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Abstract 

There have been various analyses of the efficiency of container port (or terminal) production using 
Data Envelopment Analysis (DEA) based on cross-sectional data. When time is not considered, the 
efficiency results derived using this approach can be biased. In order to overcome this problem, this 
paper applies DEA windows analysis, utilising panel data, to a sample of the world’s major 
container ports in order to deduce their relative efficiency. The results suggest that estimates of 
container port efficiency fluctuate over time. The paper concludes that existing programming 
methods for estimating efficiency are inadequate in capturing the long-term increased efficiency and 
competitiveness that accrue from significant investments. 

1 Introduction  

The globalisation of the world economy has led to an increasingly important role for 
transportation. In particular, container transportation plays a key role in the process, 
largely because of the numerous technical and economic advantages it possesses over 
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traditional methods of transportation. Standing at the crucial interface of sea and inland 
transportation, the significance of the container port and its production capabilities cannot 
be ignored. 

Compared with traditional port operations, containerisation has greatly improved port 
production performance because of two reasons. To reap economies of scale and of scope, 
liner shipping companies and container ports are respectively willing to deploy dedicated 
container ships and efficient container handling systems. In so doing, port productivity has 
been greatly enhanced. On the other hand, many container ports no longer enjoy the 
freedom yielded by a monopoly over the handling of cargoes from within their hinterland; 
they are not only concerned, therefore, with whether they can merely physically handle 
cargo, but also whether they can compete for that cargo. 

Under such a competitive environment, port performance measurement is not only a 
powerful management tool for port operators, but also constitutes a most important input 
for informing regional and national port planning and operations. Traditionally, the 
performance of ports has been variously evaluated by calculating cargo-handling 
productivity at berth (Bendall and Stent, 1987; Tabernacle, 1995; Ashar, 1997), by 
measuring a single factor productivity (De Monie, 1987) or by comparing actual with 
optimum throughput over a specific time period (Talley, 1998). 

In recent years, significant progress has been made concerning the measurement of 
efficiency in relation to productive activities. In particular, non-parametric frontier 
methods have been developed with applications across a wide range of sectors including 
transit services. A recent work by De Borger, Kerstens and Costa (2002) claims that 
frontier models have found their way into the transport sector, and studies on the 
productivity and efficiency of almost all transport modes are appearing. 

In this vein, Data Envelopment Analysis (DEA) is one of the most important 
approaches to measuring efficiency. Marlow and Paixão (2002) advocate that DEA should 
be used for port performance measurement and its suitability has been examined by Wang, 
Song and Cullinane (2002). There have also been several applications of DEA to the sea 
port industry: e. g. Tongzon (2001); Valentine and Gray (2001) and Martinez-Budria et al 
(1999). However, these applications are restricted to the application of standard DEA 
models such as the CCR (due to Charnes, Cooper and Rhodes, 1978) and BCC (due to 
Banker, Charnes and Cooper, 1984) models and to the use of cross-sectional data. 

As stated by Kumbhakar and Lovell (2000, p.10), “Cross-sectional data provide a 
snapshot of producers and their efficiency. Panel data provide more reliable evidence on 
their performance, because they enable us to track the performance of each producer 
through a sequence of time periods”. In order to overcome this potential problem 
associated with an analysis based on cross-sectional data, in this paper DEA windows 
analysis is, for the first time (to our knowledge), applied to the port industry to deduce 
efficiency trends. Annual panel data of twenty-five leading container ports from around the 
world are collected for the period 1992-1999, and the efficiency of these ports is analysed 
over time. 

2 Container port production measurement 

Performance measurement plays an important role in the development of a company (or 
any other form of organisational Decision Making Unit (DMU)). Dyson (2000) claims that 
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performance measurement plays an essential role in evaluating production because it can 
define not only the current state of the system but also its future, as shown in Figure 1. 
Performance measurement helps move the system in the desired direction through the 
effect exerted by the behavioural responses towards these performance measures that exist 
within the system. Mis-specified performance measures, however, will cause unintended 
consequences, with the system moving in the wrong direction. 
 
 

 

 

 

 

 

Figure 1: Performance measures and organisational development 
Source: Dyson (2000, p. 5) 

Ports are essentially providers of service activities, in particular for vessels, cargo and 
inland transport. As such, it is possible that a port may provide sound service to vessel 
operators on the one hand and unsatisfactory service to cargo or inland transport operators 
on the other. Therefore, port performance cannot normally be assessed on the basis of a 
single value or measure. The multiple indicators of port performance can be found in the 
example of the Australian port industry (Talley, 1994) and UNCTAD (1976). 

Talley (1994) goes further by attempting to build a single performance indicator – the 
shadow price of variable port throughput per profit dollar - to evaluate the performance of 
a port. This overcomes the drawback of multiple indicators, that is examining whether port 
performance has improved or deteriorated becomes difficult when changes in some 
indicators improve performance and changes in others affect it negatively. 

In an effort to more properly evaluate port performance, several methods have been 
suggested, such as the estimation of a port cost function (De Neufville and Tsunokawa, 
1981) the estimation of the total factor productivity of a port (Kim and Sachish, 1986) and 
the establishment of a port performance and efficiency model using multiple regression 
analysis (Tongzon, 1995). 

In recent years, DEA has occasionally been used to analyse port production. Compared 
with traditional approaches, DEA has the advantage that consideration can be given to 
multiple inputs and outputs. This accords with the characteristics of port production, so 
that there exists, therefore, the capability of providing an overall evaluation of port 
performance.  
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Roll and Hayuth (1993) is probably the first attempt in this respect.  However, this 
work should be treated as a theoretical exploration of applying DEA to the port sector, 
rather than as a genuine application.  This is because no genuine data were collected and 
analysed.  

Martinez-Budria et al (1999), classified 26 ports into three groups; namely, ‘high 
complexity’, ‘medium complexity’ and ‘low complexity’ ports.  After examining the 
efficiency of these ports using DEA-BCC models, the authors conclude that the ports of 
‘high complexity’ are associated with high efficiency, compared with the medium and low 
efficiency found in other groups of ports. 

Tongzon (2001) uses both DEA-CCR and DEA-additive models to analyse the 
efficiency of 4 Australian and 12 other international container ports for the year 1996.  
Clearly plagued by a lack of data availability and the small sample size (only 16 
observations), more efficient ports than inefficient ports are identified.  Realising this 
serious drawback, the author suggests that further work should be done in collecting more 
observations to enlarge the sample analysed. 

Valentine and Gray (2001) apply the DEA-CCR model to 31 container ports out of the 
world’s top 100 container ports for year 1998. The objective of this work was to compare 
port efficiency with a particular type of ownership and organisational structure to 
determine any relationship with efficiency. 

3 DEA windows analysis 

DEA can be roughly defined as a nonparametric method of measuring the efficiency of a 
Decision Making Unit (DMU) with multiple inputs and/or multiple outputs. This is 
achieved by constructing a single ‘virtual’ output to a single ‘virtual’ input without pre-
defining a production function. The term DEA and the CCR model were first coined in 
1978  (Charnes, Cooper and Rhodes, 1978) and were followed by a phenomenal expansion 
of DEA in terms of its theory, methodology and application over the last few decades. The 
great influence of the CCR paper is reflected by the fact that it had been cited over 700 
times by 1999 (Forsund and Sarafoglou, 2002). 

Among other models in the context of DEA, the two most widely used DEA models, 
named DEA CCR and BCC models, deserve greater attention, especially since they are 
utilised later in this paper.  

The DEA-CCR model assumes constant returns to scale so that all observed production 
combinations can be scaled up or down proportionally. The DEA-BCC model, on the other 
hand, allows for variable returns to scale and is graphically represented by a piecewise 
linear convex frontier. 

Formally, let inputs be M
Mkkkk Rxxxx +∈= ),( 21 Λ  to produce outputs 

N
Nkkkk Ryyyy +∈= ),( 21 Λ .  The row vectors kx  and ky  form the kth rows of the data 

matrices X and Y, respectively.  Let K
K R+∈= ),( 21 λλλλ Λ  be a non-negative vector, 

which forms the linear combinations of the K firms.  Finally, let e = (1, 1, …, 1) be a 
suitably dimensioned vector of unity values. 

The output-oriented DEA model seeks to maximize the proportional increase in output 
while remaining within the production possibility set.  An output–oriented efficiency 
measurement problem can be written as a series of K linear programming envelopment 
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problems, with the constraints differentiating between the DEA-CCR and DEA-BCC 
models, as shown in Equations (1) through (5). 

 
(1) U

U λ,
max   

Subject to  

(2) Uyk' - Y' λ ≤ 0  

(3) X' λ - xk' ≤ 0  

(4) λ ≥ 0 (DEA-CCR) 

(5)  eλ' = 1 (DEA-BCC) 

The combination of Equations from (1) through (4) and (1) through (5), respectively, 
form the DEA-CCR and DEA-BCC models.  The output-oriented measure of technical 
efficiency of the k -th DMU, denoted by TEk, can be computed by equation (6). 

 
(6) TEk = 1 / Uk 

 
It is important to note that input-oriented models can be formulated in a similar way.  

Interested readers may refer to Seiford and Thrall (1990), Ali and Seiford (1993) and 
Cooper, Seiford and Tone (2000) for more discussion on the above models. 

The technical efficiency derived from DEA-CCR and DEA-BCC models are frequently 
used to obtain a measure of scale efficiency, as shown in equation (7) (Cooper, Seiford and 
Tone, 2000). 

 
(7)  SEk = UCCR_k /UBCC_k 

 
…where SEk, indicates scale efficiency and UCCR_k and UBCC_k are the estimated technical 
efficiency of DMU k respectively derived from the DEA-CCR and DEA-BCC models. SEk 
=1 indicates scale efficiency and SEk < 1 indicates scale inefficiency. 

Scale inefficiency is due to either increasing or decreasing returns to scale which can 
be determined by inspecting the sum of weights, eλ', under the specification of the CCR 
model.  If this sum is equal to one, the law of constant returns to scale prevails, whereas 
increasing returns to scale and decreasing returns to scale prevail when the sum is less than 
or greater than one. 

DEA is initially used to analyze cross-sectional data, where a given DMU is compared 
with all other DMUs that produce during the same time period and where the role of time 
is ignored. However, this can be rather misleading since a dynamic context may give rise 
to seemingly excessive use of resources that are intended to produce beneficial results in 
future periods. As such, panel data prevail over cross-sectional data in that not only do 
they enable a DMU to be compared with other counterparts, but also because the 
movement of efficiency of a particular DMU can be tracked over a period of time. In so 
doing, panel data are more likely to reflect the real efficiency of a DMU. 
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Initiated by Charnes, Clark, Cooper and Golany (1985), windows analysis is a time-
dependent version of DEA. The basic idea is to regard each DMU as if it were a different 
DMU in each of the reporting dates. Then each DMU is not necessarily compared with the 
whole data set, but instead only with alternative subsets of panel data. The windows 
analysis is based on the assumption that what was feasible in the past remains feasible 
forever, and that the treatment of time in windows analysis is more in the nature of an 
averaging over the periods of time covered by the window. It seems hard to find more than 
an ad hoc justification for the size of the window, as well as for the fact that part of the 
past is ignored (Tulkens and van den Eeckaut, 1995). 

4 Operationalisation 

4.1 Data issues 
A thorough discussion of variable definition is provided in Song, Cullinane and Wang 
(2003), but can be summarised as follows.  The input and output variables should reflect 
actual objectives and process of container port production as accurately as possible.  As far 
as the former is concerned, the observed performance of a port might be closely related to 
its objective.  For instance, a port is more likely to utilise state-of-the-art, expensive 
equipment to improve its productivity if its objective is simply to maximise cargo 
throughput.  On the other hand, a port may be more willing to use cheaper equipment if its 
objective is simply to maximise profits. 

The objectives of a port are a crucial consideration in defining the variables for 
efficiency measurement.  For instance, if the objective of a port is to maximise its profits, 
then employment or any information on labour should be counted as an input variable.  
However, if the objective of a port is to increase employment, then information on labour 
should be accounted for as an output variable. 

In this paper, the main port objective is assumed to be the minimisation of the use of 
input(s) and maximisation of the output(s).  This objective is justified by the facts that, 
inter alia, i) contemporary container ports rely heavily upon sophisticated equipment and 
information technology (IT) rather than being labour-intensive; ii) in the light of the fierce 
and ever-increasing competition faced by each container port, to achieve this goal is more 
urgent than any other objective; and iii) this objective also conforms with the results of 
most existing research. 

As container shipping lines are the most important clients of a container port, the 
transfer of cargo across a quay between ship and shore fundamentally decides the 
efficiency of a port, and is vital to its competitive position. In this production process (the 
quay transfer operation), the most important piece of equipment is the gantry crane. As a 
storage area, the container yard acts as a buffer between sea and inland transportation or 
transshipment.  The size of a ship is very frequently thousands of times the size of the land 
vehicles that carry the cargo to and from the port.  As such, the use of such storage space is 
normally inevitable. The main pieces of equipment used within a container yard are the 
yard gantry cranes and straddle carriers. Dowd and Leschine (1990) argue that the 
production of a container terminal depends on the efficient use of labour, land and 
equipment.  The measurement of terminal production, therefore, is a means of quantifying 
efficiency in the utilisation of these three resources. Given the characteristics of container 
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port production, the total quay length and the terminal area are the most suitable proxies 
for the ‘land’ factor input and the number of quay gantry cranes, the number of yard 
gantry cranes and the number of straddle carriers are the most suitable proxies for the 
‘equipment’ factor input. Measures of these variables should be incorporated into the 
models as input variables. 

In the light of the unavailability or unreliability of direct data, information on labour 
inputs is derived from a pre-determined relationship to terminal facilities. Notteboom, 
Coeck and van den Broeck (2000) point out that expert analysis has revealed that a fairly 
stable and close relationship exists between the number of gantry cranes and the number of 
staff in a container terminal. As such, labour information can be determined as a function 
of the facilities of a port. It should be emphasised, however, that there are a number of 
caveats that should be made explicit in making this assumption.  For instance, with the 
rapid development of manufacturing technology, new products (such as driverless 
automated guided vehicles) need less labour in absolute numbers. Also, automatic stacking 
cranes have already been employed at some container ports. Thus, any pre-determined 
relationship between terminal facilities and the absolute number of stevedores employed is 
not a static one. At the same time, there does exist a difference in the use of labour in ports 
of different sizes or where different facilities are available or where different clients are 
served. 

On the other hand, container throughput is unquestionably the most important and 
widely accepted indicator of port or terminal output.  Almost all previous studies treat it as 
an output variable, because it closely relates to the need for cargo-related facilities and 
services and is the primary basis upon which container ports are compared, especially in 
assessing their relative size, investment magnitude or activity levels.  Another 
consideration is that container throughput is the most appropriate and analytically tractable 
indicator of the effectiveness of the production of a port. 

The sampling frame for the analysis was the world’s leading container ports ranked in 
the top 30 in 2001. Although ranked in the top 30, five container ports (Shenzhen, Gioia 
Tauro, Tanjung Pelepas, Algeciras and San Juan) were finally excluded because either they 
have a shorter history than the study period or lack reliable data for analysis. Eight years of 
annual data from 1992 to 1999 are collected for each port. Thus, the sample for analysis 
comprised a total of 200 observations. The required secondary data are mainly taken from 
various issues of both the Containerisation International Yearbook and Lloyd’s Ports of 
the World. The latest data available on port/terminal throughput was for 1999 and this was 
chosen as the basis for the analysis. 

Based on the argument that container terminals are more suitable for one-to-one 
comparison than whole container ports (Wang, Song and Cullinane, 2002), this study 
initially intended to investigate individual container terminals. However, data sources often 
reported the required data, especially container throughput, at the aggregate level of the 
whole port, rather than on the basis of the individual terminals that may comprise each of 
those ports within the sample. In these cases, the input and output of a port are defined as 
the aggregation of the input and output of individual terminals within the port. It is 
important to recognise, however, that such aggregation may prove problematic in 
reflecting the true production efficiency of the individual terminals within the same port, 
particularly when these container terminals operate as independent units. Nevertheless, for 
a sample composed at the level of the port, the data used in the study is the most reliable 
and comprehensive available. 
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A summary of the major characteristics of the finally selected input and output 
variables is presented in Table 1. 

 
 Throughput 

(TEU*) 
Quay 
length 

(m) 

Terminal 
Area 
(ha) 

Quayside 
Gantry 

(number) 

Yard 
Gantry 

(number) 

Straddle 
Carrier 

(number) 
Max. 15,944,793 16,917 1,000 111 337 171 
Min. 33,705 142 4 1 0 0 
Mean 2,455,824 4,609 194 29 39 31 
Standard Deviation 2,459,148 4,022 206 25 61 40 

Table 1: Descriptive statistics of the selected input and output variables 
Note: * TEU is the abbreviation for “Twenty foot Equivalent Unit”, referring to the most common standard 
size for a container of 20 ft in length. 

4.2 Model orientation 
DEA models can be distinguished according to whether they are input- or output-oriented. 
The former is closely related to operational and managerial issues, whilst the latter is more 
related to planning and strategies.  Both orientations have their usefulness in the container 
port industry context.  As far as input-oriented models are concerned, the port industry is 
normally associated with long-life facilities and a long-term planning horizon and once the 
port is built, its output is roughly fixed within some range.  A port is normally able to 
approximately predict its container throughput for the ensuing year at least.  This is 
because a container port has a fairly stable customer base of shipping lines.  Over the fairly 
short-term, container terminals should even be able to predict impending dramatic changes.  
A container terminal can also attempt to predict its future throughput by studying historic 
data or regional economic developments.  In that case, how to efficiently use the inputs is 
the key to saving costs in port production. 

On the other hand, with the rapid expansion of global business and international trade, 
many container ports must frequently review their capacity in order to ensure that they can 
provide satisfactory services to port users and maintain their competitive edge.  
Sometimes, the need to build a new terminal or increase capacity is inevitable.  However, 
before a port implements such a plan, it is of great importance for the port to know whether 
it has fully used its existing facilities and that output has been maximised given the input.  
From this point of view, the output-oriented model provides a benchmark for the container 
industry. 

Ultimately, it has been decided that output-oriented models should be chosen as the 
basis for the analysis undertaken herein.  From a purely pragmatic point of view, the 
choice of an output-oriented approach greatly facilitates discussions for the case where 
there is a single output. 

5 Empirical results and analysis 

Without precise information on the returns to scale of the port production function and in 
order to facilitate the exploration of returns to scale, both DEA-CCR and DEA-BCC 
models are applied to derive the efficiency of the container ports under study. The software 
DEA-Solver-PRO 3.0 (Cooper et al, 2000) is employed to derive a solution to the model.  
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Table 2 
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Hong  72.11 71.7 76.57       89.10 10.69 
Kong  71.7 76.57 100        
   94.25 97.02 100       
    89.35 93.87 100      
     91.7 100 100     
      87.11 88.85 93.07    
Singapore 94.97 100 68.84       88.73 11.54 
  100 68.23 70.87        
   80.34 83.44 100       
    76.41 91.57 100      
     85.52 93.39 100     
      88.65 94.92 100    
Busan 78.56 91.83 100       78.73 16.63 
  86.27 98.96 90.61        
   88.97 88.48 100       
    71.01 79.38 75.38      
     79.23 74.33 52.21     
      65.13 49.37 47.51    
Kaohsiung 100 94.01 100       94.79 5.21 
  88.61 93.65 100        
   93.65 100 96.69       
    97.26 92.94 97.06      
     90.24 90.79 100     
      81.5 89.77 100    
Shanghai 75.13 94.28 100       83.26 12.54 
  86.98 95.77 93.52        
   86.81 78.19 80.56       
    65.77 70.84 86.63      
     69.25 82.19 100     
      59.86 72.83 100    
Rotterdam 39.1 38.92 41.72       50.69 9.89 
  36.92 40.1 47.64        
   40.1 47.64 65.26       
    46.19 63.71 57.19      
     61.47 55.39 64.36     
      51.21 59.45 56.05    
Los  98.02 95.64 100       98.22 3.09 
Angeles  94.51 98.62 100        
   98.61 100 100       
    100 100 100      
     100 100 94.95     
      100 88.29 99.28    
Hamburg 47.04 49.24 55.09       53.96 4.85 
  46.22 51.7 52.73        
   51.7 52.73 55.55       
    51.33 53.43 57.53      
     51.95 55.97 65.51     
      52.65 62.04 58.92    
Long  60.57 55.85 67.65       68.29 14.86 
Beach  54.69 67.33 74.78        
   63.01 71.05 69.71       
    58.47 56.54 65.89      
     52.99 59.94 100     
      57.85 92.95 100    
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Table 2 (Continued) 
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Antwerp 34.48 35.24 40.82       33.47 5.00 
  32.37 37.43 38.67        
   37.43 38.67 41.79       
    26.14 29.49 28.85      
     28.88 28.04 30.62     
      27.25 29.83 36.42    
Port Klang 100 64.35 78.69       55.96 20.95 
  60.52 74 75.78        
   74 75.78 40.55       
    69.23 34.34 40.97      
     33.36 39.31 39.57     
      32.64 31.76 42.34    
Dubai 85.23 89.21 100       68.21 17.23 
  83.41 93.49 49.91        
   93.49 54.16 67.34       
    49.44 57.82 58.67      
     55.93 57.66 62.19     
      54.37 58.63 56.82    
New York/ 57.17 49.74 67.95       76.34 18.27 
New Jersey  46.43 63.06 100        
   63.06 100 97.86       
    90.3 83.27 97.71      
     79.11 92.82 60.24     
      89.86 59.76 75.71    
Bremen/ 81.58 85.39 98.96       80.34 7.86 
Bremerhaven 71.77 83.18 84.54        
   83.18 84.54 85.48       
    70.39 74.11 72.78      
     74.45 73.06 77.75     
      73.23 77.93 93.78    
Felixstowe 69.61 73.95 78.27       60.39 9.21 
  63.6 67.33 72.02        
   57.69 59.44 63.95       
    50.02 53.82 57.68      
     52.37 55.84 63.13     
      44.95 51.86 51.56    
Manila 71.11 54.36 60.11       58.07 11.45 
  54.05 58.02 79.31        
   50.24 69.45 81.14       
    54.62 63.81 51.48      
     63.79 51.48 42.33     
      51.1 41.58 47.28    
Tokyo 49.59 43.4 48.26       51.90 6.49 
  40.13 45.19 53.19        
   48.14 57.52 61.97       
    53.54 55.99 53.88      
     55.17 52.23 57.36     
      44.82 48.9 64.91    
Qingdao 67.82 54.15 88.07       77.15 18.09 
  50.58 82.27 100        
   53.09 74.07 100       
    58.25 78.64 100      
     78.64 100 78.04     
      100 55.12 69.93    
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Table 2 (Continued) 
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Yokohama 56.51 50.12 50.05       47.84 6.14 
  47.02 47.48 58.69        
   47.48 58.69 49.86       
    53.04 46.11 45.06      
     44.6 43.2 45.67     
      39.25 42.04 36.3    
Laem 10.59 68.64 47.18       65.84 25.39 
Chabang  55.1 46.66 70.85        
   35.91 54.52 100       
    44.16 84.98 100      
     62.46 64.14 100     
      54.69 85.27 100    
Tanjunk 96.57 79.87 100       91.28 9.58 
Priok  68.96 86.33 100        
   86.31 100 97.04       
    95.56 92.73 100      
     92.73 100 94.79     
      93.94 71.94 86.16    
Kobe 42.72 43.94 40.72       37.57 8.34 
  40.91 38.32 20.72        
   40.74 22.45 39.66       
    21.06 36.46 48.24      
     35.56 46.78 46.93     
      36.07 37.06 37.95    
Nagoya 99.46 100 100       94.42 8.69 
  94.93 93.93 100        
   93.93 100 99.45       
    100 99.45 95.79      
     100 96.31 73.47     
      96.62 73.6 82.69    
Keelung 100 95.66 100       96.20 5.38 
  96.47 94.46 100        
   94.46 100 97.17       
    100 97.17 100      
     100 100 86.02     
      100 86.02 84.09    
Colombo 93.94 100 100       93.63 10.69 
  100 100 86.24        
   100 77.35 100       
    63.83 82.34 100      
     82.28 100 100     
      100 100 99.43    

Table 2 DEA-CCR windows analysis for container port efficiency (100 = ‘efficient’)  
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Table 3  
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Hong  72.45 71.85 76.6       91.40 11.51 
Kong  71.82 76.59 100        
   94.29 98.71 100       
    92.19 97.07 100      
     93.54 100 100     
      100 100 100    
Singapore 95.38 100 100       93.66 7.70 
  100 96.29 100        
   80.34 83.44 100       
    76.41 91.57 100      
     85.52 93.39 100     
      88.65 94.92 100    
Busan 80.75 94.39 100       86.59 16.01 
  88.91 100 96.64        
   88.97 93.08 100       
    93.08 100 93.32      
     100 90.94 61.11     
      70.56 52.59 54.35    
Kaohsiung 100 94.61 100       95.59 5.27 
  88.61 93.65 100        
   93.65 100 96.76       
    100 96.7 100      
     94.55 90.79 100     
      81.5 89.77 100    
Shanghai 76.43 95.91 100       86.23 11.51 
  87.19 96.05 95.4        
   87.41 85.22 92.33       
    75.85 80.49 92.81      
     72.24 82.19 100     
      59.86 72.83 100    
Rotterdam 82.46 82.05 87.75       84.72 5.61 
  77.21 82.79 90.94        
   83.5 91.05 95.02       
    84.08 88.05 94.63      
     80.11 85.99 84.64     
      77.33 76.82 80.45    
Los  100 99 100       98.75 2.74 
Angeles  96.9 98.62 100        
   98.62 100 100       
    100 100 100      
     100 100 95.32     
      100 89.06 99.97    
Hamburg 75.49 80.41 81.3 x      73.19 5.96 
  75.15 76.04 80.65        
   66.22 70.63 74.85       
    63.71 67.57 74.14      
     63.93 70.11 81.36     
      65.7 77.09 73.1    
Long  80.08 83.49 100       85.36 10.15 
Beach  64.79 80.19 88.59        
   79.71 88.06 88.74       
    83.61 83.85 97.54      
     72.44 79.42 100     
      73.04 92.95 100    
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Table 3 (Continued) 
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Antwerp 76.58 78.27 92.12       71.17 10.43 
  72.72 85.59 90.28        
   61.34 64.58 72.15       
    55.87 62.15 65.88      
     61.4 63.89 71.27     
      61.6 68.99 76.35    
Port Klang 100 70.6 86.33       60.51 23.47 
  74.76 91.42 89.28        
   79.17 77.57 41.23       
    69.78 38.41 42.27      
     35.74 39.56 39.74     
      33.62 33.79 45.96    
Dubai 88.7 89.21 100       71.59 17.39 
  89.21 100 50.58        
   95.98 54.19 67.63       
    52.08 61.46 70.86      
     56.91 65.53 70.67     
      57.02 61.49 57.11    
New York/ 90.58 85.39 95.2       92.24 9.40 
New Jersey  79.27 88.21 100        
   66.4 100 100       
    94.85 85.23 100      
     85.23 100 100     
      100 89.93 100    
Bremen/ 87.12 90.21 100       89.90 8.74 
Bremerhaven 88.76 98.39 100        
   97.31 98.9 100       
    77.05 77.9 85.97      
     77.9 85.97 91.48     
      78.1 83.1 100    
Felixstowe 88.93 94.47 100       70.95 13.04 
  66.3 70.18 77.14        
   64.15 70.63 75.05       
    63.35 68.17 73.25      
     61.08 66.77 74.07     
      49.63 55.6 58.34    
Manila 81.9 57.33 61.75       67.03 13.45 
  55.71 59.44 82.11        
   53.94 70.56 82.43       
    68.66 80.21 87.83      
     79.43 77.79 58.06     
      54.14 44.34 50.99    
Tokyo 50.48 43.95 48.75       52.68 6.50 
  40.6 45.64 53.81        
   48.2 57.61 61.99       
    55.98 58.94 55.81      
     55.29 52.37 57.55     
      46.88 49.11 65.19    
Qingdao 100 61.48 100       83.26 17.35 
  61.48 100 100        
   53.09 74.07 100       
    58.25 78.64 100      
     78.64 100 78.07     
      100 68.3 86.64    
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Table 3 (Continued) 
 
 Efficiency Scores  Summary Measures 
Port 1992 1993 1994 1995 1996 1997 1998 1999  Mean S.D. 
Yokohama 59.47 52.55 54.96       50.25 6.75 
  49.28 51.57 61.38        
   50.68 60.91 51.83       
    56.72 48.58 48.24      
     44.63 44.26 47.63     
      40.15 43.72 37.93    
Laem 15.42 100 48.97       74.36 27.67 
Chabang  100 51.68 78.46        
   37.24 56.55 100       
    46.13 100 100      
     100 64.14 100     
      54.69 85.27 100    
Tanjunk 100 79.87 100       92.00 9.75 
Priok  68.96 86.34 100        
   86.32 100 97.04       
    95.56 92.73 100      
     92.73 100 95.58     
      100 73.2 87.67    
Kobe 51.78 50.76 49.47       43.47 10.60 
  48.06 47.44 23.89        
   48.78 25.68 41.39       
    23.75 38.81 62.65      
     35.57 51.75 51.66     
      41.73 43.96 45.33    
Nagoya 99.98 100 100       95.64 8.96 
  100 100 100        
   100 100 99.45       
    100 99.45 95.95      
     100 96.37 73.6     
      100 73.6 83.15    
Keelung 100 95.66 100       96.39 5.46 
  100 94.46 100        
   94.46 100 97.17       
    100 97.17 100      
     100 100 86.02     
      100 86.02 84.09    
Colombo 100 100 100       98.84 4.79 
  100 100 100        
   100 79.65 100       
    100 100 100      
     100 100 100     
      100 100 99.43    

Table 3 DEA-BCC windows analysis for container port efficiency (100 = ‘efficient’) 

Tables 2 and 3 report the results for the DEA windows analysis, with each container 
port represented as if it were a different DMU at each of the three successive dates noted at 
the top of each column. As previously mentioned, no theory underpins the definition of 
window size. As such, the length of the window used herein is defined as three. Although 
seemingly rather an arbitrary choice, this does accord with the original work in Charnes, 
Clark, Cooper and Golany (1985). Six separate windows are represented as separate rows 
in Tables 2 and 3. Taking Hong Kong as an example, in Table 2 the efficiency of Hong 
Kong container port in the first window is 72.11, 71.70 and 76.57. These figures 
correspond to the estimated relative efficiency of Hong Kong container port for 1992, 1993 
and 1994. In the third window, relative efficiency estimates of 94.25, 97.02 and 100 
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correspond respectively to 1994, 1995 and 1996. The same interpretive process can be 
applied to Tables 3 and 4. The average of the 18 DEA efficiency scores and associated 
standard deviations are presented in the columns denoted “Mean” and “S.D”.  

The approach used in formulating Tables 2 and 3 lends itself to a study of ‘trends’ and 
the examination of the ‘stability’ of efficiency across, as well as within, windows by the 
adoption of ‘row views’ and ‘column views’ respectively. For instance, a cursory glance at 
Table 3 may provoke the conclusion that the efficiency of a container terminal differs 
significantly over time. Still taking Hong Kong as an example, its efficiency varies from 
72.45 in year 1992 to 100 during 1997 through 1999 (adopting a ‘row view’ perspective). 
At the same time, the efficiency of a DMU within the different windows can also vary 
substantially (adopting a ‘column view’ perspective). This variation reflects 
simultaneously both the absolute performance of a port over time and the relative 
performance of that port in comparison to the others in the sample. 

The relationship between the mean efficiency scores and their standard deviations is 
shown in Figure 2, where a low correlation between mean efficiency scores and their 
standard deviations can be seen (the correlation coefficient is -0.02 and -0.30, respectively 
corresponding to DEA-CCR and DEA-BCC windows analysis). A two-tailed test of 
significance reveals that these correlation coefficients are statistically insignificant at the 
5% level (t = -0.1195, p = 0.4530 under the DEA-CCR specification and t = -1.531, p = 
0.0697 under the DEA-BCC specification, with 23 degrees of freedom). In a practical 
sense, this implies that the efficiency of all the ports (whether or not they are more or less 
efficient on average) exhibits a similar level of fluctuation over time. This finding differs 
from the empirical results of Charnes, Clark, Cooper and Golany (1985) who found that, 
for the maintenance units in the U.S. Air Force, a low mean efficiency tended to be 
accompanied by high variance. 

The relationship between efficiency and scale of production can be relatively simply 
inferred from an examination of the mean efficiency scores and container throughput at 
ports over time, as depicted in Figure 3. Since the correlation coefficients of the mean 
efficiency scores against container throughput are respectively only 0.19 and 0.26 and a 
two-tailed t test reveals that these are not statistically significant at the 5% level (t = 0.928, 
p = 0.1815 under the DEA-CCR specification and t = 1.291, p = 0.1047 under the DEA-
BCC specification, with 23 degrees of freedom), it would appear that the efficiency of a 
port is not significantly influenced by its size. 

In order to further study the scale properties of container port production, scale 
efficiency, as introduced in equation (7), and the sum of weights eλ' under the 
specification of the CCR model are inspected.  Table 4 details the scale properties of each 
container port at different times and over different windows.  Most ports (65.33%) exhibit 
constant returns to scale, compared with 23.56% and 11.11% of the ports that exhibit 
decreasing and increasing returns to scale, respectively. This indicates that production 
scale is not the main source of inefficiency for most container ports although, as expected, 
many small ports exhibit increasing returns to scale, while large ports appear to exhibit 
decreasing returns to scale. 
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Figure 2: Relationship between efficiency and standard deviation 
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Figure 3: Relationship between efficiency and production scale 
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Table 4  
 
Port  Scale Efficiency (returns to scale) 
 1992 1993 1994 1995 1996 1997 1998 1999 
Hong  99.53 (C) 99.79 (C) 99.96 (C)           
Kong   99.83 (C) 99.97 (C) 100 (C)         
     99.96 (C) 98.29 (C) 100 (C)       
       96.92 (C) 96.7 (C) 100 (C)     
         98.03 (C) 100 (C) 100 (C)   
           87.11 (C) 88.85 (C) 93.07 (C) 
Singapore 99.57 (I) 100 (C) 68.84 (D)           
   100 (C) 70.86 (D) 70.87 (D)         
     100 (C) 100 (C) 100 (C)       
       100 (C) 100 (C) 100 (C)     
         100 (C) 100 (C) 100 (C)   
           100 (C) 100 (C) 100 (C) 
Busan 97.29 (I) 97.29 (I) 100 (C)           
   97.03 (I) 98.96 (I) 93.76 (C)         
     100 (C) 95.06 (C) 100 (C)       
       76.29 (D) 79.38 (D) 80.78 (D)     
         79.23 (D) 81.74 (D) 85.44 (D)   
           92.3 (C) 93.88 (C) 87.41 (C) 
Kaohsiung 100 (C) 99.37 (C) 100 (C)           
   100 (C) 100 (C) 100 (C)         
     100 (C) 100 (C) 99.93 (C)       
       97.26 (D) 96.11 (D) 97.06 (D)     
         95.44 (D) 100 (D) 100 (D)   
           100 (C) 100 (C) 100 (C) 
Shanghai 98.3 (I) 98.3 (I) 100 (C)           
   99.76 (C) 99.71 (C) 98.03 (C)         
     99.31 (C) 91.75 (C) 87.25 (C)       
       86.71 (C) 88.01 (C) 93.34 (C)     
         95.86 (C) 100 (C) 100 (C)   
           100 (C) 100 (C) 100 (C) 
Rotterdam 47.42 (C) 47.43 (C) 47.54 (C)           
   47.82 (C) 48.44 (C) 52.39 (C)         
     48.02 (C) 52.32 (C) 68.68 (C)       
       54.94 (D) 72.36 (D) 60.44 (D)     
         76.73 (D) 64.41 (C) 76.04 (C)   
           66.22 (C) 77.39 (C) 69.67 (C) 
Los  98.02 (D) 96.61 (D) 100 (C)           
Angeles   97.53 (C) 100 (C) 100 (C)         
     99.99 (C) 100 (C) 100 (C)       
       100 (C) 100 (C) 100 (C)     
         100 (C) 100 (C) 99.61 (C)   
           100 (C) 99.14 (C) 99.31 (C) 
Hamburg 62.31 (C) 61.24 (C) 67.76 (C)           
   61.5 (C) 67.99 (C) 65.38 (C)         
     78.07 (D) 74.66 (D) 74.22 (D)       
       80.57 (D) 79.07 (D) 77.6 (D)     
         81.26 (D) 79.83 (D) 80.52 (D)   
           80.14 (D) 80.48 (D) 80.6 (D)
Long  75.64 (D) 66.89 (D) 67.65 (D)           
Beach   84.41 (C) 83.96 (C) 84.41 (C)         
     79.05 (C) 80.68 (C) 78.56 (C)       
       69.93 (C) 67.43 (C) 67.55 (C)     
         73.15 (C) 75.47 (C) 100 (C)   
           79.2 (D) 100 (C) 100 (C) 
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Table 4 (Continued) 
 
Port  Scale Efficiency (returns to scale) 
 1992 1993 1994 1995 1996 1997 1998 1999 
Antwerp 45.02 (C) 45.02 (C) 44.31 (C)           
   44.51 (C) 43.73 (C) 42.83 (C)         
     61.02 (D) 59.88 (D) 57.92 (D)       
       46.79 (D) 47.45 (D) 43.79 (D)     
         47.04 (D) 43.89 (D) 42.96 (D)   
           44.24 (D) 43.24 (D) 47.7 (D)
Port Klang 100 (C) 91.15 (I) 91.15 (I)           
   80.95 (I) 80.95 (I) 84.88 (I)         
     93.47 (C) 97.69 (C) 98.35 (C)       
       99.21 (D) 89.4 (D) 96.92 (D)     
         93.34 (C) 99.37 (C) 99.57 (C)   
           97.09 (C) 93.99 (C) 92.12 (C) 
Dubai 96.09 (I) 100 (C) 100 (C)           
   93.5 (I) 93.49 (I) 98.68 (C)         
     97.41 (C) 99.94 (C) 99.57 (C)       
       94.93 (D) 94.08 (D) 82.8 (D)     
         98.28 (C) 87.99 (C) 88 (C)   
           95.35 (C) 95.35 (C) 99.49 (C) 
New York/ 63.12 (C) 58.25 (C) 71.38 (C)           
New Jersey   58.57 (C) 71.49 (C) 100 (C)         
     94.97 (D) 100 (C) 97.86 (D)       
       95.2 (D) 97.7 (D) 97.71 (D)     
         92.82 (D) 92.82 (D) 60.24 (D)   
           89.86 (D) 66.45 (D) 75.71 (D)
Bremen/ 93.64 (D) 94.66 (D) 98.96 (D)           
Bremerhaven   80.86 (D) 84.54 (D) 84.54 (D)         
     85.48 (D) 85.48 (D) 85.48 (D)       
       91.36 (C) 95.13 (C) 84.66 (C)     
         95.57 (C) 84.98 (C) 84.99 (C)   
           93.76 (D) 93.78 (D) 93.78 (D)
Felixstowe 78.28 (D) 78.28 (D) 78.27 (D)           
   95.93 (C) 95.94 (C) 93.36 (C)         
     89.93 (C) 84.16 (C) 85.21 (C)       
       78.96 (C) 78.95 (C) 78.74 (C)     
         85.74 (C) 83.63 (C) 85.23 (C)   
           90.57 (D) 93.27 (D) 88.38 (D)
Manila 86.83 (I) 94.82 (I) 97.34 (C)           
   97.02 (I) 97.61 (I) 96.59 (I)         
     93.14 (C) 98.43 (C) 98.44 (C)       
       79.55 (D) 79.55 (D) 58.61 (C)     
         80.31 (D) 66.18 (C) 72.91 (C)   
           94.38 (C) 93.78 (C) 92.72 (C) 
Tokyo 98.24 (C) 98.75 (C) 98.99 (C)           
   98.84 (C) 99.01 (C) 98.85 (C)         
     99.88 (C) 99.84 (C) 99.97 (C)       
       95.64 (D) 94.99 (D) 96.54 (D)     
         99.78 (C) 99.73 (C) 99.67 (C)   
           95.61 (C) 99.57 (C) 99.57 (C) 
Qingdao 67.82 (I) 88.08 (I) 88.07 (I)           
   82.27 (I) 82.27 (I) 100 (C)         
     100 (C) 100 (C) 100 (C)       
       100 (C) 100 (C) 100 (C)     
         100 (C) 100 (C) 99.96 (C)   
           100 (C) 80.7 (I) 80.71 (I) 
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Table 4 (Continued) 
 
Port  Scale Efficiency (returns to scale) 
 1992 1993 1994 1995 1996 1997 1998 1999 
Yokohama 95.02 (C) 95.38 (C) 91.07 (C)           
   95.41 (C) 92.07 (C) 95.62 (C)         
     93.69 (D) 96.36 (D) 96.2 (D)       
       93.51 (D) 94.92 (D) 93.41 (D)     
         99.93 (D) 97.61 (D) 95.88 (D)   
           97.76 (D) 96.16 (D) 95.7 (C) 
Laem 68.68 (I) 68.64 (I) 96.34 (I)           
Chabang   55.1 (I) 90.29 (I) 90.3 (I)         
     96.43 (C) 96.41 (C) 100 (C)       
       95.73 (C) 84.98 (I) 100 (C)     
         62.46 (I) 100 (C) 100 (C)   
           100 (C) 100 (C) 100 (C) 
Tanjunk 96.57 (I) 100 (C) 100 (C)           
Priok   100 (C) 99.99 (C) 100 (C)         
     99.99 (C) 100 (C) 100 (C)       
       100 (C) 100 (C) 100 (C)     
         100 (C) 100 (C) 99.17 (C)   
           93.94 (I) 98.28 (I) 98.28 (I) 
Kobe 82.5 (C) 86.56 (C) 82.31 (C)           
   85.12 (C) 80.78 (C) 86.73 (C)         
     83.52 (C) 87.42 (C) 95.82 (C)       
       88.67 (D) 93.94 (D) 77 (C)     
         99.97 (C) 90.4 (C) 90.84 (C)   
           86.44 (D) 84.3 (D) 83.72 (C) 
Nagoya 99.48 (C) 100 (C) 100 (C)           
   94.93 (I) 93.93 (I) 100 (C)         
     93.93 (I) 100 (C) 100 (C)       
       100 (C) 100 (C) 99.83 (C)     
         100 (C) 99.94 (C) 99.82 (C)   
           96.62 (I) 100 (C) 99.45 (I) 
Keelung 100 (C) 100 (C) 100 (C)           
   96.47 (I) 100 (C) 100 (C)         
     100 (C) 100 (C) 100 (C)       
       100 (C) 100 (C) 100 (C)     
         100 (C) 100 (C) 100 (C)   
           100 (C) 100 (C) 100 (C) 
Colombo 93.94 (I) 100 (C) 100 (C)           
   100 (C) 100 (C) 86.24 (I)         
     100 (C) 97.11 (C) 100 (C)       
       63.83 (I) 82.34 (I) 100 (C)     
         82.28 (I) 100 (C) 100 (C)   
           100 (C) 100 (C) 100 (C) 

Table 4 Scale properties of container port production (100 = ‘efficient’) 
Note: (C)  indicates Constant returns to scale [where a proportional change in input(s) results in the same 
proportional change in output(s)]; (I)  indicates Increasing returns to scale [where a proportional change in 
input(s) results in a more than proportional change in output(s)]; (D) indicates Decreasing returns to scale 
[where a proportional change in input(s) results in a less than proportional change in output(s)]. 

Tables 2 and 3 indicate that some world-renowned ports such as Rotterdam, Hamburg and 
Antwerp have been found to be inefficient in production during the study period. This 
contrasts with the relatively high efficiency associated with smaller scale container ports 
such as Keelung and Colombo. Further investigation reveals that, during the period under 
study, infrastructure and equipment have remained relatively stable in the latter group of 
ports, while Rotterdam, Hamburg and Antwerp have invested actively in either or both 
their port facilities and/or infrastructure in order to increase and improve their container 
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handling capability. The latter’s relative inefficiency is likely to be caused, therefore, by 
the short-term overcapacity that is brought about by attempting to maintain or enhance 
productivity and increase competitiveness, rather than through any managerial 
shortcomings. 

6 Conclusions 

This paper applies DEA windows analysis in order to determine the efficiency of the 
world’s leading container ports over time. This approach is advocated in favour of the 
commonly used cross-sectional data analysis. In a situation where a port has made a recent 
investment to achieve beneficial results in the future, or simply just as a result of random 
effects, the traditional cross-sectional approach may produce misleading results. This study 
concludes that the efficiency of the different container ports can fluctuate over time to 
different extents. Indeed, the empirical results reveal that substantial inefficiency exists in 
some container ports at some point in time. In consequence, this validates the necessity for 
using DEA windows analysis in preference to an analysis based upon cross-sectional data. 

In order to determine the source of estimated inefficiency, the scale properties of 
container ports have been examined. Most ports exhibit constant returns to scale, 
indicating that production scale is not the main source of inefficiency. Although not 
conclusive, a qualitative analysis of some ports in the sample shows that the ports 
measured as being highly efficient appear to be those that do not invest actively over time. 
This contrasts with their low efficiency counterparts who invest actively in either port 
equipment or infrastructure in order to be competitive in the long-term. 

This seems to imply that port competition and competitiveness may have a major and 
direct impact on the measured levels of relative efficiency within container ports. Some 
other possible reasons that may explain empirical estimates of inefficiency in port 
production include differences in port ownership or governance, locational attributes and 
the form and level of competition faced. A clearer assessment of the determinants of 
inefficiency may be gleaned from the application of the two-stage approach to DEA that 
utilises a Tobit regression model and allows for the incorporation of ‘environmental 
variables’ (see Coelli, Prasada Rao and Battese, 1998). This sort of further research, into 
the relationship between the measures of technical and scale efficiency derived herein and 
their potential determinants, is likely to shed light on the real reasons behind port 
(in)efficiency and yield important policy and strategic implications. As such, the analysis 
contained herein constitutes merely the beginning, rather than an end, of the research. 
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