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Locating the boundary of a head in a head-and-shoulders

image is an important problem in model based coding. An

approach to this problem using adaptive contour models or

'snakes' is presented. The paper provides a tutorial intro-

duction to the theory of snakes and shows in some detail how

they may be implemented using a finite difference method.

Some experimental results are presented showing snakes

locating the head in a set of test images.

Edge Detection
A classical problem in image processing is the detection,

location and description of the edges or boundaries of objects

in an image. Classical edge detection algorithms provide

information on edges in the form of an 'edge image' [1]. In

general they work by setting the grey level of each pixel in the

'edge image' to a value that is dependent on the magnitude of

the gradient of the grey level at the corresponding point in the

original image. The processing from this class of edge detector

is purely local. Such an edge detector has no concept of an

edge (Eg that edges are continuous, they tend to be smooth

almost everywhere) and just flags points where the gradient is

high, be they edges or noise.

The concept of an edge is far more than the presence of a high
gradient at a particular location; whether an edge is present or
not depends on the spatial distribution of the gradient highs
and lows, and this is information that the edge detector does
notexplicitly possess. However, when an edge-detected image
is viewed the edges are clearly visible. This is because our
visual system is able to 'post-process' the image and provide
us with the continuity information that is inherent in edges.
Note that this information is present in the edge image even
though the detector does not extract i t

A model-based coding technique has been developed which

requires conformation of a wire-frame model to the head of a

subject in a head and shoulders image [2], hence location of

the head boundary is of considerable importance. Traditional

edge detectors in general will not form an edge that is

completely closed (ie forms a loop around the head) but will

instead create a number of edge segments that taken together

outline the boundary of the head. A method is required that

processes the edge segments and generates a smooth extension

that describes the head boundary. Snakes appear to show

promise in this direction. The remainder of the paper describes

the theory of snakes and shows in detail how they may be

implemented. Section 7 shows some results of applying snakes

to the problem of finding head boundaries.

Snakes
Introduced by Kass et al [3], snakes are a method of attempting

to provide some of the post-processing that our own visual

system performs. A snake has built into it various properties

that are associated with both edges and the human visual

system (Eg continuity, smoothness and to some extent the

capability to fill in sections of an edge that have been

occluded).

A snake is a continuous curve (possibly closed) that attempts

to dynamically* position itself from a given starting position

in such a way that it 'clings' to edges in the image. The form

of snake that will be considered here consists of curves that

are piecewise polynomial. That is , the curve is in general

constructed from N segments {•*;(*),y,(.s)}i = 1, ...,N where

each of the x,(s) and yt(s) are polynomials in the parameter

s. As the parameter s is varied a curve is traced out.

Snake Properties
From now on snakes will be referred to as the parametric curve

u(s) = (x(s), y (s)) where s is assumed to vary between 0 and

1. What properties should an 'edge hugging' snake have?

* The use of the term 'dynamically' is strictly speaking incorrect. The way that snakes have been programmed in the past
make them appear as if they are moving in time, but this is just a product of the implementation. Snakes are solutions to
static problems; time does not enter into the formulation.
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(a) The snake must be 'driven' by the image. That is, it must

be able to detect an edge in the image and align itself with

the edge. One way of achieving this is to try to position

the snake such that the average 'edge strength' (however

that may be measured) along the length of the snake is

maximised. Ifthemeasureof edge strength is F (x, y) > 0

at the image point (x, y) then this amounts to saying that

the snake u(s) is to be chosen in such a way that the

functional

(b)

1 = 1

J F(x(s),y(s))ds

is maximised. This will ensure that the snake will tend to

mould itself to edges in the image if it finds them, but does

not guarantee that it will find them inthefirstplace. Given

an image the functional may have many local minima (a

static problem); finding them is where the 'dynamics'

arises. An edge detector applied to an image will tend to

produce an edge map consisting of mainly thin edges.

This means that the edge strength function tends to be zero

at most places in the image, apart from on a few lines. As

a consequence a snake placed some distance from an edge

may not be attracted towards the edge because the edge

strength is effectively zero at the snakes initial position.

To help the snake come under the influence of an edge

the edge image is blurred to broaden the width of the

edges.

If an elastic band were held around a convex object and

then let go, the band would contract until the object

prevented it from doing so further. At this point the band

would be moulded to the object, thus describing the

boundary. Two forces are at work here; firstly that

providing the natural tendency of the band to contract,

and secondly the opposing force provided by the object.

The band contracts because it tries to minimise its elastic

energy due to stretching. If the band were described by

the parametric curve u_(s) = (pc(s),y(s)) then the elastic

energy at any point f is proportional to

ds ds

dy

That is, the energy is proportional to the square of how

much the curve is being stretched at that point. The elastic

band will take up a configuration so that the elastic energy

along its entire length, given the constraint of the object,

is minimised. Hence the elastic band assumes the shape

of the curve wXy) = (x(s),y(s)) where u(s) minimises the

functional

^ Us ...(2)

subject to the constraints of the object. We would like

closed snakes to have analogous behaviour. That is, to

have a tendency to contract, but to be prevented from

doing so by the objects in an image. To model this

behaviour the parametric curve for the snake is chosen so

that the functional (2) tends to be minimised. If in addition

the forcing term (1) were included then the snake would

be prevented from contracting 'through objects' as it

would be attracted toward their edges. The attractive force

would also tend to pull the snake into the hollows of a

concave boundary, provided that the restoring 'elastic

force' was not too great.

...(1) (c) One of the properties of edges that is difficult to model is

their behaviour when they can no longer be seen. If we

were looking at a car and a person stood in front of it, few

of us would have any difficulty imagining the contours of

the edge of the car that were occluded. They would be

'smooth' extensions of the contours either side of the

person. If the above elastic band approach were adopted

it would be found that the band formed a straight line

where the car was occluded (because it tries to minimise

energy, and thus length in this situation). If however the

band had some stiffness (that is a resistance to bending,

as for example displayed by a flexible bar) then it would

tend to form a smooth curve in the occluded region of the

image and be tangential to the boundaries on either side

(figure 1).

object occluded
region

^ ^ flexible bar

\
y^f object

§y/ji

€̂
~~~~ elastic band

Figure 1 - Snake interpolating across an occlusion.

Again a flexible bar tends to form a shape so that its elastic
energy is minimised. The elastic energy in bending is
dependent on the curvature of the bar, that is the second
derivatives. To help force the snake to emulate this type
of behaviour the parametric curve u(s) = (x(s),y(s)) is
chosen so that it tends to minimise the functional

•••(3)

which represents a pseudo-bending energy term. Of

course, if a snake were made too stiff then it would be

difficult to force it to conform to highly curved boundaries

under the action of the forcing term (1).
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Three desirable properties of snakes have now been identified.

To incorporate all three into the snake at once the parametric

curve a(s) = (x(s),y(s)) representing the snake is chosen so

that it minimises the functional

-F(x(s),y(s)}ds ...(4)

Here the terms cu(s) > 0 and ($(«) £ 0 represent respectively the

amount of stiffness and elasticity that the snake is to have. It

is clear that if the snake approach is to be successful then the

correct balance of these parameters is crucial. Too much

stiffness and the snake will not correctly hug the boundaries;

too much elasticity and closed snakes will be pulled across

boundaries and contract to a point or may even break away

from boundaries at concave regions. The negative sign in front

of the forcing term is because minimising -JF(x,y)ds is

equivalent to maximising JF(x,y)ds.

As it stands, minimising the functional (4) is trivial. If the

snake is not closed then the solution degenerates into a single

point (x(s),y(s)) = constant, where the point is chosen to

minimise the edge strength F(x(s),y(s)). Physically, this is

because the snake will tend to pull its two end points together

in order to minimise the elastic energy, and thus shrink to a

single point. The global minimum is attained at the point in

the image where the edge strength is largest. To prevent this

from occurring it is necessary to fix the positions of the ends

of the snake in some way. That is, 'boundary conditions' are

required. It turns out to be necessary to fix more than just the

location of the end points and two further conditions are

required for a well posed problem. A convenient condition is

to impose zero curvature at each end point.

Similarly, the global minimum for a closed-loop snake occurs

when it contracts to a single point. However, in contrast to an

fixed-end snake, additional boundary conditions cannot be

applied to elliminate the degenerate solution. The degenerate

solution in this case is the true global minimum.

Formulation
Clearly the ideal situation is to seek a local minimum in the

locality of the initial position of the snake. In practice the

problem that is solved is weaker than this: Find a curve

= C*(.s), j?(5)) e H
2
[0,1] xH

2
[0,1] such that

= 0 v(5)e//0
2[0,l]x#0

2[0,l]
dl(u(s)+ev_(s))

...(5)

Here//2[0,1] denotes the class of real valued functions defined

on[0, l]thathave 'finite energy'in the second derivatives (that

is the integral of the square of the second derivatives exists

[4]) and //0
2[0,1] is the class of functions in H

2
[0,1] that are

zero at s = 0 and s = 1. To see how this relates to finding a

minimum consider tf (j) to be a local minimum and u(s)+ev($)

to be a perturbation about the minimum that san'fies the same

boundary conditions (ie v(0) = v(l) = 0). Clearly, considered

as a function of e, /(e)=/(£(«)+ev(s)) is a minimum at e=0.

Hence the derivative of/(e) must be zero at e = 0. Equation

(5) is therefore a necessary condition for a local minimum.

Although solutions to (5) are not guaranteed to be minima for

completely general edge strength functions [6], it has been

found in practice that solutions are indeed minima.

Standard arguments in the calculus of variations [6] show that
problem (3) is equivalent to another problem, which is simpler
to solve:

Find a curve (f(s)J(s)) e C4[0, l]xC4[0,1] that satisfy the

pair of fourth order ordinary differential equations

d
2 dH\ d

+
dl =o

= 0

...(6)

...(7)

together with the boundary conditions

ds
2

m,y"(O),x(i),

d
2
y'

. . . d
*

2

]?(1)

d
2
Jc

ds
2

given, and

ds
2

= 0

...(8)

The statement of the problem is for the case of a fixed-end
snake, but if the snake is to form a closed loop then the
boundary conditions above are replaced by periodicity
conditions. Both of these problem can easily be solved using
finite differences; a description of the approach is given in the
following section.

Finite Differences
The finite difference approach starts by discrea'sing the

interval [0,1] into N-l equispaced subintervals of length

h=jjz\ and defines a set of nodes {>,}'; f where st = (/ - l)ft.

The method seeks a set of approximations {(*„>,•)})** to

{(*(s,),y ($,))}! ;* by replacing the differential equations (6)

and (7) in the continuous variables with a set of difference

equations in the discrete variables [4]. Replacing the deriva-

tives in (6) by difference approximations at the point st gives
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*.-+l-•*,•) o ( • * . - * . - l )

ldF
= 0

<*,.*>

for i =3,4 AT-2

...(9)

where a , s o f a ) and ft = pX${). Similarly a difference

approximation to (7) may be derived. Note that the difference

equation only holds at internal nodes in the interval where the

indices referenced lie in the range ltoAT. Collecting like terms

together, (9) can be written as

where

. 2a,. . 2af_1 . ft

2a,+I 2a,. ft+

h*

idF^
fi
~~2dx

Discretising both the differential equations (6) and (7) and

taking boundary conditions into account the finite difference

approximations * = {*,} and y_ = {)>,} to {^(5,)} and {yfa)}

respectively satisfy the following system of algebraic equa-

tions

...(10)

The structure of the matrices K and the right hand vectors /

and g are different depending on whether closed or open snake

boundary conditions are used. If the snake is closed then

fictitious nodes at s0, £.„ sN+i and sN+2 are introduced and the

difference equation (9) is applied at nodes 0 ,1 ,N -I and N .

Periodicity implies that Xo=xN, x_t=xN_u xN+l=xt and

x2=xN+2. With these conditions in force the coefficient matrix

becomes

b, }

d2 e2

aN-l
 bN-\

 CN-\
 dN-\

aN
 bN

 CN j

and the right hand side vector is

(fv fv • • • >fNf

For fixed-end snakes fictitious nodes at s0 and sN+1 are

introduced and the difference equation (9) is applied at nodes

5, and sN+v Two extra difference equations are introduced to

approximate the zero curvature boundary conditions

= 0, namely x0 - 2x, + x2 = 0 and

xN_x-2xN+xN+l=0. The coefficient matrix is now

'c2-a2 d2 e2

b3 c3 d3 e3

a 4 b4 c4 d4 e4

a5 b5 c5 ds e5

aN-\

uN-2

W_1 t «

and the right hand side vector is

The right nan side vector for the difference equations corre-

sponding to (7) is derived in a similar fashion.

System Solution
The system (10) represents a set of non-linear equations that

has to be solved. The coefficient matrix is symmetric and

positive definite, and banded for the fixed-end snake. For a

closed-loop snake with periodic boundary conditions it is
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banded, apart from a few off-diagonal entries As the system
is non-linear it is solved iteratively. The iteration performed

is

(•*„ + ! -
for" =0,1,2,.

yj forn =0,1,2,.. .

where y > 0 is a stabilisation parameter. This can be rewritten
as

yJ forn =0,1,2,...

for«=0, l ,2 , . . .

This system has to be solved for each n. For a closed-loop
snake the matrix on the left hand side is difficult to invert
directly because the terms that are outside the main diagonal
band destroy the band structure. In general the coefficient
matrix K can be split into the sum of a banded matrix B plus
a non-banded matrix A; K = A + B. For a fixed-end snake the
matrix A would be zero. The system of equations is now solved
for each n by performing the iteration

for* =0,1,2,...

for* =0,1,2,...

The matrix ]B +-A is a band matrix and can be expressed as

a product of Cholesky [5] factors LL
T
. The systems are solved

at each stage by first solving

Results
A closed loop snake was implemented using the finite dif-
ference method and tested on a set of 28 facial images. The
images were initially processed using a Laplacian type of
operator [2]. The output of the operator is modified by a
sigmodal function which suppresses small levels of activity
due to noise as well as very strong edges while leaving
intermediate values barely changed. By this means, the snake
is presented with a smoother edge image which reduces its
tendency to oscillate about its equlibrium position. The
operation also enhances weak edge contours such as may
follow the line of the chin. The snake is initialised surrounding
the area of the image in which the head is expected to lie and
is then allowed to contract under its own internal elasticity.
The snake converged on the head boundary in 15 of the images.
In 9 images, it managed to locate most of the boundary but at
some point it became trapped on a feature external to the face
such as a collar. In the remaining 4 images, the snake
penetrated the head boundary and proceeded to contract into
the interior of the face. Some methods for overcoming these
problems are discussed in [2]. The initial position of the snake
for each image tested is shown in figure 2a. Various stages of
its contraction including the final equilibrium position are
shown in figures 2b,c,d. Figure 2e shows a case where the
snake has been trapped.

Fig 2a

followed by

/ • r ( * + i ) _ - ( * + ! )

TJ (* + D _ M* + l)

Notice that the Cholesky decomposition only has to be
performed once.
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Fig 2b

Fig 2c

Fig2e

Figures 2a-e - Operation of the snake - a) initial position of
snake, b) and c) intermediate stages of contraction, d) equi-
librium position of snake, e) case where the snake has been
trapped.
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