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RESEARCH SUMMARY
This paper presents a model formulation useful (1)

for planning multiple-use projects and (2) for identify-

ing efficient management prescriptions and/or

aggregate emphasis projects to build into future forest

planning models. The formulation is a discrete version

of the continuous joint production model in economic
theory. Economic efficiency can be analyzed both in

terms of type of project and scale of project.

The model can be formulated and solved graphically

or as a mixed-integer programming (MIP) problem. The
graphic approach rather clearly depicts the nature of

economic efficiency in multiple-use production and re-

quires little in the way of equipment. It is, however,

limited to problems that can be depicted in two-

dimensional space. The MIP approach has the

following advantages over the graphic approach: (1) it

can accommodate more than two outputs, (2) inter-

temporal analysis is easier to conduct, (3) capability to

conduct sensitivity analysis is enhanced, and (4) it

lends itself well to automation.

The MIP formulation contains decision variables

that are formulated as whole decision alternatives,

which assume values of 0 (do not do project) or 1 (do

project). This differs from mathematical programming
formulations common in forestry (for example,

FORPLAN, MUSYC, and Timber RAM) in which deci-

sion variables are formulated on a per-acre basis. The
advantages of the MIP formulation are that diminish-

ing marginal productivity can be modeled and the level

of site specificity is enhanced. The main disadvantage

of this MIP approach is that only a limited number of

management alternatives can be handled effectively,

making it best suited to problems of a relatively small

geographic scope, for example, a project planning

area.

The MIP formulation is easy to solve and sufficiently

small to be processed on a small computer. Combined
with front-end data processing software, it could be

useful for conducting multiple-use efficiency analysis.

The potential lies not as a substitute for current forest

planning methods, but rather as a tool to aid in iden-

tifying efficient management prescriptions to place in

forest planning models and as a means of analyzing

projects for implementation.
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INTRODUCTION
In recent history, the focus of land management eco-

nomic analysis on National Forests has been in forest

planning. Large-scale planning models, such as

FORPLAN (Gilbert and others 1982), are being used to

conduct economic analysis of multiple-use management
in this planning process. For a variety of reasons, how-

ever, forest planning analysis has to be conducted at a

relatively low level of resolution. As a result, there may
be many spatial configurations and timing sequences for

implementing the general management direction identi-

fied in forest planning.

There remains a need for economic analysis in project

design to aid in identifying projects that efficiently im-

plement forest plans. Clearly, if projects are not effi-

cient, overall management will not be efficient, because

projects are the means by which management is im-

plemented on the ground. Unfortunately, economics of

project planning has largely been ignored by economists

and analysts. As a result analytical techniques or models

for this purpose are lacking. This may be particularly

critical for projects with considerable multiple-use com-

ponents, where efficient designs are particularly difficult

to identify.

In this paper we present a model formulation we be-

lieve may be useful in planning multiple-use projects. In

addition, it could have application in identifying efficient

management prescriptions and/or aggregate emphasis

projects to build into FORPLAN models in future forest

planning efforts.

First, the model is presented in graphical terms for a

hypothetical but realistic project planning situation.

Next, a mixed-integer mathematical programming formu-

lation of the model is presented and solved. Then, sensi-

tivity analysis techniques applicable to the mixed-integer

programming formulation are discussed. Finally, several

topics are discussed regarding the operational feasibility

of this formulation.

THE CONCEPT
Gregory (1955) presented the case that an appropriate

economic formulation for multiple use is the joint

production model in microeconomic theory. Joint produc-

tion occurs when two or more outputs are produced

simultaneously (jointly) by a single production process,

meat and hides, for example. The joint production model
is comprised of a "production surface," which identifies

the combinations of outputs that can be produced on a

tract of land (or by some fixed production plant), given

efficient use of variable inputs. For the two-output case,

this production surface is often depicted by a series of

"iso-cost" (or constant cost) lines. Each corresponds to a

unique level for variable cost, and identifies the combina-

tions of outputs that can be produced with that cost.

Unit values for outputs are then introduced to find: (a)

the combination of outputs on each iso-cost curve that

provides the greatest total value and (b) which of these

best points (the expansion path) maximizes net benefit.

The joint production model appears to fit multiple-use

management, where the intention is to produce multiple

outputs from a tract of land. The problem with applying

this theoretical model is that it is not yet operationally

feasible in a real-world planning situation. A major im-

pediment is the lack of adequate continuous mathemati-
cal functions relating variable cost to the quantities of

outputs that can be jointly produced (the production

surface).

The formulation we present is a discrete version of

Gregory's joint production model that builds on an ap-

proach suggested by Muhlenberg (1964). It is comprised
of a finite number of points that approximate the con-

tinuous production surface of the theoretical model.

These points are beHeved to be more operationally

feasible to estimate than continuous mathematical

production relationships. Yet, this discrete formulation

provides the same type of analysis as the continuous

model.
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MODEL FORMULATION
We shall illustrate this discrete formulation of the the-

oretical joint production model by employing a simple

but realistic example. The example pertains to a

hypothetical 4,000-acre (1 619-ha) tract of forest land.

This area is part of an important elk summer range and

is currently overstocked with a homogeneous stand of

low-quality but merchantable timber. The tree canopy is

so dense that forage production is severely restricted

and there is an excess of cover. The forest planning

process has identified this area for a potential timber

sale, the purpose of which is twofold: (1) to open up
parts of the area to promote a better balance between

cover and forage production and (2) to harvest timber to

help meet the estabhshed cut goals for the forest.

The purpose of the model we present is to aid in iden-

tifying the type and scale of the timber sale project that

most efficiently meets the two stated objectives. The
scope of the problem is limited to project design. The
planning horizon is 30 years—the length of time the

cover/forage combination resulting from this manage-

ment activity would be sustained. No additional har-

vests are scheduled for this area over the next 30 years.

Finally, it is assumed that no other outputs from this

area would be sufficiently affected as to warrant their

inclusion in the model.

Before proceeding, we should make clear that the ex-

ample we develop on the following pages is purely for

illustrating the analytical approach. It would be inap-

propriate to generalize the management responses or

subsequent results to other areas for several reasons.

First, the results would be expected to be sensitive to

existing conditions of an area, which could vary greatly.

Second, appropriate output responses, costs, and unit

values likely vary greatly as well.

The Alternatives

The five series of timber sale alternatives (A to E)

presented in table 1 approximate the production surface

for this problem. Each series reflects a specific theme,

differing in the amount of emphasis given to promoting

effective wildlife habitat on each acre harvested. Within

a series, the alternatives employ common management
practices and cutting unit design. Alternatives within a

series differ only by the amount of harvesting that

would be conducted, which is directly related to costs.

Note that the first alternative in each series has a

budget of $200,000, the second a budget of $400,000,

and so on. A "no action" alternative (0) is also con-

sidered. It is used as a reference point against which

output quantities and costs for the other alternatives are

measured.

Series A.—These alternatives are designed to harvest

timber at the lowest possible cost, thereby yielding the

greatest net dollar return to the Federal treasury. These

alternatives have relatively large cutting units (35 to 40

acres [12 to 16 ha]) located primarily on the basis of

cost efficiency in logging and road building. All basic en-

vironmental constraints are satisfied, but no additional

activities are undertaken for habitat improvement.

Roads are left open and public use of the area is not

restricted.

Series B.—These alternatives are the same as series A,

except that the roads will be closed to motorized use by
the public following harvest.

Series C—The cutting units in these alternatives are

distributed essentially the same as in the previously

described alternatives. As in series B, the roads will be
closed to public traffic. These alternatives differ mainly

in that the logging slash will be broadcast burned to

promote forage and browse production.

Series D,—These alternatives are characterized by
smaller cutting units (average about 20 acres [8 ha])

with wildlife considerations being the primary basis for

location. Roads will be closed to public access, and road

slash will be cleaned up to eliminate its effect as a bar-

rier to wildlife movement. Logging slash will be broad-

cast burned.

Series E.—These alternatives are designed to maximize

wildlife benefits while still harvesting timber. The cut-

ting units are either small or shaped to provide a good
"edge effect." As in series D, roads wiU be closed, road

slash will be cleaned up, and logging slash will be broad-

cast burned.

Outputs

Two outputs are included in the model: timber and
summer range effectiveness. Both are measured in terms

of marginal change from the "no action" alternative.

The quantity of timber is simply the volume that

would be harvested under the alternatives (sixth column

in table 1). Volume was assumed to be 8.5 M bd ft per

acre across the 4,000-acre (1 619-ha) area. Although a

constant volume per acre is not a requirement for this

model, it is convenient for this example.

Summer range habitat effectiveness is measured in

terms of change in the number of animals the 4,000-acre

(1 619-ha) area can be expected to support annually (last

column in table 1). In order to maintain as much sim-

pHcity as possible, carrying capacity response is ex-

pressed as an annual average over the planning horizon.

Later, we shall discuss an approach for handling

changing output response over time in the graphical for-

mulation. Changing output quantities over time does not

present any particular difficulty in the mixed-integer

programming approach.

Figure 1 provides a good basis for describing the proc-

ess of estimating change in carrying capacity due to har-

vesting activities. Under the existing conditions, 20 per-

cent of the area is assumed to be in forage production,

and the remaining 80 percent is classified as cover. Cur-

rent carrying capacity is estimated at 116 animals, and

is projected to stay constant if no harvesting is accom-

plished. This corresponds to the beginning point on each

response curve in figure 1. The response curves then

show average annual carrying capacity as a function of

acres harvested for each series of harvest alternatives.

The change in average annual carrying capacity reported

for the alternatives in table 1 is the difference between

these responses (for the appropriate level and type of

harvest) and the annual carrying capacity of 116 animals

for the no-action alternative.
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Table 1.— Alternatives for hypothetical timber sale

Discounted Discounted Discounted Change in

total agency purchaser Size of Timber ellc-carrying

Alternatives cost cost cost harvest harvest capacity

Number of

"Thousands of dollars Acres M bd ft animals

0 0 0.0 0.0 0.0 0.0 0.0

A2 200 35.7 164.3 166.7 1,417.0 - 9.8

A4 400 71.3 328.7 333.3 2,853.1 -17.0

A6 600 107.0 443.0 500.0 4,250.0 -24.3

A8 800 142.7 657.3 666.7 5,667.0 -31.8

A10 1,000 178.3 821.7 833.3 7,083.1 -37.6

A12 1,200 214.0 986.0 1,000.0 8,500.0 -41.2

A14 1,400 249.7 1,150.3 1,166.7 9,917.0 -45.6

A16 1,600 285.3 1,314.7 1,333.3 11,333.1 -49.1

A18 1,800 321.0 1,474.0 1,500.0 12,750.0 -52.8

B2 200 36.9 163.1 165.4 1,406.0 4.7

B4 400 72.6 327.4 332.1 2,822.7 9.2

B6 600 108.2 491.8 498.8 4,239.4 13.1

88 800 143.9 656.1 665.4 5,656.0 15.5

810 1,000 179.6 820.4 832.1 7,072.7 17.0

812 1,200 215.2 984.8 998.8 8,489.4 17.6

814 1,400 250.9 1,149.1 1,165.4 9,906.0 16.9

816 1,600 286.6 1,313.4 1,332.1 11,322.7 15.2

818 1,800 322.2 1,477.8 1,498.8 12,739.4 13.0

C2 200 33.9 166.1 151.5 1,288.0 8.8

C4 400 66.6 333.4 304.2 2,585.7 17.0

C6 600 99.3 500.7 456.9 3,883.4 24.2

C8 800 131.9 668.1 609.5 5,181.1 29.7

C10 1,000 164.6 835.4 762.2 6,478.8 32.9

C12 1,200 197.3 1,002.7 914.9 7,776.5 34.7

C14 1,400 230.0 1,170.0 1,067.0 9,074.2 34.8

C16 1,600 262.0 1,337.4 1,220.2 10,371.9 32.9

C18 1,800 295.3 1,504.7 1,372.9 11,669.7 29.2

D2 200 31.4 168.6 139.8 1,188.2 9.4

D4 400 61.5 338.5 280.6 2,385.4 18.0

06 600 91.7 508.3 421.5 3,582.6 25.6

D8 800 121.8 678.2 562.3 4,779.8 32.0

D10 1,000 152.0 848.0 703.2 5,976.9 35.9

D12 1,200 182.1 1,017.4 844.0 7,174.1 38.3

D14 1,400 212.3 1,157.7 984.9 8,371.3 39.5

D16 1,600 242.4 1,357.6 1,125.7 9,568.5 38.6

D18 1,800 272.5 1,527.5 1,266.5 10,765.7 35.9

E2 200 28.1 171.9 124.1 1,054.5 9.3

E4 400 54.8 345.2 249.1 2,117.0 17.9

E6 600 81.6 518.4 374.1 3,179.5 25.6

E8 800 108.3 691.7 499.1 4,242.0 32.5

E10 1.000 135.1 864.9 624.1 5,304.5 37.6

E12 1,200 161.8 1,038.2 749.1 6,367.0 41.0

E14 1,400 188.6 1,211.4 874.1 7,429.5 42.9

E16 1,600 215.3 1,384.7 999.1 8,492.0 44.0

E18 1,800 242.1 1,557.9 1,124.1 9,554.5 42.9
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Figure 1.—Average annual elk habitat potential

for the example area as a function of size of

harvest, by series of alternatives A-E.

The responses in carrying capacity presented in figure

1 were based on the relationships presented in figure 2

(habitat effectiveness as a function of the percent of land

in forage production), figure 3 (habitat effectiveness as a

function of miles of road per section), and other informa-

tion presented in a recent annual report on the Montana
Cooperative Elk-Logging Study (Lyon and others 1982).

These relationships were selected from many alternatives

being evaluated in the study mentioned. A different

selection of curves would produce somewhat different

results.

In applying these relationships, the potential carrying

capacity under ideal conditions (40 percent of area in for-

age production, 60 percent in cover, and no road effects)

is estimated at 160 animals per year, which is fairly high

but not unrealistic. The road effects shown in figure 3

were assumed to hold only when roads are left open to

motorized use by the public. Roads closed to public

vehicular traffic are thought to have no effect on habitat

quality once harvesting activities are completed.

One final point should be made regarding the

predicted output responses. The responses in carrying

capacity illustrated in figure 1 exhibit decreasing mar-

ginal physical product. Along any given series of alterna-

tives (with the exception of series A), as the size of har-

vest increases, carrying capacity increases but at a

decreasing rate (that is, the slope is decreasing as scale

of harvest gets larger). Slope stays positive out to a

point (the maximum carrying capacity possible within

each series), after which the carrying capacity decreases

as size of harvest is further increased. The presence of

decreasing marginal physical product is critical, for with-

out it an optimal size of cut would not exist—more
would always appear better.

Values

Timber is valued as mill-delivered logs at $140 per

M bd ft. An explanation of the rationale for this basis

(as opposed to valuing timber as standing trees) may be

useful. Land managers can (and do) accomplish manage-
ment objectives by the way roads and timber sales are

u.
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Figure 2.— Effectiveness of elk habitat as a

function of percentage of area in cover and
forage production (source: Lyon and others

1982).
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Figure 3.— The effect of road density on elk

habitat (source: Lyon and others 1982).
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designed and by specifications included in timber sale

contracts. These things can affect stump-to-truck costs,

haul costs, purchaser slash disposal costs, and other

costs that must be paid by the purchaser of the timber,

or a purchaser's subcontractor. Assuming competitive

markets, any SI cost imposed on a purchaser (or a pur-

chaser's subcontractor) can on the average be expected

to result in SI less the land manager receives for the

timber sold. Thus, purchaser costs can be expected to

have the same effect on the seller of timber as a cost in-

curred directly by the seller. Valuing timber as delivered

logs allows purchaser costs to be identified exphcitly as

part of the "budget" available to the timber seller for

conducting land management acti\'ities.

The value of the change in elk-carrying capacity was
based on the value of the recreational experience of elk

himting. This impHcitly assumes that the change in

carrying capacity presented in table 1 (last column)

correctly measm-es the change in the number of animals

that would be carried by the area. First, the value of an

elk living 1 year, V, was estimated as follows:

V = [S RVD] X [RVD Elk] (1)

where:

S/RVD = S3 1.78, the RPA willingness to pay for a

recreation-visitor day (RVD) of elk hunting expressed in

1982 dollars

RVD Elk =the average number of elk hunting RVD's
supported by an elk each year, estimated to be seven.

Given these numbers, V rounded to the nearest SIO

equals S220.

The present value of the change in elk-carrying capac-

ity over the next 30 years for the j"^ alternative, V^j^^ ,

can be expressed in general terms as:

30 1yELK = V V Q. —
1 (2)

where:

= the value of an elk in year t, expressed in con-

stant dollars

= the change in carrying capacity in year t for the

alternative (last column in table 1)

i = the discoimt rate in real dollars.

This generalized form can be handled in the mathemati-
cal programming formulation, but must be simpHfied for

the more restrictive graphic formulation. Let us assume
no real price increase for V. Since Q.^. is constant over

time in table 1 (change in carrying capacity is constant

over 30 years within each alternative), V^.^^ can be writ-

ten as:

yELK = 0 V L \~—
1

or

yELK = 0- V r

'^^^''~^
i*oj '^tj ^1 L i(i + i)t J

Because V is constant across the j alternatives, it is con-

venient for the graphic formulation to set:

Using a discount rate of 4 percent (in real dollar terms)

and the previously calculated value of S220 for V, P

equals 83,800 when rounded to the nearest hundred dol-

lars. The present value of the change in carrjdng capac-

ity, V^j^^ , can then be expressed in the familiar terms of

price times quantity:

yELK = 3,800 • Q.

Costs

Total cost for the alternatives in the second column of

table 1 is in terms of change relative to no action. It has

two major components. The first, Forest Service cost

(third column), includes the sale-related costs that are

paid with appropriated funds: sale preparation, sale ad-

ministration, agency overhead, and road closure costs.

The second cost component, purchaser-related costs

(fourth column), include stump-to-truck, hauling, broad-

cast burning, and road construction and reconstruction.

They represent the costs that must be covered by the

value of the timber (when valued as deHvered logs) for

the sale to be financially viable. Given the objective of

increased forage production for improved elk habitat, ac-

tivities for regenerating the timber will not be imder-

taken. Thus regeneration costs were not included.

GRAPHIC APPROACH
The graphic formulation presented in figure 4 follows

the logic of the continuous theoretical model. The first

step in developing this formulation is to construct the

iso-cost curves, which identify combinations of outputs

that can be produced for given levels of cost. This is

simply a matter of plotting the combinations of outputs

predicted for each alternative presented in table 1. The
iso-cost curve labeled 200 includes the alternatives \\dth

a total cost of 8200,000, the curve labeled 400. the

8400.000 alternatives, and so on. The order of the series

(A-E) is illustrated on the curve labeled 600. and is the

same on each iso-cost line. Technically, each iso-cost

curve consists only of the points representing the alter-

natives, because Hnear combinations of projects have no

logical interpretation. The points are connected here

merely for convenience in identifying alternatives with

common costs.

Next, benefits are entered in the form of iso-benefit

lines, which arise from the simple price times quantity

relationship. xAn iso-benefit line identifies combinations

of outputs that have common total present value of

benefits. To illustrate, an increase in carrying capacity of

35 animals (point W) would have a present value benefit

of 8133,000 (35 times the 83,800 discounted unit price

identified earHer). Given the price of $140 per M bd ft,

the same amount of benefit would be created by harvest-

ing 950 M bd ft of timber (point T). Each combination of

outputs hong on the line connecting points W and T has

a total present value benefit of 8133,000. An infinite

number of iso-benefit curves could be dra-^m, each cor-

responding to a different level of total benefit. Neverthe-

less, location of one iso-benefit line estabhshes the entire

family, because each has the same slope (slope equals

the negative ratio of the output prices, with the price of

the output on the ordinate as the denominator).
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Solution

The graphic formulation is solved in two steps. First,

the alternative with the highest present value is found

for each iso-cost curve. For a given iso-cost curve this is

the alternative that lies on the highest iso-benefit line.

For iso-cost curve 600, this is alternative B6. There

exists a comparable best point for each iso-cost curve.

The locus of these points, the expansion path, identifies

the best alternative for each budget level. In this

example, the expansion path follows the alternatives in

series B.

The next step is to identify which of the points along

the expansion path maximizes present net value (PNV).

This is most easily done by calculating PNV for each

alternative on the expansion path, as illustrated in

table 2. Alternative B12 is indicated as the best of the

alternatives, having a PNV of $55,400. It would harvest

about a thousand acres of timberland by means of 30- to

40-acre (12- to 16-ha) cutting units. About 8.5 million

board feet of timber would be harvested, and habitat

carrying capacity would be increased by an average

annual amount of 17.6 elk over the 30 years following

harvest.

Table 2.—Calculation of net benefit for alternatives lying on the expansion path

Change in

Timber ellc-carrying Discounted Discounted Present

Alternatives harvest capacity benefits^ cost value

Number of

M bd ft animals Thousands of dollars'

B2 1,406.0 4.7 214.7 200 14.7

B4 2,822.7 9.2 430.2 400 30.2

B6 4,239.4 13.1 643.3 600 43.3

88 5,656.0 15.5 850.7 800 50.7

BIO 7,072.7 17.0 1,054.8 1,000 54.8

B12 8,489.4 17.6 1,255.4 1,200 55.4*

B14 9,906.0 16.9 1,451.0 1,400 51.0

B16 11,322.7 15.2 1,643.0 1,600 43.0

B18 12,739.4 13.0 1,832.9 1,800 32.9

''Calculated using per unit values of $140 per M bd ft for timber and $3,800 per animal-

carrying capacity over 30 years.

'Identifies maximum net benefit.
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Intertemporal Analysis

The timber sale example contained only one inter-

temporal output—the carrying capacity. It was handled

by assuming output quantity is constant over time, and

by expressing unit value as the present value of the con-

stant annual quantity over 30 years. In reality, multiple-

use projects can be comprised of many intertemporal

costs and outputs, all of which could vary in magnitude

over time. Expressing output as an annual average (as

in the timber sale example) may not always be accept-

able. Here we discuss several approaches for handling

such intertemporal problems graphically. It is suggested

that readers who lack a specific interest in techniques

for integrating intertemporal analysis into the graphic

approach skip directly to the next subtopic, Discussion

of Graphic Approach.

Formulating a graphic model in intertemporal terms

requires expressing iso-cost and iso-benefit relationships

so that the benefits and costs of the alternatives are

compared at a common point in time. Following custom,

we shall express these relationships in present-value

terms.

Expressing iso-cost curves in present-value terms is

straightforward. Simply discount the costs of all the

resources used in a project to the present. Handling

intertemporal output is somewhat more difficult. Both
output quantities and unit values can be changing over

time. Including these changes in graphic analyses is dif-

ficult for two reasons. First, the graphic approach re-

quires that each output for an alternative be expressed

as a single number. This number represents one dimen-

sion on the base graph (example, in figure 4, carrying ca-

pacity was expressed on an average annual basis). Sec-

ond, unit values must be expressed such that when
multiplied by the single output response number, the

product is in terms of discounted dollars.

There are several ways outputs and unit values can be

expressed to handle this problem, if either output or unit

value is constant over time. To explain, let us first re-

write equation 2 (the present value of elk-carrying capac-

ity) in more general terms:

t=i t Ml + i)
(3)

where:

= present value of the flow of output Q over n

years

= unit value of output in year t

= quantity of output in year t

i = discount rate.

The first approach requires that unit value be constant

over time. If P represents a constant unit value, it can

be factored out of the summation:

(4)

In this formulation, output is expressed as a single num-
ber by the term:

Iso-cost curves would then be expressed in terms of

per discounted cost. Unit value used in computing iso-

benefit is simply P, the stated value of a unit of Q.

A potential disadvantage of formulating output in this

manner is that people may have difficulty relating to

quantity expressed as Q^,. It may be easier for some to

relate to quantity if it were expressed in terms of an an-

nual equivalent output, Q'^. This can be accomplished as

follows:

QA-Q r
Ml + i)" -

(6)

To maintain the correct calculation for V^, unit value

must be multiplied by the inverse of the factor multipled

by

O ^ I i(l + i)n J (7)

Present value of the flow of output can then be written

as:

V„ = P. (8)

Here, unit value (P^) is the present value of a series of

annual outputs. The single value for output, Q^, is an

annual flow equivalent of the actual output flow.

Q'^ differs from an "ordinary annual average." The
product of times P^^ is equivalent to the present

value that would be calculated by discounting each

year's benefit (quantity times price in each year)

separately and summing. This equality does not hold if

annual output is computed as a simple arithmetic aver-

age unless, of course, annual output quantity actually is

constant.

Both approaches discussed thus far require a constant

unit value over time. It is possible to allow unit value to

vary over time if the annual quantity of output is con-

stant over time. If Q represents a constant annual flow,

it can be factored out of the summation in equation 3:

In this formulation, tmit value is expressed as:

(10)

This differs from equation 7 in that P^ is allowed to vary

here. Output is expressed in the iso-cost curves as a con-

stant annual quantity occurring over n years.

The reader should note that none of these approaches

allow both unit value and output to vary over time. In

fact, it does not appear possible to allow for this occur-

rence using the graphical approach. The order of mul-

tiplication and summation indicated in equation 3 must
be maintained if both and vary over time

(E[Pj^ • Q^]^LP^ • EQk)- Only when one of these varia-

bles was held constant was it possible to factor them

out of the summation to develop the approaches

presented.

Discussion of Graphic Approach

The graphic approach rather clearly depicts the nature

of economic efficiency in multiple-use production. Con-

sider figure 4. Each iso-cost curve shows the opportunity

cost of producing increased amounts of one output at
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the expense of the other. The specific production points

(output combinations) comprising each iso-cost curve are

readily available for inspection and verification. The ex-

pansion path shows optimal solutions associated with

various scales of activity. Finally, sensitivity analyses

can be performed graphically to determine the change in

relative prices needed to change the preferred alternative

on an iso-cost curve. This is done by rotating the iso-

benefit line and observing the slope required to identify

a new preferred alternative (recall slope of the iso-benefit

line equals the inverse ratio of the unit values). The need

to more accurately estimate unit values can thereby be

assessed.

The graphic approach, however, is inherently limited.

Perhaps the most significant limitation is that the num-
ber of outputs that can be handled effectively is limited

to two. Second, intertemporal analysis imposes restric-

tions as discussed in the previous section. Third, sensi-

tivity analyses regarding the effect of changes in costs

or output quantities can only be conducted by recalculat-

ing the iso-cost relationships.

MIP APPROACH
The discrete joint production model presented graphi-

cally can also be formulated as a mixed-integer program-

ming (MIP) problem. This approach alleviates the limita-

tions of the graphic formulation discussed in the

previous section. It can handle more than two joint out-

puts. Second, multiple time periods can be handled more
easily than in the graphic approach. Third, the MIP for-

mulation provides useful capability for identifying how
sensitive the choice of the preferred alternative is to un-

derlying assumptions and projections. Finally, it lends

itself to automation. Software could be written such that

aU the user has to do is enter the data. The computer
would take the data, generate the appropriate matrix,

and calculate the solution.

The General Model

MIP is a special case of Unear programming. Like lin-

ear programming, it has decision variables (columns in

the matrix), linear constraint rows, and a linear objective

function. The major difference is that some of the deci-

sion variables are restricted to integer values of either 0

or 1 in the MIP formulation. This provides the ability to

express decision variables as whole projects. If in a solu-

tion a 0,1 integer variable equals 1, the project

represented by that variable was chosen to be accom-

plished. A value of 0 for project variables indicates those

projects were not selected. (Readers interested in a more
thorough discussion of MIP are referred to HiUier and

Lieberman [1974] or Plane and McMillan [1971].)

The MIP formulation proposed is:

L M N
Maximize PNV = E -TCX. + E E DP.V.,

i=l ' ' j = lt=l

M N
+ L L - DP.W. (11)

j = U=l J"^ J"^

subject to:

E X. <1 (12)
i=l

'

YJ,X -V^ = 0 (for all V^,) (13)

.| Y,]tXi+W, = 0 (for all W.,) (14)

aU X.= 0 or 1 (15)

THE VARIABLES
There are three sets of variables in this formulation—

X;'s, V.^'s, and W./s. The X/s are the project alterna-

tives. Each Xj represents a whole project, and is res-

tricted to the values of either 0 or 1 as indicated by
equation 15. The coefficients for the Xj variables are ex-

pressed on a project basis (example, TCj represents total

cost for project X^).

The variables labeled V.^ store the positive quantity of

the j'^^ output in time period t expected from the alterna-

tives. Unlike the X.'s these are continuous variables that

can assume any nonnegative value.

The final set of variables, W-^, measure negative quan-
tity of the j*^*^ output in time period t expected from the

alternatives. This situation can arise when output is de-

fined as change in volume relative to the no-action alter-

native (as in the example in table 1). These variables are

necessary to avoid infeasibilities that would occur if a

Vjj. variable were to be set equal to a negative output
volume (algorithms generally require all variables be
nonnegative). Instead, measures the absolute value

of the negative volume, and the negative sign is at-

tached to its objective function coefficient (— DP-^^). A
W.j^ variable is needed only when there is a negative vol-

ume predicted for one or more projects for the j"^^ output
in time period t. Thus, there should be only a few W^^

variables in most applications.

THE ROWS
Equations 11-14 represent the rows in the MIP model.

Equation 15 is a restriction placed on the model, but
does not appear as a row in the matrix. The objective

function to be maximized is PNV (equation 11). The
coefficients for the X; variables, — TCj, are the dis-

counted total costs for the X; projects. These costs are

preceded by a negative sign, because this row measures
PNV. The output variable coefficients, DP.^ and — DP^^,

are the unit values for output j in time period t, dis-

counted to present value terms. As explained earUer, W.,

variables measure decreases in outputs and therefore

have negative unit value coefficients.

The first constraint (equation 12) specifies that not

more than one project can be chosen. (Because the X/s
are restricted to values of 0 or 1, combinations of parts

of projects that sum to 1.0 are not permitted.) The less-

than-or-equal-to form of this constraint does, however,

permit a solution in which none of the project alterna-

tives are chosen—the no-action alternative. This would

occur if the PNV for each alternative is negative. The
model can be forced to choose a project alternative other

than the no-action alternative by reformulating this row
to equal 1.0.

Equation 13 actually represents a set of rows whose
function is to "transfer" positive output quantities from
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the resource project in solution (X-) to the variables

measuring output volume (V-j. There is one of these

rows for each combination of output and time period

(i.e.. for each V..j. The Y"-;. coefficients in these rows

measure the positive quantity of the i"' output produced

by project X.- in time period t.

Equation 14 represents the set of rows that "transfer'

negative output quantities from the project in solution

to the variables measuring negative volume 'W.-.i. The

Y;~. coefficients in these rows measure the negative quan-

tity of the j-" output produced by project X.. in time

period t. There is one such row needed for each \V,. pres-

ent, which (as explained earheri should only be a few in

most applications.

WHY THIS FORMULATION?
Thoughtful readers may be wondering at this point

why output values are not simply included in the objec-

tive function coefficients for the project variables. This

would alleviate the need for the output variables V,. and
W;. and for equations 13 and 14. The reason is that han-

dling output as separate variables provides advantages

for conducting sensiti\'ity analyses on unit values and

output quantities.

To illustrate, assume output value has been included

in the objective function coefficients for the project vari-

ables in a model. The analyst now wants to determine

what effect a unit value change would have on a previ-

ously obtained optimal solution. The shadow prices from

this previous solution are not useful for this purpose.

Shadow price measures how much the objective function

coefficient for a project variable would have to increase

for that variable to become part of the optimal solution,

assuming all other coefficients remain unchanged. Other

objective function coefficients, however, would change as

a result of a unit value change as long as those projects

are also producing the same product.

The most straightforward way to determine the effect

of a unit value change is to implement that change in

the original model and resolve. This, however, would re-

quire recalculating and changing every one of the objec-

tive function coefficients. In contrast, the equations

11-15 formulation would require changing only the objec-

tive function coefficient! si for that output lone coefficient

for each time period t that V,. is quantified), prior to

resolving the model. Similar advantages exist in apply-

ing some of the other postoptimization techniques for

conducting sensitivity analyses that v,-ill be discussed

later.

Solving The MIP Formulation

There are several options for soh-ing the formulation

presented by equations 11-15. One option would be to

use algorithms specifically designed for sohing MIP
problems, such as the branch and bound technique.

These algorithms have several disadvantages. First, the

capabihties for conducting sensiti\ity analyses are

limited. They do not. for example, offer the majority of

the postoptimahty techniques available in continuous lin-

ear programming software. Second, they are rather re-

strictive in terms of the size of model inumber of rows

and columns) that can be handled efficiently. This, how-

ever, does not appear to be a significant problem for the

class of programming problem created by the equations

11-15 formulation. Third, computer software for soh^ing

MIP problems is not as readily available as. say. soft-

ware for solving continuous linear programming prob-

lems, particularly for small computers.

Another option for solving this MIP formulation is to

use a conventional continuous linear programming al-

gorithm. This involves simply treating equations 11-14

in the general model as a continuous linear prograroming

problem. If no additional constraint tj'pes are added to

this equation 11-14 formulation (several wiU be discussed

later), the optimal continuous solution will be the op-

timal MIP solution.

An explanation might be helpful at this point. Equa-

tions 13 and 14 merely ensure that the output variables

iV,. and W,j equal the correct quantity. The key con-

straint is equation 12. Linear programming algorithms

^^ill maximize the PXV objective function by entering as

much of the most profitable project as possible. AMien

the upper limit of the equation 12 constraint is reached,

the most profitable project variable will equal 1.0. All

other project variables (the X..'s) will equal zero at this

point. This is an integer solution. Furthermore, it is the

optimal solution, because adding any other project to

the solution would require the amount of the most
profitable project to be reduced to continue to satisfy*

equation 12. Any such change would reduce the value of

the objective function.

Use of continuous Hnear programming algorithms to

solve this MIP formulation pro\"ides several advantages.

Most importantly, it makes the standard Linear program-

ming postoptimization techniques available for conduct-

ing sensiti\"ity analyses. Secondly, it makes using a

small computer for sohing this t\-pe of problem more
viable, because software for sohing continuous Hnear

programming problems is more readily available than

MIP software.

The disadvantage of the continuous hnear program-

ming approach is that it may not jield integer solutions

if additional constraints are added to the equations

11-15 model, an option that v,-ill be discussed later. In in-

stances when continuous algorithms do not }'ield integer

solutions, optimal integer solutions would be most easily

found using an MIP algorithm.

The Timber Sale Example
The timber sale example presented earher was formu-

lated as an MIP problem to illustrate how the general-

ized model can be apphed in practice. The following dis-

cussion covers the formulation and solution of this

model.

FORMULATION
The MIP formulation for the timber sale example is

presented in table 3. The project alternatives ithe X,'s in

equations ll-15i are the alternatives A2 through E18
hsted in table 1. Two positive output variables (V... in

equations 11-15) are present. They are TIMB and'WILD,
which respectively measure positive quantities of timber
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Table 3.— Formulation of the timber sale example as an MIP problem""

Row name A2 A4 ... E18 TIMB WILD NWILD RHS

PNV -200.0 -400.0 . . . -1,800.0 0.140 3.8 -3.8

EQN 12 1.0 1.0 .. . 1.0 <1.0

TVOL 1,417.0 2,833.1 . . . 9,554.5 -1.0 = 0.0

WVOL 42.9 -1.0 = 0.0

NWVOL -9.8 -17.0 -1.0 =0.0

"Variables A2 through E18 are treated as 0, 1 integer variables.

and change in elk-carrying capacity. Negative change in

elk-carrying capacity (corresponding to W-^ in equations

11-15) is measured by NWILD.
The objective function to be maximized is the row la-

beled PNV, which measures present net value in thou-

sands of dollars. The coefficients for the project alterna-

tives are the discounted total costs from the second

column in table 1. The objective function coefficients for

TIMB and WILD are the unit values for these outputs

developed earlier. Finally, the coefficient for NWILD is

the negative unit value for elk-carrying capacity, since

NWILD measures decrease in carrying capacity.

The first constraint shown is row EQN 12, which cor-

responds to equation 12 in the general formulation. The
coefficient for each of the project variables is 1.0, and

the row is set less-than-or-equal-to 1.0. This specifies

that no more than one project can be chosen, but allows

for the possibility of not choosing any of the project

alternatives—the no-action alternative. (Recall, outputs

and costs for the projects are expressed in terms of

change from the no-action alternative.)

The next row is TVOL, which corresponds to equation

13 in the general model. It sets the variable TIMB equal

to the positive quantity of timber expected from the pro-

ject alternative selected. The coefficients for the project

alternatives predict total timber yield for each alterna-

tive and come from the sixth column in table 1.

Row WVOL sets the variable WILD equal to the posi-

tive change in elk-carrying capacity in the same manner
as TVOL "transfers" timber quantity to TIMB. The pro-

ject alternative coefficients measure the positive change

in carrying capacity and come from the last column in

table 1. No coefficients exist in this row for project alter-

natives A2 through A18 (note, this is equivalent to a

coefficient of zero) because the change in carrying capac-

ity is negative for these alternatives.

Row NWVOL corresponds to equation 14 of the

general model, and sets NWILD equal to the project

coefficients measuring decrease in elk-carrying capacity.

These coefficients also come from the last column in

table 1. No coefficients are present in this row for alter-

natives B2 through E18 because these projects are ex-

pected to result in an increase in elk-carrying capacity.

THE SOLUTION
The timber sale example in table 3 was solved using

the continuous linear programming option in the Func-

tional Mathematical Programming System (FMPS) avail-

able at the USDA Fort Collins Computer Center. The so-

lution is presented in figure 5. Although the format used

in this figure is specific to FMPS, the information

presented is standard among mathematical programming
packages.

The first item of interest is the value of the objective

function, row PNV. It is found in the portion labeled

SECTION 1 - ROWS under the column headed

ACTIVITY. The value identified here (55.396) deviates

slightly from the value of the selected alternative identi-

fied in table 2, due to rounding.

Next, examine the second portion of the solution out-

put labeled SECTION 2 - COLUMNS. The values for

the decision variables in the optimal solution are

presented in the column headed ACTIVITY. Glancing

down this column, one sees that project B12 equals 1.0.

This means B12 was the alternative selected—the same
project selected earUer in table 2. The other project vari-

ables equal zero (represented by a decimal) identifying

that they were not chosen in the solution process.

The outputs predicted for the selected alternative B12
are the entries in the activity column for the output

variables. TIMB equals 8,489.4 M bd ft, WILD equals

an increase of 17.6 animals in carrying capacity, and
NWILD equals zero, because change in carrying capac-

ity is predicted to increase rather than decrease.

Sensitivity Analyses

Output responses, costs, and unit values included in

such a model are predicted future outcomes, and thus

are not known with certainty. Sensitivity analysis can

aid the analyst in dealing with uncertainty. It can help

determine the range of predicted outcomes over which

an alternative identified as optimal remains optimal. Sec-

ondly, it can be used to identify what other alternatives

are preferred when predicted outcomes are outside the

limits for which a given alternative is optimal.

Unfortunately, most of the postoptimization tech-

niques used in linear programming for sensitivity ana-

lyses are not available in the branch and bound MIP al-

gorithm commonly used in MIP computer packages. If

branch and bound algorithms are used, sensitivity anal-

ysis is limited to changing the parameter(s) of interest

and resolving. If integer solutions can be obtained with

standard linear programming algorithms, however, then

some of the more sophisticated postoptimal techniques

for conducting sensitivity analyses could be useful. Here

we discuss changing parameters and resolving, and

several postoptimization techniques available in linear

programming that appear particularly useful in the for-

mulation presented by equations 11-15.
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SECTION 1 - ROWS PRIMAL-DUAL OUTPUT

ER . .NAME. AT . .ACTIVITY.

.

SLACK ACTIVITY .LOWER LIMIT .UPPER LIMIT DUAL ACTIVITY

1 PNV FR 55.396000 -55.396000 NONE NONE -1.000000

2 EQN 12 EQ 1.000000 1.000000 1.000000 55.396000

3 TVOL EQ -. 140000

4 WVOL EQ -3.800000

5 NWVOL EQ -3.800000

6 APV FR 203.716000 -203.716000 NONE NONE

7 FSCOST FR 215. 199999 -215.199999 NONE NONE

•INPUT COST. REDUCED COST

-1.000000

55.396000

-.140000

-3.800000

-3.800000

SECTION 2 - COLUMNS PRIMAL-DUAL OUTPUT

NUMBER . .NAME. . AT . .ACTIVITY.

.

.INPUT COST. .LOWER LIMIT .UPPER LIMIT REDUCED COST

8 A2 LL —zuu uuuuuu NONE Q/i ZjOUUU

9 A4 LL —4UU UUUUUU NONE "3 A 9nnnjDZUUU

10 A6 LL Ann UUUUUU NONE 1 jZ / Jjyyo

11 A8 LL Qnn—oUU UUUUUU NONE ioZ

12 AlO LL 1 nnn— i UUU UUUUUU NONE ZUD A /, 1 Q Q Q

13 A12 LL 1 onn UUUUUU NONE ZZ 1

14 A14 LL 1 /. nn UUUUUU NONE 9/i nZ4U 9 QAnnAzyouuu

15 A16 LL 1 Ann— i oUU nnnnnnUUUUUU NONE ZDD Q /, 1 QQQjh 1 y yy

16 A18 LL _ 1 ftnn— i OUU UUUUUU NONE 9 71Z / 1 AQ SQQQu Jjyyy

17 B2 LL 9nn—zuu UUUUUU NONE hU oy D uuu

18 B4 LL /. nn—huu nnnnnnUUUUUU NONE 9Z_) 9 t^ftAAAZDtSUUU

19 B6 LL Ann—OUU UUUUUU NONE 1 9iZ lUUUUU

20 B8 LL Q nn—ouu UUUUUU NONE /, A AAnnoDDUUU

21 BIO LL 1 nnn— iUUU nnnnnnUUUUUU NONE A 1 ftAAAD i oUUU

22 B12 BS 1.000000 1 onn— 1 zuu UUUUUU NONE

23 B14 LL 1 /. nn— i^UU UUUUUU NONE H Q OA AAAJ JoUUU

24 B16 LL 1 Ann— i oUU UUUUUU NONE 1 9iZ 4Di5UUU

25 B18 LL — 1800 UUUUUU NONE O 9ZZ HiSUUUU

26 C2 LL —200 UUUUUU NONE 4 i
A u A nnn0JuUUU

27 C4 LL —400 UUUUUU NONE 9 OZ{5 1 oQ nnn
/ ytsuuu

28 C6 LL -600 nnnnnnUUUUUU NONE 19 /bUUUU

29 C8 LL —800 UUUUUU NONE 17 1 o o n n nioZUUU

30 CIO LL — 1000 UUUUUU NONE 23 J44UUU

31 C12 LL -1200 000000 NONE 34 826000

32 C14 LL —1400 000000 NONE 52 76o000

33 C16 LL -1600 000000 NONE 78 309999

34 C18 LL -1800 000000 NONE 110 677999

35 D2 LL -200 000000 NONE 53 328000

36 D4 LL -400 000000 NONE 53 r\ 1 r\f'\f\t\040000

37- D6 LL -600 000000 NONE 56 552000

38 D8 LL -800 000000 NONE 64 624000

39 DIO LL -1000 000000 NONE 82 209999

40 D12 LL -1200 000000 NONE 105 481999

41 D14 LL -1400 000000 NONE 133 313999

42 D16 LL -1600 000000 NONE 169 125999

43 D18 LL -1800 000000 NONE 211 778000

44 E2 LL -200 000000 NONE 72 426000

45 E4 LL -400 000000 NONE 90 995999

46 E6 LL -600 000000 NONE 112 985999

47 E8 LL -800 000000 NONE 138 015999

48 ElO LL -1000 000000 NONE 169 886000

49 E12 LL -1200 000000 NONE 208 216000

50 E14 LL -1400 000000 NONE 252 245998

51 E16 LL -1600 000000 NONE 299 315998

52 E18 LL -1800 000000 NONE 354 745998

53 TIMB BS 8489.399902 140000 NONE

54 WILD BS 17.600000 3 800000 NONE

55 NWILD BS -3 800000 NONE

Figure 5.— Solution to MIP formulation of timber sale example.
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Table 4.—The unit values over which project B12 remains optimal

Outputs

Lowest

value

Highest

value

Project selected if

unii value is ueiow ine

identified lowest value

Project selected if

unii Value IS auove ine

identified highest value

Dollars

WILD 2,770.00 5,220.00 810 C8
TIMB 139.56 143.06 BIO B14

UNIT VALUES
Several tj^es of sensitivity analyses for unit values

are potentially useful. The choice depends on the ques-

tion being asked. The effect of some specific change in

unit value on a previously optimal solution is best deter-

mined by making that change in the formulation and

resolving. This is accomplished by changing the objec-

tive function coefficient for the output variables as-

sociated with the change in unit value. This can be done

easily with a text editor because only a few numbers
would change. The model is then resolved using stan-

dard procedures. No knowledge of the more sophisti-

cated postoptimization procedures is needed.

Analysts may also be interested in determining the

range in unit values over which a particular solution re-

mains optimal. This could be calculated by systemati-

cally changing unit values and resolving, but this proc-

ess would likely require a large number of solutions. An
easier approach would be to use a postoptimization tech-

nique available in most linear programming packages

which calculates this directly. To illustrate, the

EXRANGE procedure in FMPS was used to calculate

the range in unit values over which the figure 5 solution

remains optimal. The results are summarized in table 4.

The lowest and highest unit values for WILD are,

respectively, $2,770 and $5,220. As long as the unit

value for WILD is within this range, project B12 is pre-

ferred, assuming other parameters constant.

In addition to the range in unit values, linear program-

ming ranging procedures can be expected to identify

what project would be preferred if the unit value falls

below or rises above the indicated range (see the last

two columns of table 4). For example, if the unit value

for WILD were to fall below $2,770, then project BIO
would be preferred. This does not imply that BIO is pre-

ferred for all unit values less than $2,770, but rather for

some range, whose lower unit is unspecified and whose
upper Umit is $2,770.

If the question to be asked is how does the preferred

project change over a wide range in unit values, then

parametric programming can be used to good advantage.

Parametric programming involves reformulating the ob-

jective function from:

Z = E C. X, (16)
i=i J J

a general expression for equation 11, to:

Z(0) =L (q+ a.0)X. (17)
j=i J J J

Here, a- represents constant changes to be applied to

the objective function coefficients (Cj). The symbol 9

represents a scalar that, when multiplied times the a-

values, results in proportional change in the objective

function coefficients. In the parametric programming
procedure, 6 is incremented upward, starting at zero

(where equations 16 and 17 are equivalent) to some user-

specified upper limit. In this process, the values for 6,

where the optimal solution changes, are identified.

To illustrate the use of parametric programming, as-

sume we desire to investigate how the preferred alterna-

tives change over the range of timber prices from $120
per M bd ft to $200 per M bd ft, all else remaining

equal. The changes that would be made to the matrix

presented in table 3 are as follows: First, change the ob-

jective function coefficient for TIMB from 0.140 to 0.120

($120 expressed in thousands). Next, a row correspond-

ing to a- in equation 17 must be added to the matrix.

Because the objective function coefficient for TIMB is

the only coefficient to be changed in this analysis, the

only nonzero coefficient in this new a- row would be the

coefficient for TIMB. Set this coefficient equal to 0.120.

The scalar 6 then measures the percentage of change
(decimal form) from the starting price of $120 per

M bd ft.

The results from this parametric programming anal-

ysis are summarized in table 5. Project C2 is optimal

over the range in timber prices from $120 to $129.33 per

M bd ft. As timber price was increased from $129.33 per

M bd ft, the optimal solution moves out series B of pro-

ject alternatives. The selection of the scale of project

within series B is shown to be sensitive to timber price.

However, the type of harvesting in series B is clearly

preferred over the approach in the other series of alter-

natives over the range in timber prices.

Table 5.— Preferred alternatives and the range in timber

prices over vi/hich they are optimal''

Project

alternative

Range in timber price over

which project is optimal

Dollars per M bd ft

C2 120.00 - 129.33

B4 129.33 - 130.71

86 130.71 - 134.74

88 134.74 - 137.15

810 137.15 - 139.56

812 139.56 - 143.06

814 143.06 - 145.73

816 145.73 - 147.07

818 147.07 - 200.00

^All other parameters held constant at the levels in table 1.
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OUTPUTS
In the model formulation depicted by equations 11-15,

it is typical for an output to be produced (at least at

some level) by most, if not all, projects. It would seem

that the question most frequently asked regarding out-

puts would be how much effect would systematically un-

derestimating or overestimating outputs across the

projects have on the preferred alternative. If such a sys-

tematic change can be expressed as a percentage of

change from the pre\dously predicted outputs, inves-

tigating this effect is relatively easy. The suggested ap-

proach would be to modify the coefficient(s) for the out-

put variable! s) in the output rows (equations 13 and 14)

and resolve the model.

This process is best explained via an example. Assume
we desire to determine if a 10 percent increase in elk-

carrying capacity over that already predicted would af-

fect which project is chosen. This 10 percent increase

would be approximated by changing the coefficient for

WILD in row W^OL (table 3) from -1.0 to -0.9. This

10 percent decrease in the coefficient requires a 10 per-

cent larger quantity allocated to WILD to maintain the

equahty of row WVOL. The model would then be re-

solved to determine the effect of the change.

In this instance, the 10 percent increase in change in

elk-carrying capacity had no effect on the project chosen

(B12). The only effect was the value of the objective

function increased to 862,800.

COST
Change in \-irtually any underlying cost (examples,

labor costs or equipment costs) would change the objec-

tive function coefficient for each project alternative.

Therefore, for reasons discussed earher, shadow prices

provide httle information regarding how cost changes

might affect an optimal solution. The effect of potential

changes in costs is best analyzed using parametric

programming procedures.

The general formulation for parametric programming
described by equation 17 also applies here. The only

difference is that here the a- row to be added to the

model should be comprised of the cost changes to be ap-

phed to the objective function. We suggest that the a-

row be comprised of the costs included in the objective

function coefficients for the resource! s) for which the ef-

fect(s) of cost changes is (are) to be investigated. To in-

vestigate cost increases, these a- coefficients should be

negative. For example, if the effect of increasing fuel

cost is to be measured, a- would be comprised of the

previously calculated total fuel cost for each project.

Given this definition for a-, 6 measures the percent

change (decimal form) in these costs. The effect of in-

creases in costs is then analyzed when the parametric

programming procedure increments 0 upwards, starting

at zero. The results identify values for 9 where the op-

timal solutions change.

The effect of decreases in cost can be investigated by
changing the signs on the coefficients in the a. row from

negative to positive. When formulated in this manner, as

6 is incremented upward from zero, the product of 9 and

a. is added (rather than subtracted) giving the effect of

decreasing costs.

To illustrate this approach, parametric programming
was used to analyze the effects of changes in purchaser-

related costs. The coefficients for the a- row (which were

added to the model presented in table 3) were the pur-

chaser costs presented in the fourth column of table 1.

The signs of these coefficients were negative for the por-

tion of the analysis dealing with cost increases and posi-

tive for the portion dealing with cost decreases. Changes

from a 30 percent decrease to a 30 percent increase were

investigated.

The results are summarized in table 6. Project B12 re-

mains optimal as long as purchaser cost does not de-

crease more than 2.6 percent or increase more than 0.3

percent. As purchaser cost increases from the original

amount, smaller scale series B alternatives are preferred.

Decreases in purchaser cost result in larger scale series

B alternatives being preferred. The preferred scale

within series B is showm to be quite sensitive to changes

in purchaser cost. But this analysis indicates the series

B method of harvesting is preferred over the other ap-

proaches over quite a large range in purchaser cost.

Table 6.— Preferred alternatives and the range in clianges in

purchaser costs over v^/hich they are optimal'

Project Range in purchaser costs over

alternative which project is optimal

Percent change^

B18 30.0 (decrease) - 6.1 (decrease)

B16 6.1 (decrease) - 4.9 (decrease)

B14 4.9 (decrease) - 2.6 (decrease)

812 2.6 (decrease) - 0.3 (increase)

BIO 0.3 (increase) - 2.4 (increase)

B8 2.4 (increase) - 4.5 (increase)

B6 4.5 (increase) - 8.0 (increase)

B4 8.0 (increase) 9.4 (increase)

B2 9.4 (increase) - 30.0 (increase)

^All other parameters held constant at the levels in table 1.

^Percentage of change from the purchaser costs in table 1.

Other Constraints

In actual planning situations there may be manage-

ment desires that are best handled as constraints. For

example, it may be useful to constrain the model to

choose an alternative that has a positive appraised sale

value or a sediment impact less than some maximum ac-

ceptable level. Such constraints could easily be added to

the equations 11-15 formulation. The general form for

such constraints is as follows:

Here, represents the project alternatives (as before).

The coefficients aj^^ measure the quantity of k (any cost

or physical quantity; for example, sediment, water) as-

sociated with project X. in time t. B^^^. represents the

upper and'or lower limits placed on k in time t.

Equation 18 would be modified to the following form

for establishing a minimum appraised sale value:

|j-Pq,X,) + |p.,V.,>B^ (19)
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where V^^ measures output quantity of timber in cate-

gory j in time t. The coefficients for Xj, — PCj^, are the

costs (undiscounted) that must be covered by the value

of timber in time t. Pj^ is the undiscounted unit price for

timber in category j in time t. represents the lower

limit for sale value specified by the user. There could be

a row of this type for each time period there is a poten-

tial sale.

Equations 18 and 19 could also be included as "free"

or unconstraining rows, which are allowed by most linear

programming packages. Such rows do not influence the

solution, but the total value of the row is calculated in

the solution process. Free rows are useful for monitoring

appraised values, costs, and so on.

DISCUSSION
Comparing to Other Linear Programming
Formulations

Linear programming formulations common in forestry

(FORPLAN, Gilbert and others 1982; Timber RAM,
Navon 1971; Resource Allocation Analysis, USDA For-

est Service 1975) involve delineating the area being

modeled into units, within which the acres are homoge-

nous with regard to one or more characteristics (for ex-

ample, timber productivity). The decision variables are

management prescription alternatives, which are devel-

oped for each unit. These prescription alternatives are

expressed on a per-acre basis, that is, Xj. = 1 means 1

acre of prescription j on unit i. All output and input

coefficients are therefore on a per-acre basis.

In contrast, the decision variables in the equations

11-15 MIP formulation represent whole alternatives that

apply to the entire area. These alternatives are restricted

to values of 1 (do project) or 0 (not do project). Differ-

ences in the scale of some particular type of activity

(scale of a particular type of harvest in the example) are

represented by additional decision alternatives.

These differences in structure result in differences in

the nature of analyses provided. One difference is that

diminishing marginal productivity cannot be modeled in

the ordinary linear programming formulation in the

same sense as it can in the MIP formulation and the

theoretical continuous joint production model. To illus-

trate the difference, consider modeling the alternatives

in the previous example using ordinary linear program-

ming. For simplicity, assume the 4,000-acre (1 619-ha)

area is homogeneous, alleviating the need for delineating

units. We shall define five prescription alternatives, one

for each harvest series. One unit of each variable

represents 1 acre (0.4 ha) of harvest activity. We must
next formulate a constraint that places an upper limit on

the number of acres that can be harvested. Set this

upper limit at 1,600 acres (647 ha).

Under this formulation the elk-carrying capacity re-

sponse to acres harvested is linear—if 1 acre of harvest

generates an increase in carrying capacity of Y, 2 acres

generate 2Y, etc. No diminishing marginal product is

present as was the case in figure 1. The result is that

each solution (maximizing PNV) will allocate 1,600 acres

(647 ha) to harvest, as long as at least one of the alter-

natives has a positive PNV per acre. That is, acres are

allocated until the upper limit of 1,600 acres (647 ha) of

harvest is reached. The only way to obtain a solution

with a different level of harvest is to change this upper
limit. This formulation is unable to analyze economic ef-

ficiency related to scale of harvest as was done by the

MIP formulation (recall the various levels of harvest

identified as best in tables 4, 5, and 6).

The second difference is in the level of site specificity.

The spatial arrangement of activities that comprise a

project can be identified in the MIP formulation. In con-

trast, spatial location is not part of the definition of de-

cision variables in ordinary linear programming formula-

tions. A management prescription simply must be

applied somewhere within the homogeneous unit for

which it was developed.

This difference is important because spatial arrange-

ment can affect input and output relationships. For ex-

ample, road cost is usually entered as an average per-

acre cost in ordinary hnear programming formulations.

In reality, however, the road cost associated with im-

plementing an acre of some specific prescription is

highly variable, depending on where it occurs. These

relationships are handled more precisely in the MIP
formulation.

The third difference is that the ordinary linear

programming formulations allow one to analyze a

greater number of possible outcomes than does the MIP
formulation. This can be illustrated most easily by com-

paring the example MIP formulation (table 3) with the

comparable ordinary linear programming formulation

described earlier in this section. The MIP formulation

contained 45 project variables, which equaled the num-
ber of decision alternatives. The Unear programming for-

mulation contains one decision variable for each series of

harvest alternatives in the MIP—five in all. These five

decision variables can represent essentially an infinite

number of harvesting alternatives for the area because

each variable can assume fractional values.

Specifying Alternatives

Specifying alternatives is a critical step in the integer

approximation to the theoretical joint production for the

graphical and MIP approaches. The model is limited to

choosing among only those alternatives provided. If only

inefficient alternatives are specified, then the alternative

identified as best will necessarily be inefficient.

Graphs a-d (fig. 6) illustrate this point. In graph a, the

decision set (represented by the data) is too narrow with

regard to tradeoffs between outputs X and Y. The actual

optimum could lie on either side of this rather narrow

band of alternatives. Graph b illustrates the opposite, al-

ternatives span the range between outputs, but have lit-

tle range with regard to scale. The optimal scale could

be larger or smaller. In graph c, projects are single-

product oriented. The actual optimum may be a joint

production alternative lying somewhere in the middle of

this decision space. Finally, graph d illustrates a set of

alternatives that span the decision space. We believe

this to be the best strategy for specifying alternatives

because it is the most Ukely to bound the actual optimal.

A drawback of the MIP formulation is that the distri-

bution of decision alternatives is not visually apparent
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Figure 6.—Project alternatives that span the

decision space (graph d) versus severai ex-

ampies of alternative sets that do not

(graphs a-c).

as it is in the graphical approach. Perhaps it would be

useful to plot project alternatives, even if the MIP ap-

proach is used. For problems containing more than two
outputs, each combination of two outputs could be plot-

ted for the alternatives. While not perfect, it would at

least give a fair idea of the distribution of projects.

An apparent problem with the integer approach

presented is that the number of alternatives that can be

included in a model is limited by the amount of time

available for model construction. If alternatives are held

to a modest number, say 40 to 50, there is a chance that

none of the alternatives provide a good approximation of

the true optimal—even if decision space is spanned as il-

lustrated in graph d. If this is a concern, we suggest

constructing a second model that is comprised totally of

alternatives in the portion of decision space identified as

best with the first model. This would provide the abihty

to achieve a reasonably good approximation of the true

optimal without specifying the large number of alterna-

tives that would be required to achieve the same out-

come with one model.

Operationally Viable?

One of the more attractive features of the MIP ap-

proach is that it lends itself to automation. Front-end

data processing software could be written for data entry

and matrix generation. Data entry could be made inter-

active, leading the user through the process and provid-

ing error checking capabihty. There are numerous ways
such a program could be structured. At most, users

would be required to enter unit values and costs and
output quantities for each project. However, it would

likely be possible to structure the process so only codes

identifying categories for unit costs and output quanti-

ties need be entered. Costs and outputs would then be

calculated from information stored internally, either in

the form of tables or prediction equations.

A second attractive feature of this MIP formulation is

the small size and simplicity— at least when compared to

other mathematical programming formulations used in

forestry. It is easy to solve and sufficiently small to be

processed on a small computer.

Given the front-end software described above, we be-

Heve there is Httle question that the MIP approach for

solving discrete joint production models would be opera-

tionally viable. It should be no more difficult to use than

simulation programs, which are commonly used by re-

source managers with little or no training in operations

research.

Summing It Up
As we have discussed, the discrete joint production

model provides the same type of analysis as the continu-

ous joint production model of economic theory. It pro-

vides the capability to analyze the economic efficiency of

multiple-use management, both in terms of type of pro-

ject and scale of project (for example, in the timber sale

example both the type of cutting alternatives and

amount of harvesting were included in the analysis).

The graphic approach to solving these discrete models

has the advantage of requiring Uttle in the way of

equipment—only paper, pencil, and a straightedge. Little

or no start-up time is involved—no need to write com-

puter software or to learn how to use existing software.

In addition, it rather clearly depicts the nature of eco-

nomic efficiency in multiple-use production. The graphic

approach, however, has some real hmitations enumerated

earUer (limited to two outputs and difficulty in conduct-

ing intertemporal analysis). Because of these, the

graphic approach will likely be limited to special

apphcations.

The MIP approach provides some important advan-

tages over the graphic approach. It lends itself weU to

automation. With the appropriate software, users rela-

tively inexperienced in computer modeling could conceiv-

ably build and solve such a model very efficiently. Next,

the mathematical programming formulation provides

some very useful sensitivity analysis capability. Finally,

the MIP approach is not limited to two outputs and can

handle intertemporal analysis more easily.

The discrete joint production model provides a some-

what different type of analysis than what resource allo-

cation mathematical prograrmning formulations common
in forestry generally provide. In "ordinary" Linear

programming formulations, output is a linear function of

acres treated, for each decision variable. Questions

regarding scale of activities can be addressed only rather

crudely by varying the level at which constraints are im-

posed. The discrete joint production model, on the other

hand, can handle nonhnear output and cost relation-

ships, making it a more effective approach by analyzing

questions of scale. This can be important, particularly

when wildhfe and recreation outputs are among the joint

products.

The second difference is that the spatial arrangement

of activities can be identified more precisely in the dis-

crete joint production model. This is advantageous when
location of an activity affects cost or outputs.
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Third, the discrete joint production model requires

that the user consider fewer alternatives than what can

be considered in "ordinary" linear programming formula-

tions. In some respects, the model we have presented

has characteristics of both simulation and optimization.

Like simulation, it requires the user to formulate whole

alternatives. But it does provide some of the optimiza-

tion and sensitivity analysis capabilities of mathematical

programming. Because of the limited number of alterna-

tives that can be handled effectively, the joint produc-

tion model is best suited to problems of a relatively

small geographic scope.

In conclusion, we believe the modeling approach

presented in this paper is a practical and useful tool for

conducting multiple-use efficiency analysis. The potential

lies not as a substitute for current forest planning

methods, but rather as a tool to aid in identifying effi-

cient management prescriptions to place in forest plan-

ning models, and as a means of analyzing projects for

implementation. It would be most effective when spatial

arrangement of activities is important, and when out-

puts or costs are nonlinear with respect to acres treated.
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of eight regional experiment stations charged with providing scien-

tific knowledge to help resource managers meet human needs and
protect forest and range ecosystems.

The Intermountain Station includes the States of Montana,
Idaho, Utah, Nevada, and western Wyoming. About 231 million

acres, or 85 percent, of the land area in the Station territory are

classified as forest and rangeland. These lands include grass-

lands, deserts, shrublands, alpine areas, and well-stocked forests.
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sumption. They also provide recreation opportunities for millions

of visitors each year.
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Logan, Utah (in cooperation with Utah State University)
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of Montana)
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