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AN APPLICATION OF ARTIFICIAL NEURAL NETWORK
TO COMPUTE THE RESONANT FREQUENCY OF
E-SHAPED COMPACT MICROSTRIP ANTENNAS
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An application of artificial neural network (ANN) based on multilayer perceptrons (MLP) to compute the resonant
frequency of E-shaped compact microstrip antennas (ECMAs) is presented in this paper. The resonant frequencies of 144

ECMAs with different dimensions and electrical parameters were firstly determined by using IE3D(t™) software based on
the method of moments (MoM), then the ANN model for computing the resonant frequency was built by considering the
simulation data. The parameters and respective resonant frequency values of 130 simulated ECMAs were employed for
training and the remaining 14 ECMAs were used for testing the model. The computed resonant frequencies for training
and testing by ANN were obtained with the average percentage errors (APE) of 0.257% and 0.523 %, respectively. The
validity and accuracy of the present approach was verified on the measurement results of an ECMA fabricated in this study.
Furthermore, the effects of the slots loading method over the resonant frequency were investigated to explain the relationship

between the slots and resonant frequency.
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1 INTRODUCTION

Because of their attractive features such as low profile,
light weight, easy fabrication, low cost and conformabil-
ity for mounting hosts, microstrip antennas have become
popular in mobile communications. However, microstrip
antennas inherently have a narrow bandwidth and low
gain [16,21,25]. Conventional microstrip antennas with
basic shapes such as rectangular, triangular and circular
are relatively large to operate at the frequency band re-
quired for practical mobile applications. Present-day mo-
bile communication systems usually require smaller an-
tennas in order to meet the miniaturization requirements
of mobile units. Therefore, size reduction or compactness
has become the key consideration in antenna design for
miniature wireless communication terminals. Many tech-
niques have been proposed to effectively reduce the size
of microstrip antennas [7,18,27]. The most well-known
methods, which depend upon modifying the patch ge-
ometry to reduce the resonant frequency, are slotting
on the patch and ground [7], loading a shorting-pin be-
tween the patch and the ground plane [18] and using an
inverted patch [27]. In fact, by using these techniques,
the linear dimensions of such compact microstrip anten-
nas (CMA) with the aforementioned basic shapes can be
as small as one-third of that of corresponding conven-
tional microstrip antennas at fixed operating frequency.
The E-shaped compact microstrip antenna (ECMA) is a

miniaturized antenna constructed with two identical par-
allel slots on the patch of rectangular microstrip antenna
(RMA) by applying the slot loading method. By adjust-
ing the slot length and slot width of the ECMA, one can
obtain satisfactory performances [26].

It is well known that analytical techniques such as the
cavity model [19] and the transmission line model (TLM)
[2] have been successfully utilized in the analysis of con-
ventional microstrip antennas. These methods, based on
some fundamental simplifying physical assumptions re-
garding the radiation mechanism of antennas, are the
most useful for practical design as well as providing a
good intuitive explanation of microstrip antennas. How-
ever, these methods are more suitable for conventional mi-
crostrip antennas because of their regular shapes. On the
other hand, powerful simulation tools involving rigorous
mathematical formulation and extensive numerical proce-
dures, such as the finite difference time domain (FDTD)
method [22] and the method of moments (MoM) [10],
have been successfully used to model such devices; how-
ever, the design procedure may be highly time consuming
using these tools. Alternative simple ways should there-
fore be investigated by taking into consideration that the
analysis of the microstrip patch is a complex problem
because of the fringing fields at the edges. There exist
several approaches which vary in accuracy and compu-
tational efforts have been proposed to analyze and de-
sign microstrip antennas. The most widely used can be
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listed as formulation methods [1,5,24] and artificial in-
telligent systems [4,8,15,17,20,23]. Formulation meth-
ods are commonly derived with the aid of the optimiza-
tion algorithm such as genetic, particle swarm, differen-
tial evolution etc. The most well-known artificial intel-
ligent systems are the artificial neural network (ANN)
[4,8,11,13,15,17,20, 23] and the adaptive neuro-fuzzy in-
terference system (ANFIS) [13]. ANN attempts to model
nonlinear problems by employing a mathematical model
of the structure of the brain. The idea behind ANN mod-
els is that imitating the brain’s structure of many con-
nected processing elements enables computers to tackle
tasks. During the last decade, ANN models have been
increasingly used in the design of antennas, microwave
devices, and circuits due to their ability and adaptability
to learn, generalization, smaller information requirement,
fast real-time operation, and ease of implementation fea-
tures.

This work attempts to build an ANN model based on
multilayer perceptrons (MLP) to compute the first reso-
nant frequency of ECMAs. The resonant frequency val-
ues of 144 ECMAs were determined by the commercial
electromagnetic simulator IE3D™ (IE3D™ | version 14)

running on MoM. MLP was used to model the relation-
ship between the simulated antenna parameters, which
are patch dimensions and dielectric constants, and cor-
responding resonant frequency values. The constructed
MLP model was achieved in two processes: training and
testing. In order to provide the robustness of the net-
works, the parameters of 130 random simulated ECMAs
were used to train the model and the remaining 14 were
employed to test the accuracy of the model. The validity
of the MLLP model was verified on an ECMA fabricated
in this study. Moreover, it was demonstrated that the
slots into the ECMA patch lead to a reduction in reso-
nant frequency of 36 % compared to the RMA. Thus the
ECMA is 61 % smaller in size than the RMA. Meanwhile,
the interrelation between the slots’ size and the resonant
frequencies and bandwidth are investigated to effectively
reduce the size of the antennas.

2 ARCHITECTURE OF
ARTIFICIAL NEURAL NETWORK

ANN is a computational model that is inspired by
the function of biological neural networks. ANN con-
sists of a group of artificial neurons which processes
information over interconnection. There are many dif-
ferent ANN structures. Multilayer perceptrons (MLPs)
[6, 11, 13] which are successfully and commonly employed
in engineering problems are preferred in this study. The
MLP can be trained by using many different algorithms
such as Levenberg-Marquardt (LM), backpropagation,
delta-bar-delta etc. In this work, MLPs are trained with
the Levenberg-Marquardt algorithm [3,9] which has the
abilities of fast learning and good convergence. The MLP
consists of three layers: input layer, output layer and a
hidden layer, as shown in Fig. 1. Neurons in the input
layer only act as buffers for distributing the input signals
x; to neurons in the hidden layer. Each neuron j in the
hidden layer sums up its input signals x; after weight-
ing them with the strengths of the respective connections
wj; from the input layer and computes its output y; as
a function f of the sum, namely

y; = f(z w]zxz) (1)

where f(-) can be a simple threshold function, a sigmoid,
hyperbolic tangent, a radial basis function, a purelin func-
tion ete [11,13]. The output of neurons in the output layer
is computed similarly.

Training a network consists of adjusting the weights of
the network by using one of the available learning algo-
rithms. The learning algorithm gives the change Awj;(t)
in the weight of a connection between neurons ¢ and j at
time t. For the LM learning algorithm, the weights are
updated according to the following formula

w;i(t+1) = wji(t) — Awyi(t) (2)
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Table 1. Physical and electrical parameters of simulated ECMAs

Number of Patch Dimensions (mm)
simulations L w ls W h &
25.0 20 2,4,6,8 4,8,12,16 1.57 2.33,4.5,6.15
3 x 48 32,5 25 2.5,5,7.5,10 5,10,15,20 2.50 2.33,4.5,6.15
40.0 30 3,6,9,12 6,12,20,26 3.17 2.33,4.5,6.15

)

Table 2. Resonant frequencies determined by ANN for testing process

. . Resonant

Patch Dimensions (mm) frequencies (GHz) Percentage

I W 1, w, h e Simulated ANN Prrors (%)
25 20 6 4 1.57 2.33 3.490 3.492 0.066
25 20 4 8 1.57 2.33 2.970 2.972 0.071
25 20 8 4  1.57 2.33 3.524 3.542 0.516
25 20 6 4 1.57 4.50 2.587 2.578 0.332
25 20 2 12 1.57 6.15 1.597 1.603 0.382
325 25 75 5 250 233 2.660 2.675 0.560
325 25 25 10 2.50 4.50 1.739 1.728 0.615
325 25 7.5 20 250 4.50 1.170 1.157 1.103
325 25 7.5 20 250 6.15 1.009 1.003 0.644
40 30 3 20 3.17 2.33 1.500 1.492 0.533
40 30 3 26 3.17 4.50 0.899 0.886 1.446
25 20 8 8 1.57 4.50 2.310 2.301 0.403
40 30 3 6 3.17 6.15 1.400 1.405 0.371
40 30 9 12 3.17 6.15 1.220 1.223 0.279
APE 0.523

Table 3. Results of simulation, measurement, ANN for fabricated RMA

Patch Dimensions (mm)

Resonant frequencies

Feed Point GHy

Antenna L w ls

Ws

Ty yr Sim. Mea. ANN

ECMA*
RMA
RMA

39.85 3235 - -
25.00 20.00 - -

25.00 20.00 7.47 13.03 6.45 14.23 2.400 2.407 2.396

31.07 26.3 2400 - -
17.64 16.63 3.759 — -

h = 1.57mm, &, = 2.33, tand = 0.0012, *Rogers™ RT /duroid 5870

with

Awji = [JT(w)J(w) + pI] T (w)Ew)  (3)

where J, p, I and E(w) are the Jacobian matrix, a con-
stant, identity matrix, and error function, respectively.
The Jacobian matrix contains the first derivatives of the
errors with respect to the weights and biases. The value of
1 is decreased after each successful step and is increased
only when a step would increase the sum of squares of
errors.

In this study, an ANN model with three layers, which
are the input layer, hidden layer with three nodes and the
output layer, was used. In the training process, the num-
ber of epochs, minimum gradient, momentum parameter
(1), p increment, p decrement, maximum g and seed
value were selected as 250, 10719, 0.0001, 4, 0.1, 100,
7559532, respectively. Furthermore, tangent sigmoid, tan-
gent sigmoid and purelin function were used in the input
layer, hidden layer and output layer, respectively.

3 DESIGN AND SIMULATION OF ECMAs

The geometry of the RMA and ECMA is given in
Fig. 2a and b. The ECMA consists of an L x W rectan-
gular patch given in Fig. 2a with two symmetric identical
slots (Is X ws on a dielectric substrate with A thickness
on a metallic ground plane. The slots on the patch lead
to an increase in the length of the patch according to
TLM. Thus, the resonant frequency of the antenna can
be effectively reduced.

The topology of the simulation process is illustrated
in Fig. 3. It is seen that the parameters groups given in
Table 1, which include the various dimensions and the
electrical parameters of the ECMAs, are used to generate
resonant frequency values with the aid of IE3D(™) soft-
ware. In the simulations, the antennas were fed with a
source having a Gaussian wave through a 50 ohm probe
in the vicinity of the point z; = 2(W — w;)/3 and yy =
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Fig. 6. Comparative results of simulation and ANN

(2L—15)/3. The maximum frequency and cell/wavelength
rate were selected as 4 GHz and 40 GHz, respectively.

The effects of the slots, dimensions on the resonant fre-
quencies were investigated during the simulations. It was
observed that slot loading on RMA to build the geome-
try of the ECMA results in an extension of the resonant
length, and therefore the resonant frequency reduces even
though the bandwidth is decreased. Furthermore, the im-
pacts of the slot length /5 and slot width wy over resonant
frequency and bandwidth were sought separately, and it
was inferred that slot width is more effective than the slot
length in the design of an ECMA. Therefore, variation in

slot length slightly changes the resonant frequency and
bandwidth; otherwise an increase in the slot width leads
to a decrease in resonant frequency and bandwidth.

4 ANN MODELING

4.1 Training Process of ANN

In the training process of the ANN model, the param-
eter groups of the ECMAs (L, W, ls, ws, h and €,)
were introduced as input and respective simulated reso-
nant frequency values (frgsp) were given as a target to
the ANN, as shown in Fig. 4. According to the relation-
ship between the input and the target, the ANN model
with three layers was trained to produce the resonant
frequency (fann) for each parameter set of an antenna
given in Table 1.

As much as 144 ECMAs were employed for training
while 14 ECMAs were used for testing the ANN model.
According to Fig. 5, the value of the average percentage
errors (APE) for the resonant frequencies computed by
the ANN model was obtained as 0.257% for the 130
ECMAS’ training data. The training results of the 130
ECMASs are comparatively shown in Fig. 6, and it is seen
that the simulation and training results are in very good
agreement.

4.2 Testing Process of ANN

To verify the ANN model, 14 simulated ECMAs, which
were randomly selected from a total of 144 antennas be-
fore the training process so as to represent the solution
space, were used in the testing process. The computed
resonant frequencies and corresponding percentage errors
are tabulated in Table 2. As is seen, the resonant fre-
quency results computed by ANN are much closer to the
simulated ones. The APE was determined as 0.523 % for
14 ECMAS’ test data.

5 FABRICATION OF ECMA

In order to further investigate the validity of the
present approach, an ECMA, the parameters of which
were not used in the training process, operating at
2.4 GHz was designed via IE3D™ and then fabricated
on the Rogers RT/duroid 5870 substrate given in Fig. 7.

Fig. 7. Photographs of fabricated ECMA
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Also two RMAs, one of them operating at the same
frequency and the other with the same dimensions as the
fabricated ECMA, were simulated through IE3D™ to
demonstrate that the slot loading method can be used
for frequency reduction to achieve miniaturization. The
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(c) 3.759 GHz for RMA
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return loss of the antenna was measured with an Agilent
E5071B ENA Series RF network analyzer. Fig. 8 shows
a good agreement between the measured and simulated
return loss curves of the ECMA, in spite of some discrep-
ancies due mainly to substrate variations, fabrication tol-
erances, and feed connector misalignment. The explicit
results of measurement, simulation and ANN for the fab-
ricated ECMA and simulated RMA are comparatively
given in Table 3. Moreover, it can be clearly seen that
the slots in the patch of the ECMA lead to a reduction in
resonant frequency of 36 % compared to an RMA of the
same size, so the patch size of the ECMA is 61 % smaller
than that of the RMA at fixed 2.4 GHz.

The simulated radiation patterns of the ECMA and
RMA of the same size are given in Fig. 9. As can be seen
from the figures the ECMA has a broader beamwidth
than the RMA. In simulation, the maximum gain at ¢ =
90° for the ECMA is obtained as 6.88 dBi while it is
7.33 dBi for the RMA. On the other hand, the half power

—Egat $=0°
---Epat ¢ =90° 0

180
(b) 2.4 GHz for ECMA

— Eyat ©=90° 90

120 60
150 30
-48 -54 -60 -66 -66 -60 -54 -48
150 -30
-120 -60
-90

(d) 2.4 GHz for ECMA

Fig. 9. Radiation patterns of Ey at ¢ = 0° and ¢ = 90° for a — RMA and b — ECMA; Radiation patterns of Ey at 6 = 0° for c - RMA
and d - ECMA
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beam width is determined for the ECMA as 118.72° while
it is 109.36° for the RMA.

6 CONCLUSION

In this paper, an application of ANN based on MLP for
accurately calculating the resonant frequencies of ECMAs
is proposed. To train and test the ANN model, 144
ECMASs with various dimensions and dielectric constants
were designed and simulated by using IE3D™ which is
a commercial electromagnetic simulation tool. The pa-
rameter sets of 130 ECMAs were employed to train the
proposed model and the remaining 14 ECMAs were used
for testing the accuracy of the models. It was shown that
the training and testing results of the ANN model were
well-matched to the simulated resonant frequency results.
Furthermore, an ECMA was fabricated to prove the pro-
posed approach. In conclusion, these results substantiate
that the proposed ANN model can be successfully used
to determine the resonant frequencies of ECMAs without
the need for any other calculations. Meanwhile, the effect
of the slot sizes on the resonant frequency and bandwidth
were investigated in the course of simulations. It was ob-
served that slot width is more effective than slot length
in setting the resonant frequency, and an ECMA is 61 %
smaller than an RMA with the same outer sizes. This
clearly shows that the slot loading method can be em-
ployed for miniaturization.
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