An application of combinatorial techniques to a topological problem

Ludvik Janos

Abstract

The following statement is proved: Let X be a set having at most continuously many elements and $f: X \rightarrow X$ a mapping such that each iteration $f^{n} \quad(n=1,2, \ldots)$ has a unique fixed point. Then for every number $c \in(0,1)$ there exists a metric ρ on X such that the metric space (X, ρ) is separable and the mapping f is a contraction with the Lipschitz constant c.

1. Introduction

In recent two decades different mathematicians asked the following question: Given an abstract set X and a mapping $f: X \rightarrow X$, does there exist a non-trivial topology on X which would render f continuous and would satisfy at the same time some prescribed conditions (compactness, separability, metrizability, Hausdorff property, and so forth)? de Groot and de Vries [3] proved that if X has at most continuously many elements then for every $f: X \rightarrow X$ there exists a non-discrete separable metric topology on X rendering f continuous. Bessaga [2] obtained the following result (a converse to the Banach fixed point theorem).

THEOREM 1 (Bessaga). Let X be a set and $f: X \rightarrow X$ such that all the iterates f^{n} have a unique fixed point. Assuming the weak (countable) form of the axiom of choice, then for cony $c \in(0,1)$ there exists a complete metric on X rendering f a c-contraction.

The purpose of this note is to show that in case X has at most continuously many elements then the separability of the metric in the above

Received 9 July 1973.
theorem can be claimed. In the construction of this metric we will use the following combinatorial theorem of Ramsey (see, for example, [1]).

THEOREM 2 (Ramsey). If the set of all unordered pairs $\{n, m\}$ of natural numbers N is decomposed in finite number of sets, say $R_{1}, R_{2}, \ldots, R_{k}$, that is,

$$
\left\{A||A|=2 \text { and } A \subset N\}=R_{1} \cup R_{2} \cup \ldots \cup R_{k}\right.
$$

then there exists an infinite subset $M \subset N$ and an index $i \in\{1,2, \ldots, k\}$ such that all pairs $\{n, m\} \subset M$ belong to R_{i}.

Finally we will need the following result of Meyers [4].
THEOREM 3 (Meyers). If X is a metrizable topological space and $f: X \rightarrow X$ a continuous mopping satisfying:
(i) f has a unique fixed point a, that is, $f(a)=a$;
(ii) for every $x \in X$ the sequence of iterates
$x, f(x), f^{2}(x), \ldots$ converges to $a ;$
(iii) there exists a neighbourhood U_{a} of a such that for any neighbourhood V_{a} of a there exists n_{0} such that $n \geq n_{0}$ implies $f^{n}\left(U_{a}\right) \subset V_{a}$;
then for every $c \in(0,1)$ there exists a metric on X which is compatible with the topology of X and with respect to which f is a c-contraction.

2. Proof of the theorem

Let X be an abstract set with at most continuously many elements and let $f: X \rightarrow X$ satisfy the conditions of Theorem l. Choosing $c=\frac{1}{2}$ we denote by ρ the corresponding metric on X existing by this theorem. If a is the fixed point of f we define the sets A_{n} (n integer) by:

$$
A_{n}=\left\{x \mid x \in X \text { and } 2^{n-1}<\rho(a, x) \leq 2^{n}\right\}
$$

Thus we obtain a disjoint partition of X in the form $X=\{a\} \cup \cup_{-\infty}^{+\infty} A_{n}$ satisfying the condition that the image $f\left(A_{n}\right)$ of A_{n} under f^{\prime} is contained in $\{a\} \cup \bigcup_{-\infty}^{n-1} A_{k}$. Once this result is achieved, we disregard the metric ρ (since it is not separable in gereral) and proceed in the following way.
 is the origin and C_{n} is the circle with centre in 0 and of radius 2^{n}. Since each set A_{n} has at most continuously many elements one can identify A_{n} with a certain subset $B_{n} \subset C_{n}$ of C_{n}. Doing this for every n and identifying a with the origin 0 , our set X can be thought of as the set $\{0\} \cup U_{-\infty}^{+\infty} B_{n}$. Denoting by d_{2} the euclidean metric we thus obtain a separable metric space $\left(X, d_{2}\right)$ and it follows from the definition that each subset $\{0\} \cup \bigcup_{-\infty}^{n} B_{k}$ is totally bounded and invariant under f.

We now define a new metric d_{2}^{*} on X with respect to which f will be continuous as follows:

$$
d_{2}^{*}(x, y)=\sup _{n \geq 0} d_{2}\left(f^{n}(x), f^{n}(y)\right)
$$

for $x, y \in X$ and where $f^{0}(x)$ stands for x. It is clear that d_{2}^{*} is a metric and that f is continuous with respect to d_{2}^{*}, since from the definition it follows immediately that f is non-expanding:

$$
d_{2}^{\star}(f(x), f(y)) \leq d_{2}^{\star}(x, y)
$$

Since the circles C_{n} shrink to 0 it follows that for each pair $x, y \in X$ there is a number $n=n(x, y)$ such that
$d_{2}^{*}(x, y)=d_{2}\left(f^{n}(x), f^{n}(y)\right)$. In order to show that the sets $\{0\} \cup U_{-\infty}^{n} B_{k}$ are totally bounded also with respect to the metric d_{2}^{*} we need the following.

LEMMA. Let (Y, d) be a totally bounded metric space and let $f: Y \rightarrow Y$ (not necessarily continuous) be such that the diameters δ_{n} of the iterated images $f^{n}(Y)$ converge to zero as $n \rightarrow \infty$. Then the metric d^{*} on Y defined by

$$
d^{*}(x, y)=\sup _{n \geq 0} d\left(f^{n}(x), f^{n}(y)\right)
$$

is also totally bounded.
Proof. First we observe that due to $\delta_{n} \rightarrow 0$ there is an integer $n=n(x, y)$ for each pair of points $x, y \in Y$ such that $d^{*}(x, y)=d\left(f^{n}(x), f^{n}(y)\right)$. Now if d^{*} were not totally bounded there would be a number $\varepsilon>0$ and a sequence $\left\{x_{k}\right\} \subset Y$ such that

$$
d^{*}\left(x_{k}, x_{l}\right) \geq \varepsilon \text { for all } k \neq 2 .
$$

But this would mean that there is a function $n(k, \eta)$ on the set of all unordered pail $\{k, Z\}$ of natural numbers such that $d\left\{f^{n(k, Z)}\left(x_{k}\right), f^{n(k, Z)}\left(x_{\eta}\right)\right) \geq \varepsilon$ for all pairs $\{k, \eta\} \subset N$. Again due to the shrinkage $\delta_{n} \rightarrow 0$ it is obvious that the function $n(k, Z)$ must be bounded and so its range consists of finite numbers of values, say $n_{1}, n_{2}, \ldots, n_{r}$. But Theorem 2 would then imply that for some $i \in\{1,2, \ldots, r\}$ the inequality $d\left(f^{n}\left(x_{k}\right), f^{n}\left(x_{\imath}\right)\right) \geq \varepsilon$ would hold for some infinite subset of indices which would contradict the assumption that d is totally bounded. This proves that d^{*} must be totally bounded as well.

Observing that the restriction of $f: X \rightarrow X$ to the invariant subset $X_{n}=\{0\} \cup \bigcup_{-\infty}^{n} B_{k}$ satisfies the hypothesis of our lemma we arrive at the
following conclusion.
As a countable union of totally bounded sets, $\left(X, d_{2}^{*}\right)$ is a separable metric space and $f: X \rightarrow X$ a continuous mapping. Since $d_{2}^{*} \geq d_{2}$ it follows that the topology generated by d_{2}^{*} is in general finer than the Euclidean generated by d_{2}. Since each set X_{n} is d_{2}-open, it is also d_{2}^{*}-open and observing that for each $x \in X$ we have $d_{2}^{*}(0, x)=d_{2}(0, x)$ it follows that each open neighbourhood of 0 with respect to d_{2}^{*} contains some set X_{n}. Since $f\left(X_{n}\right) \subset X_{n-1}$ this implies that the conditions of Theorem 3 are satisfied for the topology generated by d_{2}^{*} and our theorem follows from Theorem 3.

REMARK. It is so far not known if the space $\left(X, d_{2}^{*}\right)$ can be assumed topologically complete. In this case the result of Meyers [4] would furnish at the same time a separable and complete metric. So it appears that the gain of separability was paid for by the loss of completeness.

References

[1] Philip Bacon, "Extending a complete metric", Amer. Math. Monthly 75 (1968), 642-643.
[2] C. Bessaga, "On the converse of the Banach 'fixed-point principle", Colloq. Math. 7 (1959), 41-43.
[3] J. de Groot and H. de Vries, "Metrization of a set which is mapped into itself", Quart. J. Math. Oxford (2) 9 (1958), 144-148.
[4] Philip R. Meyers, "A converse to Banach's contraction theorem", J. Res. Nat. Bur. Standards Sect. B 71 (1967), 73-76.

Department of Mathematics, University of Newcastle,

Newcastle,
New South Wales.

