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Abstract. Surgical process analysis and modeling is a recent and important 
topic aiming at introducing a new generation of computer-assisted surgical 
systems. Among all of the techniques already in use for extracting data from the 
Operating Room, the use of image videos allows automating the surgeons' 
assistance without altering the surgical routine. We proposed in this paper an 
application-dependent framework able to automatically extract the phases of the 
surgery only by using microscope videos as input data and that can be adaptable 
to different surgical specialties. First, four distinct types of classifiers based on 
image processing were implemented to extract visual cues from video frames. 
Each of these classifiers was related to one kind of visual cue: visual cues 
recognizable through color were detected with a color histogram approach, for 
shape-oriented visual cues we trained a Haar classifier, for texture-oriented 
visual cues we used a bag-of-word approach with SIFT descriptors, and for all 
other visual cues we used a classical image classification approach including a 
feature extraction, selection, and a supervised classification. The extraction of 
this semantic vector for each video frame then permitted to classify time series 
using either Hidden Markov Model or Dynamic Time Warping algorithms. The 
framework was validated on cataract surgeries, obtaining accuracies of 95%. 
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1   Introduction 

The field of surgical process analysis and modelling has recently gained much 
interest. Due to the technologically rich environment of the Operating Room (OR), a 
new generation of computer-assisted surgical (CAS) systems has appeared. As a 
result of these new systems, a better management, safety, and comprehension of the 
surgical process is needed. For such purposes, systems should rely on a context-aware 
tool, which knows the score to be played for adapting assistance accordingly. The 
challenge is therefore to assist surgery through the understanding of OR activities, 
which could be introduced in CAS systems. Clinical applications also include 
evaluation and training of surgeons, the creation of context-sensitive user interfaces, 
or the generation of automatic post operative reports. 
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The goal is to collect signals from the OR and automatically derive a model. While 
it is possible to design such model manually, there are advantages of automating this 
process, mainly because manual work is time-consuming and can be affected by 
human bias and subjectivity. Due to the increasing number of sensors in the OR, the 
automatic extraction of data is now easier. Based on these signals, it's possible to 
recognize high-level tasks and hence avoid any additional installation of materials. 
Among all sensors, teams recently focused on videos coming from cameras already 
used in the clinical routine, which are a rich source of information. Compared to other 
data extraction techniques, it uses a source that does not have to be controlled by 
humans, automating the surgeons' assistance without altering the surgical routine. 

Current work has made progress in classifying and automating the recognition of 
high-level tasks in the OR based on videos. Using laparoscopic videos, Speidel et al. 
[1] focused on surgical assistance by identifying 2 scenarios: one for recognizing risk 
situations and one for selecting adequate images for visualization. Their analysis was 
based on augmented reality and computer vision techniques. Lo et al. [2] used vision 
to segment the surgical episode. They used color segmentation, shape-from-shading 
techniques, and optical flows for tracking instruments. These features, combined with 
other low-level cues, were integrated into a Bayesian framework. Klank et al. [3] 
extracted image features for scene analysis and frame classification. A crossover 
combination was used for selecting features, while Support Vector Machines (SVMs) 
were used for the classification. Blum et al. [4] automatically segmented the surgery 
into phases. A Canonical Correlation Analysis was applied based on tool usage to 
reduce the feature space, and the modeling of resulting feature vectors was performed 
using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). Bhatia  
et al. [5] analyses overall OR view videos. After identifying 4 states of a common 
surgery, relevant image features were extracted and HMMs were trained to detect OR 
occupancy. Padoy et al. [6] also used external OR videos to extract low-level image 
features through 3D motion flows combined with hierarchical HMMs to recognize 
on-line surgical phases. In robotic using the Da Vinci, Voros and Hager [7] used 
kinematic and visual features to classify tool/tissue interactions. Similarly, Reiley and 
Hager [8] focused on the detection of subtasks for surgical skill assessment. 

In a previous work [9], using neurosurgical videos, we proposed to extract surgical 
phases by combining a feature extraction process with HMM. In this paper, we extend 
this approach by proposing an application-dependent framework that can be adaptable 
to any type of surgeries. The idea is first to extract visual cues that can be helpful for 
discriminating high-level tasks. The visual cues are detected by specific image-based 
classifiers, obtaining a semantic signature for each frame. Then, these time series are 
aligned with a reference surgery using DTW algorithm to recognize surgical phases. 
Compare to traditional video understanding algorithms, this framework extracts 
application-dependant visual cues that are generic. The combination of image-based 
analysis and time series classification allows getting high recognition rates. We 
evaluated our framework with a dataset of cataract surgeries through cross-validation 
studies, and compared results of the DTW approach with the HMM classification. 
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2   Materials and Methods 

2.1   Application-Dependant Visual Cues 

Four classifiers based on different 
image processing tools were 
implemented (Fig. 1.). Each of 
these classifiers was related to one 
kind of possible visual cue. Visual 
cues recognizable through color 
were detected using a color 
histogram approach. For each 
shape-oriented visual cue such as 
the recognition of a specific 
object, a Haar classifier was 
trained. For texture-oriented visual 
cues, we used a bag-of-word 
approach using Scale Invariant 
Feature Transform (SIFT) 
descriptors, and finally for other 
visual cues that don't match these 
descriptions, we used an image 
classification approach including a 
feature extraction, selection and a 
classification with SVM.            Fig. 1. Framework of the recognition system 
 
Color-oriented visual cues: The color is one of the primary features used to represent 
and compare visual content. Especially, color histograms have a long history as a 
method for image description, and can also be used for identifying color shade 
through images. Here we used the principle of histogram classification to extract 
color-oriented visual cues, by creating a training image database composed of positive 
and negative images. Two complementary color spaces were extracted: RGB and 
HSV space. For quantifying similarities between histograms, we used the correlation. 
 
Shape-oriented visual cues: We used here a Viola-Jones object detection framework 
[10], mainly used to detect specific object within images. The basic idea is to create a 
classifier based on features selected by AdaBoost. Weak learners of the algorithm are 
based on the Haar-like rectangular features, comparing the sum of intensities in 
adjacent regions inside a detection window. Then, strong learners are arranged into a 
classifier cascade tree in complexity order. The cascade classifier is therefore 
composed of stages, each one containing a strong learner. During the detection phase, 
a window looks through the image with different scales and positions. The idea is to 
determine at each stage if a given sub-window may be the searched object or not. The 
false positive rate and the detection rate are thus the product of each rate at each stage.  
 
Texture-oriented visual cues: For whole-image categorization tasks, bag-of-visual-
words (BVW) representations, which represent an image as an orderless collection of 
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local features, have demonstrated impressive performances. The idea of BVW is to 
treat images as loose collections of independent patches, sampling a representative set 
of patches from the image, evaluating a descriptor vector for each patch 
independently, and using the resulting distribution of samples in descriptor space as a 
characterization of the image. A bag of keypoints is then expressed as a histogram 
recounting the number of occurrences of each pattern in a given image. For the 
texture analysis, we used the SIFT [11] descriptors. 
 
Other visual cues: We already presented this approach in a previous paper [12]. Each 
frame was represented by a signature composed of low-level spatial features (RGB 
space, co-occurrence matrix with Haralick descriptors [13], spatial moments [14], and 
Discrete Cosine Transform (DCT) [15] coefficients). This signature was then reduced 
by feature selection. For that purpose, we fused a filter and a wrapper approach by 
using the union of both selection results. The RFE-SVM [16] and the mutual 
information (MI) [17] were chosen for the wrapper and the filter method respectively, 
keeping the 40 first features. Finally, a SVM was applied to extract the binary cue. 

2.2   Time Series Classification 

A binary semantic signature was extracted from each frame, composed of the 
recognized visual cues. We used the DTW algorithm [18] to classify these time series 
in a supervised way. The objective of DTW is to compare two sequences by 
computing an optimal match. These sequences may be time-series composed of 
feature sequences sampled at equidistant points in time. A local cost measure is 
needed to compare features. We used here the Hamming distance. To compare each 
surgery, we created an average surgery with the method described in [19]. Every 
query surgery was first processed to extract visual cues, and then the time series were 
compared to the average one. Once warped, the phases of the average surgery are 
transposed to the query one. We also used the Itakura parallelogram global constraint 
that limits the warping path to be within a parallelogram. 

2.3   Data-Set 

Our framework was evaluated on cataract surgeries. 20 cataract surgeries from the 
Hospital of Munich were included to the study (mean surgical time: 15 min). Videos 
were recorded using the OPMI Lumera surgical microscope (Carl Zeiss) with a 
resolution of 720 x 576 at 25 fps. We downsampled the videos to 1 fps, and spatially 
downsampled by a factor 8 with a 5-by-5 Gaussian kernel. Eight surgical phases were 
defined (Fig. 2). Additionally, five binary visual cues were chosen: the pupil color 
range (orange or black), the presence of antiseptic, of the knife, of the IOL 
instrument, and the global aspect of the cataract. Combinations of these five binary 
cues are informative enough to discriminate all 8 phases. The pupil color range and 
the presence of the antiseptic were extracted using color histograms. The knife was 
recognized using a Haar classifier. The IOL instrument was not identifiable through 
only color or shape analysis, that's why we chose the fourth approach using global  
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spatial feature extraction and SVM classification. Finally, the global aspect of the 
cataract was recognized using the BVW approach. For this detection as well as for the 
pupil color range classification, a step of pupil segmentation was first applied, using 
preprocessing steps composed of dilation/erosion operations and a Hough transform. 

 

Fig. 2. Example of typical digital microscope images for the eight phases: 1-preparation, 2-
betadine injection, 3-corneal incision, 4-capsulorhexis, 5-phacoemulsification, 6-cortical 
aspiration of the remanescent lens, 7-implantation of artificial IOL, 8-adjustment of the IOL 

2.4   Cross-Validation 

The initial work of phase and visual cue labeling was performed for each video. From 
each video, we randomly extracted 100 frames, getting an image database composed 
of 2000 labeled images. We then evaluated both aspects of our framework. First, 
every visual cue detection was assessed trough 10-fold cross-validation studies, by 
dividing the image database into 10 random subsets. Then, we evaluated the global 
framework with the same procedure. At each stage, 18 videos (and their 
corresponding frames from the image database) were used for training and 
recognitions were made on the 2 others. For this validation, we computed the 
Frequency Recognition Rate (FRR). We also validated the added-value of the DTW 
algorithm, by comparing with an HMM approach, described in previous studies [9]. 

3   Results 

Results of the cross-validation studies (Tab. 1.) showed that very good accuracies 
were obtained for visual cues with quite low standard deviations. The best recognition 
was obtained for the detection of the antiseptic, with a recognition rate of 98.5%, 
whereas the lower rate was obtained for the IOL instrument recognition (94.8%). An 
example of a DTW computation is shown on Fig. 3. Small errors occur in the phase 
transitions, but the global FRR stay high (~93%). Tab. 2. shows the global accuracy 
of the framework, using DTW or HMM approach. The global validation study with 
DTW showed a mean FRR of 94.8%, with a min of 90.5% and a max of 98.6%.  
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Table 1. Mean accuracy and standard deviation (Std) for the recognition of the 5 binary visual 
cues, computed on the entire video dataset 

 Pupil color 
range 

Presence 
antiseptic 

Presence 
Knife 

Presence IOL 
instrument 

Cataract aspect 

Accuracy (%) 96,5 98,5 96,7 94,8 95,2 
Std (%) 3,7 0,9 3,4 1,1 1,8 

 

Fig. 3. Distance map of two surgeries and dedicated warping path using the Itakura constraint 
(up), along with the transposition of the surgical phases (down) 

Table 2. Mean, minimum and maximum FRR of the HMM and DTW studies 

 FRR (Std) Minimum (%) Maximum (%) 

HMM (%) 92,2 (6,1) 84,5 99,8 
DTW (%) 94,8 (3,7) 90,5 98,6 

4   Discussion 

4.1   Visual Cues and DTW 

Combining with state-of-the-art techniques of visual cues recognition, DTW showed 
very good performance and allows further promising works on high-level tasks 
recognition in surgery. The comportment in color, texture and shape of the visual cues 
are intuitively known, allowing the classifiers to be effective. This approach turns out 
to be as generic as possible, and adaptable to any type of surgery. However, one 
limitation of the DTW algorithm is that it can't be used on-line, because the entire 
surgery is needed in order to find the optimal path. However, first results showed that 
the DTW algorithm was quite better for classifying times series data than the HMM. 
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4.2   Microscope Video Data 

The real added value of the project lies in the use of microscope videos. This device is 
not only already installed in the OR, but it has also not to be monitored by the staff. 
Compared to other additional sensors, this allows the recognition to be fully automatic 
and independent. Moreover, microscope video data are reproducible within a same 
surgical environment and image features are invariant to task distortion [20]. Due to 
facilities differences between surgical departments, the system could not be flexible. 
The solution would be to train dedicated databases for each department, which would 
be adapted to the corresponding surgical environment and microscope scene layout. 

4.3   Clinical Applications 

The automatic recognition of surgical phases might be helpful for various 
applications. Purposes are generally to bring an added value to the surgery or to the 
OR management. This work could be integrated in an architecture that would take in 
real-time the microscope videos as input and transform it into information helping the 
decision making process, and driving context-sensitive user interfaces. Off-line, 
surgical videos would be very useful for learning and teaching purposes given their 
automatic indexation. Moreover, we could imagine the creation of pre-filled post 
operative reports that will have to be completed by surgeons. The recognition of 
lower level information, such as gestures, is difficult with microscope videos only. In 
future works, lower-level information such as surgeon's gestures will have to be 
detected to create multi-layer architectures.  

5   Conclusion 

We proposed in this paper a framework that automatically recognizes surgical phases 
from microscope videos. The first step of the framework is the definition of several 
visual cues for extracting semantic information and therefore characterizing every 
frame. Then, time series models allow an efficient representation of the problem by 
modeling time varying data. This association permits to combine the advantages of all 
methods for better modeling. We tested the framework on cataract surgeries, where 8 
phases and 5 visual cues were defined by an expert, getting global accuracies of 95%. 
This recognition process is a first step in the construction of context-aware surgical 
systems, opening perspectives for a new generation of CAS systems.  
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