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Sustainable procurement is an emerging theme in the construction industry across the globe. However, organizations in the
construction industry often encounter impediments in improving environmental performance in construction projects, especially
in procurement. Besides its other facets, procurement of construction equipment is inherited to be capital-intensive and vital for
managing environmental concerns associated with built environment projects. In this regard, selection criteria in such pro-
curement processes are generally supportive of considering cost and engineering specifications as key parameters. However,
sustainability apprehensions in today’s Malaysian construction industry have mounted pressure on industry professionals to
rethink their equipment acquisition strategies. )e notion of green or sustainable procurement is still infancy for the Malaysian
construction industry and facing challenges for embedding it in the current procurement practices. )is research aims to address
these apprehensions by considering six main criteria, namely, life cycle cost (LCC), performance (P), system capability (SC),
operational convenience (OC), environmental impact (EI), and social benefits (SBs), and their 38 subcriteria towards procurement
of sustainable construction equipment. A multicriteria-based equipment selection framework on the triple bottom line of
sustainability in the context of the Malaysian construction industry has been developed and tested. )e application of analytical
hierarchy process (AHP) established the sustainable procurement index with a consistent sensitivity analysis results. As such, the
proposed procurement index shall help decision-makers in the process of the acquisition of sustainable construction equipment
in Malaysia.

1. Introduction

)e procurement of construction equipment is a complex
and multifaceted process [1]. )e main objective in such a
process is to arrive at the selection of the right equipment for
carrying out scheduled tasks with high efficiency, pro-
ductivity, and economic viability [2]. )ese facts are duly

supported in the Malaysian construction industry wherein
construction equipment selection is termed as a strategic
decision and has a high economic impact on the project
budget. Procurement process is characterised by supplier’s
commitment, purchase management, effective material
delivery management, and efficient bill of quantity [3]. )e
advent of technological needs in construction practices
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demands substantial usage ofmechanized equipment [4]. As a
result, it is quite complex to make a competitive and best
judgment during equipment acquisition [5]. In addition to
judgment, there is a lack of knowledge between industry
professionals and incompatibility with building components
leading to higher additional costs and material handling costs
[6]. A common practice which is adapted for selecting the
required choice is based on comparing available equipment
options with the intended tasks. Typically, such an approach is
meant for taking into account a list of tangible and intangible
factors such as cost, capacity, productivity, and efficiency [7].
In this way, an appropriate selection can be carried out on
varying criteria, which helps the outcome of the process [8].
Earlier, Gates and Scarpa [9] have classified the selection
procedure of earthmoving equipment into four criteria, which
include based on the spatial relationships, soil characteristics,
contract provision, and logistics. A spreadsheet-based model
has been developed by Chan and Harris [10] for the selection
of construction equipment. In their database, a detailed
technical criterion was developed for selecting backhoes and
loaders in earthmoving operations. However, this work of
Chan et al. [11] focused on material handling equipment
alone. Another knowledge-based approach by Haidaret al.
[12] established that the equipment selection process is a
function of knowledge and its subsequent optimization
through genetic algorithms. It involves the screening of
procured equipment from knowledge-based criteria. A de-
cision support framework for the selection of open-pit mining
equipment was also proposed in [13]. )is framework was
based on qualitative and quantitative factors. Goldenberg and
Shapira [14] developed the analytic hierarchy process (AHP)
framework, which is also based on tangible and intangible
factors. )e tangible factors included technical specifications,
site conditions, and cost consideration. However, intangible
factors are qualitative and include safety consideration,
company policies regarding equipment acquisition, market
conditions, and environmental constraints. )is is the first-
ever decision model found in the literature which has taken
into account the soft consideration towards the selection of
construction equipment for the building projects.

As Malaysia is planning for an increased number of
construction projects to meet its infrastructure needs, it
becomes crucial for the industry to understand and practice
sustainable procurement procedures for reducing the neg-
ative environmental impact and hazards. Sustainable pro-
curement is considered as a key practice of supply chains in
many industrialized countries [15]. In such developing
economies, sustainable procurement is considered as a key
practice of supply chains [16]. Malaysia is amongst the
world’s emerging economies. Despite that, it has received
little attention in addressing sustainability issues in the
supply chain. Works on sustainable procurement have been
performed in countries such as India [17], South Africa [18],
China [19], Saudi Arabia [20], and Brazil [21]. Existing
studies on sustainability procurement have been performed
particularly in the developed countries such as UK [22], the
USA [23], and Germany [24], but there is lack of studies in
theMalaysian context. As a consequence of new governance,
Malaysia is poised to work towards sustainability.

It is evident from the literature review presented above
that the equipment selection frameworks and their re-
spective criteria have been amply explored in various
contexts with a diversified scope. Most of these studies have
often considered the techno-economic aspects of equipment
selection rather than environmental and social concerns in
the procurement of the construction equipment. As such,
the agenda of sustainability in construction projects have
been ignored in the entirety. In the meantime, a new par-
adigm of green or sustainable construction emphasizes that
all aspects of the construction process should address the
triple bottom line of sustainability. It is, therefore, em-
phasized that the appraisal process of the equipment se-
lection must take into account the technical, economic,
environmental, and social considerations. )e rest of the
paper consists of several sections. Section 2 is about liter-
ature review, Section 3 provides details about material and
methods, Section 4 elaborates the case study, Section 5
presents and discusses results, Section 6 provides the sta-
bility analysis of the results, and finally, Section 7 concludes
the paper.

2. LiteratureReview Sustainable Criteria for the
Selection of Construction Equipment

)e concept of sustainability in the equipment selection is an
innovative idea for construction projects. )is concept is
associated with several factors such as technical, economic,
environment, and various social criteria of sustainable
construction [25]. )e fields of sustainable procurement and
industrial sustainability have attracted researchers consid-
erably and include topics such as sustainable supply chain
management [26]. Before taking into account the concept of
sustainability in the construction industry and subsequently,
in the selection of construction equipment, it is pertinent to
mention that such considerations have already become part
and parcel of various modern-day knowledge areas. )e
sustainability concept has origins in the term ‘‘sustainable
development” which emerged for the first-ever time in 1987
in the Brundtland Commission report of the United Nations
more commonly known as the United Nations Commission
on Sustainable Development (UNCSD). )e UNCSD sus-
tainability framework comprised of social, environmental,
economic, and institutional criteria, which further com-
prised of main and subcriteria. )is followed some formal
consideration of the sustainability aspect in various fields.
For example, Mihyeon Jeon and Amekudzi [27] have
addressed sustainability in the public transportation system
by defining indicators and metrics which emphasized that
consensus should be developed on the economy, environ-
ment, and social well-being of society while addressing the
sustainable trends in transportation. Singh et al. [25] have
also emphasized that sustainability criteria are not only
significant yet are very effective towards the formulation of
strategy and thus suggested that these criteria are valuable in
making policy in terms of environment and socio-economic
and technological improvements. )eir research work fur-
ther emphasized that an indicator of sustainable develop-
ment should be carefully selected, refined, and revisited in

2 Mathematical Problems in Engineering



order to maintain its contextual effectiveness. In another
study, Bradley Guy and Kibert [28] have established that
sustainability criteria provide a systematic approach to
measure the robustness of a system in a simple and rea-
sonable manner.

In the construction industry, various sustainability cri-
teria have been identified in the contemporary literature. For
example, Bourdeau [29] had identified economic, social, and
cultural criteria as the key elements of a sustainability
framework. It is emphasized in this study that priorities of
the sustainability criteria have geographical diversity, and
these may, as such, vary in a different locations and different
contexts. Singhet al. [30] have also identified the sustain-
ability criteria for a decision support system for the devel-
opment of the water utilities in the UK construction
industry.)is study identified two key factors which support
the identification of the sustainability criteria. As such, this
study emphasis that application of the set of criteria and its
practicability under the agenda of sustainability are two
main concerns. Furthermore, Akadiri and Olomolaiye [31]
have proposed comprehensive guidelines for the identifi-
cation of the sustainability criteria for the selection of
sustainable materials. According to this study, sustainability
criteria should be comprehensive, and it must cover four
basic categories, i.e., economic, environmental, social, and
technical aspects of sustainable construction. In addition to
this, the selected criteria should be applicable to a broad
range of options with transparency and practicability for
meaningful analysis [30, 32].

)e above presented precise literature review illustrates
that the majority of the researchers have a common opinion
on the fundamental aspects of sustainability. Economic,
environmental, social, and technical aspects are judged as
key sustainability criteria. )ese findings lay a foundation as
a guiding principle for making selection criteria for the
procurement of sustainable construction equipment. In this
context, Waris et al. [4] have developed broad-based, ef-
fective, and meaningful criteria which encapsulate the
fundamental aspects of sustainability in the selection of
construction equipment. )eir research has identified six
latent factors (herewith termed as main criteria) associated
with the thirty-eight subfactors (herewith termed as sub-
criteria). Table 1 illustrates the six dimensions of their cri-
teria’s, which are considered significant and used for the
development of a sustainability index towards the selection
of sustainable construction equipment.

2.1. Framework for Sustainable Procurement. Waris et al. [4]
derived sustainable criteria and subcriteria from the ranking
and factor analysis of the expert opinions from the
Malaysian construction industry; as such, it is important to
benchmark the scope of the criteria with the standard
equipment selection guidelines. In this regard, ISO-10987
[106] standard for the earthmoving machinery sustainably
was considered as a point of reference for the considered
sustainable criteria. )is standard has set out general
principles for addressing the sustainability of the earth-
moving machinery and played an important role by

establishing sustainable terminologies and identifying sig-
nificant sustainability factors for earthmoving machinery.
According to this standard, potential sustainability issues
relevant to the selection of earthmoving machines include
the following but not limited to

(i) Greenhouse gas/carbon emissions

(ii) Energy use

(iii) General processes during design, manufacture,
machine life, and end of life

(iv) Management system for sustainability communi-
cation, training, and development

(v) Training for machine use: worksite managers,
operators, and maintenance

Table 1: Indicators of sustainable criteria for construction
equipment.

Sustainable criteria References

Life cycle costing
Ownership cost [33–37]
Operational cost [38–40]

Performance
Equipment capacity [41–44]
Equipment reliability [44–47]
Equipment efficiency [47–50]
Equipment operational life [51–53]
Equipment productivity [54–56]
Fuel efficiency [35, 57]
Equipment age [58, 59]

System capability
Implement system [60, 61]
Traction system [62–64]
Power train system [65, 66]
Control and information system [67–69]
Equipment standardization [70, 71]

Operational governance
Site operating condition [72, 73]
Job and operational requirement [74, 75]
Spare parts availability [76, 77]
Repair and maintenance [36, 78]
Veracity of equipment [79, 80]
Haul road conditions [81, 82]

Environmental impacts
GHG emissions [35, 83]
Fossil fuel consumptions [84, 85]
Energy saving [86, 87]
Noise control [88, 89]
Vibration control [4, 90]
Quantity of black smoke emission [91, 92]
Oil and lube leakage control [93]
Use of sustainable fuels [94]
Biodegradable lubricant and hydraulic oil [95]
Environmental statutory compliance [93]

Social benefit
Availability of local skilled operators [93]
Operator health issues [93, 96]
Safety features [97, 98]
Operational proficiency [99, 100]
Training for operators [101, 102]
Relationship with dealers [103, 104]
Operator view and comfort [93, 105]
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(vi) Social aspect: health, safety, comfort, and
ergonomics

(vii) Noise and vibration (operator)

(viii) Impact on the environment: noise, dust, ground
disturbance, noise, and vibration (spectator)

(ix) Manufacturing and remanufacturing

(x) Dismantling and recycling

(xi) Emissions after treatment

(xii) Biofuels and oils

(xiii) Hazardous substances

A comparison of the derived sustainability criteria with
the ISO-10987 : 2017 sustainability factors confirms the extent
of the scope in addressing sustainability for construction
equipment. As illustrated in Figure 1, the sustainable criteria
can be viewed in the form of three core stages. )e primary
level is the foundation stone of the sustainable agenda for the
procuring organization and enclosed by the second level of six
main criteria, life cycle cost, performance, system capability,
operational convenience, environmental impact, and social
impact. )e outer core or third level reflects the factors which
form the subcriteria and influence the procuring decision for
achieving a sustainable strategy. )is sustainability frame-
work, which is derived from the literature and compared with
ISO-10987 (2017) standard, provides a balanced insight to
analyse the same by using a case study for developing sus-
tainable procurement index of construction equipment.

3. Method

3.1. Multicriteria Decision-Making (MCDM). MCDM is an
operational research method that is normally used for
dealing with complex decision problems. MCDM enables
the assessment and multiple expert judgments and is
employed to overcome the presence of imprecision and
vague information in the evaluation process [107]. Multi-
criteria decision-making (MCDM) requires more than one
set of criteria for establishing a qualitative judgment.
MCDM techniques select or rank the alternatives with
several decision criteria [108]. MCDM methods are well
capable of managing and understanding decision problems
by persuading participatory decision process. In addition to
this, it also makes it possible for the decision-makers to do
compromise or trade-offs between the different available
options. Hence, the quality of judgment is consequently
improved [109]. MCDM is classified into two broad classes,
i.e., Multiobjective decision-making (MODM) and Multi-
attribute decision-making (MADM). In MODM, the pri-
orities are first reduced to an optimal set rather than
considering all predetermined alternatives. )is can be done
by introducing constraints to the objective function. In this
way, a most agreeable elucidation could be pursued for the
desired solution. However, MADM generally includes such
attributes which are quantifiable. In such a case, this set of
attributes is being used for the evaluation alternatives [108].
Various researchers have applied MCDM methods in issues
pertaining to sustainable agenda as well since it greatly

supports the entire decision-making process by considering
the significant aspect referred as the triple bottom line of
sustainability which comprises of the people, profit, and
planet. MCDM has found its diverse application in the field
of sustainable energy planning and environment. Løken
[110] has applied MCDM for managing energy planning
issues in the local environment. Other researchers such as
Greening and Bernow [111] formulated energy and envi-
ronment policies by applying MCDM methods. However,
Pohekar and Ramachandran [112] have supported the
linking of multiple scenarios with MCDM. In addition to
this, Tsoutsos et al. [113] have also stated that MCDM is an
appropriate methodology for dealing with sustainable en-
ergy problems. According to them, MCDM is helpful as it
permits analysis and combination of a unilateral objective
with many alternatives. It encompasses the evaluation cri-
teria and corresponding weight of every alternative for a
meaningful output. AHP methodology has widely been used
for solving MCDM issues in different sectors such as edu-
cation, industry, and engineering [114–116]. )ere are
several MCDM techniques discussed in the literature.
However, each set of techniques has diverse characteristics
and application. In this study, the analytic hierarchy process
(AHP) method of the MADM branch of MCDM is used to
develop a sustainability assessment framework for the
sustainable selection of construction equipment.

3.2. Application of Analytic Hierarchy Process. Analytic hi-
erarchy process (AHP) is considered as the most effective and
commonly used method of MCDM in various studies of the
diverse field. AHP provides a convenient approach to analyse
decision problems. It is a method to evaluate subjective and
objective functions in multicriteria decision-making and help
users to reach on an agreeable solution. Another important
feature of AHP is to achieve consensus in the group decision-
making process. AHP has the ability to guide the decision-
makers for achieving the best and optimal judgment for their
problem rather than to get “correct” answers. It offers a broad
and balanced hierarchical structure for addressing decision
problems on a common goal and related criteria [117]. AHP
hasmultiple applications in diversified situations such as choice
making, rank orders, prioritization, and resource allocation.
AHP helps quantify the weight of the appraised criteria in the
form numeric basis. )e criteria weight of each element de-
termines its relative importance with the other elements of the
hierarchy. Hence, it facilitates the decision-makers to identify
and prioritize significant factors [31]. Besides this, the calcu-
lation of the inconsistency index is another salient feature of
AHP. It makes possible for the decision-makers to check the
consistency of their judgments. A higher value of inconsistency
index, i.e., greater than 0.10, should not be considered as
appropriate, and reevaluation is required in such calculations
[118]. One of the applications of AHP was included by Sub-
ramanian and Ramanathan [119] who have classified the AHP
into five broad areas of operation research which include
operation strategy, process, product design, planning and
scheduling resources, and project management andmanaging
the supply chain process as prominent decision areas. In the
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construction industry, AHP is considered as a rational tool
during project appraisals phases. It has been used in pre-
qualification of contractors and in selecting the potential
bidders. Besides this, AHP applications are also found in
material and equipment selection, conflict resolution, and
project team selection [120–122]. AHP has also been used in
information technology (IT) to evaluate the quality of soft-
ware systems [123]. Mathivathanan et al. [15] suggested ap-
plication of AHP in the decision-making of farming and
agricultural lands in developing countries. AHP has also been
applied heavily in macro and people-oriented issues together
with the supply chain management field [107]. AHP is
commonly being used in sound judgment decision-making
due to the linkage of linguistic data [124]. )e main steps
required in the formulation of AHP framework comprises of
hierarchy construction, pairwise comparisons, deriving rel-
ative weights, consistency checking, and synthesizing results
[118].

3.2.1. Step 1: Hierarchy Construction. )e construction of the
hierarchical structure is a foundation stone of AHP. It is
considered as an important step of AHP, and there is no
specialized approach for making a hierarchy.)e construction
of hierarchy is a top-down process and comprises of several
levels. )e elements of hierarchical levels are managed in such
a way that they are on the same scale and magnitude. )e
elements of the same hierarchy level must be correlated with
the other corresponding factors of the structure. )e forma-
tion of AHP hierarchy normally starts from the higher-level

goal and subdivides into lower-level decision factors. In any
AHP model, the number of hierarchical levels is a function of
problem intricacy and the degree of quantification for each of
the element. However, a typical AHPmodel comprises of four
levels. It starts from Level 1 as objectives or goal, its associated
main criteria as Level 2, subcriteria as Level 3, and Level 4 of
the hierarchy contains the choices of alternatives. Overall, the
criteria, subcriteria, and alternatives options are clustered for
achieving the top-notch goal or objective.

3.2.2. Step 2: Pairwise Comparison. After the hierarchy
construction, the next step is to establish the relative im-
portance of the main criteria and subcriteria by comparing
them in the form of pairs. It is an important step and
considered as a spine of AHP. During this process, the items
in each set of the hierarchy are compared with their cor-
responding group members. For this, a nine-point scale, as
shown in Table 2, is used to measure the relative importance
of the items. )e intensity of this scale ranges from one to
nine. )ere is no “correct” or “incorrect” choice when
comparing the items. Nevertheless, it is the choice of
preference between two items on the number scale. When
making a choice between two items, it should be noted that
which preference is more important over the other item on
the same level of the hierarchy. And the second key aspect is
to assign a numerical value to quantify the judgment [125].

)e pairwise judgments are recorded in a decision
matrix. An algebraic representation of a comparison matrix
is shown in the below equation:

Sustainable 
procurement of 

construction 
equipment

Environmental 
impact 

(EI)

Social benefit
(SB)

Life cycle cost 
(LCC)

Operational 
convenience 

(OC)

Performance 
(P)

System 
capability 

(SC)

(LCC)
Subcriteria

(P)
Subcriteria

(SC)
Subcriteria

(OC)
Subcriteria

(SB)
Subcriteria

(EI)
Subcriteria

Figure 1: Framework for sustainable procurement of construction equipment.
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a11 a12 · · · a1n

a21 a22 · · · a2n

⋮ ⋮ · · · ⋮
an1 an2 · · · ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

)e abovematrix “A” represents the judgments or relative
importance of alternatives as n × n matrix, where “n” is the
number of items being evaluated. )e entries of matrix “A,”
i.e., aij are the relative judgments between the two alternatives
i and j in such a way that the ith row corresponds to the jth
column of “A.” Equations show the characteristics as

aii � 1⟺ i � j, (2)

aij �
1

aij

, (3)

where aij can also be written as

aij �
wi
wj
, (4)

where wi shows the relative weight of the alternative i.

3.2.3. Step 3: Deriving Relative Weights. )is step requires
the estimation of relative weights for each of the criteria and
subcriteria of decision hierarchy. Researchers have developed
many approaches to estimate the relative weights from the
comparison matrix. However, eigenvector and logarithmic
methods are commonly used for deriving relative weights.
Saaty (1991), as a pioneer of AHP, has proposed the eigen-
vector method, which is derived from the matrix theory. In
this method, the corresponding weights of decision elements
are determined by comparing the normalized eigenvalue to
the principal eigenvalue [125]. As per equations (2)–(4), the
matrix “A” in equation (2) can be represented as

C A1 A2 A3 ….. An

A1 w1/w1 w1/w2 w1/w3 ….. w1/wn

A2 w2/w1 w2/w2 w2/w3 ….. w2/wn

A3

w3/w1 w3/w2 w3/w3 ….. w3/wn

′ ′

An wn/w1 wn/w2 wn/w3 ….. wn/wn

, (5)

here, the aim is to find eigenvalues “w,” where w is

w � w1, w2, w3, . . . , wn( , (6)

where “w” is the eigenvector and a column matrix.
Despite many other approaches, the geometric mean is

considered as the best choice for generating the eigen-
vector. It is calculated by multiplying each row of the above
matrix. As there is “n” number of entries, take the nth root
of the multiplication. Finally, the normalized roots are
obtained by deriving the total and subsequently divide
them by the total outcome. He has suggested that the ei-
genvalues are not consistent with this approach. So, the
consistency test must be carried out before finalizing the
results [125].

3.2.4. Step 4: Checking the Consistency Ratio. )emeasure of
“Consistency Ratio” (CR) is an important aspect of AHP.
)e optimal decision-making in pairwise comparison is
mainly associated with the permissible value of consistency
ratio. )is step acts as a gateway to observe the consistency
and inconsistency of the decision matrix. Normally, cardinal
and ordinal consistency checks are considered for pairwise
comparison. Ordinal consistency requires that if a is greater
than b and b is greater than c, then amust be greater than c.
However, cardinal consistency states that a stronger re-
lationship is required between the factors to be evaluated. In
this case, if a is two times more important than b and b is
three times more important than c, then a should be six
times more important than c. In order to calculate the
consistency ratio, an index was formulated to measure the
consistency of weights. In this regard, the acceptable range of
CR should be equal to or less than 0.10. However, a revision
in the pairwise comparison is compulsory, if CR is greater
than this boundary value [125].

3.2.5. Step 5: Synthesizing Results. )e final step starts from
the summation of relative values for each set of alternatives
on all hierarchy levels. )ese values are combined together
to establish the overall score or criteria weight of each
alternative. As an outcome, the normalized local priority
vectors are obtained due to this additional function. Now,
the final priorities are synthesized by aggregating the
product of local priority vector and the relative weights of
the respective alternative. )e process of aggregation starts
from the bottom level of the hierarchy and proceeds up-
wards to the highest level goal. It is pertinent to note that
summation of all weights of alternatives and their corre-
sponding importance are equal to 1.00. )e following
equation shows a simplified arithmetical formulation for
aggregation of criteria weights at different levels of
hierarchy:

final weight of criteria

�[(weight of alternatives w.r.t criteria)
×(importance of criteria)].

(7)

)is study has adopted the AHP technique for the
formulation of an integrated framework. )e process flow of
the proposed AHP-based decision support framework is

Table 2: Numeric comparison scale.

Intensity of importance Definition

1 Equal importance
2 Weak or slight
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong
8 Very very strong
9 Extreme importance
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outlined in Figure 2 and illustrates a top-down relationship
between sustainable evaluation criteria and AHP.

)is framework indicates that sustainable criteria pro-
vide an overall objective and relevant alternatives to develop
matrixes for pairwise comparison. Now, these matrixes help
determine the normalized weights of each alternative (i.e.,
main criteria and subcriteria). At this stage, the measure-
ment of consistency ratio (CR) is a gateway for the further
appraisal of the alternatives. Any alternative having the CR
value less than 0.10 shall need reassessment with respect to
each other. After calculating the consistent, normalized
weights of each alternative (i.e., CR> 0.10), the overall
weight is determined along with the combined value of
achieved sustainability by the corresponding option. Lastly,
based on the final sustainability score, the most suitable and
sustainable equipment is selected.

4. Case Study

Case studies allow deeper insights into the real-life problem
and can be supportive in determining the empirical in-
vestigation through qualitative means [126]. )is approach
also provides an effective way to describe theories where
insufficient information is available. Various earlier studies
have also considered a case study-based approach in dealing
with project planning, design, construction, economic is-
sues, and to study the political phenomenon [127]. )e case
study presented here is based on an intended scenario which
will implement the AHP technique on the established main
criteria and subcriteria for selection of sustainable con-
struction equipment. )is case study describes a situation
which requires the selection of sustainable earthmoving
equipment, i.e., a wheel loader for performing earthmoving
operations such as hauling, digging, and demolishing. It is
significantly important equipment used during the con-
struction of roads and highways. However, they produce
GHG emissions [128]. Generally, in a construction project, it
is the responsibility of a contractor to utilize necessary
equipment and machinery for undertaking complex activ-
ities at the site. Accordingly, during the project bidding
process, contractors list down the anticipated arrangement
of equipment and machinery in their technical bid.
Equipment procurement for the project is often a huge
capital investment by the contractor. As such, contractors
are always concerned that procured equipment must have a
high rate of utilization, greater efficiency along with mini-
mum downtime, and repair cost. However, if these factors
were to add up with the agenda of sustainability, the situ-
ation becomes multifaceted and complex to select the best
choice among many alternatives. In such a case, the con-
tractor’s management team is responsible for deciding on
the multicriteria basis. )us, ensuring that the company’s
investment is being rationally spent on procuring such heavy
equipment fulfills operational needs and meets the triple
bottom line of sustainability.

)ree alternatives of the front-wheel loader (a type of
earthmoving equipment) for carrying out earthwork oper-
ations on an infrastructure project have been chosen for this
case study. )e brief synopsis is discussed below.

4.1. AlternativeA. )is model of the bucket wheel loader is
designed and manufactured by “XX” Inc., and it is well
capable of doing earthmoving operations with low cost.
)e most noteworthy aspect of this model is its ability to
protect the environment. It has met the Tier 3 emission
standard and complies with environmental regulatory
requirements. It lowers routine maintenance while
eliminating waste to the environment. )e use of a load-
sensing steering system results in a more efficient power
system, thus reducing the reducing fuel consumption and
higher production. Besides this, demand-driven cooling
fans and automatic engine idle shutdown system help
more efficient fuel management, which gradually reduces
the level of emissions.

4.2. Alternative B. )is model comprises of environment-
friendly engine’s, i.e., turbo-charged low emissions and
high torque near idle rpm gives the low fuel consumption,
and designed and manufactured by “YY” Ltd. Its elec-
tronically controlled and hydraulically driven cooling
fans only operates at the desired level and economize fuel
usages. Its turbo-charged engine meets all governing
emission requirements according to Stage IIIA in Europe
and Tier 3 in the USA. )e advanced fuel injection and
electronic engine control make efficient use of every drop
of fuel. )e smart system for internal exhaust gas
recirculation reduces Nox emissions by lowering peak
combustion temperatures. In addition to this, load-
sensing hydraulics and steering systems contribute to
lower fuel consumption. It also allows provisions for
biodegradable hydraulic oil that supports environment-
friendly operations.

4.3. Alternative C. )is innovative model “ZZ” of the bucket
wheel loader offers a wide variety of operational features that
support high productivity with minimizing environmental
impacts. )is model complies with the latest EU regulations
on emission standards. It is fitted with a muffler filter, ox-
idation catalyst, and exhaust temperature control system
which capture air pollutants and automatically burn down at
desired temperature. )is system is supported by variable
geometry turbocharger that encourages optimal combustion
and high volume-cooled EGR (exhaust gas recirculation),
which also helps reduce nitrous oxide levels. Besides this, the
use of optional autoengine shutdown function helps prevent
fuel wastage by stopping the engine while the wheel loader is
long idling.

)e three equipment choices described above are
summarized in Table 3 and will be evaluated for the selection
of sustainable earthmoving equipment, i.e., wheel loader.
Since, the three alternatives have a different purchase price,
manufacturer, and somewhat specifications too. )e ap-
plication of the AHP technique will help in the selection of
the most sustainable wheel loader for this scenario, meeting
the triple bottom line of sustainability. )e subsequent
sections will illustrate the process of application of AHP
methodology concerning the decision-making problem of
this paper case study.

Mathematical Problems in Engineering 7



4.4. Hierarchy of Decision Problem. )is is the first step
towards the mathematical formulation of the AHP frame-
work. )e user has to define the ultimate goal, main criteria,
and subcriteria. Figure 3 shows the hierarchy of the decision
problem. It is evident from Figure 3 that at the top of all
levels is the goal which is the selection of sustainable con-
struction equipment followed by the next level of main
criteria and subsequently subcriteria all altogether related to
the three alternatives All three alternatives shall be weighted
based on each of subcriteria of the main criteria and sub-
sequently on the basis of each main criterion to provide the
alternative weight as described in the following sections of
the paper.

4.5. Data Collection for Pairwise Comparison. Now the next
step for developing the AHP framework is to collect data

for the pairwise comparison of all alternatives on each
hierarchy level. In order to achieve this aim, a question-
naire based on Saaty’s scale of comparison was developed to
undertake the survey. )e range of this scale varies from
one to nine, which is generally found very appropriate for
pairwise comparison. )is scale measures the superiority of
each element with respect to the other elements of the
hierarchy. )e limitation of the Saaty scale is that it only
provides a comparison of one set of criteria at a time.
Guidelines on answering instruction and examples had
been explicitly mentioned in the questionnaire. As regards
the sample size, it may be noted that AHP is a subjective
approach for addressing specific issues. )erefore, a survey
under this methodology does not require a large sample
size for analysing data. A higher degree of inconsistency is
usually associated with large sample size. )e relevant
literature wherein AHP surveys had also been undertaken
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considerably comprised of small sample size since it is more
appropriate and reliable for focusing on decision problem
being studied. )e tendency to receive arbitrary feedbacks
in such case shall be low in this case, thus resulting in a high
degree of consistency. Accordingly, the questionnaires
were sent to the ten respondents of G7 Class A category of
Malaysian contractors who all were well experienced and
had sufficient knowledge of sustainable construction. )ese
respondents of a questionnaire survey of this study were all
from the private sector and had relevant qualification and
satisfactory work experience as well. All the participants in
the survey had more than 20 years of field experience and
had a minimum of bachelor’s degree. Some of these re-
spondents had also acquired additional postgraduate
qualifications. )e respondent’s credentials show their

involvement in different infrastructure projects such as
roads, highways, bridges, and dams. )is information
pertaining to the respondent is significant to suggest that
questionnaires are filled by the experienced and senior
professionals having vast experience in construction
projects. )eir opinions and views are quite important and
reliable in order to establish the findings.

5. Results and Discussion

In this section, based on AHP steps for the case study
discussed and basic model developed in Section 4 of this
paper, the results pertaining to pairwise comparison of main
and subcriteria and pairwise of comparison of alternative
and synthesized results are presented.

Table 3: Summary of alternatives option.

Description Alternative A Alternative B Alternative C

Project type Infrastructure Infrastructure Infrastructure
Operation type Hauling/digging/demolishing Hauling/digging/demolishing Hauling/digging/demolishing
Equipment type Earthmoving Earthmoving Earthmoving
Category Wheel loader Wheel loader Wheel loader
Manufacturer XX YY ZZ
Model XX 00 YY 00 ZZ 00
Mode of payment 100% buy 100% buy 100% buy
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Figure 3: Hierarchy of the decision problem.
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5.1. Pairwise Comparison ofMainCriteria. )e judgments of
the respondents were listed in the comparison matrix and
subsequently checked for the consistency ratio. According to
Saaty and Vargas [118], the judgments were accepted if the
consistency ratio (CR) is equal to or less than 0.10. Out of ten
respondents, the judgments of two of them were not in the
desired range of consistency as such their feedbacks were
sent them back and requested for a careful examination of
the judgments. After receiving consistent judgments from all
the respondents, pairwise comparisons were performed, and
the aggregated results were produced by using the geometric
mean method. Table 4 shows the principal comparison
matrix and their corresponding priority vectors with respect
to the overall objective of the decision problem.)e diagonal
values of the matrix are equal to 1. It shows that the weight of
criteria with respect to itself is always 1. )e value of CR for
this matrix is 0.03. As this ratio is less than 10%, the matrix is
taken as consistent for further consideration and compar-
isons.)e numerical representations of judgments displayed
in bold numbers in the matrix signify that the row element is
preferred to the column element. While the judgments
shown in grey cells revealed that both the row and column
elements are judged as equal in importance. It is important
to note that numerical representation of a judgment does not
necessarily mean that one element is preferred to the other
by the numerical amount instead the relative priority vectors
for all main criteria carry actual importance which is cal-
culated and tabulated in the last column of the comparison
matrix. It shows that life cycle cost (LC) has the highest value
of priority vector, followed by the performance (P) and
system capability (SC).

5.2. Pairwise Comparison of Subcriteria. Following having
judgments in the form of priority vector of main criteria, the
next step is to commence the pairwise comparison of
subcriteria of respective main criteria. )is subcriteria
comparison process flow is in a similar fashion as that of
performed for developing the matrix as a priority vector and
consistency ratio for the main criteria in Section 5.1.
Tables 5–10 show the pairwise comparison matrix for all of
the 38 subcriteria with their corresponding elements (note:
italic numbers show that the column elements are preferred
with respect to the corresponding row elements). )ese
matrices 3 to 8 illustrated the pairwise comparison of all
subcriteria of six main criteria.)e CR values of the matrices
are well below 0.10 range. Hence, the judgments are con-
sidered as reliable for the final pairwise comparison of
alternatives.

5.3. Pairwise Comparison of Alternatives and Synthesizing
Results. In this case study, three different types of wheel
loaders were considered as possible alternatives for the
decision-makers. )ese wheel loaders are from different
manufacturers and have varying specifications. During the
survey questionnaire, the respondents were explicitly in-
formed about the manufacturer and model information. In
order to maintain the confidentiality of the manufacture
trademark and model, this research paper has used the
letters XX, YY, and ZZ to represent these three alternatives
(with a different manufacturer). )e local criteria weights of
the alternatives are shown in Table 11. Following all the
pairwise comparison process, the normalized priority vec-
tors, i.e., the rating of each criterion, subcriteria, and al-
ternatives, that were synthesized to obtain global weights are
also shown in Table 11. A local weight is associated with the
single criteria and a derivative of a distinct judgment.
However, the global weight of the subcriteria is calculated by
the multiplication of its local priority vector with the cor-
responding local weight of the main criteria. )is same
approach is used for determining the global weights of al-
ternatives. )ese calculations were performed using Expert
Choice 11.5 version. )is software package provides two
synthesis modes, i.e., distributive and ideal. An Ideal syn-
thesis mode is also known as “open system” which assigns
the full weight of each covering objective to the best (highest
priority) alternative for each covering objective. )e other
alternatives receive weights under each covering objective
proportionate to their priority relative to the best alternative
under each covering objective.)ese weights or priorities for
all the alternatives are then normalized so that they sum to
1.0. On the contrary, the distributive mode is called “closed
system,” which distributes the weight of each covering
objective to the alternatives in direct proportion to the al-
ternative priorities under each covering objective.)e global
weights of the criteria are synthesized to establish the overall
priorities for the selection of the sustainable alternative, as
shown in Table 11.

It is evident from the results tabulated in Table 11, which
are based on the AHP methodology, that out of three
available alternatives, the wheel loader model “YY” has
attained highest priority score of 0.368 and thus judged as

Table 4: Comparison matrix and priority vector for the main criteria.

Main criteria LCC P SC OC EI SB Priority vector CR

LCC 1 3 3 3 4 4 0.385

0.03

P 1 1 2 2 3 0.176
SC 1 2 2 2 0.165
OC 1 2 3 0.128
EI 1 1 0.077
SB 1 0.069

Table 5: Comparison matrix and priority vector for life cycle cost.

Sub criteria LCC1 LCC2 Priority vector CR

LCC1 1 1 0.5
0.00

LCC2 1 0.5
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sustainable earthmoving equipment. )is judgment of the
“YY” manufacturer model of earthmoving equipment being
sustainable is based on the fact that it has performed well on
the majority of the sustainability criteria of this study. )e
“YY” manufacturer model has exceptionally performed well
on operational convenience, environment, and social ben-
efits sustainability criteria. )e alternatives “ZZ” (priority
score� 0.347) and “XX” (priority score� 0.286) have lower
performance on the sustainability criteria compared to the
“YY” model, as such ranked as second and third best al-
ternatives, respectively.

)ese results are extremely significant both with respect
to the methodology and on the basis of the sustainability
criteria of this study. )e sensitivity analyses of these results
are further undertaken to determine their stability and
robustness in the following section.

6. Stability Analysis

)e outcome of the AHP framework is a function of hier-
archical structure and weightage of the relative judgments as
assigned by the decision-makers. It has been observed that a
change in hierarchy and judgments may directly affect the
framework outcome. )erefore, the robustness of the AHP
framework was duly verified by performing the stability
analysis.)e stability of the ranking was checked for different

projected scenarios. To this end, dynamic sensitivity
analyses were undertaken by changing the priorities of
the objectives and to determine how these changes affect
the ranking of the alternatives. )e dynamic sensitivity
analyses were accomplished by increasing or decreasing
the criteria weights, which would result in the change of
priorities of the alternatives. In this study, seven sce-
narios were taken into consideration and simulated for
different values of sustainability criteria.

6.1. Scenario 1. In the first simulated scenario, the weights of
all the six main criteria were kept uniform in the left-hand
column of the dynamic, sensitive graph, as shown in Figure 4.

It is observed that by keeping the uniform weights of
the main criteria, the final ranking of the alternative re-
mains unchanged, as shown in Figure 4, which establishes
the internal consistency of the questionnaire survey and
subsequent pairwise comparison undertaken using AHP
methodology.

6.2. Scenario 2. In the second scenario, LCC main criteria
have been assigned a weight of 50%, which alters the
weights of the other criteria, as shown in Figure 5. How-
ever, as evident, the ranking of the alternative is still
consistent.

Table 6: Comparison matrix and priority vector for performance.

Sub criteria P1 P2 P3 P4 P5 P6 P7 Priority vector CR

P1 1 2 1 1 1 1 1 0.122

0.03

P2 1 3 3 1 2 1 0.232
P3 1 1 2 2 1 0.117
P4 1 2 2 1 0.117
P5 1 2 1 0.183
P6 1 1 0.093
P7 1 0.138

Table 7: Comparison matrix and priority vector for system capability.

Sub criteria SC1 SC2 SC3 SC4 SC5 SC6 Priority vector CR

SC1 1 1 1 1 2 1 0.143

0.03

SC2 1 2 1 1 2 0.163
SC3 1 2 2 2 0.100
SC4 1 1 1 0.178
SC5 1 2 0.231
SC6 1 0.185

Table 8: Comparison matrix and priority vector for operational convenience.

Sub criteria OC1 OC2 OC3 OC4 OC5 OC6 Priority vector CR

OC1 1 3 1 1 1 1 0.138

0.04

OC2 1 1 1 1 1 0.203
OC3 1 2 1 1 0.186
OC4 1 2 1 0.168
OC5 1 1 0.146
OC6 1 0.159
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Table 9: Comparison matrix and priority vector for environmental impact.

Sub criteria EI1 EI2 EI3 EI4 EI5 EI6 EI7 EI8 EI9 EI10 Priority vector CR

EI1 1 3 3 2 2 3 3 1 1 2 0.046

0.03

EI2 1 1 2 2 2 2 2 2 1 0.157
EI3 1 2 2 2 2 2 2 1 0.157
EI4 1 1 1 2 2 2 1 0.087
EI5 1 1 2 2 2 2 0.096
EI6 1 1 2 2 2 0.108
EI7 1 5 5 2 0.155
EI8 1 1 2 0.050
EI9 1 2 0.050
EI10 1 0.093

Table 10: Comparison matrix and priority vector for social benefits.

Sub criteria SB1 SB2 SB3 SB4 SB5 SB6 SB7 Priority vector CR

SB1 1 3 5 5 1 1 1 0.062

0.09

SB2 1 4 4 1 2 1 0.098
SB3 1 4 4 6 1 0.354
SB4 1 3 5 1 0.217
SB5 1 1 1 0.076
SB6 1 1 0.062
SB7 1 0.130

Table 11: Overall ratings of sustainable criteria for developing sustainable procurement index.

Main criteria
Local weight

(1)
Subcriteria

Local weight
(2)

Global weight
(3)

Local weight of
alternative

Global weight of
alternative

XX YY ZZ XX YY ZZ

Life cycle cost (LCC)
0.385 LCC1 0.500 0.193 0.333 0.333 0.333 0.064 0.064 0.064

LCC2 0.500 0.193 0.333 0.333 0.333 0.064 0.064 0.064

Performance (P)

0.176 P1 0.122 0.021 0.168 0.349 0.484 0.004 0.007 0.010
P2 0.232 0.041 0.169 0.443 0.387 0.007 0.018 0.016
P3 0.117 0.021 0.169 0.387 0.443 0.004 0.008 0.009
P4 0.117 0.021 0.333 0.333 0.333 0.007 0.007 0.007
P5 0.183 0.032 0.169 0.443 0.387 0.005 0.014 0.012
P6 0.093 0.016 0.169 0.387 0.443 0.003 0.006 0.007
P7 0.138 0.024 0.333 0.333 0.333 0.008 0.008 0.008

System capability (SC)

0.165 SC1 0.143 0.024 0.260 0.413 0.327 0.006 0.010 0.008
SC2 0.163 0.027 0.260 0.413 0.327 0.007 0.011 0.009
SC3 0.100 0.017 0.260 0.413 0.327 0.004 0.007 0.006
SC4 0.178 0.029 0.260 0.413 0.327 0.008 0.012 0.009
SC5 0.231 0.038 0.169 0.443 0.387 0.006 0.017 0.015
SC6 0.185 0.031 0.333 0.333 0.333 0.010 0.010 0.010

Operational convenience
(OC)

0.128 OC1 0.138 0.018 0.163 0.540 0.297 0.003 0.010 0.005
OC2 0.203 0.026 0.169 0.443 0.387 0.004 0.012 0.010
OC3 0.186 0.024 0.333 0.333 0.333 0.008 0.008 0.008
OC4 0.168 0.021 0.333 0.333 0.333 0.007 0.007 0.007
OC5 0.146 0.019 0.196 0.493 0.311 0.004 0.009 0.006
OC6 0.159 0.020 0.200 0.400 0.400 0.004 0.008 0.008

12 Mathematical Problems in Engineering



6.3. Scenario 3. In this scenario, as shown in Figure 6, the
alternative ranking remains stable despite the 50% impor-
tance weightage assigned to the performance (P) criteria.

6.4. Scenario 4. In this scenario, 50% importance level is
assigned to system capability (SC) criteria. )e graphical
representation in Figure 7 yet shows YY alternative as a
sustainable option.

6.5. Scenario 5. In this case, a 50% importance level is
assigned to operational convenience (OC) criteria. )e
graphical representation in Figure 8 shows that YY

alternative still attains the highest priority score in this case
as well.

6.6. Scenario 6. In Figure 9, environmental impact (EI)
criteria have been assigned at 50% importance level. As
depicted from the graph of Figure 9, the trend of right-hand
bars is consistent with the preceding scenarios.

6.7. Scenario 7. Finally, in this scenario, social benefit (SB)
has been assigned a 50% importance level, and the trend of
alternatives illustrated in Figure 10 shows the consistency of
the ranking of alternatives.

Table 11: Continued.

Main criteria
Local weight

(1)
Subcriteria

Local weight
(2)

Global weight
(3)

Local weight of
alternative

Global weight of
alternative

XX YY ZZ XX YY ZZ

Environmental impact (EI)

0.077 EI1 0.046 0.004 0.250 0.500 0.250 0.001 0.002 0.001
EI2 0.157 0.012 0.250 0.500 0.250 0.003 0.006 0.003
EI3 0.157 0.012 0.250 0.500 0.250 0.003 0.006 0.003
EI4 0.087 0.007 0.500 0.250 0.250 0.004 0.002 0.002
EI5 0.096 0.007 0.500 0.250 0.250 0.004 0.002 0.002
EI6 0.108 0.008 0.200 0.400 0.400 0.002 0.003 0.003
EI7 0.155 0.012 0.333 0.333 0.333 0.004 0.004 0.004
EI8 0.050 0.004 0.250 0.500 0.250 0.001 0.002 0.001
EI9 0.050 0.004 0.333 0.333 0.333 0.001 0.001 0.001
EI10 0.093 0.007 0.333 0.333 0.333 0.002 0.002 0.002

Social benefits (SBs)

0.069 SB1 0.062 0.004 0.333 0.333 0.333 0.001 0.001 0.001
SB2 0.098 0.007 0.200 0.400 0.400 0.001 0.003 0.003
SB3 0.354 0.024 0.163 0.297 0.540 0.004 0.007 0.013
SB4 0.217 0.015 0.260 0.413 0.327 0.004 0.006 0.005
SB5 0.076 0.005 0.333 0.333 0.333 0.002 0.002 0.002
SB6 0.062 0.004 0.143 0.429 0.429 0.001 0.002 0.002
SB7 0.130 0.009 0.192 0.634 0.174 0.002 0.006 0.002

Total 1.000
Priority level 0.286 0.368 0.347
Alternative ranking 3 1 2

0

16.7% life cycle cost 27.5% XX

37.7% YY

34.8% ZZ

16.6% performance

16.7% system capability

16.7% operational convenience

16.7% environmental impact

16.6% social benefit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.40.30.1 0.5

Figure 4: Dynamic sensitivity graph for AHP framework (with all criteria equal weight).
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Figure 5: Dynamic sensitivity graph for AHP framework (with 50% LCC weight).
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Figure 6: Dynamic sensitivity graph for AHP framework (with 50% performance weight).
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Figure 7: Dynamic sensitivity graph for AHP framework (with 50% SC weight).
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Figure 8: Dynamic sensitivity graph for AHP framework (with 50% OC weight).
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Figure 9: Dynamic sensitivity graph for AHP framework (with 50% EI weight).
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Figure 10: Dynamic sensitivity graph for AHP framework (with 50% SB weight).
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It is, therefore, evident from the sensitivity analysis
undertaken under all of above scenarios of this study that as
the priority of one objective changes, the priorities of the
alternatives decrease or increase in proportion to their
original value. However, the ranking of the alternative re-
mains unchanged in all these scenarios. )e bar chart
analysis also indicates that options YY and ZZ are very
much close to each other as compared to the option XX.
)us, the assigned criteria weights and indexes are con-
sidered as stable. Besides this, these analyses also suggest
that the alternatives YY and ZZ are evaluated as close
alternatives for the selection of the sustainable wheel
loader.

7. Conclusions

)e concept of sustainable or green procurement is one of
emerging and now largely accepted theme across the globe.
However, in Malaysia, this concept was only first outlined
in the 10th Malaysian Plan. Since then, the government is
concerned that sustainability parameters must be embed-
ded in the national strategy for achieving Malaysia’s so-
cietal and economic development. It would after all lead
towards a sustainability culture in the country and ensure
accelerated economic growth without compromising the
environment. As such, the emphasis has been across the
board at government level to integrate sustainability as-
pects in the procurement of products and services for
future construction projects. However, subsequent to these
developments, the focus of sustainability in the Malaysian
construction industry is more inclined towards the material
selection, structure design, and materials recycling rather
than environmental concerns. As such, evidently a gap
exists between the appraisal of the conventional approach
of equipment selection and inclusion of sustainable con-
cept in the decision-making during the procurement phase
of a project. In order to address this gap, this study has
attempted to establish a comprehensive link by proposing
an AHP-based assessment framework for developing
sustainable procurement index for the procurement of
earthmoving equipment. )is framework is based on a
multilayered hierarchy and comprised of six main criteria
and thirty-eight subcriteria. )e AHP evaluation further
measured the indicative sustainable procurement index
values for the Malaysian construction industry. Among
them, it is found that life cycle cost is an important decision
factor in the selection of sustainable earthmoving equip-
ment and has a percentage weightage 38.5%. It has also the
highest value of priority vector, which represents that
decision-makers have considered it significantly more
important. It is followed by other main criteria, i.e., per-
formance (17.6%), system capability (16.5%), and opera-
tional convenience (12.8%), have higher values of
importance. )e indexes weights for environmental impact
and social benefits are relatively lower and acquired a
priority score of 7.7% and 6.95%, respectively. )e final
results of the multicriteria-based AHP framework revealed
that alternative “YY” is a best-evaluated option for
achieving sustainable practices during the desired

earthmoving operations. It offers versatile features in-
cluding high efficiency with low cost of operation, main-
tenance, high hour machine life standards, and multiple
rebuild options for continued uptime and long machine
life. Besides this, it has many other benefits for the operator
as it minimizes operator fatigue, resulting in a safe, pro-
ductive work site and reduced GHG emissions. )e sen-
sitivity analysis further depicts that alternatives “YY” and
“ZZ” are close to each other and have a stable ranking in
different scenarios.

)e procurement index developed in this study is
considered a significant first contribution with respect to
the selection of sustainable construction equipment for
the Malaysian construction industry. It will help practi-
tioners to undertake rational decisions during pro-
curement of construction equipment. )e proposed
sustainability index is expected to greatly assist them to
understand the decision problem by forming a hierarchy
and transforming the qualitative judgments into mean-
ingful quantitative weights for ranking the alternatives.
)e established framework of this study is specifically
related to earthmoving equipment, which is recom-
mended to be extended for other types of nonroad con-
struction equipment as well.
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assessment and life cycle costing in the eco-care-matrix: a
case study on the performance of a modernized
manufacturing system for glass containers,” Journal of
Cleaner Production, vol. 141, pp. 99–109, 2017.

[40] K. S. Woon and I. M. C. Lo, “An integrated life cycle costing
and human health impact analysis of municipal solid waste
management options in Hong Kong using modified eco-
efficiency indicator,” Resources, Conservation and Recycling,
vol. 107, pp. 104–114, 2016.

[41] J. Razmi, M. Barati, M. S. Yousefi, and J. Heydari, “A sto-
chastic model for operating room planning under un-
certainty and equipment capacity constraints,” Journal of
Industrial Engineering International, vol. 11, no. 2,
pp. 269–279, 2015.

[42] L. Zhu, H. Su, S. Lu, Y. Wang, and Q. Zhang, “Coordinating
and evaluating of multiple key performance indicators for
manufacturing equipment: case study of distillation col-
umn,” Chinese Journal of Chemical Engineering, vol. 22,
no. 7, pp. 805–811, 2014.

[43] A. Zhilenkov and S. Chernyi, “Investigation performance of
marine equipment with specialized information technology,”
Procedia Engineering, vol. 100, pp. 1247–1252, 2015.

[44] R. Domingo and S. Aguado, “Overall environmental
equipment effectiveness as a metric of a lean and green
manufacturing system,” Sustainability, vol. 7, no. 7,
pp. 9031–9047, 2015.

[45] R. Akhavian and A. H. Behzadan, “Construction equip-
ment activity recognition for simulation input modeling
using mobile sensors and machine learning classifiers,”
Advanced Engineering Informatics, vol. 29, no. 4,
pp. 867–877, 2015.

[46] J. Park, E. Marks, Y. K. Cho, andW. Suryanto, “Performance
test of wireless technologies for personnel and equipment
proximity sensing in work zones,” Journal of Construction
Engineering and Management, vol. 142, no. 1, Article ID
04015049, 2015.

[47] M. Romanenko and M. Baybus, “Implementation of overall
equipment efficiency methodology in the semiconductor test
facility ER: equipment reliability and productivity improve-
ment,” in Proceedings of the 2017 28th Annual SEMI Advanced
Semiconductor Manufacturing Conference (ASMC), Saratoga
Springs, NY, USA, July 2017.

[48] S.-F. Fam, S. L. Loh, M. Haslinda, H. Yanto, L. M. S. Khoo,
and D. H. Y. Yong, “Overall equipment efficiency (OEE)
enhancement in manufacture of electronic components &
boards industry through total productive maintenance
practices,” MATEC Web of Conferences, vol. 150, Article ID
05037, 2018.

[49] B. Shah, J. Richmond, and M. Shemyakim, “Monitoring for
equipment efficiency andmaintenance,” Google Patents, 2014.

[50] S. Kunio, TPM for Workshop Leaders, Routledge, Abingdon,
UK, 2017.

[51] J. E. Katz, “Virtualization of legacy instrumentation control
computers for improved reliability, operational life, and

management,” inMethods inMolecular Biology, pp. 309–324,
Springer, Berlin, Germanya, 2017.

[52] M. Lips, “Length of operational life and its impact on life-
cycle costs of a tractor in Switzerland,” Agriculture, vol. 7,
no. 8, p. 68, 2017.

[53] D. D. Gransberg and E. P. OʹConnor,Major Equipment Life-
Cycle Cost Analysis, Minnesota Department of Trans-
portation, Research Services & Library, USA, 2015.

[54] M. K. Parthasarathy, R. Murugasan, and R. Vasan, “Mod-
elling manpower and equipment productivity in tall resi-
dential building projects in developing countries,” Journal of
the South African Institution of Civil Engineering, vol. 60,
no. 2, pp. 23–33, 2018.

[55] S. C. Ok and S. K. Sinha, “Construction equipment pro-
ductivity estimation using artificial neural network model,”
Construction Management and Economics, vol. 24, no. 10,
pp. 1029–1044, 2006.

[56] G. R. Chakravarthy, P. N. Keller, B. R. Wheeler, and S. V. Oss,
“A methodology for measuring, reporting, navigating, and
analyzing overall equipment productivity (OEP),” in Pro-
ceedings of the IEEE/SEMI Advanced Semiconductor
Manufacturing Conference ASMC, Stresa, Italy, June 2007.

[57] J. Ally and T. Pryor, “Life cycle costing of diesel, natural gas,
hybrid and hydrogen fuel cell bus systems: an Australian case
study,” Energy Policy, vol. 94, pp. 285–294, 2016.

[58] R. Waddell, “A model for equipment replacement decisions
and policies,” Interfaces, vol. 13, no. 4, pp. 1–7, 1983.

[59] Y. Peng and M. Dong, “A prognosis method using age-
dependent hidden semi-Markov model for equipment health
prediction,” Mechanical Systems and Signal Processing,
vol. 25, no. 1, pp. 237–252, 2011.

[60] V. Arvidsson, J. Holmström, and K. Lyytinen, “Information
systems use as strategy practice: a multi-dimensional view of
strategic information system implementation and use,” De
Journal of Strategic Information Systems, vol. 23, no. 1,
pp. 45–61, 2014.

[61] S. Gao and S. P. Low, “)e last planner system in China’s
construction industry—a SWOT analysis on implementa-
tion,” International Journal of Project Management, vol. 32,
no. 7, pp. 1260–1272, 2014.

[62] J. D. I. Bolivar, “Automobile traction track system and de-
vice,” Google Patents, 2018.

[63] J. Feng, J. Xu, W. Liao, and Y. Liu, “Review on the traction
system sensor technology of a rail transit train,” Sensors,
vol. 17, no. 6, p. 1356, 2017.

[64] V. G. Sychenko, D. O. Bosiy, and E. M. Kosarev, Improving
the Quality of Voltage in the System of Traction Power Supply
of Direct Current, Archives of Transport, Poland, 2015.

[65] B. H. DeWeese, G. Hornsby, M. Stone, andM. H. Stone, “)e
training process: planning for strength-power training in
track and field. Part 1: theoretical aspects,” Journal of Sport
and Health Science, vol. 4, no. 4, pp. 308–317, 2015.

[66] A. Lacroix, R. W. Kressig, T. Muehlbauer et al., “Effects of a
supervised versus an unsupervised combined balance and
strength training program on balance and muscle power in
healthy older adults: a randomized controlled trial,” Ger-
ontology, vol. 62, no. 3, pp. 275–288, 2016.

[67] F. Leite, Y. Cho, A. H. Behzadan et al., “Visualization, in-
formation modeling, and simulation: grand challenges in the
construction industry,” Journal of Computing in Civil En-
gineering, vol. 30, no. 6, Article ID 04016035, 2016.

[68] X. Wang and H.-Y. Chong, “Setting new trends of integrated
Building Information Modelling (BIM) for construction

18 Mathematical Problems in Engineering



industry,” Construction Innovation, vol. 15, no. 1, pp. 2–6,
2015.

[69] K. Zhou, T. Liu, and L. Zhou, “Industry 4.0: towards future
industrial opportunities and challenges,” in Proceedings of
the 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), Zhangjiajie, China, August
2015.

[70] A. Gulghane and P. Khandve, “Management for con-
struction materials and control of construction waste in
construction industry: a review,” International Journal of
Engineering Research and Applications, vol. 5, no. 4,
pp. 59–64, 2015.

[71] L. Shen and V. W. Tam, “Implementation of environmental
management in the Hong Kong construction industry,”
International Journal of Project Management, vol. 20, no. 7,
pp. 535–543, 2002.

[72] S. Mohamed, “Safety climate in construction site environ-
ments,” Journal of Construction Engineering and Manage-
ment, vol. 128, no. 5, pp. 375–384, 2002.

[73] T. Yang and C.-C. Hung, “Multiple-attribute decision
making methods for plant layout design problem,” Robotics
and Computer-Integrated Manufacturing, vol. 23, no. 1,
pp. 126–137, 2007.

[74] J. L. Ashford, De Management of Quality in Construction,
Routledge, Abingdon, UK, 2002.

[75] K. W. Chau, M. Anson, and J. P. Zhang, “Four-dimensional
visualization of construction scheduling and site utilization,”
Journal of Construction Engineering and Management,
vol. 130, no. 4, pp. 598–606, 2004.

[76] M. Prasad Nepal and M. Park, “Downtime model devel-
opment for construction equipment management,” Engi-
neering, Construction and Architectural Management, vol. 11,
no. 3, pp. 199–210, 2004.

[77] H. Martin, A. A. Syntetos, A. Parodi, Y. E. Polychronakis,
and L. Pintelon, “Integrating the spare parts supply chain: an
inter-disciplinary account,” Journal of Manufacturing
Technology Management, vol. 21, no. 2, pp. 226–245, 2010.

[78] K. Matzler, V. Veider, and W. Kathan, Adapting to the
Sharing Economy, MIT, Cambridge, MA, USA, 2015.

[79] A. May, V. Mitchell, S. Bowden, and T. )orpe, “Opportu-
nities and challenges for location aware computing in the
construction industry,” in Proceedings of the 7th International
Conference on Human Computer Interaction with Mobile
Devices & Services—MobileHCI ’05, Salzburg, Austria, 2005.

[80] E. Badu, D. J. Edwards, and D. Owusu-Manu, “Trade credit
and supply chain delivery in the Ghanaian construction
industry,” Journal of Engineering, Design and Technology,
vol. 10, no. 3, pp. 360–379, 2012.

[81] A. J. Lang, W. Michael Aust, M. Chad Bolding,
K. J. McGuire, and E. B. Schilling, “Comparing sediment trap
data with erosion models for evaluation of forest haul road
stream crossing approaches,” Transactions of the ASABE,
vol. 60, no. 2, pp. 393–408, 2017.

[82] A. Soofastaei, “Payload variance plays a critical role in the
fuel consumption of mining haul trucks,” Aust Resour Invest,
vol. 8, no. 4, p. 64, 2014.

[83] J. Hong, G. Q. Shen, Y. Feng, W. S.-T. Lau, and C. Mao,
“Greenhouse gas emissions during the construction phase of
a building: a case study in China,” Journal of Cleaner Pro-
duction, vol. 103, pp. 249–259, 2015.

[84] W. Haas, F. Krausmann, D. Wiedenhofer, and M. Heinz,
“How circular is the global economy?: an assessment of
material flows, waste production, and recycling in the

European Union and the world in 2005,” Journal of In-
dustrial Ecology, vol. 19, no. 5, pp. 765–777, 2015.

[85] Z. Liu, D. Guan, W. Wei et al., “Reduced carbon emission
estimates from fossil fuel combustion and cement pro-
duction in China,” Nature, vol. 524, no. 7565, pp. 335–338,
2015.

[86] X. Ji and B. Chen, “Assessing the energy-saving effect of
urbanization in China based on stochastic impacts by re-
gression on population, affluence and technology (STIR-
PAT) model,” Journal of Cleaner Production, vol. 163,
pp. S306–S314, 2017.

[87] Y. Zhang, C.-Q. He, B.-J. Tang, and Y.-M. Wei, “China’s
energy consumption in the building sector: a life cycle ap-
proach,” Energy and Buildings, vol. 94, pp. 240–251, 2015.

[88] A. W. A. Hammad, A. Akbarnezhad, and D. Rey, “A multi-
objective mixed integer nonlinear programming model for
construction site layout planning to minimise noise pollu-
tion and transport costs,” Automation in Construction,
vol. 61, pp. 73–85, 2016.

[89] N. Kwon, M. Park, H.-S. Lee, J. Ahn, and M. Shin, “Con-
struction noise management using active noise control
techniques,” Journal of Construction Engineering and
Management, vol. 142, no. 7, Article ID 04016014, 2016.

[90] D. Efanov, G. Osadchy, D. Sedykh, D. Pristensky, and
D. Barch, “Monitoring system of vibration impacts on the
structure of overhead catenary of high-speed railway lines,”
in Proceedings of the 2016 IEEE East-West Design & Test
Symposium (EWDTS), Yerevan, Armenia, October 2016.

[91] S. Yusoff, R. Nordin, and H. Yusoff, “Environmental man-
agement systems (EMS) ISO 14001 implementation in
construction industry: a Malaysian case study,” Issues In
Social And Environmental Accounting, vol. 9, no. 1, pp. 18–
31, 2015.

[92] C. K. Saha and J. Hosain, “Impact of brick kilning industry in
peri-urban Bangladesh,” International Journal of Environ-
mental Studies, vol. 73, no. 4, pp. 491–501, 2016.

[93] M. K. Ghorabaee, M. Amiri, E. K. Zavadskas, and
J. Antucheviciene, “A new hybrid fuzzyMCDM approach for
evaluation of construction equipment with sustainability
considerations,” Archives of Civil and Mechanical Engi-
neering, vol. 18, no. 1, pp. 32–49, 2018.

[94] J. Hong, G. Q. Shen, S. Guo, F. Xue, and W. Zheng, “Energy
use embodied in China׳s construction industry: a multi-
regional input-output analysis,” Renewable and Sustainable
Energy Reviews, vol. 53, pp. 1303–1312, 2016.

[95] S. Z. Razali, R. Yunus, S. Abdul Rashid, H. N. Lim, and
B. Mohamed Jan, “Review of biodegradable synthetic-based
drilling fluid: progression, performance and future pros-
pect,” Renewable and Sustainable Energy Reviews, vol. 90,
pp. 171–186, 2018.

[96] S. S. Kamaruddin,M. F.Mohammad, and R.Mahbub, “Barriers
and impact ofmechanisation and automation in construction to
achieve better quality products,” Procedia—Social and Behav-
ioral Sciences, vol. 222, pp. 111–120, 2016.

[97] S. J. Ray and J. Teizer, “Dynamic blindspots measurement for
construction equipment operators,” Safety Science, vol. 85,
pp. 139–151, 2016.

[98] M. Çag�daç Arslan, B. Çatay, and E. Budak, “A decision
support system for machine tool selection,” Journal of
Manufacturing Technology Management, vol. 15, no. 1,
pp. 101–109, 2004.

[99] R. R. Cabahug, D. J. Edwards, and J. Nicholas, “Classifying
plant operator maintenance proficiency: examining personal

Mathematical Problems in Engineering 19



variables,” Building Research & Information, vol. 32, no. 2,
pp. 119–127, 2004.

[100] Y. Fang and Y. K. Cho, “Effectiveness analysis from a
cognitive perspective for a real-time safety assistance system
for mobile crane lifting operations,” Journal of Construction
Engineering and Management, vol. 143, no. 4, Article ID
05016025, 2016.

[101] I. J. Shin, “Factors that affect safety of tower crane in-
stallation/dismantling in construction industry,” Safety
Science, vol. 72, pp. 379–390, 2015.

[102] H. Guo, Y. Yu, and M. Skitmore, “Visualization technology-
based construction safety management: a review,” Auto-
mation in Construction, vol. 73, pp. 135–144, 2017.

[103] D. Silka, “Development of organizing and economic mea-
sures for monitoring the cost of construction resources,”
MATECWeb of Conferences, vol. 106, Article ID 08042, 2017.

[104] J. Irwin, B. Lahneman, and A. Parmigiani, “Nested identities
as cognitive drivers of strategy,” Strategic Management
Journal, vol. 39, no. 2, pp. 269–294, 2018.

[105] Caterpillar, Caterpillar Performance Handbook, Caterpillar,
Peoria, IL, USA, 2014.

[106] International Organization for Standards, ISO-10987 Earth-
Moving Machinery—Sustainability—Terminology, Sustain-
ability Factors and Reporting, International Organization for
Standards, Geneva: Switzerland, 2017.

[107] M. Bouzon, K. Govindan, C. M. T. Rodriguez, and
L. M. S. Campos, “Identification and analysis of reverse
logistics barriers using fuzzy Delphi method and AHP,”
Resources, Conservation and Recycling, vol. 108, pp. 182–197,
2016.

[108] J. Climaco, Multicriteria Analysis, Springer-Verlag, Berlin,
Germany, 1997.

[109] M. Rogers, M. Bruen, and L. Maystre, “ELECTRE and de-
cision support: methods and applications in engineering and
infrastructure investment,” Journal-Operational Research
Society, vol. 53, no. 12, pp. 1396-1397, 2002.

[110] E. Løken, “Use of multicriteria decision analysis methods for
energy planning problems,” Renewable and Sustainable
Energy Reviews, vol. 11, no. 7, pp. 1584–1595, 2007.

[111] L. A. Greening and S. Bernow, “Design of coordinated energy
and environmental policies: use of multi-criteria decision-
making,” Energy Policy, vol. 32, no. 6, pp. 721–735, 2004.

[112] S. D. Pohekar and M. Ramachandran, “Application of multi-
criteria decision making to sustainable energy planning–a
review,” Renewable and Sustainable Energy Reviews, vol. 8,
no. 4, pp. 365–381, 2004.

[113] T. Tsoutsos, M. Drandaki, N. Frantzeskaki, E. Iosifidis, and
I. Kiosses, “Sustainable energy planning by using multi-
criteria analysis application in the island of Crete,” Energy
Policy, vol. 37, no. 5, pp. 1587–1600, 2009.

[114] K. Govindan, M. Kaliyan, D. Kannan, and A. N. Haq,
“Barriers analysis for green supply chain management
implementation in Indian industries using analytic hierarchy
process,” International Journal of Production Economics,
vol. 147, pp. 555–568, 2014.

[115] T. Harputlugil, M. Prins, A. T. Gultekin, and Y. L. Topcu,
“Conceptual framework for potential implementations of
multi criteria decision making (mcdm) methods for design
quality assessment,” in Proceedings of the Management and
Innovation for a Sustainable Built Environment MISBE 2011,
Amsterdam, Netherlands, June 2011.

[116] S. Mangla, J. Madaan, and F. T. S. Chan, “Analysis of per-
formance focused variables for multi-objective flexible de-
cision modeling approach of product recovery systems,”

Global Journal of Flexible SystemsManagement, vol. 13, no. 2,
pp. 77–86, 2012.

[117] A. Shapira and M. Goldenberg, “AHP-based equipment
selection model for construction projects,” Journal of Con-
struction Engineering and Management, vol. 131, no. 12,
pp. 1263–1273, 2005.

[118] T. Saaty and L. Vargas, De Logic of Priorities, RWS Publi-
cations, Pittsburgh, OA, USA, 1991.

[119] N. Subramanian and R. Ramanathan, “A review of appli-
cations of Analytic Hierarchy Process in operations man-
agement,” International Journal of Production Economics,
vol. 138, no. 2, pp. 215–241, 2012.

[120] M. J. Skibniewski and L. C. Chao, “Evaluation of advanced
construction technology with AHP method,” Journal of
Construction Engineering and Management, vol. 118, no. 3,
pp. 577–593, 1992.

[121] M. Hastak, “Advanced automation or conventional con-
struction process?,” Automation in Construction, vol. 7,
no. 4, pp. 299–314, 1998.

[122] M. Hastak and D. W. Halpin, “Assessment of life-cycle
benefit-cost of composites in construction,” Journal of
Composites for Construction, vol. 4, no. 3, pp. 103–111, 2000.

[123] W. Ossadnik and O. Lange, “AHP-based evaluation of AHP-
Software,” European Journal of Operational Research,
vol. 118, no. 3, pp. 578–588, 1999.

[124] A. Ishizaka and A. Labib, “Analytic hierarchy process and
expert choice: benefits and limitations,” OR Insight, vol. 22,
no. 4, pp. 201–220, 2009.

[125] T. L. Saaty and L. G. Vargas, De Logic of Priorities, RWS
Publications, Pittsburgh, PA, USA, 1991.

[126] R. K. Yin, Case Study Research: Design and Methods, Sage
Publications, )ousand Oaks, CA, USA, 3rd edition, 2003.

[127] B. Gillham, Case Study Research Methods, Bloomsbury
Publishing, London, UK, 2000.

[128] W. Rasdorf, P. Lewis, S. K. Marshall, I. Arocho, and
H. C. Frey, “Evaluation of on-site fuel use and emissions
over the duration of a commercial building project,”
Journal of Infrastructure Systems, vol. 18, no. 2, pp. 119–129,
2012.

20 Mathematical Problems in Engineering



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

