E8RO.R 
LSCLI-1;01 + K+QSCK;21 
K 4 K+VSCVI-1 ;ll 

/ 

VPOP 
CASTOG + 1 

XS) J + K-QS[K;21 
I 4 VSCVI-1;1]-IORG 
VPOP 
IF (I<O)vI>X2 QSCJ;lI THEN ERROR -- 

ELSE QSCJ;11 + XCODE I,(X2 QSCJ;ll),l 

XC) J 4 K-&S[K;21 
QS[J;1] 4 XCODE (Xl QSCJ;II),(X2 QS[J;ll),l 

LX1) VPUSH ST,Xl QSCK-QSCK;2] ; I 1  

SX1) T + K-&S[K;21 
Q$[T;il + XCODE VSCVI-l;ll,(X2 QSCT;lI).I 

SX2) T + #-&SCK;2I 
&S[T;1] + XCODE (XI Q S [ T ; ~ ~ ) , V S C V I - ~ ; ~ ~ , ~  

ORC) VPUSH ST,IORG 

END n END CA_U'& SIL'AIL~EME~VI R A N G E  --- 
A E-MACHINE INTERPRETATION RULES 



A AUXILIARY FUNCTIONS FOR E-MACHINE 

V INX + GINX K;R 
A INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY, 
n HIGHEST COORDINATE NUMBER. (I. E. FASTEST VARYING FIRST 
R 4 ZE LSCLI-1;71=0 Z'EN 11 ELSE QSCLSCLI-1;71;21 
INX 4 @((Rp2)~21QSCK;3l)/tR 

v 

v LPOP 
Jg LI=O THEN ERROR E&SE LI + LI-1 
LF LSCLI;4]=1 THEN POPIS 
Z E  LSCLI;51=1 Y'YEa FNRET . 
NEWIT 4 LSCLI; 63 
A JF THIS CHANCES MODES THEN CLEAN OFF QS 

IF QI = LSCLI;I] Tl'N LEAVE' &7&$$ QI + QI-1 
ZE QS[QI;Ol E IFA,IA ,RDT !I'PEN ERASE QS[QI ;I I 

END 

V POPIS . . 

I1 + ISMK 

REPEAZ 
BEGIN 

ISMK ' 4  ISMK-1 
LE ISMK=-1 THEN LEAVE E&S& JF ISCISMK;41=1 THEN LEAVE 

END 
v 

V LPUSH V 
Ze LI=LIMAX THEN ERROR - 
LSCLI;\71 4 (6+V),NEWIT,LE o*"~+v THEN 1tV LSCLI-1;71 
LI 4 LI+1 ' 

v 

V LPUSHS K 
ZE O=SMODE QSCK;II ~ ~ g g  ERROR 
LPUSR O,(K-SORG QSCK;lI),(SLEN Q S C K ; ~ ~ ) . ~ , ~ . ? , C O R R  K 

v 



V IU1 K;T;S;R 
A CALCULATE J -  VECTOR ELEMENT IN FORM XCODE( CURR ,INCR,SN 
T 4 LSCLI-1;71 
S + (XI QSCK;lIj,O 
.IF T = O  _T_HEI A IF THERE IS A CHANGE, .USE NEW ITER VALUE -- 

REGIN 
19 I S [ Q S [ K ; ~ ] ; ~ ] A N E W I T V ~ K ; ~ ] ~ T S M K  THEQ . 

S + IS[RSCK;21;01,1 

El!Q 
lg 1=X3 QS[T+BSCK;21;11 S + (XI &S[TtK;ll),l 

LF SC11=1 THEN , 
BEGIN 

T + X3 &SCK;ll 
S[O] 4 LE T=O THEN S[O] ELSE -s[o] 
QS[K;11 + XCODE SCO],(X2 &S[K;l]),T 

EEL? 
v e ~ ~ s ~  sr,s[oi+x2 QSCKIII 

T7 

V IU K;IP;IQ;S;T;D 
A INDEX UNIT 
S + O  
IQ 4 KtQSCK;2I A BEGINNING OF .TCB FOR THIS AIlRAY 
T + LSCLI-1;71 
REPEA__T 

BEGIN ----- 

-- 

@ E G L L I [  A TH.T"i' A R R A Y  T I i r n R X K n  R Y  .TS 

I T  ISCIP; ~ I ~ ~ ~ ~ W ~ T ~ I P ~ I S M K  xdgd 

ZLSE 
/F (IS[IP;O~=IS[IP;~])AJ'S[~'P;'L]=~' -   EN -- 
S + S+&l QSCfQ;11 

ELSE IE ISCIP;21=0 ---- 
S 4 St92 QSTIQ;11 

ELSE S + 3-Q2 gS[IQ;lI ---- 
1?' iV U --- 

EnrE 
' gr;gE 

BEGIN A THIS ARRAY IRDEXED F.ROM QS ----- 
LE O = X 3  QS[IP;lI Tl'Ea LEAVE ELSE 

g&_o&g 
D + (Q2 QSCI&;ll)xXl QSCIP;11 
s + sto-(21 QSCIQ;ll 
QSCIQ;l] 4 QCODE D,Q2 QSCIQ;ll 



V R 4 FETCH X 
A X IS A &-CODED ADDRESS OF FORM QCODE(VBASE,I~~CR) 
R 4 MClt(Q1 X)+Q2 X;] 

V 

V EXECUTE CODOP 
A CODOP IS A DYADIC OR MONADIC SCALAR OPERATOR(ENC0DED) 
A EXECUTE DECODES CODOP ON THE ELEMENTS L OF VS: 

A 

A 2E ISDYADIC CODOP THEN 
A BEGLN 
A vs[v1-1;1] +- vs[VI-1;1] (DECODE CODOP) vsCvI-2;1] 
A VPOP 
A END_ 
A ELSE 
A VSCVI-1;1] 4 (DECODE CODOP) VSCVI-1;lI 

v 
i 

V STEPIS ; I;INCR 
A STEP THE ITERATION NEST IN IS 
A SET STEPTOG 4 LE D O N E  ?HEN 0 ELSE 1 
STEPTOG 4 0 
I 4- 11 

BEGLN 
IE ISC I ;  41 THEN LEAVE ELSE 

IS[I;0,31 + ISCI;ll,I 
END --- 

ELSE LE (ISCI;OI=ISCI;~])AIS[I;~]=O TgEN ---- 
REEL&! 

JTF 1SC1;'41 TEE&' LEAVE IS[I;0,31 4 0,l 

BEGLN 
STEPTOG 4 1 
IS[I;3,01 4 1,ISCI;Ol 

+ LE IS[I;21aO !l'Q 1 ELSE -1 
LEAVE 

END --- 
E m  

V R 4- CORR K 
R + IF -- QS[K;21=0 TR'l 0 ELSE K - Q S C K ; ~ ]  , 

v 

V IPUSH V;MX 
A VC01 IS COUNT (SIGNED); VC11 IS MARK 

A CASE OF COUNT=O CANNOT OCCUR (HANDLED BY D-MACHINE) 
MX c -1tl~C01 
IE 11 =IIMAX THga ERROR 
ISCII;] 4 (IF -- V C O l c O  g&El MX ELSE 0),MX,(VC01~0),1,~C21 



APPENDIX C 

EXPANSION OF D-MACHINE OPERATOHS FOR E-MACHINE 

This appendix shows how the D-machine expands complex primitives into 

deferred sequences of E-machine instructions. It is assumed that the, constraints 

noted for each operator a r e  met, and that all operands have been tested for domain, 

conformability, and so forth before being submitted for expansion. This is not 

an important constraint since, for example, the requirement that an operand be 

beatable cw always be satisfied by explicitly evaliiatirig an unbeatable uperluld l o  

temporary space. 

Before the expansion of any of the dyadic operations, the value stack and the 

instruction buffer a re  a s  follows: + 

OP VALUE LINK AUX 

0 O 0 . 0  0 0  0 . 0  . O 0 0 

SGT 

SGT - f 
Code for right operand mZ 

. . . . . ---- 
7 

- -- 
Code for left operand 

. . - . . 
m l  

where m l  and m2 are the access masks for the deferred expressions, fomd in the . 

AUX field of QS. In the sequel, segments in QS are  delimited graphically by braces 

and pointer or  Greek letters a re  used to avoid confusion with explicit relative ad- 

dressing. 

1. GDF 

The operands deferred in QS must be simple array values. The operand of 

a GDF instruction is a dyadic scalar operator, OPRo Expansion produces the 



following : 

QS 

OP VALUE LINK A ~ X  

SGT I Code for right operand rn2 

In the above, T1 to a DA containing the result rank and dimension for the 

GDF. mll  is m.2 shifted left by the rank of the right operand. m 3  is the logical 

or of ml t  and m2 (i. e., m3 ml l  m2). Because of the requirement that the - 
operands be simple array values, the segments in boxes each consist of a single 

Code for left operand ml l  ] I 
GOP OPR t m3 I 
IRD T1 m3 

\ 

I J  or IFA instruction. 

2. RED 

By the time an expansion is to be done, any necessary transposes on the 

reducee have been performed. The variable B has value 1 if the reducee is 

beatable and is 0 otherwise. The "beforeT1 picture is: 

0 . . 0 .  0 0 0 0 0 0 0 . O 

SGT a Code for reducee ml 

The reduce operator is OPR, giving rise to the expansion.below: 

vs OP Q S 

OP VALUE LINK AUX 

. O 0 . .  
I 0 .  . 0 0  0 . . 

SGT 

SGV 

Code for reducee m l  

I 
S - len 
IVuT 
IRD @TI . B -1 m 



where len is the length of the reduction coordinate and 'l'l is a DA with the rank 

and dimensions of the result. 

3. DIOTA 

The ranking operation, corresponding to dyadic i, requires that the left 

argument be a simple vector array value. This is because this operand is evaluated 

repeatedly during the E-machine execution of the following expansion. 

OP VALUE LINK AUX -__.. - .- . 

n n a m 0  

SGT 
0 e , . " .  e e 0 0 

Code for right oper 

DUP 

JN1 

POP 

LVE 

L OP ADD 

ORG +'I 

S len I 

L 
IRP A 

len is the length of the left operand. It should be clear from working thruugll ll~e 

above expansion that it is simply a literal interpretation in E-machinc code of the 

definition of the ranking operator. It is assumed that the D-machine will have 

checked for  the case ,of an empty vector a s  either operand, producing the correct 

result automatically. If the rank of the result is 0, that is if the right operand is 



a scalar, the above expansion is executed immediately by the E-machine. The 

IRP instruction is similar to IRD, except that i t  points to an instruction in QS 

which contains dimension int'ormation instead of referring to an explicitly-created 

DA. 

4. EPS 

Before expanding the membership operator, a check is made for the special 

cases of right-operand scalar. o r  1-element quantity. In these cases the operation 

done is A=B or  A=(, B)[I], respectively, Similarly, if the left operand is scalar 

then A=B is done. Otherwise, the expansion is made in QS as  below: 

SGT 

OP VALUE LINK AUX 

Code for right operand m2 

JMP 

1 
I Code for left operand m l  

RED 

DUP 

9G 01 

OP EQ 

OP OR 

J N O  

LVE 

SGV a2  

S lenl 

S len2 

0 0 0 0 

S lenK 

M r r  

VXC 

POP 

IRP - 



where lenl, len2, . . . ,lenK clinlension of right operand. A s  in the expansion for 

DIOTA, the expansion of EPS is a straightforward E-macl~iie translatioli of the 

definition of the membership operator. 

5. SUBS 

~ e f o r e  the SUBS expansion takes place, the subscripts have been kxainined 

to see if they can be beaten into the subscriptee. If an expansion is needed, then 

' there must be some subscripts left. ' ~ e f o r e  expansion, the registers contain: 

SGT - { 
SGT P 1 

Code for rightmost 
subscript 

m r  
i 

Code for leftmost 
subscript m l  

Cocle for subscriptcc mO 

The rank r of the subscriptee must be the same as  the numbcr of subscript 

expressions. The rank of Wle result is the sum of thc r d c ~  of th.9 srtbscripta 

't. 

(counting empty subscripts a s  rank-1). Some of the SGT entries on the VS may 

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture 



has changed to: 

VS QS 

OP VALUE LINK AUX 

0 0 0 0 0  . O  0 . 0  0 0 0 .  

/- 

SGT 

Code for subscriptee 

J M P  \ 

0 0 0 . 0  0 0 

0 0 0 0 .  0 0 

0 0 e . .  

XT XCODE(0, lr, 1) 

Calc subs '1 

XS 

SG a 1 B 

IRD @TI 0 m r  

Where 11, 12, . . . , lr is the dimension of the oubscriptee, ruinus 1. This field of 

the XT entries is used for checking purposes in the IU (see Section E). ,6' is the 

QS index of the beginning of the XT back and @TI is a DA with the rank and 

dimensions of the result. mr  is the access mask of the result. The link field of 

p contains r, the rank of the subscriptee, which is used in the initialization of IA,  

IFA, IJ instructions. The lines in QS marked "Calc subs k" are  one of the 



following: 

O P  VALUE LLNK Arm 

ISC SCODE(SEG.Kr,l) . 0 m1 

IXL 0- 0 m1 

th 
In the first case, the k- subscript i s  to be computed explicitly, which is done by 

activating SEG K1, one of the non-empty subscript segments on QS. In the second 

case, the segment that was stacked on VS for this subscript was empty, so the 

actual subscript used is the same as that which was controlling this coordinate 

from the outside. The mask m1 in the AUX field specifies the index environment. 

Example 4 in this chapter shows a specific instance of an expansion caused by the 

SUBS operator, 

The remaining operator expansions a re  similar to SUBS, in that they &e all 

special cases of it. 

6. CMPRS ' 

The compressor (left operand) has been evaluated to a temporary space, if 

i t  was pot there already, and checked to see if it contains only O aud 1 elements. 

In addition, the number of Its, call i t  UlMl  , has k e n  ccruuled and Vil, thc index 

in V of the first  non-0 value is known; call i t  XA. This process is unfortutiately 

necessary since we must know the rank md dimension of the result before deferral. 

The same process must be applied to the expansion operator. Unless the com- 

pressor falls into a special case which can be done immediately (1. e .  , scalar 1 



or 0 or vector of all 1's or all 0's) then the following expansion i s  made: 

OP VALUE LINK AUX 

e e 

SGT 6 

.I{ for compressee rn2 

02 {[ Code for compressor m l  

XT xcode(0, lr, 1) 
f 'm  

OP 
OP 
JNO 
DUP 

I 
IX1 
OP 
SX1 
RPT 
DUP 
SX1 
I x 2  
XS 
POP 
LVE 

6: IXL 
XS 
0 .  

ISC 
XC 
v a 

ML 
XS 
SG 
IRD 

SUB 
S ~ N  

SUB * 

2 

SUB 

1 
r 4- 

4 

4 

mk' 

, 

mlt  

mk' 
e 



wh.ere li, . . . lr are as in the SUBS expansion; 1111' through mrt  a re  the masks for 

the individual subscripts with mk' being the mask for the compressed coordinate. 

The first  XT entry is used to hold XA and XL where XL is the last value of the 

external index for the compressed coordinate. The algorithm used is as  follows: 

Algorithm for compression: We wish to find XT such that 

(u/[K]x)[. . . ;I;. . .I- xL . . ;xT;. . .] 
Let XL be the last value of I from which the last XT was calculated. XA is the 

index of the first 1 in U. Then, the QS expansion for compression calculates the 

new value of .XI' a s  a function of the new I and uld XT a ~ d  J C L  aa follonls; 

if 1=0 then - - 
begin 

XL--0 

end - 
else - 

repeat 

hegin 

TbxXL-I 

if T=O' thcn loave - - 
repeat 

begin 

XT -w-T 

if T.T[xT]=~ thon leave - - 
end - 

XL -XL T 

end ---. 

7, EXPND 

The EWND operator is treated similarly to CI\IPRS. In particular, the 

expandor (left operand) is checked to see that i t  is a logical quantity and the number 

of l t s  is compared to the length of the expansion coordinate. If the expandor falls 



into one of the special cases (all ones, all zeros) the result is calculated immediately. 

Otherwise, the QS expansion that follows is made to implement the expansion 

algorithm below : 

Let R be (u/[K]x)[. . . ;I;. . .I. Then we want to find LX such that R-if - u~]=o 

then 0 else X[. . . ;LX;. . .]. LU is the index of the last found 1 in U and LX i s  the -- 
th 

corresponding'X index (on the K- coordinate). 

if U[I]=O then R--0 else - - - 
begin 

repeat 

begin 

T-XI- LU 

if T=O then leave - - 
repeat 

begin 

LU--LU+T 

if u C L ~  =1 then leave - - 
end -- 

LX --LX+T 

end _cornme.@ main repeat; 

R-x[. . . ;LX;.. .] 
end - 



: ' OP .VALUE . . " LINK AUX 

Code for expandee m2 

Code for expandor . . rnkl 

XT xcode(-GU, lu, 1) 1 
XT. xcode(0,11,1) ' r . ' . 

0 .  0 0 0  

XT . xc ode(0, lk;' 1) I 
XT xcode(0, lr, 1). 
Lxl 
IXL 
OP SUB' 
OP SGN 
JNO 
DUP 
ZX1 
OP ADD 
XS 
SG 02 
J 0 
LX1 
U P  ADD 
XS . .. 

KPT 
BOP 

/ 

XS 
0 0 0 0 .  

m 
XS 
SG 01 

SG D2 
CAS ' 

s 0 
SG 03 
IRD Q 

Note that the sequence of IXL and XS instructions starting at E does not contai~r a -. 
th 

-. 

reference to the k- subscript position as  this has already becn computed at the 

beginning of the segment activated by the CAE inulruction. Also, in the above, the 

quantity Bu in the X2 field of the pseudo-iteration stack at is the length of vector 

UJ less  1. 



8. ROT 

Rotation is a special case of subscripting defined as  follows: 

;EfN is a scalar, then R+N4[KIM m e a s  for each L ELT - I ~ E !  

R[;/Ll*M[: ; / ( (K- l )+L)  ,(lORGt(pM)CKI - I(N-IORG)+I(~M)[KI) ,K+LI 

If N is an integer array withpNt+(K;t~ppM)/pM then 

Thus the expansion for ROT in QS is the same as  for a general subscript with all 

th th 
but the K- coordinate being IXL, XS pairs and the K- coordinate being computed 

according to the above definition. The explicit expansion will be omitted since it 

is similar to what has already been shown. 



APPENDIX D 

POWERS OF 2 



CHAPTER V 

EVALUATION 

In this chapter we examine the design for an APL machine proposed in 

Chapter IV and compare i ts  performance to more conventional architectures. 

This is done by showing that the APLM is more efficient in its use of memory 

\ 

than a less sophisticated computer doing the same task. 

A. Rationale 

In Chapter III, a number of design goals for the APLM were stated: 

1. Machine language should be flclosell to APL. 

2. Machine should be general, flexible. 

3. Machine should do as  much as possible automaticdly. 

4. Machine should expend effort proportional to the complexity of i ts  task. 

5. Design should be elegant, clean, perspicuous. 

6. Machine should be efficient. In particular, it should be parsimonious of 

memory allocation and accessing. 

We can dispose of some of these in short order. To begin with, goals 1, 3, and 

4 have obviously been satisfied. Since the machine designed implements AYL, to 

goal 2 we can reply that the machine is general and flexible at  least to the extent 

that. APT., as a. language is general and flexible. For example, even though the 

APLM does not include all of the LISP primitives, if i t  is easy to write a LISP 

interpreter in APL, then the machine should be able to handle them with ease, 

Although I believe that the goal of elegance has been satisfied, this is not the 

place to make such judgements, nor am I the one to make them. This particular 

aspect will have to be decided by less  prejudiced readers. A seventh, unstated 

goal is that the design should indeed work. It should be clear to the reader who 

has reached this point that the basic machine structure proposed is in fact sound 

wid l l~a l  a1 APL inacl~ine as clascribed will produce corrcct anowcra. 



This leaves the question of efficiency to be considered. Because we have not 

detailed a complete machine, traditional measures such a s  encoding efficiencies 

of comparisons of cycle times cannot be used. A major emphasis throughout this 

work has been to minimize the necessity for temporary storage in expression 

evaluation and simultaneously to minimize memory accessing. -While these prob- 

lems are  often of marginal importance in a conventional design, they are  quite 

significant in an APL machine, since operands are  generally arrays, Thus a 

temporary store is no longer a single word, but is potentially an array of indefinite 

size, SimiS.a,rly, the ~anvent~ional problem. of saving a. aing1.e fetch wh.ere a quantity 

might be in a register, becomes the problem of saving 1000 fetches for an array 

operand. 

The remainder of this chapter is dedicated to the evaluation of machine ef- 

ficiency. We take an analytic approach here, but cannot hope to have a simple 

analytic model of the machine per se  which would give clean, closed-form quanti- 

tative data about the APLM. Instead, the analysis compares the performance of 

the APLM to a fictitious 'naive machine, " which is simply a straightforward 

interpreter of the semantics of APL. 

The next section discusses the naive machine (NM) and outlines the assumptions 

upon which the comparisons will be based. In the sequel, we will compare the two 

machines by looking at the number of individual fetches, stores, operations, an.d 

temporary stores needed to do a particdar task. Diiferent tasks will be examined 

with this in mind. At the end of the chapter, these results will be summarized 

together with some conclusions. 

Be The Naive Machine 

Although the APL machine proposed in Chapter IV has never been implemented, 

there exist concrete examples of the. naive machine. These include APL \7090 
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' ( ~ b r a m s  [1966]), APL\1130 (Berry [1968]), and APL\360 (Falkoff and Iverson 

[1968] ; Pakin [1968]). The main feature which distinguishes the NM from the 

APLM is that the APLM defers many computations while the naive machine 

evaluates each subexpression immediately after its operands have been evaluated. 

The APLM; by contrast, does some of i t s  evaluations immediately (e. g., scalar 

results), defers some indefinitely (by drag- along), and does still others in a non- 

direct way (e. g. , beating). 

The following list of assumptions clarifies in more detail the differences 

between the APLM designed in this work and our T1standardll naive machine a s  

used in the rest  of this chapter, 

1. The naive machine uses the same representation for arrays a s  does 

the APL machine. If the naive machine i s  APL\360, then this is approximately 

true. In fact, APL\360 does not separate DAfs from value parts in array rep- 

resentations. On the other hand, APL\360 represents scalars as  rank-0 arrays, 

and is thus more inefficient in i ts  handling of scalar values. We assume here 

that the NM keeps scalar values in a value stack a s  does the APLM. We have 

also (generously) assumed that the NM uses the J-vector representation for 

interval vectors. In general, these assumptions cast the naive machine in a 

better light than any current implementation of APL. 

2. The naive machine generates a result value whenever an operator is 

found and i ts  operands are  evaluated. (This is exactly the way APL\360 works.) 

Further, we assume that the NM will use temporary space allocated to one of 

i t s  operands for the result, if possible; e. g., if the expression A+B is to be 

evaluated, a new temporary space must be found to accommodate the result. 

However, if the expression is A+B+C; the subexpression B+C will be evaluated 

first causing the creation of a temporary t which can then be used as  the result 

destdnation for the value of A+t. 

- Ifis - 



3. In an assignment to a variable, as  in A-expression, the naive machine 

performs the assignment simply by storing a pointer to the temporary for the 

evaluated expression in the nametable entry for A. Again, this is consistent with 

the functioning of APL\ 360. 

4. Each operation in either the NM or  the APLM requires a fixed amount 

of overhead (e. g., rank checking, domain checking, space allocation, setup, 

drag-along, - etc.). An analysis of the instructions for both machines shows that 

these processes take approximately the same effort in both machines. Since 

there is no way to compare this effort with the memory usage measures discussed 

here, i t  will be omitted. For a single statement, this overhead appears a s  a 

linear additive term. 

5. Since scalars a re  kept in the value stack in both machines and since the 

VS mechanism is not specified (e.g., i t  could be a hard-wired stack, or  a fast 

scratchpad memory, or  i t  could be kept in memory with other array values), all 

scalar fetches and stores w i l l  be ignored. The effort to evaluate array expressions 

always dominates the effort' for scalar expressions. 

6. There a re  no distinctions made between data types in the APL machine. 

we thus assume that both the APLM and the NM use the same representation for 

individual data elements. 

7. All scalar operations take the same amount of time to perform, That is, 

an add or  a multiply will each be counted as a single operation. 

0. &'inally, it is assumed that both the naive machibe and the Al?L machine 

a re  implemented in similar technologies so that the-cost of memory accesses, 

storage allocations, and operations are  the same for both machines. 



C. Analysis of Drag-Along And Beating 

To begin the analysis, let us look at  a subset of the operations of APL and 

derive some analytic results comparing the APLM and'the NM. The set  to be 

considered is 

1. Selection operations 

2. Monadic and dyadic scalar arithmetic operations 

3. Inner products 

4. Reductions of the above (this includes outer products) 

5, Assignments of above to unconditioned variables or  to variables conditioned 

by selection operators. 

We consider only those? expressions which are  array-valued, a s  scalar expressions 

are  done similarly in both machines. Each operation requires the machine evalu- 

ating i t  to do a certain amount of work, summarized in Table 1 below. Tables 

2A and 2B summarize the "effort" required to do these manipulations. 

In Table 2, some of the entries contain conditional terms or  factors. These 

account for the different possible initial conditions when a subexpression is evalu- 

ated. Also, notice that in Table 2B, some of the entries contain references to the 

functions DOF, DOS, and WO. These are  functions which, given a deferred 

expression a s  argument, return a s  values the number of fetches, stores, and 

operations, respectively, necessary to evaluate the expression. Thus, for the 

APL machine, Table 2B does not tell the whole story; we must also take into 

account the efforts to evaluate the final deferred expression (by the E-machine). 

Hence, i t  is necessary to give detailed definitions of the DOF, DOS, and DO0 

functions. 



TABLE 1 

Steps in .Evaluation of APL Operators 

NAIVE MACHINE 

A. Selection Operators 

1. Check rank, domain of operands. 
2. Get space for result DA, value. 

3. Set up DA, M-headers. 
4. Set up copy spei-atioa. 
5. Do copy operation. 
6. ~ d j u s t  VS. 

B. Monadic Scalar Operators 

1. Get space for result DA, value 
(only i f  operand is a variable). 

2. &t up DA, M-headers i f  space 
was gotten in step 1. 

3. Do the operation. 
4. Adjust VS. 

C. Dyadic Scalar Operators 

1. Check rank, dimensions of 
opcrmda. 

2. Get space for result DA, value 
(only i f  both operands. are 
variables). 

3. Set up DA, M-headers if space 
was gotten in step 2. 

4. Do the operation. 
5. Adjust VS, 

D. Outer Product. 

1. Get space for result DA, value. 

2. Set ,up DA, M-headers. 
3. Do the operation. 
4. Adjust VS. 

APL MACHINE 

1. check rank, domain of opera,nds. 
2. Get space for result DA (if operand 

is a variable). 
3. Set up DAo 
4. Adjust VS, QS, 

1. Defer operation to QS. 

2. Adjust VS, QS. 

1. Check rank, dimensions of operands. 

2. If one opera.nrl i s  a scal.ar, move it 
t.0 QS. 

3. Defer operation to QS. 

4. Adjust VS, QS. 

1. If operands are  deferred subexpres- 
sions, then evaluate them to tcmp npace. 

2. Get space for result DA. 
3. Set up DA. " 

4. Defer operation to QS. 
5. Adjust VS, QS. 



b 
Table 1 (cont. ), 

NAWE MACKINE APL MACHINE 
I 

E. Reduction I 
1. Get space for result DA, value. 
2, Set up DA, M-headers. 

3. Do the reduction. 
4. Adjust VS. 

F. Assignment to Simple Variable I 
1. If right-hand side is a temp then 

go to step 6, otherwise do steps 
2 through 7. 

2. Get space for DAY value, 

3. Set up DAY M-headers. 
4. Set up copy operation. 
5. Do copy operation. 
6. Adjust VS. 
7. Adjust Nametable. 

G. Assignment to a Selected Variable 

1. Check dimensions of LHS, RHS. 
2. Set up copy operation. 

3. Do copy operation. 
4. Adjust VS. 

1, Get space for result DA. 
2. If reduction coordinate is other 

than the last, then do appropriate 
transpose. 

3. Set up DA. 
4. Defer operation to QS. 
5. Adjust VS, QS. 

1, If right-hand side is a temp then 
go to step 6, else proceed. 

2. If the LHS* variable is already 
defined and is of the correct size 
and does not appear permuted as  
an operand in the deferred RHS 
then go to step 5. 

3. Get space for DA, value of LHS. 
4. Set up DA and M-headers. 
5. Defer operation in QS. 
6. Adjust VS, QS. 
7. Adjust Nametable. 

1. Check dimensions of LHS, RHS. 
2. If RHS contains deferred instances 

of LHS variable which are  permuted 
differently than LHS, then proceed 
else go to step 6. 

3. Get space for DA, value of RHS. 
4. Set up DA, M-headers. 
5. Evaluate RHS to this temp. 
6. Defer selected assignment to QS. 
7. Adjust VS, QS. 

* 
LHS and RI-IS refer to the left-hand side 
and right-hand side of an assignment 
arrow, respectively. 

, 



OPERATOR 

SELECTION. 

( R  I S :  sel 6) 

SCALAI~ MONADIC 

( R  I S :  OP 6) 

SCALAR DYADIC 

( R  I S :  G O F , m  

OUTER 2RODUCT 
( R  I S :  8 ::. .OP. . )  

REDUCTION 
( R  I S :  OPICKI 8) 

ASSIGNMENT 
( sel A >+8 

Summary of Effort tc. Evaluat~ Operators - NAIVE MACEtNE 

FETCHES STORES 
I I 

x/p sel A 

TEMPS OPE PATIONS 

Notes: PI- - if 8&is a variable - -  then 1 else 0. P2 -if - 8 andgare both varialdes -- then 1 else 0 . 
N1- - ifEand $3 are bosh arrays -- then 2 else 1. 



. TABLE 2B 

Summary of Effort to Evaluate Operators - APL MACHINE 

OPERATOR FETCHES STORES TEMPS OPERATIONS 

NOTES: N1- Number of array opnds in 8 N2 - Number of opnds with reference count > 1 
Pl-if - &contains cieferred operators -- then 1 else 0 P2- - if gcontains deferred operators -- then 1 else 0 
P3 - - if K# r/bpp& tken 1 else 0 -- P4- - if 6 i s  a temp or A is defined and of correct 
PS - if &must be evaluated first then 1 else 0 - -- size and there are  no indexing conflicts 

then 0 else 1 -- 

SELECTION 
(R IS: s e l & )  

SCALAR MONADIC 
(R IS: OP el 

SCALAR DYADIC 
(R IS: &OPS) 

OUTER PRODUCT 
(R IS: ~ O . O P ~  

REVUCTION 
(RIS: OP/CKI&) 

ASSIGNMENT 
A+& 

ASSIGNMENT 
(sel  A)+& 

Nix( 3tppR) 

o 

0 

3t( ppR)+( PlxDOS(&) ) 
+( P2xDOS(S ) 

3+(ppR)+P3xNlx(4+ppR) 

P4x(4+ pp8) 

P5x( DOS(&)+4+( PP&)+X/P&) 

0 

o 

0 

(PlxDOF(,8) )+(P2xDOFbQ ) 

0 - 

o 

P5 xDOF(& 

N2x( 3tppR) 

o 

0 

3+PpR 

3+(ppR)+P3xNlx( 3tppR) 

P4x(4+( pp&)+x/p8) 

P5x( 4+( pp&)+x/p&) 

0 

o 

0 

(PlxDOO(&) 
+( P2xDOOW) ) 

0 

o 

P5xD00(8) 



For the set of expressions containing only selection operations, scalar 

arithmetic operations, ,outer products, reductions, and assignment, i t  is relatively 

simple to specify the DOF, DOS, and DO0 functions. Recall that in the APL 

machine, expressions a re  deferred in QS, which contains an operation code and 

an access mask for each entry. Let the function OP(1) be the operation code for 

QS[I;] and MASK(1) have a s  its value the access mask in the AUX field of QS[I;]. 

Finally, for a given expression in QS, let  RR be the dimension of the final result. 

For  each QS entry whose opcode is IFA, IA, OP, o r  GOP define the function 

D(1) whose value is a dimension vector as  follows: if the entry is not within a 

reduce segment then D(1) is RR. Otherwise catenate an element with the length 

of each reduction coordinate; the innermost reduction corresponds to the last 

element of D(1). Thus, D(1) is the vector of limits of the iteration stack which 

a re  active when instruction Q S ~ ; ]  is executedby the E-machine. .The idea here is 

that D(1) represents the indexing environment of QS[I;]. If N(1) is the index of the 

rightmost 1 in MASK(1) (that is, N(1) - ~/(MASK(I))/L~MASK(I)), then the following 

algorithm calculates the desired functions: 

KF--HS-RU-O 

I -starting addr of deferred expression in Q S  

repeat 

begin 

if OP(1) = IFA then RF -- RF + X/N(I) tD(1) - - 
else if OP(1) = IA then RS - RS + X/N(I) f D(I) -- - 
else if OP(I) E OP, GOP then RO -- RS+ X/N(I) t D(I) -- - 

I-I+l 

if I > segment ending, addr then leave - -- 
end - 

Then DOF(8) -RF ; DOS(8)-RS; DOO(8)-RO. 



D. Example - A Simple Subclass of Expressions 

Since the input to either the naive machine or  the APL Machine may be any 

arbitrary expressioqit is difficult to produce a closed-form comparison of the 

performance of the two. However, we can look in detail at  a simple subset of 

expressions and obtain some estimates on how the two machines compare. 

Consider the set of expressions of the form A+&, where &is  an expression con- 

taining only array-shaped operands combined by scalar arithmetic operators and 

selection operators. A s  an aid to the analysis, construct the t ree corresponding 

to the expression 8, and number all the nodes corresponding to operators. Then, 

construct vectors RR, RD, T Y ,  T V ,  N1 and N2 a s  follows: 

For each node I ,  representing RESULT T-+gf ,  where &I is the subexpression 

rooted at node I ,  

RDC 1 3 t x  / pRESULT Gesult  - Dimension of node I )  

RRC I l - + p  pRESULT (IJesult - Rank of node I )  

TYC Il+ - if operator is a select - then -1 - else if monadic --  then 1 else 2 

!llvCl I+ - if all sons of node I a re  variable names then 1 else 0 -- 
N 1  C I I-+ number of leaves in the subtree of node I 

N2C I]+ number of leaves in the subtree of node I accessible through a path 

not including a select operation. 

Finally, let R be the number of array operands in E 

M be the number of monadic scalar operators in & (i. e., + / l = T Y )  

N be the number of dyadic scalar operators in & (i. e., +/2=TY)  

S be the number of selection operators in 8 (i* e. , +/- I  =TI') 

Z be the number of elements in 8 (i. e- , x / P & )  

Y be the rank of E (io e. , P P  8.1 

P be: if APLM must get space for A -- then 1 else 0. 

Note that in a wcll-.formod e x p r e ~ ~ i o n  N=R- 1 . 



Then, from Tables 2A and 2 By and the definitions of DOO, DOS, and DOF, 

we see that the effort for each machine to evaluate 8 is a s  follows: 

NAIVE MACHINE . . 

fetches: t/RDx ITY 

stores: (+/RD)++/((-~=TY)vTVA(~~TY~)/(~+RR) 

temps: +/TV/( 4tRRtRD) 

operations: +/ (lrTY /RD 

APL MACHINE 

fetches: RxZ 

stores: Z+(px( 4 + ~ )  )++/(-I=TY)/N~X( 3tRR) 

temps: (Px(4tYtZ) >++/(-~=TY)/N~X( 3tRR) 

operations: +/(ISTY)/Z 

In geieral, each formula above is the sum of the relevant entries in Tables 2A 

o r  2B. As the fetch formulas a re  obvious, we show the derivation of the store 

count for the NM. First, each operator in &calculates a result which must be 

stored immediately which gives the term +/RD, Also, temporary space must be 

allocated for selection operations and those cases of scalar operators in which 

one of the operands is not itself a temporary. In such a case, another 

4+ (result-rank) words must bestored. (All  but one of these is for the new UA; 

the other is for the header word for the value array. ) The result ranks of the 

operations in 8 a re  in the vector RR. Thus, the compression selects those 

elements of 4tRR which correspond to the conditions just stated. In particular, 

( -1=Ty) is a vector having a one for each selection operator and TVA( llTY) has 

a one for each monadic o r  dyadic scalar operator whose evaluation requires 

temporary space to be allocated. The sum of these terms gives the formula 

shown; the other formulas a re  derived similarly. 



We can form the ratios of the corresponding quantities for each machine and 

attempt to get some estimate of their vdues. RF , the ratio of fetches in the naive 

machine to fetches in the APL machine,is given by: 

Hence, for fetches, the APLM does at least twice as  well a s  the NM if there are  

at least two monadic or  select operators. The worst case is when M or  S o r  N .  

is 1 and the rest  a re  0, in which case the ratio is 1. The above also shows that 

the ratio increases (without bound) in proportion to the number of monadic and 

select operators in the expression 8. 

The ratio of stores for the two machines, RS , is: 

(SINCE pRD trt M+N+S) 

But the numerators of the two fractions with denominator Z are bounded, 

while Z can increase without bounds. Thus for large Z ,  

RSM+ N +S 

That is, in expressions in which the size of the operand arrays is large (i, e., at 

least as  many elements a s  there are operators) the NM requires more stores 

than the APLM, approximately in proportion to the number of operators in the 

eqressiai~. 



In the case of temporary storage allocated, the ratio, RT, is: 

Again, the lower bound is greater than 1, since ( +/Tv)>I. In this case, the 

ratio is ,of the order of t/TV,for large 2, which is a function of the tree structure 

of &'rather than an explicit function of i ts  operator count. Note that in the case 

where 8 contains no select operations and p i s  0,the ratio is infinite, since the 

APLM requires no temporary storage. 

For the case of operations the ratio, RO , is: 

But ZsRDand the compression in both numerator and denominator select the 

E. Example - An A P L  One-Liner 

A P L  makes i t  easy to produce simple one-line programs to do 

some interesting ta'sk. One such is the program (expression) for find- 

ing all the prime numbers less than o r  equal to N, as shown below. 

(Index origin is 1) 

PRIMES -+ (2=+/[110=(tN)q.ltN)/tN 

Although the algorithm used is clearly inefficient, such expressions a re  not 

uncommon. Since the APLM purports to be an efficient evaluator of expressions, 

i t  is worthwhile to look at  this example in more detail. The machine code for 



this expression is : 

OP OPERAND COMMENTS 

LDNF N 

IOTA 

LDNF N 

IOTA 

This gives the compressee, IN 

LDNF N 

IOTA These are the I N  operands of outer product 

GDF MOD ( IN). . ( tlV - Matrix of remainders of all 

possible divisions 

LDS 0 

EQ O=( tN)o. I IN - Has 1 for each 0 remainder, 

else 0 

LDS 1 
- 

RED ADD +/C110=( IN).. I IN - Add rows of this 

matrix 

LDS 2 

EQ 2=+/[1]0=( tN)o. I IN - Find which columns 

have two 1 entries 

LDS 1 

CMPRS Do compression. These are  the primes 

T.,DN PRIMES Assign result to PRIMES 

ASGN 

Since the number of scalar operations performed is the same for both 

machines, this will not be measured. At the point before executing the LDS 1 

instruction which precedes the CMPRS, the state of the APL machine is as  

shown in Fig. 1, 

/- 



OP VALUE LINK AtTX 

SGT IJ (LN) 01 

SGT RED 

IJ (L N) 

IJ ( LN) 

GOP MOD 

IRD @TI 

s 0 

OP . - -  EQ 

OP ADD 

SGV - 
S (-N) 

MIT 

IRD @ ~ 2  

S 2 .  

L OP EQ 2 

FIGURE 1--State of the registers before compress operator, 

Up to this point, the NM used memory as  follows; 

Instruction Fetches Stores Temps 

G.D F P?-~N N~ 13N 1 16 BT2 1311 1 16 (N-15 stores and temps 
necessary to evaluate 
each tN befure GDF + 
the space for result) 

EQ P? d o 

WED N~ N+-5 Na5 

TOTAL 3N2+2N 2N2+4~+21 ~ ~ + 3 N + 2  1 

The count for the APLM at this point is 0 fetches, 9 stores, and 9 temps for the 
\ 

descriptors T1 and T2. However, when the CMPRS operator is found, the left 

operand must be evaluated a s  explained in. Chapter N. Thus, the long QS segment 



2 
must be handed over to the E-machine. 'This requires N +N fetches, N+5 stores, 

l and N+5 temps. In order to do the CMPRS in the NM, the right operand (LN) 

must be e~aluated~requiring N+5 each of stores and temps. The CMPRS itself 

takes another N+P fetches, P+5 stores, P+5 temps in the NM,where P is the 

length of the result. In the APLM, the CMPRS is expanded and deferred,as is 

the ASGN which follows. The NM requires no work to do the ASGN. The APLM, 

after this instruction, has i ts  QS full of deferred code for the CMPRS and ASGN. 

It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not 

the correct size already). Passing the QS to the EM requires another N+P fetches 

and P stores for the APLM, Thus the grand totals are: 

\ 

FETCHES STORES TEMPS 

NAIVE MACI-IINE ~N '+~N+P 
2 

2N +5N-I-P-1-31 N ' ~ - ~ N + P + ~ I  

APL MACHINE N'+ZN+P N+P+23 N+P+23 

Recall that P is really a function of N, the number of primes less than N ,  

N 
which is asymptotic to log Thus, we can evaluate the performance ratios 

between the two machines in some specific cases. These ratios a re  RF, RS, 

and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries, 

respectivelye Also of interest is RM, which counts all memory access (fetches 

+ stores), and is the ratio of these two quantities. Table 3 below tabulates these 

quantities for a few values of N. 

TABLE 3 

Performance Ratios f o r  Primes Problem as a Function of N 

10 4 2.69 7.7 3.84 4.7 
100 25 2.97 138.9 4,91 70,6 
500 95 2.99 813.3 4.98 408.0 

1000 168 2.997 1683.6 4.99 843.2 
5000 6 69 2.999 8788.8 4.998 4395.8 

10000 1229 2.9997 17779.2 4.9992 8891.0 
50000 5133 2.99994 90656.6 4.9998 45329.7 

lim 
N - 

1.og N 
3 2N 5 N 

N b a a  



TABLE 4 

Operat ion Count for One Pass Through Main Loop, Program REC 

NAI'JE MACHIhT 

TOTAL: 8s2+23S+16 6 ~ ~ + 2 0 ~ 1 ( 3 5  I 4 ~ ~ + 1 2 & - 1 0 l  4 s  2 +12S+X 1 2 ~ ~ + 1 0 ~ + 1 4 4  ( 2s2+6S+141 11  +3.5K I +2K +K 11  +2.5K +K fK 

STATEMENT 

6 

7 

8 

9 

10  

11 , 

1 2  

1 3  

14  

15 

APL MACHINE 

FETCHES 

0 

K 

1.5K 

8 1 

4S+4 

s2+s 

S+1 

2s2+4s 

s2+s 

S 

FETCHES 

S 

2K 

1.5K 

8 

4S+4 

3s2+3s 

3 S 3  

3s2+9S+1 

2s2+2s 

S 

\ 

STORES 

S+4 

K+9 

0 

31 

4 S 3 8  

4 

S+9 

s2+2S+24 

s2+S+ 16 

S+9 

TEMPS 

4 

K+ 9 

0 

29 

2 S 3 8  

4 

8 

s2+2S+24 

s2+S+ 16  

S+9 

STORES 

25+5 

2E+5 

0 

25 cs 

45+20 

2s2+2s+5 

3S+8 

2s2+6s+22 

2s2+2s+12 

S+5 

TEMP3 

3+5 

K+5 

0 

21 

2S+20 

s2+S+5 

3k6 

s2+4s+22: 

2s2+2s+12 

S+5 



The above table indicates that the APLM does significantly better than the 

NM on this program. The RS figures may be deceptive since in terms of total 

memory accesses the ratio approaches a limit of 5. This is still significant, a s  

is the RT ratio, which increases linearly with N (for large N). 

F. Example - Matrix Inversion Programs 

A s  a final example, we analyze the performance of both machines on a 

standard example, a program which does matrix inversion by elimination with 

pivoting. To avoid charges of bias, the particular program used was taken from 

the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19). 

The program REC is shown in Fig. 2 and has been changed only by altering the 

syntax of the conditional branch statements. This does not affect the measure- 

ments made here and is done purely for esthetic reasons. 

Table 4 counts the memory accesses and temporary stores statement-by- 
, 

statement for one pass through the main loop in program REC, This loop is 

executed S times. All but the terms involving the variable K a re  independent of 

the iteration count. K varies from S to 1 from the first  pass to the last. Thus, 

we can obtain the totals for all passes through the loop by multiplying non-K terms 

by S and by summing the K terms. This gives the counts in Table 5 below: 

TABLE 5 

Total Operation Count For Main Loop, Program REC 

FETCHES STORES TEMPS 

Naive 
Machine 8E?+24.752+17.75~ 6E?+218+106~ 4E?+12.58+101.5~ 

APL 
4s3+13. 258+14.25~ 2 Machine 2s3+l0. 5 s  +144.5S 2E?+6.58+141. 5 s  



V B + R E C A ; P ; I ; J ; K ; S  
A MATRIX  I N V E R S I O N  BY E L I M I N A T I O N  WITH P I V O T I N G  

1 IF ( 2 = p p A ) ~ = / p A  ---- THEN +L1  

A ERROR E X I T  
2  L 2 :  0 + ' N O  I N V E R S E  FOUND1 
3 RETURN 

a S  I S  DIMENSION OF A  

A P  RECORDS PERMUTATIONS OF ROWS OF A  

A K  S E L E C T S  SUBARRAY OF A  FOR E L I M I N A T I O N  
4 L 1 :  P  + I K  + S + 1 f p A  

A ADJOIN  NEW COL TO A  FOR R E S U L T S  
5 A + ( ( s ~ I I , o ) \ A  

R w w w M A I N  LOOP*** ( R E P E A T E D  5 T I M E S )  

A I N I T I A L I Z E  L A S T  COLUMN 
G L 3 :  A C ; S + 1 1  +- 1 = , S  

A F I N D  P I V O T  ELEMENT,  WITH ROW INDEX I 
7 J + I A C I K ; ~ ~  

8 I + J I r / ~  
A INTERCHANGE ROWS 1 AND I 
A RECORD THE INTERCHANGE I N  P  

9 P C I , I I  + P C ~ , I I  
1 0  A C l , I ; 1 S ]  + A [ I , l ; \ S I  

A CHECK FOR S I N G U L A R I T Y  
11 1 ~ - 3 0  > I A [ 1 ; 1 1  + [ / [ , A  THBB +L2 

Q NORMA.CIZF PIVOT ROW 
12 A [ 1 ; 1  A A C 1 ; l  + A [ l ; l l  

A E L I M I N A T I O N  S T E P  
1 3  A  + A - ( ( ~ z I S )  x ~ [ l ; ] )  0 . x  A C l ; ]  

A RUY'ATE A 9'0 PREPARE F O R  MEXT STEP 
R T H I S  B R I N C P  I A I : T T V Z I  S U B A R R A Y  TO UPPER L r i ' r ~ '  

1 4  A + l t$ClJ l@A 
1 5  P  + l 4 P  

a I T E R A T E  ON K 
1 6  IE O<K+K-1 T H E N  + L 3  

A DO COLUMN PERMUTAT.IONS TO PRODUCE RBSIJLT 
17 B  + A C ; P t t S l  

v 

FIEVl??,2: EXAMPLE PROGRAM: REC 



In order to compare the performance of the APL machine to the naive machine, 

let us form the ratios of the corresponding counts and see how they behave for 

different values of So (Recall that S is the dimension of the matrix being inverted 

by the program under consideration. ) The first  derivatives of all three ratios a re  

positive for S>O, so that a l l  ratios are  increasing a s  S increases. Table 6 sum- 

marizes the properties of the ratios as  a function of S. 

Let RF(S) by the ratio of fetches in the NM to those in the APLM, RS(S) be 

the ratio of stores, RT(S) be the ratio of temporary storage allocated, and RM(S) 

the ratio of all memory accesses (fetches + stores). Then, 

TABLE 6 

Machine Comparison Ratios For Main Loop of REC 

limit 2 
S-00 



An examination of Table 6 shows that for input arrays A of dimension greater 

than or  equal to 3 , 3  the APL machine does better than the naive machine by using 

fewer fetches and stores. If pA is 4,4 or more, fewer temporaries a re  allocated 

by the APLM. Finally, the entries for S= 10 and S =  100 show that these improve- 

ments rapidly reach the theoretical limits. In the region %4 the size of descriptor 

arrays is approximately the same a s  the size of the value part of vectors of length 

S and not much less  than the size of arrays of dimension S, S. Thus for small S, 

the extra overhead in the APLM for creating descriptor arrays in drag-along 

1. 

predominates. However, a s  S increases, the APL machine improves significantly 

compared to the naive machine in its economy of memory usage and access. 

The program REC used in the previous discussion was taken straight from 

the literature and was changed ody by altering the 'branch commands and by 

replacing the operator a! by an equivalent construction (because a! is no longer a 

defined operator in APL). Primarily, i t  is important to emphasize that this is 

not a specially prepared example designed to tout the virtues of the APL machine. In 

some sense, this is a l'typicalff program. By looking more closely at  Table 4 

we can get a clearer idea of where the APLM does better than the NM and where 

it lags behind. 

Thc APL machine does better (that is ,  uses fewer fekhes, sl;ores, and/or 

temporaries) than the naive machine on statements 6,7,11,12,13,14 does the 

same a s  the NM on statement 8, and worse on statements 9, 10, and 15. The 

places where the NM does better than the, APLM are  precisely those statem.ents 

o r  expressions in which the more successful strategy is to do an immediate 

evaluation rather than defer the operation. A l l  three are,  in this example, state- 

ments of the form variable --T variable, where T is an arbitrary permutation of 

the subscripts of variable. In all three of these cases, the APLM does worse 



only by an additive constant, which is the space (and stores) required for a DA 

to describe the deferred right-hand side of the expression. The NM avoids this 

by evaluating directly. The same number of fetches a re  done by both machines 

for these statements. Of more interest a re  the cases where the APLM improves 

on the NM. In all situations these a re  statements involving more than one operation 

on the right-hand side of the assignment arrow. By using drag-along and beating, 

the APLM requires fewer temporaries for intermediate results, which in turn 

requires fewer stores and consequently fewer fetches when the intermediate results 

a re  used later in the expression. The most dramatic demonstration of the efficacy 

of drag-along is shown in the use of temps in statements 6,11, and 12 and the 

' stores in statement 11. In all these cases the APL machine uses storage in 

proportion to the number of array operands while the naive machine requires 

storage proportional to the size of the array operands. Also, with the exception 

of statement 10, the number of stores for each statement is proportional to the 

size of the result for the APLM while in the NM i t  is generally proportional to 

both the size of the result and the number of array operations. 

A s  an interesting experiment to see how much these measures of the machine's 

operation are  a function of the actual machine design and how much they depend 

on the sample program, the author rewrote the function REC in the form shown 

in Fig. 3, where it is renamed REC 1. RECl is the same algorithm used in REC 

except that the actual permutations of array A in lines 10 and 14 of R EC have been 

eliminated by using appropriate indexing instead. Also, statement 13 in REC 

(which corresponds to statement 14 in REC1) is recast to eliminate unnecessary 

operations and to minimize temporaries in both machines. An analysis of the 

main loop similar to that for program REC is summarized in Table 7. 



V B + R E C l A ; I ; J ; N ; R ; S ; T ; W  
A MATRIX INVERSION BY BLIMIIQATION WITH PIVOTING 
A ' O P T I M I Z E D 1  VERSION 
A T H I S  PROGRAM DIFFERS FROM REC I N  THAT ARRAY 
A PERMUTATIONS ARE DONE BY ,CHANGING THE 
A PERMUTATION VECTOR,  R ,  RATHER THAN ACTUALLY 
A PERMUTING THE MAIPI ARRAY.  A IS THFIV ACCESSED 
A BY INDEXING WITH R .  

1  l z  ( 2 = p p A ) ~ = / p A  TgE& +L1 
2 L 2 :  0 + 'NO I N V E R S E  FOUND' 
3  RETURN 
4 L 1 :  R 4 I S  + ( p A ) C l I  

A S I S  DIMENSION OF A 
A R RECORDS PERMUTATIONS AND I C  USED TO A C C E 3 3  A 

A N COUNTS I T E R A T I O N S  
5 N + O  

A ADD NEW COL TO A ;  BUILD RESULT IPJ LEFT COL 
6 A + ( O , S p l ) \ . 4  

A +**MAIN LOOP*** ( R E P E A T E D  s T I M E S )  
A FIND PIVOT ELEMENT 

7 L 3 :  J  + I A C ( - N ) C R ; N + 2 3  
8 I +  J I r / ~  

A INTERCHANGE BY ALTERING PERMUTATION VECTOR 
9 R C 1 , I I  + R C I . 1 1  

A I N I T I A L I Z E  RESULT COLUMN I 

1 0  A [ ; N + 1 3  + R C I I  = IS 
1 1  IE 1 ~ - 3 0  > ( A C R C 1 3 ; l  + r l 1 . A  TRITN +L2 

A NOREIALIBB PIVOT ROW, AND S A V E  IN W 
1 2  N + A C R C 1 l ; l  + A C R r 1 1 ; l  + A C R C l I ; N + Z J  

n 2' 13 A C T I V E  COLUMN 
1 3  T + A C ; N + 2 1  

A EETMINATION S T E P  
14 A C l + R ; I  + A C l + R ; I  - T C l C R ]  0 . x  W 

n ' R O T A T E *  A BY ROTATING R 
1 5  R + 1 4 R  

n I T E R A T E  ON N 

1 6  LF S > N+N+1 TEEM + L 3  
17 B 4 A C ; R I  I S ]  

v 

FLGUgE-3: ' OPTIMIZED ' .&XAMlJL13: PROGRAM: REC1 



TABLE 7 

Operation Count for One Pass  Through Main Loop, Program RECl 

APL MACHINE 

STORES I TEMPS FETCHES 

2s-2N 

1.5s-1.5N 

8 

0 

s2+s 

St1 

S 

2s2+4s-6 

S 

3sZ+ii.5s+3 
-3.5N 

STATEMENT 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TOTAL: 

* +5 once for entire loop 
** +St6 once for entire loop 

i *** +S+5 once for entire loop 

NAIVE MACHINE 

s2+6s+109 
-N 

(+I0 once). 

FETCHES 

4s-4N 

1.5s-1.5N 

8 

S 

3s2+3s 

,3S+3 

S 

5s2+5s-10 

S 

8s2-i19. 5S+1 
-5.5N 

2S+106 
-N 

(+2S+ll once) 

STORES 

3s-3N+10 

0 

2 3 

2S+5 

2s2+2S+5 

3St8 

S+5 

4s2+4s+19 

S+5 

6s2+16s+80 
-3N 

TEMPS 

2s-2N+10 

0 

21 

s t 5  

s2+S+5 

S+6 

S+5 

2s2+4S+26 

S+5 

3s2+11s+s3 
-2N 



In this algorithm, a s  in REC, the inner loop is performed S times. The 

counts shown in Table 7 a re  independent of the iteration number except for terms 

involving variable N. Examination of the program shows that N goes from 0 to 

S-1, increasing by 1 with each pass through the loop. Thus, a s  in the case of 

REC, we can obtain total counts for the main loop by summing the N terms and 

multiplying the others by S. The results a re  summarized in Table 8. 

TABLE 8 

Total Operation Counts For Main Loop; Prn@ra.m REC1 

~~KPI'CHES STORES TEMPS 

Naive 
Machine 8E?+16.75E?+3.75~ 6E?+14.58+81.5~ 38+10E?+84~ 

A P L  
Machine 3s3+9. 7 5 8 + 4 . 7 5 ~  E?+5.52+109.55C10 ' 1.5f?+108.5S+11 

An immediate, rather startling observation from this table is that all of i ts  

entries a re  strictly less  than the corresponding entries in Table 5 which summarizes 

the operations of REC. This is somewhat surprising because although the rewriting 

of the program was done in order to optimize it for the APL machine, it unexpectedly 

improved performance of the naive machine, a s  well. In any case, this simply 

lends more weight to the data summarized in Table 9, where the performance 

ratios a re  computed for the two machines operating on this program. 

For program REC1, based on the data in Table 8, the ratlos are: 



TABLE 9 

. . 

Machine ~ o m ~ a r i s b n  Ratios For Main Loop of RECl 

Limit 
S-w 

G. Discussion 

In the preceding sections we look at  a number of typical inputs to the APL 

machine and find that in all but a few singular cases, i t  evaluates them more 

efficiently than a corresponding naive machine. This is a fair kind of comparison 

because although the naive machine mentioned here is hypothetical, it  is based 

on the design of existing APL implementations, a t  least one of which is commercially 

available. The important question, of course, is what kinds of' conclusions may 

w e  draw from these particular cases? I offer the following: 

1. Section D derives lower bounds, all greater than 1, for the ratio between 

memory accesses and temporary use on the two machines on a simple class of 

expressions. From this and the previous section i t  appears that the APLM 
d 

evaluates expressions of the type analyzed in Chapter I1 more efficiently than 

the NM. 

2. Operations involving scalar operands are  done equally well on both machines. 



3. Sections E and F contain more realistic program examples which were 

analyzed in detail. In both cases, the APLM improves significantly on the NM 

in its use of memory. 

4. The only cases where the APLM does worse a re  those expressions 

containing a single operator which does not fit into the beating scheme, and for 

which the best evaluation strategy is to evaluate immediately, rather than to 

defer. In these cases, the NM does slightly better than the APLM but only by 

a small additive constant. (This being the space and stores for the APLM to 

construct a deferred descriptor. ) 

In view of the above, i t  is clear that in most cases, the AP'L machine design 

proposed here is more efficient than a naive machine in the sense that for any 

given program, the APLM uses fewer fetches, stores, and allocates fewer,  
. 

temporaries than the naive machine. * 

* 
A corollary worth noting is that there exist inputs ( i. e. , programs) for which 
the APLM always performs worse than the N M  according to the measures derived 
here. However, this should be neither startling nor alarming and does not detract 
from the general conclusion above. 



CHAPTER VI 

CONCLUSIONS 

In this chapter, we w i l l  summarize all that has gone before and indicate some 
\ 

directions for future research on this subject. 

A. Summary 

Although the original goal of this investigation was to produce a machine 

architecture appropriate to the language APL, some of the work done in pursuit 

of this goal is intrinsically interesting in itself. In particular, we call attention 

to'the mathematical analysis discussed in Chapter 11. In Chapter 11, we find that 

there is a subset of A P L  operators (the selection operators) whose compositions 

a re  also selection operators. Further, compositions of these operators can be 

represented compactly in a standard form. Moreover, there is a set  of trans- 

formations sufficient to transform any expression consisting solely of selection 

operators acting on a single array into an equivalent expression in standard form. 

By extension, similar results a re  described that apply to select expressions which 

include scalar arithmetic operators, reductions, and inner and outer products. 

One result, of at least theoretical interest, is that all inner products can.be 

represented as  a reductior~ of a transpose of an outer product (Theorem Tb ). 

The general dyadic form is introduced in Chapter II a s . a  vehicle for extending 

the results about selection operators on single arrays or scalar products to 

analogous results on inner and outer products. 

In Chapter III, we show that if arrays are  represented in row-major order 

and if the representation of the storage access function for an array is kept separate 

from the array value, then the result of applying a selection operator to an array 

can be obtained simply by transforming the mapping function. This approach is 

the basis for beating, one d the novel features of the APL machine, In mathematical 



terms, beating is equivalent to the following: if an array is construed as  a function 

(the storage access function S) applied to an ordered set of values A, and if F l y  

F2, ... . , FN a r e  selection operators then the sequence 

Fl(F2(. 0 (FN(S(A1)))) 
,- - 

is equivalent to some new function T(A) where T is a functional composition with o: 

T-(F1 o(F2 o(. . . o(FN o S)))) . 
Chapter IV describes a machine based on the beating process and the drag- 

along principle. The latter says that all array  calculation^ should be deferred as 

long as possible in order to gain a wider context of information about the expression 

being calculated. This is done because of the possibility that extra information 

might allow the simplification of the expression to be evalhated. This is particularly 

important when, as in APL, operands are  array-shaped. In effect, a language 

like A P L  which allows sophisticated operations on structured data to be encoded 

very compactly, makes it possible to write expressions which, though innocent- 

looking, require much cdculation. h fact, one major g o d  of the machine design 

is to minimize any unnecessary calculations in evaluating APL programs. Thus, 

drag-along becomes an important way of doing so. Drag-along combines all 

element-by-element operations in a.xi inco'tflifg expression into a single, mure 

complex, element-by-element operation which need only be done once for each 

\ 
element of the result array. This is based on the fact that for most APL operators, _F, 

A E 8 meansforall L w l p ( A  F B )  

\ ( A  F B)C;/LI ++ (n A)C;/LI E (B D)C;/LI, 

where and F2 depend on F_ and are normally the identity function. Simply 

stated, this says that a single element of an array-valued expression can be com- 

puted by evaluating a similar expression of single elements. 



The APL Machine is divided into two submachines, the Deferral Machine 

and the Execution Machine, in order to facilitate drag-along and beating. Con- 

ceptually, the DM is a dynamic, data-dependent compiler which examine s incoming 

expressions (machine code) and their operand values (data) and produces instructions 

to be executed by the EM. This code is deferred in an instruction buffer and can 

also be operated upon by the DM. At appropriate times, control is passed to the 

EM which executes the deferred instructions. Since EM code must compute an \. 

array-valued result, a stack of iteration counters a re  used by the E-machine to 

produce all elements of the result one at  a time. A feature of the APLM which 

makes i t  easy for the DM to manipulate i ts  own deferred code is that programs 

(and deferred code) a re  organized into segments which contain only relative ad- 

dresses. Thus pieces of program can be referenced by descriptors, and these 

pieces can be relocated at  will simply by changing the descriptors and not the code. 

This scheme leads to the use of a stack of instruction counters, each one of which 

refers to a currently active segment in either the EM or the DM. Thus it is easy 

for the machine to change state and recover previous states, thereby simplifying 

the entire control process. 

Chapter V contains a discussion of the machine design in which i t  is shown 

that at worst, the APL Machine performs the same a s  a naive machine executing 

the same program and at best shows a significant improvement. The primary 

parameters used in the evaluation are measures of memory utilization. . Other 

measures, such as  encoding densities, a re  not appropriate,as this aspect of the 

machine design has not been specified, Such measures should be taken into account, 

however, if i t  is desired to implement a machine such as  this. The evaluation of 

n subset of APL containing only scalar arithmetic operators and select operators 

shows that the APLM approaches the theoretical minimum of memory accesses 



and temporary storage utilization for this class. Further, the ratio of accessing 

operations between the NM and the APLM are  significant since the NM expends 

effort for fetching and storing in proportion to the number of operators in an 

expression while the APLM does fetches in proportion to the number of operands 

an3 stores only once. Similarly, it is noted that for this class of expressions, 

the APLM needs to allocate space only for the result of an expression while the 

NM requires temporary storage whch is a function of the Lree slructu-e of the 

expression k i n g  evaluated. 

Ln the same chapter, ananalysis of an A P L  llone-linerlf and a m a t r k  inversion 

program containing a more general mix of operators, shows that the APLM does 

better than the NM by at least a factor of 2 on these measures. A final observation 

is that the APLM described here is not significantly different in complexity from 

a naive machine. Thus, i t  could presumably be implemented with approximately 

the same resources. Hence, i t  appears that this design is an irupruvement and 

could profitably be usid in iuture mncarnations of rnachlnes Ior APL. 

Although the A P L  machine is an improvement over the naive approach, i t  

would be absurd to claim that i t  is the "final solution" to the problem. Clearly, 

i t  is not. There a re  stil1,some functions, such as  compression or catenation, 

which it handles awkwardly. Similarly, i t  is distasteful (and inefficient) to evaluate 

operands of a GDF explicitly if they are  other than simple select expressions. 

IdeaJly, there should be no temporary storage used for the evaluation of expressions 

without side effects (such a s  embedded assignment). Thus, there is still work 

to be done on this problem. 
' '.) 



B. Future Research 

The ideas summarized'here tend to fall into two classes - extensions or  

refinements of the work already reported, and new problems suggested by the 

current research. 

In the second category is .the .area of mathematical analysis of APL operators. 

The work in Chapter II of this dissertation barely skims the surface of this topic. 

The general problem, of course, is at the heart of llComputer Science, -1' namely 

the study of data-structures and operations upon them, However, APL and its 

extensions a re  rich in mathematical interest and this field deserves further, 

more concentrated investigation. Similarly, the results found in Chapter 11. as  

well as  the structure of the machine have implications for language design. An . 

important next step is to take some of the ideas which appear in the machine or 
!I 

the analysis and attempt to map them back into the programming language. As a 

trivial example, the ease with which the machine evaluates select expressions 

suggests that there ought to be the possibility of more general select expressions 

allowed to the left of an assignment arrow, cog., i t  should be possible to say 

(1 ~ Q M ) + A ,  meaning assign A to the main diagonal of Mo Again, the ease with which 

the APLM does segment activation suggests that there should be some parallel 

facility in a programming language. At the very least, APL should contain some 

more sophisticated sequence-controlling operations such a s  case, conditional, 

and repeat constructs. A final possibility along these lines is suggested by the 

similarity among the various selection operations. Simply that there exists such 

a compact standard form suggests that there might be a different, perhaps more 

general, set of selection primitives which would be desirable in a language like APL. 

In the direction of refinements there a re  several. area's of interest. One is 

to try to add more parallelism to the machine. In this work, we have used the 



implied parallelism of APL in drag-along and beating, but i t  appears not to be' 

fully exploited. For instance, there is the interesting possibility of making 

the DM and the EM more independent, thus gaining an amount of parallelism. 

There is no reason, for example, why there could not be multiple copies of both, 

working simultaneously on different parts of an expression or  program. Another 

place where parallelism could be exploited is in the E-machine. Instead of doing 

everything in serial, much could possibly be done on a grander scale. 

It appears possible to extend the formulation of the standard form to include 

more operators such as  catenation, restructuring, rotation, compression, 

expansion, and explicit indexing. If such a general form could be found, the operation 

of the machine could be simplified and perhaps made more efficient. 

In order to have any real implementation of the machine, i t  w i l l  have to be 

extended to include instructions for input and output and other systems-type 

functions. Also, as  soon as  an implementation is attempted, problems such as 

encoding of data and instructions will have to be broached. Similarly, it will 

probably be necessary to consider the question of data types in a real incarnation 

of the APL machine. Other machine extensions which might be considered is the . 

addition of a s.et of registers (possibly stacks) for eliminating some of the problems 

of temporary storage in EM code which does not follow the stacking discipline of 

VS. This, in turn, entails the addition of instructions to the machine's repertoire, 

although these might not have to be visible to the programmer. 

Although oil the one hand it is c.ounter .to the idea of n. In.ng;uege-oriented 

michine, it might be desirable to give the (systems) programmer more direct 

control over the E-machine. In particular, this would make i t  possible to "pre- 

compilef1 particular segments for the EM when enough information is available in 

advance. An interesting extension of this is to allow the EM to call upon the DM 



in the same way that the DM uses the EM. This would make the overall system 

more symmetric and might increase i ts  power and versatility. 

A further area of investigation combines language and machine design. This 

is the problem of extending APL to include more general kinds of data str.uctures, 

such as  lists or records, and then attempting to fit these into the structure of the 

machine. This problem, in turn, makes further demands on the mathematical 

analysis of the language and its operators. 

Finally, it is important to investigate the possibility of extending some of 

the methods and results of this work to other languages and data structures. 

C. Concluding Remarks 

This chapter has summarized the mathematical analysis and machine design 

reported in this dissertation and has indicated some directions for fruitful investi- 

gations in the future. It is pleasing to be able to end this work with a feeling of 

accomplishment, yet it is perhaps more satisfying to know that this is not really 

an ending, but a beginning. 

The Road goes ever on and on, 
Down from the door where it began, 
Now far  ahead the Road has gone, 
And I must follow, if I can, 
Pursuing it with weary feet, 
Until i t  meets some larger way, 
Where many paths and errands meet. 
And whither then ?. . . 
I can not say. 

J. R. R. Tolkien 
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