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AN APPLICATION OF CONVEX INTEGRATION

TO CONTACT GEOMETRY

HANSJÖRG GEIGES AND JESÚS GONZALO

Abstract. We prove that every closed, orientable 3-manifold M admits a
parallelization by the Reeb vector fields of a triple of contact forms with equal
volume form. Our proof is based on Gromov’s convex integration technique
and the h-principle. Similar methods can be used to show that M admits a
parallelization by contact forms with everywhere linearly independent Reeb
vector fields. We also prove a generalization of this latter result to higher
dimensions. If M is a closed (2n+1)-manifold with contact form ω whose con-
tact distribution kerω admits k everywhere linearly independent sections, then
M admits k+ 1 linearly independent contact forms with linearly independent
Reeb vector fields.

1. Introduction

A contact form on a smooth 3-manifold M is a differential 1-form ω such that
ω ∧ dω is nowhere zero (i.e., a volume form). Given a contact form ω, there is a
unique vector field ξ such that ω(ξ) = 1 and ξcdω = 0 (Here ‘c’ denotes the interior
product.) This vector field is called the Reeb vector field of ω. On the contact
distribution kerω one has a conformal symplectic structure defined by dω, and a
compatible linear endomorphism φ satisfying φ2 = −1. This can be extended to
an endomorphism of the tangent bundle TM by setting φ(ξ) = 0. The pair (φ, ξ)
defines a reduction of the structure group of TM to U(1)× 1.

In [2], one of us showed that every closed, orientable 3-manifold admits a par-
allelization by contact forms, i.e., a triple of contact forms ω1, ω2, ω3 such that
ω1 ∧ ω2 ∧ ω3 is nowhere zero. In the present note, we prove the following related
result.

Theorem 1. Every closed, orientable 3-manifold M admits a triple of contact
forms ω1, ω2, ω3 such that the Reeb vector fields ξ1, ξ2, ξ3 trivialize the tangent
bundle TM . Furthermore, ω1, ω2, ω3 may be assumed to have the same volume
form ωi ∧ dωi.

One can then define a Riemannian metric g on M by setting

g(ξi, ξj) = 0 for i 6= j

and
g(ξi, ξi) = dω1(ξ2, ξ3).

Note that
ω1 ∧ dω1 = ω2 ∧ dω2 = ω3 ∧ dω3
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implies

dω1(ξ2, ξ3) = dω2(ξ3, ξ1) = dω3(ξ1, ξ2) 6= 0,

hence

g(ξ1, ξ1) = g(ξ2, ξ2) = g(ξ3, ξ3) 6= 0.

If we define linear endomorphisms φ1, φ2, φ3 of TM by

φ1ξ1 = 0, φ1ξ2 = ξ3, φ1ξ3 = −ξ2(1)

(and cyclic permutations thereof), then the φi satisfy the quaternionic identities

φ2
i = −1 on 〈ξi〉⊥,(2)

φiφj = φk + ξi ⊗ ηj(3)

for any cyclic permutation {i, j, k} of {1, 2, 3}, where η1, η2, η3 is the coframe dual
to ξ1, ξ2, ξ3.

Furthermore, we have

g(φiX,Y ) = dωi(X,Y ), i = 1, 2, 3,(4)

for all vector fields X,Y on M . Such a family of tensors (ωi, φi, ξi, ηi), i = 1, 2, 3,
together with a Riemannian metric g, satisfying equations (1), (2), (3), (4), is a
hypercontact structure in dimension 3, as defined in [1]. This type of structure is
actually defined in any dimension 4n+ 3 by the same family of tensors (the index
i still runs from 1 to 3), but one has to add to equations (1)–(4) above the duality
equations

ηi(ξj) = δij ,(5)

which in dimension 3 are true by definition of the dual coframe, and the relations

g(φiX,φiY ) = g(X,Y ) for X,Y ∈ ker ηi,(6)

which hold automatically in dimension 3. See Remark 2 below for the motivation
of this notion.

We shall also prove that one can obtain a simultaneous parallelization of M by
contact forms and Reeb vector fields.

Theorem 2. Every closed, orientable 3-manifold M admits a triple of everywhere
linearly independent contact forms ω1, ω2, ω3 with everywhere linearly independent
Reeb vector fields ξ1, ξ2, ξ3.

Our proof of Theorems 1 and 2 is based on the h-principle and the convex
integration technique of Gromov [3]. In order to make this paper reasonably self-
contained, we shall give a brief outline of Gromov’s theory in Section 3.

Remarks. Theorems 1 and 2 are proved by slightly different methods, and we have
not been able to prove Theorem 2 under the condition that the volume forms
ωi∧dωi be equal. However, observe that the structure equations of a hypercontact
structure can be satisfied without the condition that the ωi have equal volume form
if we replace the Reeb vector fields ξi by suitable multiples ξ̃i = fiξi, where the fi
are nowhere zero functions on M .

(2) Given a hyperkähler manifold (N4n+4, g,Ω1,Ω2,Ω3) and a vector field X
that is a Liouville vector field with respect to all three Kähler forms Ωi, that is,

LXΩi = d(XcΩi) = −Ωi, i = 1, 2, 3,
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it is an easy check that the forms ωi = XcΩi define a hypercontact structure on
any hypersurface transverse to X . (For the ξi take the Reeb vector fields of the ωi,
set ηi = ωi, and define the φi by (1) and on the common kernel of the ωi as the
restrictions of the complex structures Ji on N4n+4.) This yields the basic examples
R4n+3 and S4n+3 as hypersurfaces in Hn+1.

This construction is extended in [1] to show that under certain conditions it is
possible to perform 0-surgery on hypercontact manifolds. In particular, this gives
rise to the examples #k(S1 × S4n+2).

The methods used in the present paper are not strong enough to construct hy-
percontact structures in dimension greater than 3, but Theorem 7 below may be
seen as a first step in this direction, since a triple of contact forms with everywhere
linearly independent Reeb vector fields is a necessary condition for a hypercontact
structure. For example, the conditions of Theorem 7 (with k = 2) are met by all
2-connected 7-manifolds, see [1].
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2. Reduction of the Problem

As in [2], we use the branched cover theorem of Hilden, Montesinos, and Thick-
stun [4].

Theorem 3. Let M be a closed, orientable 3-manifold. There exists a simple 3-
fold branched cover p : M → S3 such that the set C of points in M where p is not
a local diffeomorphism bounds an embedded disc in M . In particular, there is an

embedded 3-ball B in M with C ⊂
◦
B.

Given such a branched cover, it was shown in [2] that one can construct a contact
form ω1 on M which outside B is just the lift of the standard contact form

α1 = x1 dx2 − x2 dx1 + x3dx4 − x4dx3

on S3 ⊂ R4, and such that the 2-plane bundle kerω1 on M is trivial. This implies
the existence of 1-forms α and β on M such that ω1 ∧ α ∧ β is nowhere zero, and
hence ω1, ω1 + εα and ω1 + εβ give a parallelization of M by contact forms if the
constant ε > 0 is chosen sufficiently small.

Observe that a trivialization of TM by Reeb vector fields ξ1, ξ2, ξ3 corresponding
to contact forms ω1, ω2, ω3 is equivalent to a trivialization of Λ2T ∗M by dω1, dω2,
dω3. We now reduce Theorem 1 to the following proposition.

Proposition 4. Given a closed, orientable 3-manifold M , there are 1-forms α, α̃
and a contact form ω such that

dω, Lξdα, Lξdα̃

trivialize Λ2T ∗M , where ‘L’ denotes the Lie derivative and ξ is the Reeb vector
field of ω.
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Proof of Theorem 1. Given ω, α, α̃ as in Proposition 4, define vector fields X and

X̃ on M by

Xc(ω ∧ dω) = dα, X̃c(ω ∧ dω) = dα̃.

These defining equations imply that X and X̃ have zero divergence with respect to
the volume form ω ∧ dω, i.e.,

LX(ω ∧ dω) = L
X̃

(ω ∧ dω) = 0.

Hence, if we denote by ϕt (resp. ϕ̃t) the flow corresponding to X (resp. X̃), the
contact forms

ωt = ϕ∗tω

and
ω̃t = ϕ̃∗tω

have the same volume form as ω.
We now claim that ω1 = ω, ω2 = ωt and ω3 = ω̃t are the desired contact forms

for small enough t, i.e., we want to show that dω1, dω2, dω3 define a trivialization
of Λ2T ∗M .

It is clear that ξ is also divergence-free with respect to ω ∧ dω. Since the Lie
derivative commutes with contraction, we obtain

Lξdα = Lξ(Xc(ω ∧ dω)) = (LξX)c(ω ∧ dω)

= [ξ,X ] c(ω ∧ dω) = −[X, ξ] c(ω ∧ dω)

= −(LXξ)c(ω ∧ dω) = −LX(ξc(ω ∧ dω))

= −LXdω.
Similarly, we have Lξdα̃ = −L

X̃
dω. Now

dωt = dω + tLXdω +O(t2)

= dω − tLξdα+O(t2)

and
dω̃t = dω − tLξdα̃+O(t2).

So for small enough t > 0, the 2-forms dω, dωt and dω̃t are everywhere linearly
independent. This completes the proof of Theorem 1.

3. Convex Integration and the h-Principle

Our proof of Proposition 4 is based on the C⊥-dense h-principle [3, p. 172],
which is proved by the convex integration technique. For the convenience of the
reader and to fix our notation, we give a brief description of the general h-principle
and state the C⊥-dense h-principle in the form in which we shall apply it in the
next section.

The general setup in [3] is the following. Let p : X → V be a smooth fibration
and let X(r) be the space of r-jets of germs of smooth sections f : V → X . The
r-jet of a Cr-section f is denoted by Jrf : V → X(r). A section ϕ : V → X(r) is
called holonomic if ϕ = Jrf for some f : V → X .

A differential relation is a subset R ⊂ X(r). One says that R satisfies the h-
principle if every continuous section V → R is homotopic to a holonomic section
V →R by a continuous homotopy of sections V →R. The h-principle is called C0-
dense if for any section ψ : V → R such a homotopy exists in an arbitrarily small
neighbourhood of ψ(V ). One says that the h-principle for extensions is satisfied
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if, given closed subsets C0 ⊂ C ⊂ V , and a section of R in a neighbourhood of C
which is holonomic in a neighbourhood U0 of C0, there is a homotopy to a holonomic
section ofR over C such that the homotopy is constant in a neighbourhood U ′0 ⊂ U0

of C0.
Now suppose that V is a smooth manifold that splits as V = V ′ × [0, 1]. Fur-

thermore, assume that the fibration p : X → V is trivial with fibre Rq, so that
sections of X → V can be identified with maps f : V → Rq. Fix local coordinates
u1, . . . , un−1 in V ′ and let t be the coordinate in [0, 1]. Then Jrf is given by the
totality of partial derivatives of order ≤ r with respect to u1, . . . , un−1, t. Define

J⊥f by Jrf = J⊥f ⊕
∂rf
∂tr . By C⊥-convergence of maps we mean C0-convergence of

the jets J⊥.
Since a jet is completely determined by a germ of a section, the concept of

C⊥-convergence easily generalizes to arbitrary fibre bundles Rq ↪→ X
p→ V over a

manifold V as follows. Let τ be a hyperplane distribution in the tangent bundle
TV . For a section f : V → X , one can define J⊥f in such a way that

J⊥f1
= J⊥f2

if and only if DJr−1
f1
|τ = DJr−1

f2
|τ,

where DJr−1
fi

is the differential TV → T (X(r−1)).

Let X⊥τ be the space of J⊥-jets. Then there are natural affine bundle projections

X(r) pr⊥−→ X⊥τ
p⊥r−1−→ X(r−1),

such that p⊥r−1 ◦ pr⊥ is the natural projection

prr−1 : X(r) −→ X(r−1).

The fibres of the bundle X(r) → X⊥τ are called principal subspaces in X(r) for the
hyperplane distribution τ .

We can now state Gromov’s theorem, which gives a large class of differential
relations that satisfy the C⊥-dense h-principle for extensions.

Theorem 5. A differential relation R ⊂ X(r) satisfies the C⊥-dense h-principle
for extensions if the following three conditions are satisfied.

(i) The distribution τ is integrable.
(ii) The subset R ⊂ X(r) is open.
(iii) The intersection of R with any principal space is connected and the convex

hull of this intersection is the whole principal space.

This means that given a Cr-section f : U → X and a C0-section ϕ : U → R
(where U is an open set in V ) such that J⊥f = pr⊥ ◦ ϕ and Jrf |C = ϕ|C for a given

closed subset C of U , then ϕ can be homotoped to a C⊥-close holonomic section
over U , and the homotopy may be chosen constant near C.

Note in particular that the required section ϕ exists if Jrf can be homotoped along

the fibres of pr⊥ : X(r) → X⊥τ , that is, along the principal spaces, to a section of R,
where the homotopy has to be constant near C. Hence, if this purely homotopy-
theoretic obstruction vanishes, we can find a solution (i.e., a holonomic section) of
R.

Although the conditions in Theorem 5 are slightly more complicated than in
other cases of Gromov’s h-principle, the proof [3, pp. 172–173] is relatively short
and accessible with little more than a knowledge of the general setup described
above. (We have retained Gromov’s notation to allow easy reference to this proof.)
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The main idea in the proof of Gromov’s theorem is that condition (iii) allows to
find a homotopy ϕs of sections of R which “surrounds” Jrf , that is, such that

Jrf (u) lies in the convex hull of the path of the homotopy ϕs(u) for all u ∈ U .

In this situation one can apply the C⊥-approximation lemma [3, pp. 170–171], a
special case of Gromov’s convex integration technique. The proof of this lemma is
independent of earlier parts of Gromov’s book. Condition (i) is needed because the
proof of Theorem 5 uses a local splitting of U into slices tangent to τ ; condition
(ii) ensures that small Cr-perturbations that are used in the approximation process
keep us within R.

4. Proof of Proposition 4

Let α1 be the standard contact form on S3 given in Section 2, and define two
further contact forms α2, α3 on S3 ⊂ R4 by

α2 = x1 dx3 − x3 dx1 − x2 dx4 + x4 dx2,

α3 = x1 dx4 − x4 dx1 + x2 dx3 − x3 dx2.

The Reeb vector field ξ1 of α1 is

ξ1 = x1∂x2 − x2∂x1 + x3∂x4 − x4∂x3 ,

and it is a straightforward check that

Lξ1dα2 = d(ξ1cdα2) = −2dα3,

Lξ1dα3 = d(ξ1cdα3) = 2dα2.

Note that the dαi trivialize Λ2T ∗S3, so Proposition 4 holds for M = S3.
Now, given some 3-manifold M , we use Theorem 3 as was done in [2] to lift α1

to a contact form ω on M (whose Reeb vector field we denote by ξ) which outside
B ⊂ M is simply the pull-back of α1, and which defines a trivial 2-plane bundle
kerω. Furthermore, we define α0 and α̃0 outside B as the pull-back of α2 and α3,
respectively, and extend them as arbitrary 1-forms over B. Then ω, α0 and α̃0 are
1-forms on M which satisfy the conditions of Proposition 4 outside B ⊂M .

Our aim now is to homotope α0 and α̃0 to the desired forms α and α̃ by a
homotopy which is constant outside a small neighbourhood of B. To this extension
problem we apply Theorem 5 in the following way. Let X = T ∗M ⊕ T ∗M and
consider the space X(2) of 2-jets of pairs of 1-forms. Choose a trivialization ξ′, ξ′′

of kerω which outside B coincides with that given by the Reeb vector fields of α0

and α̃0. This choice of ξ′, ξ′′ is possible because the bundle kerω is trivial over B
and π2(S1) = 0, so a trivialization given on ∂B extends over B. Then the dual
2-forms Ω = dω, Ω′, Ω′′ (with respect to ω ∧ dω) of ξ, ξ′, ξ′′ define a trivialization
of Λ2T ∗M .

Define the relation R by stipulating that the fibre of R → M over m be given
by pairs (j2

mα, j
2
mα̃) of 2-jets of 1-forms such that dω, Lξdj

2
mα, Lξdj

2
mα̃ are linearly

independent and define the same orientation of Λ2T ∗M as Ωm, Ω′m, Ω′′m.
Now we have

Lemma 6. The relation R just defined is open in X(2). Condition (iii) of Theo-
rem 5 is satisfied at points where ξ is transverse to τ . Furthermore, for U ⊂ M
a sufficiently small open set, the projection R → X⊥ restricted to (p ◦ p2

0)−1(U) is
a trivial fibration over (p ◦ p2

⊥)−1(U) whose fibres have vanishing second homotopy

group π2. Here p denotes the projection X = X(0) →M .
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Before giving the proof of this lemma, we complete the proof of Proposition 4.
Cover B with a tight cartesian grid, such that in a neighbourhood of every cell of
this grid, ω is in local coordinates given as ω = dz−xdy+ y dx (this is possible by
the classical Darboux theorem). In such a neighbourhood, let τ be the integrable
distribution tangent to the foliation {z = const.} (This of course does not define a
global distribution on B). Furthermore, we may assume that R → X⊥ is a trivial
fibration over these neighbourhoods.

If α and α̃ already satisfy the conditions of Proposition 4 near a contractible
component of the boundary of such a cell, then Theorem 5 and Lemma 6 allow
the extension of α and α̃ over the cell, satisfying the conditions of Proposition 4
everywhere, since in this case there is no homotopy obstruction. Only when we
want to extend α and α̃ over the last cell, we meet with a homotopy obstruction in
π2(R∩ principal space), which vanishes by Lemma 6.

In more detail, the vanishing of the homotopy obstructions can be seen as follows.
Suppose that over a cell Q we have 1-forms α and α̃ that already satisfy the required
independence condition either in a neighbourhood W of a contractible component
of the boundary of Q or in a neighbourhood of the whole boundary of Q. (In
other words, we rule out the case that α and α̃ have to remain fixed during the
approximation process near a boundary component that is not simply-connected,
since this could lead to a homotopy obstruction.) Our particular choice of a splitting
of B into little cells ensures that in the step by step extension over the cells of the
grid, these are the only two cases to consider. The jets j2α and j2α̃ give a holonomic
section σ of X(2) over Q, and over W this section lies in R ⊂ X(2). Over Q, we have
chosen a particular distribution τ , which defines the bundle X⊥τ . Gromov’s theorem
allows to homotope α and α̃ to 1-forms satisfying the independence condition of
Proposition 4 everywhere over Q if we can find a homotopy of σ along the principal
spaces, i.e., the fibres of X(2) → X⊥τ , to a (non-holonomic) section ϕ of R → Q.
Since the fibres of X(2) → X⊥τ are affine spaces, it is enough to find a section ϕ of
R → Q such that ϕ(m) lies in the same principal space as σ(m). Let σ⊥ = p2

⊥ ◦ σ
be the section of X⊥τ over Q induced by σ. Then it is an equivalent problem to find
a section of the bundle (σ⊥)∗R over Q, where the section has to take prescribed
values in a neighbourhood W ′ ⊂ W of the respective boundary component of Q.
Since the bundle (σ⊥)∗R over Q is a trivial bundle whose fibre has vanishing second
homotopy group, this extension problem can always be solved.

It remains to prove Lemma 6. ThatR is open is clear. The remaining statements
are purely local in character, so we fix a point m in M and consider a pair of 2-
jets of 1-forms (j2

mα, j
2
mα̃) at m. In the sequel, we suppress the index m. The

transversality assumption on ξ and τ allows to assume that in local coordinates
near m we have ξ = ∂z and τ is the distribution tangent to {z = const.}. The 2-jet
j2α can be represented as

j2α = (x, y, z)R

 x
y
z

 dx + (x, y, z)S

 x
y
z

 dy + (x, y, z)T

 x
y
z

 dz

+(x, y, z)A

 dx
dy
dz

+ (a1, a2, a3)

 dx
dy
dz

 ,

where R = (Rij), S = (Sij) and T = (Tij) are symmetric (3 × 3)-matrices with
constant entries, A is a constant (3×3)-matrix, and the ai are constant real numbers.
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Note that in a fixed principal space, the only free variables in this expression are
R33, S33 and T33.

A straightforward calculation shows that Lξdj
2α is given by

Lξdj
2α = 2(T13 −R33) dx ∧ dz + 2(T23 − S33) dy ∧ dz

+ multiples of dx ∧ dy.
Similarly,

Lξdj
2α̃ = 2(T̃13 − R̃33) dx ∧ dz + 2(T̃23 − S̃33) dy ∧ dz

+ multiples of dx ∧ dy.
The condition that Lξdj

2α, Lξdj
2α̃ and dωm = dx ∧ dy be linearly independent

and define a preferred orientation, translates in the intersection Rx of R with a
principal space (p2

⊥)−1(x), x ∈ X⊥, into a condition on the free variables R33, S33,

T33, R̃33, S̃33, T̃33 as follows. The T -components are free, so we get a factor R2;
the linear independence and orientation condition becomes

(T13 −R33)(T̃23 − S̃33)− (T23 − S33)(T̃13 − R̃33) > 0.

Changing affine coordinates to x1, x2, x3, x4 with

T13 −R33 = x1 + x3,

T23 − S33 = x2 + x4,

T̃13 − R̃33 = x4 − x2,

T̃23 − S̃33 = x1 − x3,

we obtain the affine cone {x2
1 + x2

2 − x2
3 − x2

4 > 0}.
Hence

Rx ∼= R2 × {x2
1 + x2

2 − x2
3 − x2

4 > 0} ⊂ R6 ∼= (p2
⊥)−1(x).

It is now easy to see that the convex hull of Rx in (p2
⊥)−1(x) is all of (p2

⊥)−1(x)
and that Rx is homeomorphic to S1 × R5. In particular, π2(Rx) = π2(S1) = 0.
The explicit coordinate description of the Rx also implies the statement about the
local triviality of the projection R→ X⊥.

This completes the proof of Lemma 6.
Next we give an outline of the proof of Theorem 2. The method of proof is

essentially the same as that for Theorem 1. As before, we first construct a contact
form ω1 on M with trivial 2-plane bundle kerω1. This allows to find 1-forms
α0, α̃0 on M such that ω1 ∧ α0 ∧ α̃0 is nowhere zero. Furthermore, as in the
proof of Proposition 4, we may assume that dω1, dα0, dα̃0 are linearly independent
everywhere outside a 3-ball B ⊂M .

Now let X = T ∗M ⊕ T ∗M and consider the relation R ⊂ X(1) given by pairs of
1-jets of 1-forms (j1

mα, j
1
mα̃) such that dω1,m, dj1

mα, dj1
mα̃ are linearly independent

and define a preferred orientation. ThisR also satisfies Lemma 6 (in fact, in suitable
affine coordinates, Rx ⊂ (p1

⊥)−1(x) looks exactly the same as for the relation we
considered in Lemma 6), so we find 1-forms α and α̃ on M such that dω, dα, dα̃
are everywhere linearly independent.

Since we are using a C⊥-approximation of 1-jets, α and α̃ can be chosen C0-close
to α0 and α̃0, respectively. This implies that we can still satisfy the independence
condition ω1 ∧ α∧ α̃ 6= 0. Then ω1, ω2 = ω1 + εα and ω3 = ω1 + εα̃ are the desired
contact forms for ε > 0 a sufficiently small constant.
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Remark. Strictly speaking, Theorem 3 is not essential for the proof of Theorems 1
and 2, and we shall see below how Theorem 2 generalizes to higher dimensions.
However, the use of Theorem 3 greatly simplifies the argument in two places.

First of all, as shown in [2], it allows the direct construction of a contact form
ω1 with trivial 2-plane bundle kerω1. Note that the h-principle fails for the exten-
sion of contact forms, so one does need some geometric structure theorem for the
construction of a suitable ω1. In higher dimensions, we do not have such a geo-
metric structure theorem, so we shall have to assume that we are given a contact
form whose contact distribution admits a certain number of linearly independent
sections.

Secondly, Theorem 3 allows to reduce the construction of two further contact
forms ω2, ω3 to a step by step extension problem to which the h-principle applies
and where all homotopy-theoretic obstructions vanish for a simple geometric rea-
son. Without this geometric information, one needs a more careful analysis of the
geometry in the overlap of regions where we use different local distributions τ , to
ensure that one does not create any homotopy-theoretic obstructions. Observe that
in the proof of Proposition 4, due to the special geometry of the problem, we were
free to choose a non-holonomic section ϕ of R at every step of the extension, as
long as we satisfied p2

⊥ ◦ ϕ = p2
⊥ ◦ σ, where σ was the given holonomic section of

X(2). (Note that this condition on ϕ determines p2
0 ◦ ϕ = p2

0 ◦ σ; this is essential
to obtain a C0-close approximation.) In the general setting, we shall have to start
with a global non-holonomic section ϕ of R and ensure that we still have a global
section after every step of the extension.

5. A Generalization to Higher Dimensions

Theorem 2 admits the following generalization.

Theorem 7. Let M be a closed, orientable (2n + 1)-dimensional manifold with
contact form ω, and suppose that the contact distribution kerω admits k every-
where linearly independent sections. Then M admits (k + 1) everywhere linearly
independent contact forms with everywhere linearly independent Reeb vector fields.

Proof. Analogous to the proof of Theorem 2, the contact forms ω0, . . . , ωk are
constructed as ω0 = ω, ωi = ω+ εαi for i = 1, . . . , k, where the αi are 1-forms such
that

(dω)n, (dω)n−1 ∧ dα1, . . . , (dω)n−1 ∧ dαk
are everywhere linearly independent. This condition implies that (for ε > 0 suffi-
ciently small) the ωi are contact forms with everywhere linearly independent Reeb
vector fields. If the αi can be found C0-close to α0

i , where ω, α0
1, . . . , α

0
k are ev-

erywhere linearly independent 1-forms, then ω0, . . . , ωk will be everywhere linearly
independent.

Let X be the Whitney sum of k copies of T ∗M , and define the relation R ⊂ X(1)

as before by requiring the linear independence of the differentials of the k 1-jets
of 1-forms (together with dωm). If k = 2n, we also fix an orientation to make R
connected. A similar calculation as in the proof of Lemma 6 shows that R satisfies
the conditions of Gromov’s theorem.

Let Y1, . . . , Yk be everywhere linearly independent sections of kerω, which exist
by the assumptions of the theorem. Set

α0
i = Yicdω
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and

Ωi = ω ∧ α0
i .

Then the (α0
i ,Ωi) define a global smooth, non-holonomic section ϕ of R. The 1-jets

of the α0
i define a global holonomic section σ = J1(p1

0ϕ) of X(1).
CoverM with finitely many open ballsBν such that in each ball, ω can be written

in local coordinates as ω = dz −
∑n
i=1(xi dyi − yi dxi), and such that R → X⊥ is

a trivial fibration over each Bν . We call such a cover {Bν} a good cover. The
distribution τ is defined locally as in the proof of Proposition 4.

Now we have the following lemma.

Lemma 8. Let ϕ be a global smooth, non-holonomic section of R and let {Bν} be
a good cover of M . Suppose that in the intersection W of a fixed ball B = Bν0 with
certain other balls Bνi , the section ϕ is already holonomic. Then one can find a
global section ϕ̃ of R that satisfies the following conditions:

(i) p1
0ϕ̃ is C0-close to p1

0ϕ,
(ii) ϕ̃ = ϕ outside B,

(iii) ϕ̃ = ϕ near the intersection W̃ ⊂ W of B with slightly smaller balls B̃νi ⊂
Bνi ,

(iv) If W covers the 2n-sphere ∂B = B − B, ϕ̃ is holonomic everywhere over
B; if W does not cover ∂B, ϕ̃ is only required to be holonomic in a slightly smaller

ball B̃.
Furthermore, the B̃νi and B̃ may be chosen arbitrarily close to Bνi and B, re-

spectively, so that these slightly smaller balls, together with the Bν not involved in
the construction, still form a good cover of M .

It is clear that Theorem 7 follows by repeated application of this extension
lemma.

Proof of Lemma 8. Consider the sections ϕ⊥ = p1
⊥ϕ and σ⊥ = p1

⊥σ (where σ =
J1(p1

0ϕ)) of X⊥ over B. Since X⊥ → B is an affine bundle, ϕ⊥ and σ⊥ are
homotopic by a linear homotopy ϕ⊥t , and this homotopy is constant over W . The
section ϕ⊥ lifts to the section ϕ of R, and since R → X⊥ is a trivial fibration over
B, the homotopy ϕ⊥t lifts to a homotopy ϕt which is constant over W , i.e., we have

(a) ϕt : B →R, 0 ≤ t ≤ 1,
(b) ϕ0 = ϕ,
(c) p1

⊥ϕ1 = σ⊥,
(d) ϕt|W = ϕ|W .

The condition p1
⊥ϕ1 = σ⊥ means that for every m ∈ B, both σ(m) and ϕ1(m) lie

in the same principal space. Then Gromov’s theorem allows to homotope ϕ1 to a
holonomic section σ1 that is C⊥-close to σ and such that the homotopy is constant

near W̃ , where W̃ is as defined in condition (iii) of the lemma. Gromov’s theorem

allows to choose the B̃νi as close to the Bνi as we wish.

If W covers ∂B (in which case we may assume that W̃ also covers ∂B, the last
statement of the lemma therefore holds), set ϕ̃ = σ1 in B and ϕ̃ = ϕ outside B.

If W does not cover ∂B, choose two slightly smaller balls B̃ ⊂ B′ ⊂ B. Then

set ϕ̃ = σ1 in B̃, in the annulus between ∂B̃ and ∂B′ we define ϕ̃ by the homotopy
from σ1 to ϕ1, in the annulus between ∂B′ and ∂B we set ϕ̃ = ϕχ(t) (where χ(t) ≡ 1

near ∂B′ and χ(t) ≡ 0 near ∂B), and outside B we set ϕ̃ = ϕ. Again, B̃ may be
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chosen as close to B as we like, so the slightly smaller balls will still form a good
cover.

It remains to check conditions (i)–(iv). It is obvious from the construction that
(ii) and (iv) are satisfied. Both homotopies involved in the construction are constant

near W̃ ; this implies (iii). From Gromov’s theorem we know that p1
0ϕ1 and p1

0σ1

are C0-close and so is the homotopy between them. Since ϕt is the lift of the linear
homotopy ϕ⊥t in the fibres of X⊥ → B, we clearly have p1

0ϕt = p1
0ϕ. This proves

(i) and completes the proof of Lemma 8.
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Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid,

Spain

E-mail address: jgonzalo@ccuam3.sdi.uam.es

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


