


# NAVAL POSTGRADUATE SCHOOL Monterey, California 



## $\begin{array}{llll}85 & 03 & 08 & 037\end{array}$



## 

An Apparatus for Sizing Particulate Matter in Solid Rocket Motors

## by

Robert Kelly Harris
B.S., Central Washington University, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL June 1984

Author:
$\% 1 \%$ 民

Approved by:


## ABSTRACT


#### Abstract

A light scattering apparatus to measure particle size ( $D_{32}$ ) in a solid rocket motor was improved. Multiple consecutive scans of two photodiode arrays were accompished with a pacing circuit and added memory. The device was calibrated using various suspended particle samples and found to make accurate measurements.




## TABEE OF CONTENTS

I. INTRODUCTION ..... 9
II. THEORETICAL BACKGROUND ..... 12
A. GENERAL DISCUSSION ..... 12
B. APPLICATION TO LARGE PARTICLES ..... 13
C. RESTRICTIONS AND SOURCES OF ERROR ..... 16
III. EXPERIMENTAL APPARATUS ..... 18
IV. DATA ACQUISITION SYSTEM ..... 21
A. NEW CONTROLLER ..... 21
B. MODIFICATIONS ..... 22
C. PACING AND MEMORY CONTROL CIRCUITS ..... 22
V. DATA REDUCTION ..... 26
VI. CALIBRATION AND EVALUATION ..... 29
A. IMPROVEMENTS ..... 29
B. RESULTS ..... 30
VII. CONCLUSIONS AND RECOMMENDATIONS ..... 34
APPENDIX A: PROGRAM LISTINGS ..... 65
LIST OF REFERENCES ..... 85
INITIAL DISTRIBUTION LIST ..... 87

## LIST OF TABLES

## 1. DATA ACQUISITION SYSTEM MANUALS <br> 35

2. CALIBRATION RESUITS ..... 36

## LIST OF FIGURES

1. Photographs of Light Scattering Apparatus ..... 37
2. Schematic of Light Scattering Apparatus ..... 38
3. Flow Chart for Program "ACQDTA" ..... 39
4. Schematic of Data Acquisition System ..... 40
5. Timing Diagram for Data Acquisition System ..... 41
6. Schematic of Pacing Circuit for Data Acquisition ..... 42
7. Flow Chart for Program "RDC" ..... 43
8. Comparison of Two Geometries for Light Scattering Measurements ..... 45
9. 37-44 Micron Glass Using No Beam Stop ..... 46
10. 37-44 Micron Glass Using Beam Stop ..... 47
11. 53-63 Micron Glass Showing Diffraction Rings ..... 48
12. 1-37 Micron Glass, High Concentration ..... 49
13. 1-37 Micron Glass, Low Concentration ..... 50
14. 50 Micron Aluminum Oxide, High Concentration ..... 51
15. 50 Micron Aluminum Oxide, Low Concentration ..... 52
16. 25 Micron Aluminum Oxide, High Concentration ..... 53
17. 25 Micron Aluminum Oxide, Low Concentration ..... 54
18. 5 Micron Polystyrene, Curve Fit ..... 55
19. 5 Micron Polystyrene, Two Angle Method ..... 56
20. 10 Micron Polystyrene, Curve Fit ..... - 57
21. 10 Micron Polystyrene, Two Angle Method .....  58
22. 20 Miaron 2oiそ3tyrene, Curve Fit ..... ミ9
23. 20 Micron Polystyrene, Two Angle Method ..... 60
24. SEM Photographs of Aluminum Oxide ..... 61
25. SEM Photographs of Glass Spheres ..... 62
26. SEM Photographs of Glass and Polystyrene Spheres ..... 63
27. SEM Photographs of Polystyrene Spheres ..... 64

## ACKNOWLEDGMENT

It has been my priviledge to work with the staff of the Department of Aeronautics. I am grateful to them all for the help and friendship they gave me. Professor D. W. Netzer made it a pleasure to work and study at the Combustion Lab. Thanks also to Mark Nelson of NASA Jet Propulsion Lab. and Ken Graham of China Lake Naval Weapons Test Center for getting me started on the HP 9836 Computer.

## I. INTRODUCTION

Performance prediction codes for solid rocket motors model two phase flow losses as functions of particle size. In addition, particle size within the grain zort strongly affects the damping of combustion pressure oscillations. At present these models are based on particle size data from collected exhaust samples [Ref. 1]. However, particle size varies with position in tine motor and otrer parameters (pressure, propellant formulation, nozzle design, etc.). Therefore, experiments to determine how particle size varies in the actual flow environment of the motor (i.e., across the nozzle) are needed to validate the models for two phase flow losses. Cramer [Ref. 2] and Karagounis [Ref. 3] provide a good summary of the subject and the Naval Postgraduate School Combustion Laboratory effort to obtain particle size data across the exhaust nozzle of a solid rocket motor.

The method used in this continuing effort was the diffractively scattered light technique. The diffraction patterns of light scattered by particles are analyzed to determine the volume to surface mean diameter [Refs. 4 through 11]. This method has the disadvantages that size distributions cannot be easily determined and particles larger than some threshold size will not be detected due to the exceedingly small angles as which they scatter light. However, it has the advantage
 internal motor environment.

Use of this method for particle sizing in solid rocket motors at the Naval Postgraduate School Combustion Iaboratory was begun by Karagounis [Ref. 3]. The apparatus was subsequently redesigned and the data acquisition equipment upgraded with the introduction of the Hewlett Packard 3054A data acquisition system with an HP 85 as the controlling computer [Ref. 12]. The investigation by Cramer and fansen followed and showed that propellent composition can limit the application of the technique. Large particulate combustion products in the flow made particle size data difficult to obtain. This was especially true if only one measurement of the scattering profile was made during a test firing.

To address this problem in the present study several improvements were made. A cleaner burning propellant was obtained to reduce char agglomerates in the exhaust products. A more statistically valid data sample (multiple measurements during a single test) was made possible with added momory in the data acquisition equipment and a pacing circuit which allowed full use of this memory. Data reduction was also improved with a Hewlett Packard 9836 s computer combined with a more recently developed approach to particle sizing presented by Buchele [Ref. 13]. This method is discussed later in depth.

(1) Implement the HP 9836 S as the system controller.
(2) Expand the multiprogrammer memory in order to obtain up to eight consecutive scans of the diode arrays during a test firing.
(3) Improve data reduction techniques by the method of Buchele [Ref. 13].
(4) Modify the apparatus and experimental procedures to improve the angular resolution and to reduce extraneous light.
(5) Certify the proper functioning and accuracy of the apparatus prior to actual motor testing.

## II. THEORETICAL BACKGROUND

A. GENERAL DISCUSSION

The completely general theory of scattering was developed by Mie and is presented by Van de Hulst [Ref. 14]. The light scattering characteristics for spherical particles $0=$ any size are fully described in a mathematical format. The Mie scattering functions contain Legendre polynomials and spherical Bessel functions and fully treat the phenomena of reflection, refraction, diffraction, and extinction. The full theory is most often applied when particle size is approximately the same as the wavelength of the incident light. Van de Hulst [Ref. 14] calls this the regime of Anomalous Scattering.

For particle sizes much smaller than the wavelength of light the Mie equations simplify to a form which is more dependent on the index of refraction of the particles and less dependent on particle size. This is called Rayleigh Scattering.

The study of particle size behavioi in solid propellant rockets mainly covers sizes much greater than the wavelength of light. Scattering by large particles such as these is described adequately by Fraunhofer diffraction.
B. APPLICATION TO LARGER ZARTICLES

The ringed diffraction pattern generated by a hole in a mask, or a number of particles of the same size is described by the equation:

$$
I(\theta)=\left[\frac{2 J_{1}(\alpha \theta)}{\alpha \theta}\right]^{2}
$$

where:
$I(\theta)$ describes the relative intensity of the scattered light at an angle theta $(\theta)$
$J_{1}(\alpha \theta)$ is the Bessel function of the first kind
$\alpha=\frac{\pi D}{\lambda}$ is the particle size parameter for diameter
D and wavelength of light lambaia ( $\lambda$ ).
Measuring the particle size for a monodispersion can be accomplished by measuring the angular position of a dark or bright ring in the diffraction pattern. For a dark ring the zero of the Bessel function corresponding to the ring is set equal to $(\alpha \theta)$ and particle size is determined directly [Ref. 5]. For bright rings one sets $(\alpha \theta)$ equal to the corresponding maximum of the Bessel function and solves for the diameter.

The above method is not used for polydispersions since the discrete rings are not observed. However, Dobbins, et al. [Ref. 5] introduced a significant improvement in the diffractively scattered light method of particle sizing. They found that although the method was not directly able to
determine distributions of sizes, the volume to surface mean diameter defined by

$$
\begin{equation*}
D_{32}=\frac{\int_{0}^{D_{\infty} N_{r}}(D) D^{3} d D}{\int_{0}^{D_{\infty} N_{r}}(D) D^{2} d D} \tag{1}
\end{equation*}
$$

where:
$N_{r}(D)$ is a distribution function describing the proportion of particles with diameter (D) in the sample, could be accurately measured.

A curve for sizing polydispersions was presented which was used by Cramer and Hansen [Refs. 2, 12].

Two phase flow losses are often calculated in terms of $\mathrm{D}_{43}$. If the distribution of sizes in the polydispersion is well behaved then $D_{32}$ and other diameters such as $D_{43}$ can be easily related [Ref. 15]. Reference 5 reported that very small particles in the distribution have a minor influence on the scattering profile. This makes the measurement technique promising for the two phase flow loss study since very small particles do not contribute significantly to these losses and so are of less interest.

Roberts and Webb [Ref. 6] essentially confirmed the conclusions of Reference 5 and presented a similar curve for use in sizing.

More recently, Buchele [Ref. 13] gives a good summary of experimental techniques for particle sizing by measuring
diffracted iight. One point 0 interest in ins resor= :
that he represents the scattering profile of a polydispersion with a function which closely approximates the curves of References 5 and 6 .

$$
I_{n}(\theta)=\operatorname{EXP}-(.57 \alpha \theta)^{2}
$$

This function from Reference 13 and the curve from Reference 5 were both used in the present study to evaluate the apparatus to be used with solid propellant rocket motors. An additional detail of measuring scattering profiles is covered by Van de Hulst [Ref. 14]. The wavelength of light used in the scattering calculations depends on the index of refraction of the medium containing the particles. The wavelength used in all calculations must be:

$$
\lambda=\frac{\lambda_{0}}{M}
$$

where:
$\lambda_{0}$ is the wavelength of light in a vacuum and, $M$ is the refractive index of the medium with respect to a vacuum.

Thus, the size parameter ( $\alpha$ ) becomes:

$$
\alpha=\frac{\pi D M_{1}}{\lambda_{0}}
$$

and the beam spread parameter becomes:

$$
\left(\omega_{0}\right)=\frac{-\operatorname{DN} \epsilon}{\lambda_{0}}
$$


#### Abstract

Another consideration is presented by Gumprecht and Sliepcevich [Ref. 4]. Light scattered by particles in a medium is refracted as it crosses each interface of the container holding the medium. This is discussed further in the section on calibration and evaluation of the apparatus. Additional complications arise with the full treatment of the index of refraction of the particles with respect to the medium. But, for Fraunhofer diffraction alone this aspect can be neglected. C. RESTRICTIONS AND SOURCES OF ERROR

Some restrictions on use of the method are described by Dobbins, et al. [Ref. 5] and were satisfied as described by Cramer [Ref. 2]. These are related to the size of particles, the distance to the detector, and some phenomenon covered in the rigorous mie theory.

One must keep in mind also that the curves developed for polydispersions are based on the Upper Limit Distribution Function of Mugele and Evans [Ref. 7]. This means that no particles with size greater than approximately ten times the mean should be in the sample [Ref. 13]. This appears to be a mild restriction. Van de Hulst [Ref. 14] describes the criteria for single scattering and a simple test to verify


it．In general，as long as こhe scaここきこミ？intensiだ is
proportional to the number of particles the mathematics remain simple．

Sources of error of the diffractively scattered light method are covered by Buchele［Ref．13］and are presented here．
（1）Inaccuracy of angular measurement or the limited ability to resolve small angles and，
（2）Inaccuracy of the intensity measurement due to extraneous light．

Extraneous light includes all light other than scattered light from the particles．Some examples are scattering from an aperture or dirty test section windows．Refraction of the beam due to gas density gradients and image point broadening from turbulence are others．Laser speckle is also extraneous light．

The sources of error addressed in this investigation are discussed in the related portions of the paper．

A photograph of the apparatus is presented in Figure 1 . A schematic is presented in Figure 2. The light scattering equipment was mounted on two optical benches. Components for measurements in the exhaust plane were mounted on one bencin. The other bench held the equipment associated with the motor cavity. The light source was an eight (8) milliwatt Helium Neon laser mounted on the exhaust bench. A collimated beam was required so a spatial filter/collimator was used. A modification to this collimator is discussed later in this section. The collimated beam passed through a cube beam splitter and the second beam was diverted to a 90 degree prism on the other bench. The original beam continued through the motor exhaust plane. The other beam was routed through the nitrogen-purged glass windows in the motor housing.

Each beam was then intercepted by a physical stop located in front of its set of receiving optics. The further the stop was placed from the test section, the smaller the angle at which scattered light could be measured. In this apparatus, the stops were placed approximately 30.5 centimeters from the exit plane of the test section. This allowed a minimum angle of approximately .008 radians to be measured. Light scattered at angles greater than this was
not シnterこeこtミシ anc continuea past the eages of tine stop． The stop served to keep the transmitted beam out of the measuring optics and thus reduce extraneous light．The stops also improved optics alignment．This is discussed under calibration and evaluation of the apparatus．

The scattered light passed through a narrow pass filter which admitted only light of the Helium Neon frequency． This filter served to reduce extraneous light from the external surroundings．

An objective lens of 50 centimeter focal length was located behind the narrow pass filter．This lens imaged onto a photodiode array the scattering profile of the particles in the test section．The shadow of the beam stop was also imaged since the stop was between the test section and the objective lens．This was a limitation which is discussed under calibration and evaluation．

The photodiode arrays were the same units used by Cramer and Hansen［Refs．2，12］．Each array contained 1024 silicon photodiodes on a single chip with 25 micron spacing．The accompanying circuits provided a sampled and held output which was essentially analog except for switching transients． At the end of each diode scan there was a delay before the next scan．During this delay the diodes were reset and allowed to measure the intensity of the scattering profile again． The scanning of the diode array repeated continuously．The
actual sampling time of the array was abcut 34 mỉliseconcis with a delay between scans of about 6 milliseconds.

The 50 centimeter focul length of the objective lens combined with the dimensions of the diode array provided a half angle field of view of about 3 degrees for mediums of refractive index near one. The effective field of view was reduced to about 2.3 degrees for calibrations when the refractive index of a Plexiglas container and water was taken into account.

The laser beam collimator mentioned previously at first produced a beam one centimeter in diameter. A lens in the collimator was changed to reduce the beam diameter for several reasons. Extraneous light would be generated if a large beam impinged on the aperture of the motor test section window. Also, if the aft beam was larger than the motor exhaust jet it would be refracted in the density (and refractive index) gradient between the exhaust and air.

The last part of the apparatus was the rocket motor itself. It was the one used by Cramer and Hansen [Refs. 2, 12] and in the present study served only for aligning the optics.

## IV. DATA ACQUISITION SYSTEM

## A. NEW CONTROLLER

Hansen [Ref. 12] describes the major components of the Hewlett Packard 3054A data acquisition system. A list of the manuals relevant to this study is in Table 1 . The HP 85 computer used by Hansen and Cramer was replaced with an HP 9836 as system controller. This newer computer has far more capability than the HP 85, including a choice of more powerful operating systems. The system used for this study was Basic Extended 2.1.

The data acquisition program written by Hansen needed minor modification to acquire multiple consecutive scans of the photodiodes. Some different I/O commands such as those which transfer data to the disk were also incorporated. The revised version of this program is listed in Appendix A. A general flow chart is presented in Figure 3.

The 9836 S has two internul disk drives which were used to store the data after acquisition. The data from both diode arrays was stored in the same file. The eight (8) scans of the motor cavity were first, followed by the four (4) exhaust scans.

MODIFICAMIONS
The memory capacity of the Multiprogrammer unit was increased so that multiple consecutive scans of the diode arrays could be recorded during a motor firing. This would provide a more statistically valid measurement of particle size. Fluctuations of scattered light intensity for a polydispersion need to be integrated over time or averaged to provide a more appropriate measurement.

In order to fully use the memory added and make data management easier the data acquisition system needed to be modified. The memory consisted of three (3) cards, each with a capacity of 4096 values. The fact that this was a multiple of 1024 (the exact number of photodiodes) meant that the idle period between scans needed to be excluded from the data. If this was not done, one (1) less scan per card would have been acquired and locating the scans in the overall block of memory would have been more difficult.

It was also necessary to chain two of the memory cards together in a way which would allow one card to be filled and then the other. A schematic of the data acquisition system is presented in Figure 4.
C. PACING AND MEMORY CONTROL CIRCUITS

The timing clock and blanking pulse of the photodiode circuitry provided the means for pacing data acquisition.

Specific resuits of the modiEicaticns were:
(1) Memory space was fully utilized and management of the multiple scans made easier.
(2) A/D conversions of the data were made exactly when a diode's output was on line and steady. Thus, the analog filter used in the previous study was no longer needed to suppress the switching spikes on the data line. The following is a description of the signals and circuits used to modify the data acquisition system. All voltage levels were TTL. A timing diagram in Figure 5 shows the relations between signals. A schematic of the circuit is presented in Figure 6.

The clock pulse was a positive going spike at a frequency of about 30 KHz . This clock controlled all circuits of the photodiodes. It ran continuously, even during the blank period between scans when the diode output was clamped at zero volts.

The blanking pulse was a signal which fell to zero at the beginning of each scan. It then went positive at the end of the scan and remained high until the next scan began.

The clock pulse was used to drive a pulse shaper (monostable multivibrator). This ensured that the voltage levels through the rest of the circuit would not accidentally fall below the TTL threshold. The pulse width of the shaper was adjusted so that the negative going edge of each pulse
would occur after the switching transient on the aata line had decayed. This negative going edge would eventually trigger the $A / D$ converter to store the output of each dioce.

The blanking pulse was inverted and connected to an AND gate along with the pulse shaper output. The output of this AND gate is shown in Figure 5 as the pulse shaper signal held low between scans of the diode array. This was the basic signal which paced data acquisition.

This basic trigger signal was connected to an AND gate along with the output of the Multiprogrammers Timer pacer card. In this way the trigger would not reach the $A / D$ until the Timer Pacer output a pulse. This enabling pulse $£$ rom the Timer Pacer was at least as long as the time for eight scans of a diode array.

The controller programed the $T$ imer Pacer to produce the pulse when the $T i m e r$ Pacer received a trigger from the blanking pulse. In this way, data acquisition began at the start of a scan and no data was taken during the time between scans.

The circuit to chain the memory cards together was basically an OR gate used as a negative logic AND gate. The end of conversion ( $\overline{E O C}$ ) signal of the $A / D$ and the ( $\overline{F U L L}$ ) signal of one memory card were connected to the gate. When both signals went low the second card was then able to store data from the A/D. This arrangement is shown in the schematic of
the data açuisǐion system in Figure $\div$. The autc -aたュに loc:-
out feature of the memory cards when full, and the relatively
slow rate of data throughput made it unnecessary to control
other handshake lines [memory card manual, Table 1].
The circuit was designed to handle four (4) memory cards,
so no modification will be necessary if one more card is
added to the system. This would provide an additional four
scans of the exhaust beam.

## V. DATA REDUCTION

The data reduction programs written by Hansen were not used for this study. The new computer lended itself to another approach. Its memory capacity made it unnecessary to chain programs together and polynomial curve fitting was eliminated in favor of interactive graphics. Avoiding polynomial fits preserved the nature of the raw data so that one had a better feel for the parameters. The data reduction program "RDC" is listed in Appendix A. Figure 7 is a general flow chart for the program.

The following is a description of the program. The user was first prompted for values needed to analyze a given data set. For example, the wavelength of the laser used and the index of refraction of the medium must be known for any data set. Next, one had the choice of reducing raw data scans or reviewing a reduced data file. For raw data one chose either the exhaust or motor cavity beam data.

Raw data was plotted on the CRT and any obviously erroneous scans were excluded from further reduction. The valid scans were averaged to obtain a mean scattering profile. The mean intensity profile taken before particles were introduced was then subtracted from that taken with particles present.

This corrected for the characteristics oE indivinual photodiodes and extraneous light which was independent of the particles.

A symmetric moving-average-type of digital filter was then applied to the profile to achieve some smoothing. This type of digital filter was chosen for simplicity and because it does not have the phase lag of analog filters [Ref. 16]. Preserving the phase of the data was necessary to retain angular resolution. Another advantage of filtering in the software rather than hardware was that raw data files remained unmolested.

The scattering profile was then analyzed using interactive graphics. If earlier, one chosen to review a reduced file, program execution began here.

One had to normalize a scattering profile in order to compare it to the theoretical curves for polydispersions. The scattered intensity on the centerline of the beam was the correct value to use for normalization but was unmeasurable due to the beam's presence.

The other unknown was, of course, the particle size. These two variables (centerline intensity for the measured profile and $D_{32}$ for the theoretical profile of normalized intensity vs. ( $\left.\theta_{1}\right)$ ) were adjusted using interactive graphics until the curve for polydispersions coincided with the data. In this way the mean diameter of particles was determined.

The second reduction technique used was the direct application of the method presented by Buchele [Ref. 13]. The equation for the polydispersion curve:

$$
I_{n}(\theta)=\operatorname{EXP}-(.57 \alpha \theta)^{2}
$$

was applied at two points of the scattering profile. This gave:

$$
I 2 / I 1=\operatorname{EXP}-D^{2}\left[\left(\theta_{2}^{2}-\theta_{1}^{2}\right)(.57 \pi / \lambda)^{?}\right]
$$

Solving this for the diameter gave:

$$
D=\left[-L_{n}(I 2 / I 1)(\lambda / .57 \pi)^{2} /\left(\theta_{2}^{2}-\theta_{1}^{2}\right)\right]^{\frac{1}{2}}
$$

The computer would sweep through the data using many values of thetal $\left(\theta_{1}\right)$ along with several angle ratios to determine thetal $\left(\theta_{2}\right)$. The results were presented graphically as particle size vs. thetal for each angle ratio ( $\theta_{2} / \theta_{1}$ ).

In actual practice the range of useable angles depends on the appratus, and the quality of the data. Therefore, in order to interpret the results one must have previously inspected the data. The interactive graphics routine was well suited to this and provided a hard copy for inspection.

After reducing a set of raw data the mean scattering profile was stored on disk for later review.

## VI. CALIBRATION AND EVALUATION

## A. IMPROVEMENTS

The geometry of the apparatus used in the investigation by Cramer and Hansen is compared with that of this study in Figure 8. In the previous study the transmitted beam was allowed to enter the receiving optics. The beam was focused off the diode array a few millimeters from the first diode. This was necessary to avoid damaging the diodes but introduced some uncertainty in angle measurements. The intense image of the beam along with scattered light from the receiving optics produced a high level of extraneous light. In the present study, stops were used to intercept the beam before reaching the receiving optics. These stops provided several advantages. A high intensity beam could be used while producing little extraneous light. Optics alignment was also improved. This reduced error in angle measurement. Alignment was accomplished using a neutral density filter to reduce beam intensity and protect the diodes. A schematic of the apparatus is in Figure 2. The laser, collimator, beam splitter and prism were positioned so that the beams passed through the appropriate measurement areas. The narrow pass filter and imaging lens were then positioned so that the beam entered on the centerline. The
photodiode array was then moved using a three-axis micrometer so that the focused beam fell on the first diode. The beam stops were then put in place and the neutral density filter removed. In this way measurements commenced exactly from the optical axis of the beam.

Procedures were also refined to account for the bending of light rays as they passed through the walls of the particle container. As noted earlier, the index of refraction of the container and the medium containing particles affects scattering measurements. A plexiglas box held the particle samples and a magnetic stirrer kept the samples suspended in water. The index of refraction of the Plexiglas and water combination was measured using a simple technique. A microscope was used to measure the ratio of actual depth to apparent depth for Plexiglas and water. The index of refraction was determined to be 1.39. This value was applied to the data to convert the measured scattering profile to that actually produced in the medium containing the particles.

## B. RESULTS

Calibration results are summarized in Table 2 . Initial tests were done with two samples wihch were basically monodispersions of large particles. Figure 9 shows the measured profile of scattered light for glass spheres ranging from

37 to 44 microns in diameter. This profile was obtairea b: placing the focussed beam just far enough from the first diode to avoid saturation with no particles present. The diodes located at angles less than about .01 radians saturated. The first bright ring for particles of about 40 micron diameter was visible near . 02 radians. Figure 10 shows a profile for the same particles, illustrating use of the beam stops to avoid diode saturation and improve angle measurements. In this case, the first diode was located exactly on the centerline of the beam as discussed above. Results for a sample of 53 to 63 micron glass spheres are shown in Figure 11. The center lobe was nearly completely missed but the first two bright rings were seen near .014 and . 022 radians. The first two dark rings near .01 and . 019 radians were also seen. The method described earlier of setting the beam spread parameter $(\alpha \theta)$ equal to the zeroes and maximums of $J_{1}(\alpha \theta)$ was used to calculate a size of about 58 microns. Also shown in Figure 11 is the theoretical profile for a polydispersion with $D_{32}=54$ microns.

Various polydispersions of either glass spheres or aluminum oxide powder were then tested. These polydispersions consisted of fairly large particles. Results are shown in Figures 12 through 17. These tests showed that the apparatus
had two distinct modes of operation. If the garticle concentration was very high, or if large particles dominated the polydispersion, many of the diodes at the smaller angles would saturate. This left only the data at larger angles useable. When many diodes saturated, the theoretical curve given by Dobbins, et al., was used to determine size. This was done because this curve was valid for the larger angles and lower relative intensities. The curve from Buchele [Ref. 13] was not valid for values of the beam spread parameter greater than three (3).

For low particle concentrations and/or small particles the data proved more accurate at the smaller angles. If no diodes were seen to saturate then one knew the measurement was in the higher intensity part of the center lobe. Here the curve given by Buchele was quite satisfactory for sizing.

The smallest particles tested were five, ten, and twenty micron polystyrene spheres. The bright rings for these particles occurred at angles too large for the apparatus to measure. For these samples the diodes did not saturate. Both the Gaussian curve fit and the two angle method were used to obtain $D_{32^{\circ}}$. These results were especially consistent. It should be noted that the two-angle method uses the equation for the Gaussian. If the measured profile matched the Gaussian exactly, then $D_{32}$ would be the same for any $\left(\theta_{1}\right)$ and angle ratic $\left(\theta_{2} / \theta_{1}\right)$ employed. Some variations in

```
calculated D D2 Sue to the imperfect fit are cbvious in
``` Figures 19, 21 and 23.

A scanning electron microscope was used to photograph the types of particles tested. These photographs are showr. in Figures 24 through 27. Equation (1) was used along with these photographs to calculate some of the values of \(D_{32}\) in Table II. Calculations of \(D_{32}\) for the polystyrene were arrived at using the manufacturers data on size distributions. The photographs generally confirm the validity of the technique.

\section*{VII. CONCLUSIONS AND RECOMMENDATIONS}

The results of the calibration tests showed that the apparatus is capable of accurately measuring mean particle size for a broad range of mean diameters. It was found that the technique was most accurate if the theoretical profile fit or the two-angle method were applied at the smallest possible scattering angles.

The rocket exhaust is likely to attenuate the beam somewhat, reducing the problems related to diode saturation at small scattering angles. Thus, measurements should be possible using the high intensity part of the center lobe. This should make data reduction less ambiguous. Actual testing should begin with measurements at the exhaust plane of the motor. These should be compared with collected exhaust samples to validate the use of the apparatus in an actual motor environment. Measurements in the motor cavity would then be interpreted based on the correlation between exhaust samples and exhaust measurements.

It is also recommended that the index of refraction of the combustion gases be investigated. A literature search for an estimate of the index of refraction would probably be satisfactory.

\section*{ELECTRONICS MANUALS}
1. HP Memory Cards Model 6970B Operating Manual
2. HP Timer Pacer Card Model 69737A Operating Manual
3. HP Analog to Digital Converter Card Model 69735 A Operating Manual
4. HP Users Guide, "Using the 9826 and 9836 Computers with the 6942A Multiprogrammer"
5. Basic Language Reference Guide with Extensions 2.0 for Series 200 Computers

TABLE II. CALIBRATION RESULTS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Particle \\
Material
\end{tabular} & Particle Size microns & ```
Equation (1)
    Calculated
        D}3
    microns
``` & Scattering Measurement \(\mathrm{D}_{32}\) microns & \begin{tabular}{l}
Error \\
microns
\end{tabular} \\
\hline Polystyrene & 3 to 6 & 4.7 ** & 4.5 & 5 \\
\hline Polystyrene & 6 to 16 & 10.2 ** & 7.9 & 2.3 \\
\hline Polystyrene & 15 to 30 & 21.6 ** & 21 & . 6 \\
\hline Glass & 37 to 44 & 38. * & 40 & 2. \\
\hline Glass & \(53 \cdot\) to 63 & \(54 . *\) & 54 to 58 & 0 to 4 \\
\hline Glass & 1 to 37 & 25. * & 28 to 30 & 3 to 5 \\
\hline Aluminum Oxide & \(\simeq 25\) & \[
\begin{gathered}
\text { see } \\
\text { Fig. } 24
\end{gathered}
\] & 28 & ------ \\
\hline Aluminum Oxide & \(\simeq 50\) & \[
\begin{gathered}
\text { sce } \\
\text { Fig. } 24
\end{gathered}
\] & 45 & ------ \\
\hline
\end{tabular}
* lirom SLM Photos ** Irom Manuracturers Data


Figure 1. Photographs of Light Scattering Apparatus

Motor
Figure 2. Schematic of light Scattering Apparatus.


Figure 3. Flow Chart for Program "ACQDTA".


Figure 5. Timing Diagram for Data Accuisition.



Figure 7. Flow Chart for Program "RDC".


Figure 7. (Continued) Flow Chart for Program "RDC".


Figure 7. Flow Chart for program "RDC".


Figure 7. (Continued) Flow Chart for Program "RDC".

CURVE FIT RESULTS

Figure 9. 37-44 Micron Glass Spheres Using No Beam Stop.


Figure 11.
CURVE FIT RESULTS
INTENSITY vs.THETA

Figure 12. 1-37 Micron Glass Spheres, High Concentration.
CURVE FIT RESULTS
INTENSITY VS．THETA


人上ISNヨLNI םヨZITUW

Figure 14. 50 Micron Aluminum Oxide, High Concentration.
CURVE FIT RESULTS INTENSITY vs.THETA
\begin{tabular}{|c|}
\hline \multirow[t]{16}{*}{} \\
\hline \\
\hline
\end{tabular}
CURVE FIT RESULTS

Figure 16. 25 Micron Aluminum Oxide, High Concentration.

Figure 17. 25 Micron Aluminum Oxide, Low Concentration.
CURVE FIT RESULTS vs.THETA

Figure 18. 5 Micron Polystyrene, Curve Fit.




\section*{\(\because \because \because \because^{\prime}\)}





\footnotetext{

}

\[
\text { Figure } 26 .
\]

\(\begin{aligned} & 20 \mathrm{micron} \text { Polystyrene } \\ & \mathrm{D}_{32}=21.6\end{aligned}\)
Iigure 27. SEM Photographs of Polystyrene Spheres.


10 mic ron Polystyrene
\(\mathrm{D}_{32}=10.2\)

\section*{APPENDIX A}

PROGRAM LISTINGS


```

42g pRENT USNO 'E'
438 INPUT 'ENTER THE THRESHOLD PRESSURE TO TRICGER THE DENICES (psi)',5s
440 INPUT 'ENTER TIME dELAY FROM THRESHOLD PrEGŠure (sec)',T8
4 5 0 ~ ! ~ T I M E S ~ A R E ~ I N T E R P R E T E D ~ b Y ~ T H E ~ C O M P U T E R ~ I N ~ S E C O N D S ~ D O L N N ~ T O ~ . 0 0 1 ~
460 U0=58/151.5 ! CALIERATION OF PRESSURE TRANSDUCER
470 DJs=D15 ! NO-PARTICLES STRING NAME
4 8 0 ~ C O S U B ~ M u l t i p r o g ~
4 9 9 ~ G O S U B ~ S t o r e d a t a ~
500 IF RS=YY'THEN 1000
519 !****************************************************************************

```

52b Contcheck:
530 OUTPUT 709;"AC20"
540 LOCAL LOCKOUT 7
\(551 \quad 87=225\)
55


580 ! THE GERIAL POLL HASK GYTE;SWZ TELLS WHICH TERKINAL SWITCH IS USED;SOI
590 ! SYSTEK OUTPUT MODE OM - HAITS FOR CONTROLLER TO HANDSHAKE;LI LOAD
600 ! INTERNAL MEMORY ON:SO-FUNCTION SHIFT DFF:FA-TWO HIRE CONHECTION TO DUH
618 ! R1-AUTORAKGING;T3-SINGLE TRIGGER;Q-LOAD INTERNAL MEMORY OFF;XI-EXECUTE
620 ! STORED PROGRAM.
631 GOSUB Reading
\(640 \quad R S=V\)
650 IF R8CR7 THEN GOTO OK

670 PRINT USIHG "g'
680 PRINT \({ }^{\text {CDHTINUITY CHECK BAD!!!!" }}\)
690 PRINT 'RECHECK BEFDRE PROCEEDING. WHEN CHECXED, PRESS [CONTINLE]'
701 BEEP 3008.3
710 WAIT . 1
720 BEEP 100,1.0
73 PAISE
74 GOTO Contchack
750 Ok:PRINT USING 'e"
760 DISP •
770 PRINT •
780 OUTPUT 709;"AC21"
790 PRINT •
804 PRINT USING '/"
810 PRINT "BE SURE UISICORDER IS SET UP TO RUN OH PROPER SCALE WITH LAMP ON."
820 PRINT USING '/"
831 OUTPUT 722;"HSKOO2SH2ZOSOILIFLO,OISTISOFIRIT3日" ! VOLTAGE ON IGNITER
848 DISP * STANDING BY FOR IGNITION'
859 PRINT -
861 BEEP 2000.1
878 OUTPUT 722;"X1" !UOLTMETER TRICGER
880 COSUB Reading
890 R9=ABS(V)
901 IF R9110 THEN GOTO 870 ! 12 VOLTS ON IGNITOR


1400 Var_read: E.4TER \% iAdress(*)
! \(\operatorname{CENAD}\) WHICH CARDS IMTERRUPTED
1410 memcaras: phINT - MEMORY CAROS WHICH GENERATED INTERRUPTE ARE -
1420 PRINT ' SLOTS = ';Addres5 (*)
1430 MAT Address \(=(0)\)
1448 OFF ERROR
1450 DUTPUT 723;"DC,3,6,13,10T'
IDISSARH MEM CARDS
1460 OUTPUT 723;"MI,2,1024T"
\(!\) SET UP CARD TO BE READ
1470 ENTER 72305;A(*) ! GETS DATA FROH 1024 MEHORY RCARD
1480 OUTPUT 723;'M1,5,4996T"
1499 ENTER 72305; \(B(*)\)
1500 PRINT •
EXHALST DATA ENTERED"
1510 OUTPUT 723;'M1,12,4095T'
1520 ENTER 72305;C(*)
1530 OUTPUT 723; \({ }^{\circ} 11\),9,4095T"
1540 ENTER 72305;D(*)
1550 ENABLE INTR 7;8
1560 PRINT * MOTOR DATA ENTERED*
1570 Hat \(A=(-1) * A \quad\) ! THE 1024 CARD IS INCLUDED BUT NOT SAMED. IT DIDN'T
1580 KAT \(R=(-1) * B\) ! PERFORK WELL. COULD BE REPLACED RY A 4096 CARD.
1590 KAT \(C=(-1) * C\)
1600 NaT \(D=(-1) * D\) DIODE VOLTAGES ARE NEGATIUE SO SICNS ARE CHANGED
1610 RETURN
1620 Storedata:!
1630 ASSICN EDiskfile TO D3: 1228
1640 ASSIGN EBUFFI TO BUFFES \(C(*)\) ! MOTOR CAUITY 4 SCANS
1650 ASSICN EBuff2 TO RUFFER D(*) ! MOTOR CAUITY 4 SCANS
1660 ASSIGN EBUff3 TO BUFFER B(*) ! EXHAUST 1 SCANS
1670 CONTROL EBuff1 \(1 ; 3 ; 1,32768,1\) !SETS BUFFER POINTERS TO FULL
1680 CONTROL EBuff2, \(3 ; 1,32767,1\) ! INTERFACE REGISTERS SECTION OF
1690 CONTROL QByff3, \(3 ; 1,32767,1\)
! LANGUAGE MANUAL
1700 TRAMSFER EKuffi TO EDishfile
1710 WAIT FOR EOT EDiskfile
1720 TRANSFER EBuff2 TO EDiskfile
1730 WAIT FOR EOT EDiskfile
1740 TRANSFER EBuff3 TO CDiskfile
1750 WAIT FOR EOT EDiskfile
1760 ASSIGN QDiskfile TO *
1770 ASSIGN QEuffi TO *
1780 ASSICN RBuff2 TO *
1790 ASSIGN REvff3 TO *
1800 RETURN
1810 Reading:
1820 STATUS 7,\(1 ;\) AB CHECKINC STATUS BEFORE READING
1830 ENTER 722;V !VOLTKETER IS A FORHALITY TO
1840 ENABLE INTR 7;8 ICLEAR THE SERUICE REQUEST
1850 RETURN
1850 Err_trap: IF ERRN=159 AND ERRL(Var_read) THEN Memcards
1870 PRINT ERRHS !EVEN IF THE ERROR WAS NOT THE ONE PLANNED
1880 GOTO Mencards !FOR PROGRAM EXECUIION CONTINUES
1890 End: END
\begin{tabular}{|c|c|c|}
\hline 10 & \multicolumn{2}{|l|}{} \\
\hline 20 &  & ********H*********** \\
\hline 30 &  & \#\#\#\#**\#\#\#\#\#\#\#******* \\
\hline 40 &  &  \\
\hline 50 &  & ******************** \\
\hline 68 &  & ******************** \\
\hline 70 &  & ******************* \\
\hline 80 &  & ******************** \\
\hline 90 & ! \#****************** Rober \(\dagger\) Kelly Harris &  \\
\hline 100 &  & ******************* \\
\hline 111 & \multicolumn{2}{|l|}{} \\
\hline 120 & \multicolumn{2}{|l|}{OPTION BASE 1} \\
\hline 138 & \multicolumn{2}{|l|}{COM /Hrdogus/ Av?(1024)} \\
\hline 140 & \multicolumn{2}{|l|}{COH /Gauss/ Tl(1024),G(1024), \(L\)} \\
\hline 151 & \multicolumn{2}{|l|}{COH / Max/ M7, M5, \(\mathrm{Xt}_{1}, \mathrm{Yt}_{1}, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\)} \\
\hline 160 & \multicolumn{2}{|l|}{COK /Readata/ \(\mathrm{B}, \mathrm{P}, \mathrm{H}, \mathrm{Q} 3 \$(201,045[20], 225[20], Y 1(8192)\) BUFFER, Y2(8192) RUFFE} \\
\hline 170 & \multicolumn{2}{|l|}{COK /Two/ Aul(1024), M, M1, F} \\
\hline 189 & \multicolumn{2}{|l|}{DIM Scans(8), X(1024)} \\
\hline 191 & \multicolumn{2}{|l|}{COM /Plots/ Pls[20], P2\$[20], P3s[20], P4\$[20]} \\
\hline 200 & \multicolumn{2}{|l|}{INTEGER Graf( \(1: 12480\) ) RUFFER} \\
\hline 218 & \multicolumn{2}{|l|}{Choose: PRINT CHRS(12)} \\
\hline 221 & \multicolumn{2}{|l|}{O1d=0} \\
\hline 230 & \multicolumn{2}{|l|}{print - to look at any data file the prograh needs sohe starting inforhati} \\
\hline On' & & \\
\hline 241 & \multicolumn{2}{|l|}{PRINT "} \\
\hline 250 & \multicolumn{2}{|l|}{PRINT - TO ACCOUnT FOR THE CHANGE IN WAUELENGTH IN ThE MEDIUM'} \\
\hline 268 & \multicolumn{2}{|l|}{PRINT "} \\
\hline 278 & \multicolumn{2}{|l|}{Print - Enter the index of refraction of the medium'} \\
\hline 280 & \multicolumn{2}{|l|}{PRINT \({ }^{\text {P }}\)} \\
\hline 291 & \multicolumn{2}{|l|}{PRINT \({ }^{\text {P }}\) ( WATER \(=1.33^{\circ}\)} \\
\hline 300 & \multicolumn{2}{|l|}{PRINT * AIR \(=1.1^{\prime \prime}\)} \\
\hline 310 & \multicolumn{2}{|l|}{PRINT * ESTIMATE OF EXHALST = 1.1*} \\
\hline 320 & \multicolumn{2}{|l|}{BEEP} \\
\hline 330 & \multicolumn{2}{|l|}{INPUT ' THIS VALUE ADJUSTS THE COMPARISON CURUE TO THE MEDIUM', mi} \\
\hline 340 & \multicolumn{2}{|l|}{PRINT CHRS(12)} \\
\hline 351 & \multicolumn{2}{|l|}{print - to account for refraction of light at roundaries betheen*} \\
\hline 360 & \multicolumn{2}{|l|}{Print "} \\
\hline 370 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PRINT - ThE MEDIU
PRINT - -}} \\
\hline 380 & & \\
\hline
\end{tabular}

```

8S% PRINT - WHICH SCANS ARE GOOO ?...IE,..1,2,4,5,7,IMCLUNE LAET CO
MHA
ILAST COFMA IS REQUIRED OR YOU HAUE TO HIT CONT.. TUICE
890 INPUT Scans(*)
900 PRINT CHRs(I2)
910 PRINT USING '/////////'
920 PRINT *
averaging the selected scans'
9 3 0 ~ G R A P H I C S ~ O F F ~
940 CALL Average(J,Scans(*),Y1(*),Av1(*))
950 PRINT USING 'E'
968 GLOAD Graf(*) !lOADS GRAPHICS arRay RATHER THAN WASTE TIME RE-dRANING
970 GRAPHICS ON
981 CALL Result(Au1(*),X(*),H) ! PLOTS 1024 ELEMENT ARRAYS
990 PRINT USING '//'
1008 PRINT " Average Intensity No-Particles'
1010 ON KEY O LABEL "AUERAGEI" GOTO Screen
1020 ON XEY I LaEEL "Plot-particles' goto 1060
1030 PRINT - PRESS KEY \& O TO RE-ANERAEE OR \# 1 TO CONTINUE'
1040 Standoy: I MANUAL CALLS THIS INTERRUPT DRIUEN PROGRAMHING
1050 GOTO Standby ! LOOPS, WAITING FOR USER TO DECIDE
1060 PRINT USING "E"
1070 OFF XEY 1 !HELPS AVOID CONFUSION BY CLEARING THAT BOX
1080 CALL Dataplot(B,YZ(*),H) !PLOT PARIICLES DATA
1090 PRIKT USING '/'
1160 PRINT " PARTICLE DATA PLOTTED*
1110 PRINT - FOR A HARD COPY OF THIS RAM DATA PRESS KEY \# 6"
1120 PRINT - -
1130 PRINT - OR TO CONTINUE PRESS XEY \& 1"
1140 ON KEY 6 LABEL "HARD \& RAM* GOTO Raw
1150 ON KEY I LabEl "CONTINuE " coto Select
1160 coTO Standby
1170 Raw: CALL Plot(Y2(*),1) ! THE ONE (1) IS AN OPTIOHAL PARAHETER
1180 CALL Dataplot(B,Y2(*),H) ! UHICH IS USED TO GET HARD COPIES
1190 Select:!
1200 DFF XEY 6
1210 OFF KEY 1
122g PRINT CHR\$(12)
1230 PRINT USING '////*
1240 PRINT : HOW HANY SCANS SEEM TO BE GOOD ?'
1250 INPUT J
1260 PRINT -
WHICH SCANS ARE GOOD ?...ie.,.1,2,4,5,7,INCLUDE
LAST COMMA"
127i INPUT Scans(*)
1280 PRINT CHRS(12)
1290 PRINT USING '/////////'
1300 GRAPHICS OFF
1318 PRINT - AUERACING THE SELECTED SCANS*
1320 CALL Average(J,Scans(z),Y2(*),Av2(x))
1330 PRINT USING "E'
1340 P4s='AVERACED SCANS'

```
1350
1360 SRAPHICS ON
1370 GSTORE Graf(*)
1380 CALL Result(Av2(*),X(*),H)
1390 PRINT USING *//"
1410 PRINT:Average Scattered Intensify
1410 ON XEY 2 LAEEL "AUERACE2" GOTO 108
1428 ON XEY 3 LABEL 'SUBTRACT' COTO 1450
1430 PRINT"HIT XEY \(\ddagger 2\) TO RE-AUERAGE OR KEY \(\ddagger 3\) TOCONTINUE'1448 GOTO Standby1458 PRINT USING "e"
1460 OFF KEY 3
1470 MAT Aul= Auz-Aul !SUBTRACTS NO-PARTICLES FROK PARTICLES
1480 GLOAD Graf(*)
1490 CALL Result(Aul(*), \(X(*), H)\)
1500 PRINT USING '///'
1510 PRINT Plot of the Difference ketween Particles and \(N\)
--Particles"
1520 PRINT. KEY \& 6 FOR HARD COPY'
1530 PRINT.KEY \(\ddagger 1\) TO CONTINUE
1540 ON KEY 6 LabEl. MARD AUERAGE" GOTO 1570
1550 ON KEY 1 LABEL ..... FILTER - GOTO 1600
1560 GOTO Standby
1570 CALL Plof(Ayl(x),1)
1580 CALL Resuli(AuI(*), X(*),H)
1590 PLOTTER IS 3,"INTERNAL"
1610 PRINT USING "//'
1610 PRIKT ENTER THE NUMBER OF TIKES YOU UISH TO APPLY*THE DICITAL FILTER FOR SHOOTHING'
EXAMPLE*E****: \(11^{\circ}\)
TAXES ABOUT 1.5 HINUTES"
ZERD IS ALSO ACCEPTARLE',Fil
162 PRIN PRINT PRINT INPUT IF Fil=0 THEN Gauss P4t="FILTERED DATA"

PRINT CHRS(12)
1701 CALL Plot(Av1(*))
1711 IF Old THEN MAT \(X=T 1\)
1728 CaLL Resuli(Aul(z),X(*),H)
1730 PRINT Plot of the Difference Between Particles and \(N\)--Particles"1740 PRINTTER'
1750 ..... PRINT
1760 PRINT
1770 ..... PRINT
1780 PRINT
1791 PPINT.AFTER APPLICATION OF A DIGITAL FIL1809 ON KEY 8 LABEL "HARD FILTERED" GOTO 183
    GOTO Stanaby
    CALL Plot(AuI(*):!) ! The I is for hard copy
    CALL Result(Au1(*), X(*),H)
    OFF KEY 8
1860 Gav55: OFF XEY ?
2050 CALL RESult(Ay?(*),T1(*),H) !PLOT OF NORMALIZED INTENSITY v5, THETA
2060 GSTDRE Graf(t)
2070 CALL Comdare(Aul(*),H,H,M1,Graf(*))
2080 GRAPHICS OFF
2090 OH KEY 4 LABEL "OTHER ARRAY" COTO Choose
2110 ON KEY 5 LABEL" TWO-ANCLE" GOTO Buchele
2110 ON XEY 9 LAEEL ' NORHALIZE' GOTD Gav5s
2120 ON KEY 6 LABEL 'STORE DATA" GOTO Storedata
2130 ON KEY 7 LAEEL - QUIT - GOTO Quit
2140 CALL Henve!
2158 GOTO Standby
216t Buchele: !
2170 CALL Twoangle
2180 CALL Henvel
2190 GOTO Standby
2201 Storedata!!
2211 CALL Siore
2220 CALL Henvel
2230 GOTO Standby
224% Quit: !
2250 END
2260 SU8 Averdge(J,Scans(*),Y(*),Av(*)) {AVERACES SELECTED SCANS
2270
2280
2290
2300
2310
```

1870

SUB Averdae(J,Scans(*),Y(*),Au(*)) !AVERACES SELECTED SCANS hat $A v=(0)$ IINITIALIZES ThE ARRAY LOCAL TO THIS ROUTINE

FOR $I=1$ TO $J$ STEP 1
$K=(S c a n s(1)-1) * 1024+1 \quad$ ! ThIS COUNTER IS THE REGINNING
$L=S c a n s(1) \times 1024$ ! AND THIS ONE THE END OF RLOCKS
FOR II=K TOL I OF IO24 IH THE OVERALL DATA

2711
2728
2730
SELECT NPAR
CASE 1
CASE 2
$i=1 \leq 1-x+1$ Av(IS)=iv(IL)+YiJi)
NEXi II
NEXT J
MAT $A v=A v /(J)$ SUREND
SUE Dataplof(B,Y(X),H)
IB IS 4 OR B(THE NUMRER OF SCANS)
! Thes colimex is mads geineen $!1$ Aho 1024

## ! $\# * * *$ FTHE AUERAGE*****!

!EACH SCAN
HOVE $500+\mathrm{J} * 50, \mathrm{K7}-.05$ ! SEE NEXT LINE
LABEL J; HELPS XEEP TRACX OF EACH SCAN AS IT APPEARS
LINE TYPE!
$\mathrm{K}=(\mathrm{J}-1) \times 1024+1 \quad$ !BEGINMING OF EACH SCAN AND $L=\mathrm{J} * 1024$ !THE END UITHIN THE TOTAL BLOCK
hove $1, Y(X)$ ! HOUE TO THE FIRST POINT
FOR $I=K$ TOL STEP H $x=I-x+1 \quad$ ! THIS GIUES 1 TO 1224 FOR ARSCISSA PLOT X,Y(I) NEXT 1

## NEXT J

PENUP
SUBEND
SUB Resuli (Iav(*), D(*),H) !THE AVERAGE INTENSITY IS PLOTTED
CLIP ON
HOUE $D(1)$, Iav\{1)
FOR $I=1$ TO 1024 STEP H
DRAK D(1), Lav(I)
NEXT I
PENUP
SUBERD
SUB Plot(Y(*), OPTIOMAL Hard) IIF THE OPTIONAL(Hard)IS RECEIUED ITHE FIGURE GOES TO THE PLOTIER
$17=H A X(Y(x)) * 1.1$
! A SCALING VARIARLE
$M E=.1 * H 7$ ! AHOTHER SCALING VARIAKLE
PRINT "
GINIT
plotter is 3, "internal"
PLOTTER IS 705,"HPGL'
!GINIT IS JUST GOOD PRACTICE SO YOU KNOU ! MAERE YOU ARE BEGINHING
!THIS DETECTS IF THE hARD COPY IS DESIRED
IIT COULD EE DONE HITH IF THEN LOGIC
!but is presented for familiarization !SIMCE IT IS MORE POUERFUL IN COHPLEX ! SITUATIONS

I TO be able to see the plot

3820 LORE 5
2930 MOVE 75,95
2840 LABEL USING ${ }^{\circ} \times$ ';P4s
2850 MONE 75,90
2860 LABEL P3s
2870 MOUE 75, 20
2880 LABEL P2s
2891 LDIR 90
2900 MOUE 18,60
2910 LABEL P1
2920 VIEWPORT $30,125,30,85$ ! SCREEN UHITS FOR MARGINS
2930 FRAME ! DRAWS A BOX
2940 UINDOH O, M5, -H\&, K7 $\quad$ EXTENT OF $X$ AMD $Y$
2950 AXES $X_{1}, 18,0,0, X_{n}, 1,5$
2960 LDIR 1
2970 CSIZE 3,.5
2980 LORG 8
2991 CLIP OFF
3010 FOR I=-M6 TO M7 STEP M7/10 !NUMBER THE Y AXIS
3010 MONE O,I
3021 LABEL USING * 4, MD.DDDD"; I
3031 NEXT I
3041 CSIZE 3,. 6
3050 LDIR 90
3061 LORG 8
3070 FOR I=O TO KS STEP Xi ! MUKRER THE X AXIS
3080 MOVE I,-H6
3990 LABEL USING ${ }^{\circ} \ddagger, X^{*} ; 1$
3101 NEXT I
3110 PENUP
3128 SUBEND
3130 SUB COMpare(Aul(*), H,K,HI,INTEGER Graf(z))
3140 COH/Gauss/ TI(*),G(*),L
3150 COM /Mrdgavs/ Av2(*)
3161 COK $/ M_{1} \times / H_{7}, H_{5}, X_{t}, Y_{t}, X_{n}, Y_{n}$
3170 DIK T(1:1824), A1(1:17), Dobbins(1:17), T1d(1:17)
3180 DATA 3., 3.5,4. 4.5,5. ,5.5,6. ,6.5,7.,7.5,8., 8.5,9.,9. 5, 11. ,10.5,11.
3198 DATA .0556,.035,.0206,.014,.0106,.0081,.00605,.005,.00374,.0032, .00248, $.0022, .00185, .0016, .00135, .0012, .001$
3211 READ At(B)
3210 READ Dobbins(x)
322 OFF KEY
!GETS RID OF ALL LABELS ON KEYS
3231 ON XEY 3 LABEL "MENUE" COTO Subexit
3241 PLOTTER IS 3 , "INTERNAL" ! IN CASE A HARD COPY WAS JUST MADE 3250 Hard=0 ! (0) SO ONE DOESN'T EXIT TOO SOON
3260 Centerline=1 ! THE INITIAL NORMALIZING VALUE
$3270 \quad D=20$ ! INITIAL PATICLE MEAN DIAKETER IN MICRONS
3280 Change: CSIIE 4,. 6
3290
PRINT USIMG $\cdot / / / / / / /=$

3770 CALL Result(Av2(*), TI(*), H)
COn=PI*D*HI/L IA CONSTANT

FOR $I=1701024$ STEP H
T(I) $=$ T1(I)*Con $\left.\mathrm{G}(1)=\operatorname{ExP}\left(-(1.57 * T(1))^{\wedge} 2\right)\right)$
IF T(I))3.0 THEN 3400
DRAW TI(I), G(I)
NEXT I
HAT TId= AT/(COn)

FOR I=1 TO 17
DRAM TId(I),Dobbins(I)
NEXT I PEMUP
If hard then subexit texits routine if a hard copy was just hade
PRINT USING " $/ / / / / / / / /{ }^{\prime}$
PRINT *
USE THE XNOB TO VARY THE PARTICLE
PRINT •
OR HIT KEY $\ddagger 6$ FOR HARD COPY"

PRINT • KEY $\ddagger 9$ ALLOUS YOU TO" RE-NORHALIZE"

HIT KEY $\ddagger 3$ TO GET OUT
PRINT USING $\quad / / / / / /{ }^{\circ}$
ON XEY 6 LAEEL "HARD COPY" GOTO Hardgauss
OH XEY 9 LABEL "NORKALIIE" COTO Divide
ON KNOB .05 GOTO Pulse !(.05) IS TIME INTERUAL IN WHICH
GOTO Hait ! PULSES FRDH THE KHOE ARE
PRINT USINE "P" ! COUNTED AND THIS NUMEER IS
Strngls="Mean Dianeter • ! USED BY ThE INTERRACTIVE
Strng2s=' Microns" ! GRAPHICS TO VARY THE PARTICLE
Count $=$ XNOEX ! SIZE AND PLOT THE ASSOCIATED
D=DROUND(D+Caunt/15,2) ! GAUSSIAN APPROXIMATIONS OF
ELOAD Graf(*) ! SCATIERINE PROFILES
LDIR 1
LORG 8
HOVE K5,.8*H7
LABEL Sirng1stUGL\$(D)dStrng2s
coro Change
CALL Result(Avz(*), II(*), h)

3789
3750
3801
3810
3821
3830
3841 3850
3868
3870
3880
3998
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990 Var
4080
4018
4028
4031
4041
4051
4060
4070
4080
4090
4100 Replot
4111 PRINT CHRS(12)
4120 CALL Plot(Avz(*))
4131 CALL Result(Av2(*), T1(*), H)
4140 GSTORE Graf(*)
4151 CDTO Change
4160 Subexit:
4178 SUBEND
4180 SUB henvel
4191 PRINT USING ${ }^{\circ}$ ?
4200 PRINT ${ }^{5}$ YOU CAN RE-NORMALIZE"

PRINT •
YOU CAN RE-AUERACE (New Data Only).

PRINT - PRESS XEY \& 4 TO LOOK AT OTHER DATA"
PRINT • OLD OR NEW •
PRINT " MOTOR / EXHAUST"


SUBEND
4850 SUB Plot2(E, $D(*), X)$
4860 DIA TillelS[25],Thetat[20]
4870 GINIT
4890 IF $X=1$ THEN PLOTTER IS 705, 'HPGL'
4990 DEG
GRAPHICS OH

IJUST gOOD PRACTICE TO CLOSE !1/O PATHS
!DEGREES for LABE DIRECTION
UIEMPORT 35,125,30,85
$\mathrm{H}_{\mathrm{a}} \mathrm{x}=10 \times \operatorname{INT}($ ( $\left.\mathrm{MAX}(\mathrm{D}(*))+10) / 10\right)$
UINDOU $D(1,2), D(E, 2), 8$, May
$G=(D(E, 2)-D(1,2)) /(E-1) * 4 \quad$ IAN $X$ GRID LINE EVERY 4th POINT
$F=(\operatorname{INT}(E / 4)-1) * 4$
IF $F=0$ THEN $F=4$
CIIP $D(4,2)-G, D(F, 2)+2 \times G, 0, H a x \quad$ !HAKES GRID UNIFORM
GRID $G, 5, D(4,2)-6,1$
CLIP OFF
LORG 8
LDIR 90
$\operatorname{CSIZE} 4,5$
FOR I=4 TO E STEP 4
hove $D(1,2), 0$
LABEL USING '.DDDD';D(I, $\left.{ }^{2}\right)$
NEXT I
LDIR 0
LCRG 8
FOR I=10 TO Max STEP 10 !NUMEER Y AXIS
MOUE $D(4,2)-6, I$
LABEL USING ${ }^{\prime} \ddagger, X^{\prime} ; I$
NEXT I
CSIZE 6,.6
Titles='TMO-AMGLE KETHDD"
Titlels="For Various Angle Ratios" $\quad$ !STRINGS FOR PLOTS
Size $=$ =SIIE (nicrons)"
Thiat="THETA (rad)"
Subs $=1{ }^{\circ}$
LDIR 90
LORC 5
$B=D(4,2)-G-(D(E, 2)-D(1,2)) / 18$
MOVE B, Max/2
LABEL Sizes
LDIR
$A=(D(E, 2)+D(1,2)) / 2$
HOUE $A,-$ Hax/4
LABEL Thtas

4910
$4920 \quad \mathrm{Max}=10 \times 1 \mathrm{NT}(\mathrm{MAXCO}(*))+10) / 10)$
4930 HINDOU $D(1,2), D(E, 2), 0, K_{d}$
$4940 \quad[=(D(E, 2)-D(1,2)) /(E-1) * 4$
$4950 \quad F=($ INT $(E / 4)-1) * 4$
4960 IF $F=0$ THEN $F=4$
4970 CLIP $D(4,2)-G, D(F, 2)$
4990 CLIP OFF
5000 LORG 8
5010 LDIR 90
5021 CSI2E 4,.5
5030 FOR I=4 TO E STEP 4
5040
5050
5060
5070
5080
5090 FOR $I=10$ TO Max STEP 10
5100
5111
5120
5138 CSIZE 6,.6
5140 Titles='TMO-AMGLE KETHOD"
5150 Title1s="For Various Angle Ratios" $\quad$ !STRINGS FOR PLOTS
5160 Sizes="SIZE (nicrons)"
5170 Thtas="THETA (rad)"
$5180 \quad$ Subs $={ }^{\circ} 1{ }^{\circ}$
5190 LDIR 90
5200 LORC 5
$5210 \quad B=D(4,2)-G-(D(E, 2)-D(1,2)) / 18$
5220 MOVE B,Mox/2
5230 LABEL Sizes
5240 LDIR 1
$5250 \quad A=(D(E, 2)+D(1,2)) / 2$
5260 MOUE $A,-$ Hax/4
5270 LABEL Thtas

IPUTS NUMRERS ON X AXIS
! NUMEER Y AXIS
stans far plots

5290 LORG 3
5290 HOUE A,-Hat/4
5318 LABEL Subs
5310 LORG 5
5320 NOVE A, Max*1.15
5330 LABEL Titles
5340 CSIZE 4.5
5350 HOVE A, MaxII. 05
5360 LABEL Titlels
5370 PENUP
5381 SUREND
5390 SUB Distribution(D(*),Tratio, E)
5400 LINE TYPE 1
5410 CLIP ON
5420 Tratios=Vals(Tratio) I ANGLE RATIO
5430 HOUE $D(1,2), D(1,1)$
5441 FOR I=1 TOE
5450 DRAW D(I,2),D! 1,1$)$
5480 HEXT 1
5470 LORG 4
5480 LIME TYPE 1
!THIS SUEROUTINE PLOTS THE !PARTICLE SIZES DERIUED USING ! Various ancle ratios applied !TO THE DATA OVER A RAHGE OF

5490 CSIZE 4,3
5510 ROVE $D(1-1,2), D(I-1,1)+2$
$551 \%$ LAEEL Tratios
5520 PENUP
5538 SUEEND
5548 SUB Twangle




5590 ! $\# * * * * * * * * * * * * * *$ OF INTENSITY AT $\# * * * * * * * * * * * * * * * * *$


5620 OPTION BASE 1
5630 COM /Two/ Av1(1024), M, M1,F
5640 COM /Gavs5/ 11(1024), G(1024), L
! THE GAUSS IS NOT USED HERE 5650 ! EUT THE CON BLOCK HAS THETA
5660 DIH D $(200,2)$ ! AND HAUELENGTH
5678 PRINT CHRS(12)
5680 PRINT USING $" / / / / / / /^{\circ}$ !ANGLES

5690 PRINT " THIS SUBPROGRAM USES THE TUO-ANGLE METHOD DESCRIBED BY BUCHELE"
5708 PRINT *
5710 Print - TO Calculate paticle size for various ancle ratios and ancles."
572 D PRINT •
5730 PRIMT : IT IS HOPED THAT THE CURUES WHICH RESULT WILL SHOW •
5740 PRINT •
S750 PRINT • UHICH SIZE IS THE KOST PROEABLE."
5760 PRINT • •
5770 print "after noting from the rau data hhich angles contain the center loke"

```
5720 PRIMT "*
5790 PRINT - ENTER*************TME SMAL'EET UEEAELE ARELE,"
5800 PRINT n THE SMALLEST ANGLE RATID,AKD*
5810 PRINT - THE STEP SIZE RETUEEN ANGLE RAIOS'
S82O PRINT * YOJ WISH TO EXPLORE'
5830 PRINT EXAMPLE************** .012,1.2,.4'
5840 INPUT ' ENTER thetal, theta-ratio, theta-step ', Q,A,8
5850 OFF KEY
5860 x=0
5870 Begin:
5880
5890
5900 Sof refraction of the nediun, *********L=L/Ml **********
5910 C=(L/M1/.57/PI)^2 !----------see paọe 15 of nasd tech paper 2156
5920 FOR N=1 TO 1024
!to see this is a convenient constant It see this is a convenient constant
!FINDS POSIIION OF MINIMUN ANLGE
```

5930 IF Q(T1 (N) THEN 5950
5940 NEXT N
5950 F0R Tratio=A 103 STEP B !UARIOUS ANGLE RATIOS
5960 FOR J=N TO 1010/Tratio STEP 10 ISETS THE RANGE DF POSSIBLE
5970
5980
5990
6000
6018
6020
FOR $I=J-5$ TO $\mathrm{J}+5 \quad$ !THESE 2 LOOPS AUERAGE A FEH
$11=11+A \cup 1(I)$
NEXT I
$I 1=11 / 11$
FOR I=INT(J*Tratio-5) TO INT(J*Tratiot5)
$12=I 2+A v 1(I) \quad$ DONE HERE FOR THETAL FOR
next 1 ! THE GIVEN AHGLE RATIO
$12=12 / 11$
$E=(J-N) / 10+1$ ! ANGLES (THETA I)
Thial=Tl(3) Thide $=$ T1 (J*Tratio) ! THETA 2
Deltatheta=Thia2^2-Thtal^2
II=0
$12=0$ !INTENSITIES IN THE HOPE !OF A STEADIER CALCULATIOK

ITHIS IS A COUATER FOR THE ARRAY CONTAINING

```
!GRAPH WILL APPEAR ON SCREEN
! RUNNING CONTINUES HERE HHEN A HARD COPY IS DESIRED IVan De Hulst and Gumprech \& Sleepeuich explain that the chanoe in ! wavelength of the beam is accounted for by dividing by the index lof refraction of the nediun, \(* * * * * * * * L=L / M t * * * * * * * * *\)
\(C=(L / M 1 / .57 / \mathrm{PI})^{\wedge} 2\) -
\(6200 \quad\) Spar=PI*D(E,1)*HI/L ITHIS IS PI*D/LAMBDA -- THE SIZE PARAMETER
6210 Tbar=SparkThtas
6220 IF Tbar) 3 THEN \(\mathrm{J}=1010 /\) Tratio
6230 IF \(E=1\) A.VD Tbar) 3 THEN 6330 IPARTICLE SIZE AND TIETAI FOR THE GIVEN ! ANGLE RATIO
IF I1 12 I2 OR II=O OR I2 \(\angle=0\) THEN \(D(E, 1)=0\) ! ALLOMANCE FOR IF THE DATA IF IISI2 OR II=0 OR I2 \(<=0\) THEN COTO Xcomp IIS NOT HELL BEHAVED \(D(E, 1)=S Q R(-C / D e l\) tatheta*LOC(I2/II)) !THO ANGLE METHOD ! UaLUE OF DIAMETER based on INTENSITY Ratio ! For a given ANGLE RAIID and ANGLE THETA1
6240 ! the above line ends all calculation if ! THETA BAR FOR THE LARCER ANGLE !THIS ENDS THE DO LOOP FOR THIS langle ratio since the gaussian !IS NOT VALID WHEN Tbar ) 3
6250 ! the first element ( \(E=1\) )failed the test
6260 MEXT J
6270
! FIRST TIME THROUGH-- D HAS THE MOST ELEMENTS IT HILL have
```

8290 FRINT CHE (12)
6300 IF Tratio=A THEN CHLL Plota $(E, D(*), X)$
6310 CALL Distribution( $D(*)$, Tratio, $E$ )
6320 NEXT Tratio
6330 ON XEY 2 LAEEL 'HARD COPY' GOTO Hard
6340 ON KEY 3 LAEEL ${ }^{\text {a }}$ MENUE $\cdot$ COTO Sybexit
6350 PRINT USING $\quad / / / / / /$
6360 PRINT - YOU CAN GET A HARD COPY BY PRESSING XEY $\ddagger 2^{\prime}$
6370 PRINT ${ }^{\prime}$
6380 Standby:COTO Standhy
6390 Hard:X=1 OR EXIT THIS ROUTINE EY PRESSING KEY $\ddagger 3^{\prime \prime}$

6400 COTO Begin
6410 Subexit: GINIT
6420 GRAPHICS OFF
6430 SUBEND
6441 SUB Shift

6460 DIK E(1:8192)
6470 PRIHT CHR $\$(12)$
6480 PRINT USIMC ${ }^{*} / / / / / / /{ }^{\prime}$
6490 PRINT • RAL DATA IS BEING SHIFTED TO CORRECT FOR SMALL GAPS RETHEEN SCANS'
6508 PRINT
6510 PRINT •
6520 ! THERE ARE SOME SKALL GAFS BETMEEN SCANS AND THIS SUEROUTINE
6530 ! SHIFTS THE DATA SO THAT THE FIRST DIODE DATA POINT IS MOVED
6540 ! $\quad$ TO THE UERY BEGINNING OF ITS 1124 ELOCK IN THE OUERALL ARRAY
6550 ! THE FIRST SET IS RIGHT ON, THE NEXT IS ONE OFF, THE THIRD IS
6568 ! TWO OFF, ,SO FORTH. THIS MAY NOT MATTER WITH DUR RESOLUTION
© TOE TO THE MEMORY CAOD CYCLIMG AT THE END

## SELECT B

CASE 4
IEXHAUST DATA HAS 4 SCANS
$\mathrm{H}=3$
CASE 8
$\mathrm{M}=7$
END SELECT
FOR $K=1$ TO 2
IF $X=1$ THEN HAT $E=Y 1$ !opperates on no-particle and particle sets IF $K=2$ THEN KAT $E=Y 2$ FOR J=0 TO M IF $\mathrm{h}=7$ AND $\mathrm{J}=3$ THEN 6800 !One 4096 Block Doesn' $\uparrow$ Need Shifiting FOR $I=(\mathrm{J}) \times 1024+1 \mathrm{TO}(\mathrm{J}+1) * 1024$ ! BLOCXS OF 1024
IF $\mathrm{n}=3$ THEN $L=I+\mathrm{J} \quad$ IArray B Has the wors $\dagger$ ! Problen With Shifting Data
IF $H=7$ THEN $L=I+1 \quad$ Array $D$ is Allways off by one
IF : J $\mathrm{J}+1$ ) * 1024 THEN $\mathrm{L}=(\mathrm{J}+1) * 1024$
! Just to avuid programining error at the end of the array
$E(I)=E(L) \quad$ !THIS SHIFTS THE DATA IDEPENDING OK 'L',ARRIUED AT
7198 CREATE BDAT A\$,512,16
7200
7210 ASSIGN EBuff TO BUFFER Daia(*)
7220 COHTROL EBuff, $3 ; 1,8192,1$
7230 TRANSFER EGuff TO 2Disk;CONNT 8192
7240 WAIT FOR EOT EDisk
7250

    ASSIGN PBuff 50 *
    7260

    ASSIGN EDisk TO \#
    SUREND
    | 7280 | SUB Review(Aul(*)) |  |
| :---: | :---: | :---: |
| 7290 | DIM Data(1:1024) RUFFER |  |
| 7300 | Print ' Each reduced file contains one scan only. you must knou lf IT' |  |
| 7310 | IS EXHAUST, MOTOR CAUITY , or calibration data." |  |
| 7320 | PRINT ${ }^{\text {a }}$ |  |
| 7330 | PRINT ' THE DISK WITH The reduced file should be in the right-hand dride' |  |
| 7340 | PRINT " |  |
| 7350 | Print * ENTER THE FILENAHE OF THE REDUCED data* |  |
| 7360 | PRINT - TO BE REUIELUED* |  |
| 7371 | PRINT ${ }^{\text {a }}$ |  |
| 7380 | INPUT As |  |
| 7390 | ASSIGN EDisk TO As |  |
| 7400 | ASSICN EBuff TO RUFFER Data(*) |  |
| 7410 | CONTROL EDisk,5;1 |  |
| 7420 | contral ebuff, $3 ; 1,0,1$ <br> !THIS IS AN EMPTY RUFFER <br> TRANSFER EDisk TO BBuff;COUNT 9192 <br> 11024:8=NUREER OF GYTES |  |
| 7430 |  |  |
| 7440 | HAIT FOR EOT QDisk |  |
| 7450 | ASSIGN PDisk TO * |  |
| 7460 | ASSIGN EBuff TO * |  |
| 7470 | Mat Avi = Data |  |
| 7480 | SUBEND |  |
| 7490 | SUB Filter(A(x), Fil) |  |
| 7508 | DIM E(1:1024) |  |
| 7510 | PRINT CHRS(12) |  |
| 7528 | PRINT USING $/ / / / / / / / /{ }^{\circ}$ |  |
| 7530 | PRINT - FILTERING THE SCATTERING PROFILE' |  |
| 7540 | FOR $\mathrm{J}=1 \mathrm{TO}$ Fil |  |
| 7550 | FOR I=1 TO 1014 |  |
| 7560 | $\mathrm{B}=1+1$ | !This IS A Symetric Hoving Average |
| 7570 | $\mathrm{C}=1+2$ | !TYPE OF DIGITAL FILTER. EACH |
| 7580 | $D=1+3$ | ! data point is equally meichted |
| 7591 | $F=1+4$ | IIN THIS CASE RUT THIS CAN BE |
| 7600 | $\mathrm{G}=1+5$ | !CHANGED IF OHE DETERMINES THAT |
| 7611 | $\mathrm{H}=1+6$ | !FEUER POINTS WITH UMEQUAL MEIGHTS |
| 7620 | $\mathrm{k}=\mathrm{I}+7$ | ! MOULD BE FASTER OR GIUE BETTER |
| 7631 | $\mathrm{L}=1+8$ | !RESULTS. THIS TPE OF FILTER WAS |
| 7640 | $N=1+9$ | !USED SINCE IT INTRODUCES NO PHASE |
| 7650 | $P=1+10$ | !LAC (Anaular kesolution). |
| 7660 | $E(C)=(A(I)+A(B)+A(C)+A(D)+A(F)+A(C)+A(H)+A(K)+A(L)+A(N)+A(P)) / 11$ |  |
| 7670 | NEXT I |  |
| 7680 | HAT $A=E$ |  |
| 7690 | NEXT J |  |
| 7780 | SUBEND |  |

1. Hermsen, R. W., Aluminum Oxide Particle Size for Solid Rocket Motor Performance Prediction, AIAA Faper 81-0035, American Institute of Aeronautics and Astronautics, New York, New York, January 1981.
2. Cramer, R., Particle Size Determination in Small Solid Propellant Rocket Motors Using Light Scattering Method, M. S. Thesis, Naval Postgraduate School, Monterey, California, October 1982.
3. Karagounis, S. G., An Investigation of Particulate Behavior in Solid Propellant Rocket Motors, Engineer Thesis, Naval Postgraduate School, Monterey, California, 1981.
4. Gumprecht, R. O. and Sliepcevich, C. M., "Scattering of Light by Large Spherical Particles," Journal of Physical Chemistry, v. 57, pp. 90-94, January 1953.
5. Dobbins, R. A., Crocco, L. and Glassman, I., "Measurement of Mean Particle Sizes of Sprays from Diffractively Scattered Light," AIAA Journal, v. 1, no. 8, pp. 18821886, 1963.
6. Roberts, J. H. and Webb, M. J., "Measurements of Droplet Size for Wide Range Particle Distributions," AIAA Journal, v. 2, no. 3, pp. 583, 585, 1964.
7. Mugele, R. A. and Evans, H. D., "Droplet Size Distribution in Sprays," Industrial and Engineering Chemistry, v. 43, pp. 1317-1324, 1951.
8. Dobbins, R. A. and Jizmagian, G. S., "Optical Scattering Cross Sections for Polydispersions of Dielectric Spheres," Journal of the Optical Society of America, v. 56, no. 10, pp. 1345, 1350, 1966.
9. Dobbins, R. A. and Jizmagian, G. S., "Particle Size Measurements Based on Use of Mean Scattering Cross Sections," Journal of the Optical Society of America, v. 56, no. 10, pp. 1351-1354, 1966.
10. Hodkinson, J. R., "Particle Sizing by Means of the Forward Scattering Lobe," Applied Optics, v. 5, no. 5, pp. 839, 844, 1966.
11. Poweli, E. A., Cassanova, R. A., Bankston, C. P. and Zinn, B. I., "Combustion Generated Smoke Diagnostics by Means of Optical Measurement Techniques," AIAA 14th Aerospace Sciences Meeting, AIAA Paper No. 76-67, January 1976.
12. Hansen, B. J., Automatic Control and Data Acquisition System for Combustion Laboratory Applications, Engineer Thesis, Naval Postgraduate School, Monterey, October 1982.
13. NASA Technical Paper 2156 , Particle Sizing by Measurement of Forward Scattered Light at Two Angles, by Donald R. Buchele, May 1983.
14. Van de Hulst, H. C., Light-Scattering by Small Particles, John Wiley and Sons, Inc., New York, 1957.
15. Stokham, J. D., Fochtman, E. G., Particle Size Analysis, Anarbor Science Publishers, Inc., 1979.
16. Koopmans, L. H., The Spectral Analysis of Time Series, Academic Press, New York, p. 171, 1974.
17. Defense Technical Information Center ..... 2
Cameron Station
Alexandria, Virginia 22314
18. Library, Code 01422
Naval Postgraduate School
Monterey, California 93943
19. Department Chairman, Code ..... 67 ..... 1
Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93943
20. Professor D. W. Netzer, Code 67Nt ..... 2
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93943
21. Mr. R. K. Harris ..... 5
615 East Richmond Dayton, Washington 99328
22. Commander, Code 3891 ..... 1
Naval Weapons Center
China Lake, California ..... 93555
Attn: K. Graham
23. M. D. Nelson, MS 185 ..... 1
Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109
24. Director ..... 5
Turbopropulsion Laboratory, Code 67Sf Department of Aeronautics Naval Postgraduate School Monterey, California 93943No. Copies


## FILMED

4-85

