
An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems 

AN APPLICATION OF EFFECTIVE GENETIC ALGORITHMS FOR SOLVING 
HYBRID FLOW SHOP SCHEDULING PROBLEMS  

 
CENGIZ KAHRAMAN*  

Department of Industrial Engineering, İstanbul Technical University, Maçka, İstanbul, Turkey. 

 ORHAN ENGIN 
Department of Industrial Engineering, Selçuk University, Konya, Turkey. 

 İHSAN KAYA 
Department of Industrial Engineering, İstanbul Technical University, Maçka, İstanbul, Turkey. 

MUSTAFA KERIM YILMAZ 
Department of Industrial Engineering, Selçuk University, Konya, Turkey. 

 
This paper addresses the Hybrid Flow Shop (HFS) scheduling problems to minimize the makespan value. 
In recent years, much attention is given to heuristic and search techniques. Genetic algorithms (GAs) are 
also known as efficient heuristic and search techniques. This paper proposes an efficient genetic algorithm 
for hybrid flow shop scheduling problems. The proposed algorithm is tested by Carlier and Neron’s (2000) 
benchmark problem from the literature. The computational results indicate that the proposed efficient 
genetic algorithm approach is effective in terms of reduced total completion time or makespan (Cmax) for 
HFS problems. 
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1. Introduction 

A HFS scheduling problem consists of series of 
production stages, each of which has several 
machines operating in parallel. Some stages may 
have only one machine, but at least one stage must 
have multiple machines. Each job is processed by 
one machine in each stage and it must go through 
one or more stages. Machines in each stage can be 
identical, uniform or unrelated (Linn and Zhang, 
1999). The hybrid flow shop scheduling problems 
can be formally described as follows (Engin and 
Döyen 2004): Machines are arranged into s stages 
in series; in each stage k (k=1,….,s) there are mk  
identical machines in parallel; job j, j=1,….,n, has 
to be processed on any machine at each stage and 
job j has finite processing times in each stage (p1j, 
p2j,…., psj).  We assume that all jobs and machines 
are always available during the scheduled period 
and the preemption is not allowed. The objective is 

to find a schedule which minimizes the maximum 
completion time (makespan). HFS problems are 
NP-Hard when the objective is to minimize the 
makespan (Gupta, 1988). 

A hybrid flow shop scheduling problem’s 
mathematical model is described as a mix integer 
programming. The model is given as follows (Hong 
Wang 1998): 

The notation of the HFS model; 

J : The set of the jobs to be scheduled, nJ = , 

s : The set of the stages that all the jobs will be 
processed, ss = , 

j : Subscript representing job j, 

l : Subscript representing stage l, 
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i : Subscript representing machine i, 

lm :  The number of the machines at stage l, 

B: a very large positive number, 

jlS : Starting time of job j at stage l, 

sllJjj ∈∀∈∀ ,,, , 

l
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plj: Processing time of  job j at stage 1; 

sllJjj ∈∀∈∀ ,,, , 

Minimize Q 

Subject to     
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ljS jl ,;0 ∀≥   (2.7) 

{ }1,0, ∈fglijli YX    (2.8) 

Constraint (2.1) indicates that the completion 
time of the last job at the last stage s is Q. 

Constraint (2.2) indicates that it is not possible for 
job j to be processed at stage l+1 before job j at 
stage l is completed. The processing order for jobs f 
and g on machine i at stage l is defined by 
constraints (2.3), (2.4), and (2.5). These constraints 
do not allow more than one job to be processed on a 
machine at any time. Constraint (2.6) does not 
allow a job to be processed on more than one 
machine at any time. Constraints (2.7) and (2.8) 
provide that the variables are nonnegative and 0-1 
integer values. 

A HFS problem with 5-jobs×3-stages where the 
stages have 2, 3, and 3 machines respectively is 
given in Fig. 1. 
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Figure 1. An Illustrative Hybrid Flow Shop Scheduling Problem 

The HFS was first studied by Arthanari and 
Ramamurthy (1971). They developed a branch and 
bound algorithm for solving HFS problems. Gupta 
(1988) and Hoogeveen et al. (1996) proved that the 
two stage hybrid flow shop scheduling problem was 

NP-Hard in the stronge sense even if there was only 
one machine on the first stage and two machines on 
the second stage. The other studies on the hybrid 
flow shop scheduling problems in the literature are 
given in Table 1. 

Table 1. Literature review on HFS scheduling problems. 

The Authors Year Problem Algorithm 

Brah and Hunsucker 1991 Flow shop with multiple 
processors Branch and bound 

Portmann et al. 1998 HFS Genetic Algorithm 

Riane et al. 1998 HFS Heuristic methods 

Jessen and Weizhen 1998 HFS On line algorithm 

Moursli and Pochet  2000 HFS Branch and bound 

Soewandi and Elmaghraby  2001 Flexible flow shops Heuristic method 

Neron et al.  2001 HFS Branch and bound 

Engin and Döyen  2004 HFS Artificial immune system 

Yang et al. 2005 Complex-  HFS Heuristic method 

Tang et al. 2005 Dynamic-HFS Neural network 

Zhong et al. 2006 Multi-objective- HFS Evolutionary algorithm 

Haouari et al. 2006 Two stage- HFS Branch and bound 

Allaoui  and Artiba   2006 Two stage-  HFS Branch and bound 

Zandieh et al. 2006 HFS Immune algorithm 

Janiak et al. 2007 HFS Constructive and  
metaheuristics algorithms 

Vob and Witt 2007 HFS Heuristic solution 

Caricato et al. 2007 HFS Heuristic method 

Alaykıran et al.  2007 HFS Ant colony optimization 

M31 M32 M33 

M21 M23 M22 

M11 M12 

Job
A 

Job
B 

Job
C 

Job
D 

Job
E 
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There are a few studies on hybrid flow shop 
scheduling problems solved by GAs.  

Wang et al. (2006) proposed an effective hybrid 
genetic algorithm (HGA) for permutation flow shop 
scheduling with limited buffers. In the HGA, not 
only multiple genetic operators based on 
evolutionary mechanism are used simultaneously in 
hybrid sense, but also a neighborhood structure 
based on graph model is employed to enhance the 
local search, so that the exploration and 
exploitation abilities can be well balanced. They 
investigated the effects of buffer size and decision 
probability on optimization performances using 
simulation.  

Oğuz and Ercan (2005) proposed a GA for 
hybrid flow-shop scheduling with multiprocessor 
task problems and described its implementation. 
They improved a new crossover operator to be used 
in the GAs and compared it with Partially Matched 
Crossover (PMX). They also employed a 
preliminary test to establish the best combination of 
the control parameters to be used along with 
different genetic operators. 

Li-Xin et al. (2002) developed a genetic descent 
algorithm for hybrid flow shop scheduling problem. 
Randomly generated 230 instances were tested by 
simulation program. Computational experiments 
show that for small size HFSS scheduling 
problems, the average deviation of GDA from the 
optimal solution is 0.01%; for medium-large size 
problems, the performance of GDA is 10.45% 
better than that of NEH algorithm.  

Xia et al. (2000) proposed a GA approach for 
hybrid flow shop scheduling problem. The 
algorithm is based on the list scheduling principle 
by developing job sequences for the first stage and 
queuing the remaining stages in a FIFO manner.  

In this paper, an effective GA is developed for 
HFS scheduling problems. The effectiveness of the 
proposed method is tested with Carlier and Neron’s 

(2000) HFS scheduling problems from the 
literature. The computational results indicate that 
the proposed approach is effective in terms of 
reduced makespan for the attempted problems. To 
the best of our knowledge, there are no genetic 
algorithms applied to Hybrid flow shop including 
Carlier and Neron’s (2000) scheduling problems in 
the literature. 

The rest of the paper is organized as follows. 
The proposed effective algorithm is explained in 
Section 2. In Section 3, an extensive computational 
study using the proposed algorithm and 
experiments are presented. In Section 4, the paper 
is concluded with some comments. 

2. Genetic Algorithms  

GAs were invented by John Holland (Goldberg, 
1989) and they were stochastic search methods 
designed to search large and complex spaces by 
exploitation of currently known solutions and a 
robust exploration of the entire search space (Yoon 
and Ventura, 2002).  

GAs use a collection of solutions called 
population. Each individual in the population is 
called a chromosome (a string of symbols) and a 
chromosome represents a solution to the problem. 
The chromosomes can be produced through 
successive iterations, called generations and the 
population size (the number of individuals in a 
population) remains fixed from generation to 
generation. The chromosomes are evaluated using 
the value of the fitness function during each 
generation. A set of genetic operators such as 
reproduction (selection) and recombination 
(crossover and mutation) is applied to create new 
and better solutions (off springs) from the 
individuals of the current population and the 
solutions are steadily improved from generation to 
generation. The structure of GAs is given in Fig. 2. 
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Figure 2. The fundamental cycle and operations of basic GAs (Gen and Cheng, 2000) 

 
The proposed GA is based on a permutation 

representation of the n jobs. The details of our 
implementation for the GAs are given as follows. 

A direct coding approach is used. In this 
coding, a chromosome represents a schedule 
directly (Yamada et al., 1992). The initial 
population is randomly generated. The population 
size is determined by the help of a full factorial 
experimental design using our GA program. 

Selection schemes allow the algorithm to take 
biased decisions favoring good strings when 
generations change. For this aim, some of the good 
strings are replicated while some of bad strings are 
removed. As a consequence, after the selection 
mechanism is determined, the population is likely 
to be “dominated” by good strings. Various 
selection schemes in the literature have been used.  
We focus on roulette wheel selection and 
tournament selection without replacement. 

The fitness function plays an important role in 
deciding the string in the next generation. The 

fitness function of a string is defined by the 
makespan (Cmax) value of the schedule.  

Crossover is used as the main genetic operator 
and the performance of a GA is heavily dependent 
on it. During the past three decades, various 
crossover operators have been proposed for the 
scheduling problems. In this study, six crossover 
operators have been used: Position Based 
Crossover (PBX), Order Crossover (OX), Partially 
Mapped Crossover (PMX), Cycle Crossover (CX), 
Linear Order Crossover (LOX) and Order Based 
Crossover (OBX) that are widely used in the 
literature. These six crossover operators are briefly 
explained in the following:  

PBX 

First, it is generated a random mask and then 
exchanged relative genes between parents 
according to the mask. This operator is explained 
and detailed in section 3.1. 
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OX 

The offspring inherits the elements between the two 
crossover points from the selected parent in the 
same order and position as they appear in the 
parent. The remaining elements are inherited from 
the alternate parent in the order in which they 
appear in that parent, beginning with the first 
position following the second crossover point and 
skipping over all elements already present in the off 
spring (Kaya and Engin, 2007; Cheng et al. 1999). 

PMX 

A parent and two crossover sites are selected 
randomly and the elements between two string 
positions in one of the parents are directly inherited 
by the offspring. Each element between the two 
crossovers points in the alternate parent are mapped 
to the position held by this element in the first 
parent. Then the remaining elements are inherited 
from the alternate parent (Kaya and Engin, 2007; 
Cheng et al. 1999). 
 

CX 

The cycle between strings is fined, the symbols 
in the cycle are coped to a new string, the 
remaining symbols are determined for the new 
string by deleting the symbols and the remaining 
symbols are fulfilled with the new string. 

LOX 

The two sublists are selected from strings 
randomly. Sublist2 is removed from string1, leaving 
some “holes” and then holes are slide from the 
extremities toward the center until they reach the 
cross section. Similarly, Sublist1 is removed from 
string2. At the end, Sublist1 is inserted into the holes 
of string2 to form offspring1 and sublist2 is inserted 
into the holes of string1 to form offspring2 (Gen and 
Cheng, 2000). 

OBX 

A set of positions is selected randomly; the order of 
symbols in the selected positions is imposed on the 
corresponding symbols in the other string. 

Mutation operator plays a very important role in 
GAs and it helps maintain diversity in the 
population to prevent premature convergence. Six 
mutation operators are examined in the GA to 
minimize the makespan in HFS. These are 
neighborhood based, adjacent two job change, 
arbitrary two job change, arbitrary three job change, 
shift change and inversion mutation operator. 

3. Computational Results 

The proposed GA can be summarized as follows;
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Set GAs value: 
 Size of initial population: 
 Choose selection method: 
 Choose crossover method: 
 Choose mutation method: 
 Set selection, crossover and mutation ratio: 
 Set generation size: 
 Set CPU time: 
End 
For initial population  
  Evaluate chromosome by randomly; 
  Evaluate makespan value; 
  End if 
 Next: 

Evaluate selection ratio 
 Do 
  Choose genes for selection according to the ratio 
  Add it initial population 
  Eliminate others: 
 Evaluate chromosome ratio 
 Do 
  Choose genes for crossover according to ratio 
  Crossover; 
  Evaluate makespan value 
  End if 
 Loop until reach crossover ratio 
 Sort the chromosomes in ascending order depending on makespan value: 
 Select chromosomes as many as initial population sizes: 
 Do 
  Choose two genes for mutation according to ratio; 
  Mutation; 
  End if 
 Loop until reach mutation ratio 
 While stopping criteria= false: 
 

3.1. Parameter optimization for GAs  

It is well known that GAs’ efficiency depends on a 
high degree upon the selection of the control 
parameters. GAs’ search process is controlled with 
multiple factors (control parameters) whose effects 
will possibly interact with each other. In general, 

there are a few control mechanisms for these 
parameters and in this paper the full factorial 
Design of Experiments (DOE) is used. The 
application involves six parameters (factors), each 
having possible different values. These parameters 
are given in Table 2. 

Table 2. The levels of GA control parameters  

Control Parameters Levels 
Selection methods Roulette wheel, Tournament. 
Selection ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
Crossover Methods PBX, OX, PMX, CX, LOX, OBX 
Crossover Ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

Mutation Methods Neighborhood based, adjacent two job change, arbitrary two job change, arbitrary three job 
change, shift change, and inversion 

Mutation Ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
 

The benchmark problems given in Carlier and 
Neron (2000) are considered in the study. The 
problem size varies from 10 job×5 stages to 15 
job×10 stages. Processing times have a uniform 

distribution in the range of (3, 20). Three 
characteristics that define a problem are no. of jobs, 
no. of stages and no. of identical machines at each 
stage. Total 77 problems are classified into 13 
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groups according to their characteristics. An 
instance problem is taken from each of the groups. 
Parameter optimization is implemented and the best 
parameter set is found for the instance. The 
parameter set found for an instance is generalized 
and used for the other problems in the same group. 
Therefore, parameter optimization is implemented 
for 13 instances. In the study, two selection 
methods, ten selection ratio levels, six crossover 

methods, ten crossover ratio levels, five mutation 
methods, and ten mutation ratio levels are 
implemented among the 13 problems. A total 
number of 2x10x6x10x6x10 = 72 000 runs are 
made among these problems. The best parameters 
set in each of the replicated runs for 13 benchmark 
problems are given in Table 3. The initial 
population is selected as 25 for all benchmark 
problems. 

Table 3. The best parameters sets of 13 benchmark problems 

Problem Selection 
Method 

Selection 
Ratio 

Crossover 
Method 

Crossover 
Ratio 

Mutation 
Method 

Mutation 
Ratio 

j10c5a2 0.4 0.3 0.1 
j10c5b1 0.4 0.3 0.1 
j10c5c1 0.4 0.3 0.1 
j10c5d1 0.4 0.3 0.1 
j10c10a1 0.1 0.2 0.1 
j10c10b1 0.1 0.2 0.1 
j10c10c1 0.1 0.2 0.1 
j15c5a1 0.1 0.3 0.2 
j15c5b1 0.1 0.3 0.2 
j15c5c1 0.1 0.3 0.2 
j15c5d1 0.1 0.3 0.2 
j15c10a1 0.2 0.1 0.1 
j15c10b1 

Roulette 
wheel 

0.2 

Position Based 
Crossover 

0.1 

Inversion 
mutation 

0.1 
 

The best selection, crossover and mutation 
methods for 13 benchmark problems are briefly 
described as follows: 

Roulette wheel selection 

Roulette wheel selection is chosen, where the 
average fitness of each chromosome is calculated 
depending on the total fitness of the whole 
population. The chromosomes are randomly 
selected proportional to their average fitness. 
Roulette wheel selection is summarized in the 
following steps, 
 

Step1.  Let the pop-size, number of strings in 
pop. 

Step2.  nsum, sum of all of the fitness values of 
the strings in pop; form nsum slots and assign string 
to the slots according to the fitness value of the 
string. 

Step3.  Do step 4 (pop-size -1) times. 
Step4. Generate a random number between 1 

and nsum, and use it to index into the slots to find 
the corresponding string; add this string to newpop 

Step5.  Add the string with the highest fitness 
value in pop to newpop. 

Position Based Crossover (PBX) 

(i) Select a set of  positions from one string at 
random, 

(ii) Produce a new string by copying the symbols 
on these positions into the  corresponding 
positions in the new string, 

(iii) Delete the symbols already selected from the 
second string. The resulting sequence contains 
only the symbols that the new string needs, 

(iv) Place the symbols into unfixed positions in the 
new string from left to right according to the 
order of the sequence used to produce one 
offspring. 

Inversion Mutation 

It can be seen from Fig. 3. that the inversion 
mutation selects two positions at random and then 
swaps the genes on these positions. 
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3.2. Computational study 

The test problems used in the experiments are 
Carlier and Neron’s (2000) benchmark problems. 
The same problems were also studied by Santos et 
al. (1995) Engin and Döyen (2004) and Alaykiran 
et al. (2007). Santos et al. (1995)  used a branch and 
bound method, Engin and Döyen (2004) used an 
artificial immune systems (AIS) method which was 
improved with the use of satisfability tests and 
time-bound adjustments and also Alaykiran et al. 
(2007) used ant colony optimization method.  
Santos et al. (1995), Engin and Döyen (2004) and 
Alaykiran et al. (2007) limited their algorithm with 
1600 s. If an optimal solution was not found within 
1600s, the search was stopped and the best solution 
was accepted as the final schedule. They calculated 
the Lower Bounds (LB) of the problems and the 
relative gap from these bounds for the non-
optimally solved instances.   

In this study, using the lower bounds, the 
percentage deviation from LB is calculated as 

max ( )% 100
( )

Best C Lower Bound LBDeviation x
Lower Bound LB

−
=  (3) 

The iteration number is selected as 1000 and 
only one replicated for all benchmark problems. 
Also CPU time is limited to 1600 s. If an optimal 
solution is not found within this time, the search is 
stopped and the best solution is accepted as the 
final schedule. The algorithm is implemented in 
Borland Delphi and run on a PC Pentium 4 
processor with 3 GHz and 512 MB memory.  In 
Table 4, for all of the 77 problems, the best Cmax 
values and CPU times obtained by the proposed 
GA model, Engin and Döyen’s (2004) AIS model, 
and Neron et al’s (2001) B&B model are presented. 
For all methods (GA, AIS and B&B) the CPU 
times are given in seconds. The lower bounds and 
% deviations from lower bounds are given at the 
last three columns of Table 4.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

45 1 3 2 6 

3 2 1 4 5 6 

Figure 3. The Inversion mutation operators
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Table 4: Solutions of Test Problems 

Problem GA 
Cmax 

GA 
CPU 

AIS 
Cmax 

AIS 
CPU 

B & B 
Cmax 

B & B 
CPU 

LB of 
Cmax 

GA % 
deviation 

AIS 
%  deviation 

B & B 
%  deviation 

j10c5a2 88 0.000 88 1 88 13 88 0 0 0 
j10c5a3 117 0.000 117 1 117 7 117 0 0 0 
j10c5a4 121 0.015 121 1 121 6 121 0 0 0 
j10c5a5 122 0.000 122 1 122 11 122 0 0 0 
j10c5a6 110 0.015 110 4 110 6 110 0 0 0 

           
j10c5b1 130 0.000 130 1 130 13 130 0 0 0 
j10c5b2 107 0.000 107 1 107 6 107 0 0 0 
j10c5b3 109 0.000 109 1 109 9 109 0 0 0 
j10c5b4 122 0.000 122 2 122 6 122 0 0 0 
j10c5b5 153 0.000 153 1 153 6 153 0 0 0 
j10c5b6 115 0.000 115 1 115 11 115 0 0 0 

           
j10c5c1 68 0.031 68 32 68 28 68 0 0 0 
j10c5c2 74 0.016 74 4 74 19 74 0 0 0 
j10c5c3 71 0.016 72 a 71 240 71 0 1.4 0 
j10c5c4 66 0.031 66 3 66 1017 66 0 0 0 
j10c5c5 78 0.094 78 14 78 42 78 0 0 0 
j10c5c6 69 0.000 69 12 69 4865b 69 0 0 0 

           
j10c5d1 66 0.046 66 5 66 6490b 66 0 0 0 
j10c5d2 73 0.110 73 31 73 2617b 73 0 0 0 
j10c5d3 64 0.015 64 15 64 481 64 0 0 0 
j10c5d4 70 0.000 70 5 70 393 70 0 0 0 
j10c5d5 66 0.031 66 1446 66 1627b 66 0 0 0 
j10c5d6 62 0.062 62 8 62 6861b 62 0 0 0 

           
j10c10a1 139 0.015 139 1 139 41 139 0 0 0 
j10c10a2 158 0.125 158 18 158 21 158 0 0 0 
j10c10a3 148 0.047 148 1 148 58 148 0 0 0 
j10c10a4 149 0.141 149 2 149 21 149 0 0 0 
j10c10a5 148 0.000 148 1 148 36 148 0 0 0 
j10c10a6 146 0.156 146 4 146 20 146 0 0 0 

           
j10c10b1 163 0.000 163 1 163 36 163 0 0 0 
j10c10b2 157 0.131 157 1 157 66 157 0 0 0 
j10c10b3 169 0.000 169 1 169 19 169 0 0 0 
j10c10b4 159 0.015 159 1 159 20 159 0 0 0 
j10c10b5 165 0.016 165 1 165 33 165 0 0 0 
j10c10b6 165 0.016 165 1 165 34 165 0 0 0 
j10c10c1 115 0.062 115 a 127 c 113 1.8 1.8 12.4 
j10c10c2 117 0.141 119 a 116 1100 116 0.86 2.6 0 
j10c10c3 116 0.234 116 a 133 c 98 18.4 18.4 35.7 
j10c10c4 120 0.281 120 a 135 c 103 16.5 16.5 31.1 
j10c10c5 125 0.721 126 a 145 c 121 3.3 4.1 19.8 
j10c10c6 106 0.046 106 a 112 c 97 9.3 9.3 15.5 
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Table 4: Solutions of Test Problems (continued)    

Problem GAs 
Cmax 

GAs 
CPU 

AIS 
Cmax 

AIS 
CPU 

B &B
Cmax

B & B 
CPU 

LB of 
Cmax 

GAs 
% deviation 

AIS 
%  deviation 

B & B 
%  deviation 

j15c5a1 178 0.031 178 1 178 18 178 0 0 0 
j15c5a2 165 0.015 165 1 165 35 165 0 0 0 
j15c5a3 130 0.015 130 1 130 34 130 0 0 0 
j15c5a4 156 0.015 156 2 156 21 156 0 0 0 
j15c5a5 164 0.046 164 1 164 34 164 0 0 0 
j15c5a6 178 0.032 178 1 178 38 178 0 0 0 

           
j15c5b1 170 0.015 170 1 170 16 170 0 0 0 
j15c5b2 152 0.015 152 1 152 25 152 0 0 0 
j15c5b3 157 0.015 157 1 157 15 157 0 0 0 
j15c5b4 147 0.015 147 1 147 37 147 0 0 0 
j15c5b5 166 0.016 166 2 166 20 166 0 0 0 
j5c5b6 175 0.015 175 1 175 23 175 0 0 0 

           
j15c5c1 85 0.031 85 774 85 2131b 85 0 0 0 
j15c5c2 91 0.156 91 a 90 184 90 1.1 1.1 0 
j15c5c3 87 0.109 87 16 87 202 87 0 0 0 
j15c5c4 89 0.000 89 317 90 c 89 0 0 1.1 
j15c5c5 75 A 74 a 84 c 73 2.27 1.4 15.1 
j15c5c6 91 0.047 91 19 91 57 91 0 0 0 

           
j15c5d1 167 0.015 167 1 167 24 167 0 0 0 
j15c5d2 84 0.406 84 a 85 c 82 2.4 2.4 3.7 
j15c5d3 83 0.015 83 a 96 c 77 7.8 7.8 24.7 
j15c5d4 84 0.188 84 a 101 c 61 37.7 37.7 65.6 
j15c5d5 80 0.105 80 a 97 c 67 19.4 19.4 44.8 
j15c5d6 82 0.406 82 a 87 c 79 2.53 3.8 10.1 

           
j15c10a1 236 0.015 236 1 236 40 236 0 0 0 
j15c10a2 200 0.015 200 30 200 154 200 0 0 0 
j15c10a3 198 0.063 198 4 198 45 198 0 0 0 
j15c10a4 225 0.031 225 12 225 78 225 0 0 0 
j15c10a5 182 0.016 182 2 183 c 182 0 0 0.5 
j15c10a6 200 0.031 200 2 200 44 200 0 0 0 
j15c10a1 222 0.031 222 3 222 70 222 0 0 0 

           
j15c10b2 187 0.047 187 1 187 80 187 0 0 0 
j15c10b3 222 0.015 222 1 222 80 222 0 0 0 
j15c10b4 221 0.016 221 1 221 84 221 0 0 0 
j15c10b5 200 0.094 200 1 200 84 200 0 0 0 
j15c10b6 219 0.031 219 1 219 67 219 0 0 0 

a: GAs and AIS could not reach  LB value in 1600 s.,  b: B&B reaches LB value more than 1600 s , c:  B&B  could  not  reach LB value, 
B&B CPU  
 
 

As it will be noticed from Table 4, better results 
for a and b type problems than c and d type 
problems have been obtained. The machine 

configurations have an important effect on the 
complexity of problems that effects the solution 
quality. GA algorithm has found the optimal 

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 144



Kahraman et al. 
 
12

solutions for all a and b type problems like AIS 
algorithm (47 problems), although B&B has found 
the optimal solutions for 46 problems. c and d type 
problems are relatively hard problems. Neron et al. 
(2001) grouped some of the problems as hard 
problems. For these problems, they could not reach 
the optimal solutions in a short time. The difference 
of these problems is mainly sourced from their 
machine configurations (all of these problems are c 
or d type problems). There are 30 problems in that 
group (the c and d types of 10x5 and 15x5 
problems). The rest of the problems (all a, b types 
and 10x10 c type problems) are referred as easy 
problems.  

For hard problems, the proposed GA algorithm 
found LB values for 18 of the 24 problems while 

AIS found LB values for 17 of the 24 problems. 
Also for these hard problems GA found a better 
makespan value than AIS and B&B methods. For 
only two problems, GA could not reach the AIS’s 
makespan value. These problems are represented in 
bold in Table 4.  

The average % deviation from LB for GA is 
smaller than AIS and B&B methods’. There are 53 
easy problems. Both of these methods, AIS and 
B&B, could not reach LB values for 6 of the 
problems. But the average % deviation from LB for 
GA algorithm is smaller than AIS and B&B 
methods’. In Table 5, the percentage of the solved 
problems and the average % deviation values for 
easy and hard problems are presented.  

Table 5. Performances of three methods 

 Easy problems Hard Problems 
Method % Solved %Deviation % Solved % Deviation 

GA 88.7 0.95 70.8 3.05 
AIS  88.7 0.99 66.7 3.13 

B & B 88.7 2.17 70.8 6.88 
 

As it is clearly seen from Table 5, the least 
deviation belongs to GA. AIS is the second with a 
0.08 %  difference. B&B is the worst of all with 
almost two times larger deviation than the others.  

Also the computational results are compared 
with the earlier study of Alaykıran et al. (2007). 

The average % deviations from LB due to the 
machine layout types are calculated for GA 
solutions and compared with the solution of 
Alaykıran et al.’s (2007) AS algorithm. The 
computational results are given in Table 6. 

Table 6. The average % deviation from LB due to the machine layout types 

Layout type a b c d 
AS 0.27 0.4 1.93 11.17 Average percentage 

deviations GA 0.00 0.00 2.97 5.81 
 

As it is seen in Table 6, the proposed GA found 
the optimal solutions for all a and b type problems, 
although Alaykıran et al.’s (2007) AS algorithm 
could not find optimal solutions. Also for d type 
problems the proposed GA found a smaller average 
% deviation from LB than Alaykıran et al.’s (2007) 
AS algorithm’s. But for c type problems Alaykıran 
et al.’s (2007) AS algorithm found a smaller 
average % deviation from LB than the proposed 
GA. 

The proposed GA can not be compared to the 
AIS and B&B according to CPU times because the 
configuration of the computers, in which the 
considered problems were solved, are different 
from one to another. The 1600 CPU time is used 
only a stopping parameters of GA.  

4.  Conclusion 

In this paper, we propose an effective GA for HFS 
scheduling problems with the objective of 
minimizing makespan. The considered problem is a 
NP-Hard problem. Most of the studies to solve that 
problem are approximate methods rather than an 
exact method, which guarantees optimal solution. 
The test problems are benchmarking problems used 
in the literature. The percentage deviations from 
lower bounds are calculated. The findings are 
compared with another study that tested the same 
problems. We obtained better solutions with the 
proposed GA algorithm. When all problems are 
considered; the average deviation of the GA 
Algorithm is 1.50 % while the average deviations 
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of AIS and B&B are 1.657 % and 3.6 %, 
respectively. Also it can be seen in Table 4 that the 
CPU times of the GA are much smaller than AIS 
and B&B. The proposed GA is a good problem 
solving technique for a scheduling problem and 
may be used for some other industrial problems.  
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