
An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

AN APPLICATION OF EFFECTIVE GENETIC ALGORITHMS FOR SOLVING
HYBRID FLOW SHOP SCHEDULING PROBLEMS

CENGIZ KAHRAMAN*

Department of Industrial Engineering, İstanbul Technical University, Maçka, İstanbul, Turkey.

 ORHAN ENGIN
Department of Industrial Engineering, Selçuk University, Konya, Turkey.

 İHSAN KAYA
Department of Industrial Engineering, İstanbul Technical University, Maçka, İstanbul, Turkey.

MUSTAFA KERIM YILMAZ
Department of Industrial Engineering, Selçuk University, Konya, Turkey.

This paper addresses the Hybrid Flow Shop (HFS) scheduling problems to minimize the makespan value.
In recent years, much attention is given to heuristic and search techniques. Genetic algorithms (GAs) are
also known as efficient heuristic and search techniques. This paper proposes an efficient genetic algorithm
for hybrid flow shop scheduling problems. The proposed algorithm is tested by Carlier and Neron’s (2000)
benchmark problem from the literature. The computational results indicate that the proposed efficient
genetic algorithm approach is effective in terms of reduced total completion time or makespan (Cmax) for
HFS problems.

Key words: Hybrid flow shop scheduling, Genetic algorithm, completion time

* Corresponding Author:
E-Mail: kahramanc@itu.edu.tr
Phone: +90-212-296 40 40
Fax:+90-212-240 72 60

1. Introduction

A HFS scheduling problem consists of series of
production stages, each of which has several
machines operating in parallel. Some stages may
have only one machine, but at least one stage must
have multiple machines. Each job is processed by
one machine in each stage and it must go through
one or more stages. Machines in each stage can be
identical, uniform or unrelated (Linn and Zhang,
1999). The hybrid flow shop scheduling problems
can be formally described as follows (Engin and
Döyen 2004): Machines are arranged into s stages
in series; in each stage k (k=1,….,s) there are mk
identical machines in parallel; job j, j=1,….,n, has
to be processed on any machine at each stage and
job j has finite processing times in each stage (p1j,
p2j,…., psj). We assume that all jobs and machines
are always available during the scheduled period
and the preemption is not allowed. The objective is

to find a schedule which minimizes the maximum
completion time (makespan). HFS problems are
NP-Hard when the objective is to minimize the
makespan (Gupta, 1988).

A hybrid flow shop scheduling problem’s
mathematical model is described as a mix integer
programming. The model is given as follows (Hong
Wang 1998):

The notation of the HFS model;

J : The set of the jobs to be scheduled, nJ = ,

s : The set of the stages that all the jobs will be
processed, ss = ,

j : Subscript representing job j,

l : Subscript representing stage l,

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 134

zegerkarssen
Typewritten Text

zegerkarssen
Typewritten Text
Received:04-09-2007 Revised:04-12-2007

Kahraman et al.

2

i : Subscript representing machine i,

lm : The number of the machines at stage l,

B: a very large positive number,

jlS : Starting time of job j at stage l,

sllJjj ∈∀∈∀ ,,, ,

l

jli

m,.....,1i,sl,l,Jj,j

;
otherwise,0

.lstageatimachineonisjjobif,1
X

=∈∀∈∀
⎩
⎨
⎧

=

 (1)

l

fgli

m,.....,1i,sl,l,Jj,j

;
otherwise,0

lif,1
Y

=∈∀∈∀
⎩
⎨
⎧

=
 stageat i machine on g job before is f job (2)

plj: Processing time of job j at stage 1;

sllJjj ∈∀∈∀ ,,, ,

Minimize Q

Subject to

jQpS jsjs ∀≤+ ; (2.1)

slljSpS ljjljl ≠∀≤+ + ,,;1, (2.2)

gf,g,f,i,l

);Y1(BSpS fgliglflfl

≠∀

−+≤+
 (2.3)

gfgfilYY gflifgli ≠∀≤+ ,,,,;1 (2.4)

gf,g,f,i,l

;YY1XX gflifgliglifli

≠∀

++≤+
 (2.5)

∑
=

∀=
lm

i
jli ljX

1
,1 (2.6)

ljS jl ,;0 ∀≥ (2.7)

{ }1,0, ∈fglijli YX (2.8)

Constraint (2.1) indicates that the completion
time of the last job at the last stage s is Q.

Constraint (2.2) indicates that it is not possible for
job j to be processed at stage l+1 before job j at
stage l is completed. The processing order for jobs f
and g on machine i at stage l is defined by
constraints (2.3), (2.4), and (2.5). These constraints
do not allow more than one job to be processed on a
machine at any time. Constraint (2.6) does not
allow a job to be processed on more than one
machine at any time. Constraints (2.7) and (2.8)
provide that the variables are nonnegative and 0-1
integer values.

A HFS problem with 5-jobs×3-stages where the
stages have 2, 3, and 3 machines respectively is
given in Fig. 1.

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 135

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

Figure 1. An Illustrative Hybrid Flow Shop Scheduling Problem

The HFS was first studied by Arthanari and
Ramamurthy (1971). They developed a branch and
bound algorithm for solving HFS problems. Gupta
(1988) and Hoogeveen et al. (1996) proved that the
two stage hybrid flow shop scheduling problem was

NP-Hard in the stronge sense even if there was only
one machine on the first stage and two machines on
the second stage. The other studies on the hybrid
flow shop scheduling problems in the literature are
given in Table 1.

Table 1. Literature review on HFS scheduling problems.

The Authors Year Problem Algorithm

Brah and Hunsucker 1991 Flow shop with multiple
processors Branch and bound

Portmann et al. 1998 HFS Genetic Algorithm

Riane et al. 1998 HFS Heuristic methods

Jessen and Weizhen 1998 HFS On line algorithm

Moursli and Pochet 2000 HFS Branch and bound

Soewandi and Elmaghraby 2001 Flexible flow shops Heuristic method

Neron et al. 2001 HFS Branch and bound

Engin and Döyen 2004 HFS Artificial immune system

Yang et al. 2005 Complex- HFS Heuristic method

Tang et al. 2005 Dynamic-HFS Neural network

Zhong et al. 2006 Multi-objective- HFS Evolutionary algorithm

Haouari et al. 2006 Two stage- HFS Branch and bound

Allaoui and Artiba 2006 Two stage- HFS Branch and bound

Zandieh et al. 2006 HFS Immune algorithm

Janiak et al. 2007 HFS Constructive and
metaheuristics algorithms

Vob and Witt 2007 HFS Heuristic solution

Caricato et al. 2007 HFS Heuristic method

Alaykıran et al. 2007 HFS Ant colony optimization

M31 M32 M33

M21 M23 M22

M11 M12

Job
A

Job
B

Job
C

Job
D

Job
E

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 136

Kahraman et al.

4

There are a few studies on hybrid flow shop
scheduling problems solved by GAs.

Wang et al. (2006) proposed an effective hybrid
genetic algorithm (HGA) for permutation flow shop
scheduling with limited buffers. In the HGA, not
only multiple genetic operators based on
evolutionary mechanism are used simultaneously in
hybrid sense, but also a neighborhood structure
based on graph model is employed to enhance the
local search, so that the exploration and
exploitation abilities can be well balanced. They
investigated the effects of buffer size and decision
probability on optimization performances using
simulation.

Oğuz and Ercan (2005) proposed a GA for
hybrid flow-shop scheduling with multiprocessor
task problems and described its implementation.
They improved a new crossover operator to be used
in the GAs and compared it with Partially Matched
Crossover (PMX). They also employed a
preliminary test to establish the best combination of
the control parameters to be used along with
different genetic operators.

Li-Xin et al. (2002) developed a genetic descent
algorithm for hybrid flow shop scheduling problem.
Randomly generated 230 instances were tested by
simulation program. Computational experiments
show that for small size HFSS scheduling
problems, the average deviation of GDA from the
optimal solution is 0.01%; for medium-large size
problems, the performance of GDA is 10.45%
better than that of NEH algorithm.

Xia et al. (2000) proposed a GA approach for
hybrid flow shop scheduling problem. The
algorithm is based on the list scheduling principle
by developing job sequences for the first stage and
queuing the remaining stages in a FIFO manner.

In this paper, an effective GA is developed for
HFS scheduling problems. The effectiveness of the
proposed method is tested with Carlier and Neron’s

(2000) HFS scheduling problems from the
literature. The computational results indicate that
the proposed approach is effective in terms of
reduced makespan for the attempted problems. To
the best of our knowledge, there are no genetic
algorithms applied to Hybrid flow shop including
Carlier and Neron’s (2000) scheduling problems in
the literature.

The rest of the paper is organized as follows.
The proposed effective algorithm is explained in
Section 2. In Section 3, an extensive computational
study using the proposed algorithm and
experiments are presented. In Section 4, the paper
is concluded with some comments.

2. Genetic Algorithms

GAs were invented by John Holland (Goldberg,
1989) and they were stochastic search methods
designed to search large and complex spaces by
exploitation of currently known solutions and a
robust exploration of the entire search space (Yoon
and Ventura, 2002).

GAs use a collection of solutions called
population. Each individual in the population is
called a chromosome (a string of symbols) and a
chromosome represents a solution to the problem.
The chromosomes can be produced through
successive iterations, called generations and the
population size (the number of individuals in a
population) remains fixed from generation to
generation. The chromosomes are evaluated using
the value of the fitness function during each
generation. A set of genetic operators such as
reproduction (selection) and recombination
(crossover and mutation) is applied to create new
and better solutions (off springs) from the
individuals of the current population and the
solutions are steadily improved from generation to
generation. The structure of GAs is given in Fig. 2.

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 137

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

Figure 2. The fundamental cycle and operations of basic GAs (Gen and Cheng, 2000)

The proposed GA is based on a permutation

representation of the n jobs. The details of our
implementation for the GAs are given as follows.

A direct coding approach is used. In this
coding, a chromosome represents a schedule
directly (Yamada et al., 1992). The initial
population is randomly generated. The population
size is determined by the help of a full factorial
experimental design using our GA program.

Selection schemes allow the algorithm to take
biased decisions favoring good strings when
generations change. For this aim, some of the good
strings are replicated while some of bad strings are
removed. As a consequence, after the selection
mechanism is determined, the population is likely
to be “dominated” by good strings. Various
selection schemes in the literature have been used.
We focus on roulette wheel selection and
tournament selection without replacement.

The fitness function plays an important role in
deciding the string in the next generation. The

fitness function of a string is defined by the
makespan (Cmax) value of the schedule.

Crossover is used as the main genetic operator
and the performance of a GA is heavily dependent
on it. During the past three decades, various
crossover operators have been proposed for the
scheduling problems. In this study, six crossover
operators have been used: Position Based
Crossover (PBX), Order Crossover (OX), Partially
Mapped Crossover (PMX), Cycle Crossover (CX),
Linear Order Crossover (LOX) and Order Based
Crossover (OBX) that are widely used in the
literature. These six crossover operators are briefly
explained in the following:

PBX

First, it is generated a random mask and then
exchanged relative genes between parents
according to the mask. This operator is explained
and detailed in section 3.1.

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 138

Kahraman et al.

6

OX

The offspring inherits the elements between the two
crossover points from the selected parent in the
same order and position as they appear in the
parent. The remaining elements are inherited from
the alternate parent in the order in which they
appear in that parent, beginning with the first
position following the second crossover point and
skipping over all elements already present in the off
spring (Kaya and Engin, 2007; Cheng et al. 1999).

PMX

A parent and two crossover sites are selected
randomly and the elements between two string
positions in one of the parents are directly inherited
by the offspring. Each element between the two
crossovers points in the alternate parent are mapped
to the position held by this element in the first
parent. Then the remaining elements are inherited
from the alternate parent (Kaya and Engin, 2007;
Cheng et al. 1999).

CX

The cycle between strings is fined, the symbols
in the cycle are coped to a new string, the
remaining symbols are determined for the new
string by deleting the symbols and the remaining
symbols are fulfilled with the new string.

LOX

The two sublists are selected from strings
randomly. Sublist2 is removed from string1, leaving
some “holes” and then holes are slide from the
extremities toward the center until they reach the
cross section. Similarly, Sublist1 is removed from
string2. At the end, Sublist1 is inserted into the holes
of string2 to form offspring1 and sublist2 is inserted
into the holes of string1 to form offspring2 (Gen and
Cheng, 2000).

OBX

A set of positions is selected randomly; the order of
symbols in the selected positions is imposed on the
corresponding symbols in the other string.

Mutation operator plays a very important role in
GAs and it helps maintain diversity in the
population to prevent premature convergence. Six
mutation operators are examined in the GA to
minimize the makespan in HFS. These are
neighborhood based, adjacent two job change,
arbitrary two job change, arbitrary three job change,
shift change and inversion mutation operator.

3. Computational Results

The proposed GA can be summarized as follows;

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 139

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

Set GAs value:
 Size of initial population:
 Choose selection method:
 Choose crossover method:
 Choose mutation method:
 Set selection, crossover and mutation ratio:
 Set generation size:
 Set CPU time:
End
For initial population
 Evaluate chromosome by randomly;
 Evaluate makespan value;
 End if
 Next:

Evaluate selection ratio
 Do
 Choose genes for selection according to the ratio
 Add it initial population
 Eliminate others:
 Evaluate chromosome ratio
 Do
 Choose genes for crossover according to ratio
 Crossover;
 Evaluate makespan value
 End if
 Loop until reach crossover ratio
 Sort the chromosomes in ascending order depending on makespan value:
 Select chromosomes as many as initial population sizes:
 Do
 Choose two genes for mutation according to ratio;
 Mutation;
 End if
 Loop until reach mutation ratio
 While stopping criteria= false:

3.1. Parameter optimization for GAs

It is well known that GAs’ efficiency depends on a
high degree upon the selection of the control
parameters. GAs’ search process is controlled with
multiple factors (control parameters) whose effects
will possibly interact with each other. In general,

there are a few control mechanisms for these
parameters and in this paper the full factorial
Design of Experiments (DOE) is used. The
application involves six parameters (factors), each
having possible different values. These parameters
are given in Table 2.

Table 2. The levels of GA control parameters

Control Parameters Levels
Selection methods Roulette wheel, Tournament.
Selection ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Crossover Methods PBX, OX, PMX, CX, LOX, OBX
Crossover Ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

Mutation Methods Neighborhood based, adjacent two job change, arbitrary two job change, arbitrary three job
change, shift change, and inversion

Mutation Ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

The benchmark problems given in Carlier and
Neron (2000) are considered in the study. The
problem size varies from 10 job×5 stages to 15
job×10 stages. Processing times have a uniform

distribution in the range of (3, 20). Three
characteristics that define a problem are no. of jobs,
no. of stages and no. of identical machines at each
stage. Total 77 problems are classified into 13

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 140

Kahraman et al.

8

groups according to their characteristics. An
instance problem is taken from each of the groups.
Parameter optimization is implemented and the best
parameter set is found for the instance. The
parameter set found for an instance is generalized
and used for the other problems in the same group.
Therefore, parameter optimization is implemented
for 13 instances. In the study, two selection
methods, ten selection ratio levels, six crossover

methods, ten crossover ratio levels, five mutation
methods, and ten mutation ratio levels are
implemented among the 13 problems. A total
number of 2x10x6x10x6x10 = 72 000 runs are
made among these problems. The best parameters
set in each of the replicated runs for 13 benchmark
problems are given in Table 3. The initial
population is selected as 25 for all benchmark
problems.

Table 3. The best parameters sets of 13 benchmark problems

Problem Selection
Method

Selection
Ratio

Crossover
Method

Crossover
Ratio

Mutation
Method

Mutation
Ratio

j10c5a2 0.4 0.3 0.1
j10c5b1 0.4 0.3 0.1
j10c5c1 0.4 0.3 0.1
j10c5d1 0.4 0.3 0.1
j10c10a1 0.1 0.2 0.1
j10c10b1 0.1 0.2 0.1
j10c10c1 0.1 0.2 0.1
j15c5a1 0.1 0.3 0.2
j15c5b1 0.1 0.3 0.2
j15c5c1 0.1 0.3 0.2
j15c5d1 0.1 0.3 0.2
j15c10a1 0.2 0.1 0.1
j15c10b1

Roulette
wheel

0.2

Position Based
Crossover

0.1

Inversion
mutation

0.1

The best selection, crossover and mutation
methods for 13 benchmark problems are briefly
described as follows:

Roulette wheel selection

Roulette wheel selection is chosen, where the
average fitness of each chromosome is calculated
depending on the total fitness of the whole
population. The chromosomes are randomly
selected proportional to their average fitness.
Roulette wheel selection is summarized in the
following steps,

Step1. Let the pop-size, number of strings in
pop.

Step2. nsum, sum of all of the fitness values of
the strings in pop; form nsum slots and assign string
to the slots according to the fitness value of the
string.

Step3. Do step 4 (pop-size -1) times.
Step4. Generate a random number between 1

and nsum, and use it to index into the slots to find
the corresponding string; add this string to newpop

Step5. Add the string with the highest fitness
value in pop to newpop.

Position Based Crossover (PBX)

(i) Select a set of positions from one string at
random,

(ii) Produce a new string by copying the symbols
on these positions into the corresponding
positions in the new string,

(iii) Delete the symbols already selected from the
second string. The resulting sequence contains
only the symbols that the new string needs,

(iv) Place the symbols into unfixed positions in the
new string from left to right according to the
order of the sequence used to produce one
offspring.

Inversion Mutation

It can be seen from Fig. 3. that the inversion
mutation selects two positions at random and then
swaps the genes on these positions.

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 141

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

3.2. Computational study

The test problems used in the experiments are
Carlier and Neron’s (2000) benchmark problems.
The same problems were also studied by Santos et
al. (1995) Engin and Döyen (2004) and Alaykiran
et al. (2007). Santos et al. (1995) used a branch and
bound method, Engin and Döyen (2004) used an
artificial immune systems (AIS) method which was
improved with the use of satisfability tests and
time-bound adjustments and also Alaykiran et al.
(2007) used ant colony optimization method.
Santos et al. (1995), Engin and Döyen (2004) and
Alaykiran et al. (2007) limited their algorithm with
1600 s. If an optimal solution was not found within
1600s, the search was stopped and the best solution
was accepted as the final schedule. They calculated
the Lower Bounds (LB) of the problems and the
relative gap from these bounds for the non-
optimally solved instances.

In this study, using the lower bounds, the
percentage deviation from LB is calculated as

max ()% 100
()

Best C Lower Bound LBDeviation x
Lower Bound LB

−
= (3)

The iteration number is selected as 1000 and
only one replicated for all benchmark problems.
Also CPU time is limited to 1600 s. If an optimal
solution is not found within this time, the search is
stopped and the best solution is accepted as the
final schedule. The algorithm is implemented in
Borland Delphi and run on a PC Pentium 4
processor with 3 GHz and 512 MB memory. In
Table 4, for all of the 77 problems, the best Cmax
values and CPU times obtained by the proposed
GA model, Engin and Döyen’s (2004) AIS model,
and Neron et al’s (2001) B&B model are presented.
For all methods (GA, AIS and B&B) the CPU
times are given in seconds. The lower bounds and
% deviations from lower bounds are given at the
last three columns of Table 4.

45 1 3 2 6

3 2 1 4 5 6

Figure 3. The Inversion mutation operators

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 142

Kahraman et al.

10

Table 4: Solutions of Test Problems

Problem GA
Cmax

GA
CPU

AIS
Cmax

AIS
CPU

B & B
Cmax

B & B
CPU

LB of
Cmax

GA %
deviation

AIS
% deviation

B & B
% deviation

j10c5a2 88 0.000 88 1 88 13 88 0 0 0
j10c5a3 117 0.000 117 1 117 7 117 0 0 0
j10c5a4 121 0.015 121 1 121 6 121 0 0 0
j10c5a5 122 0.000 122 1 122 11 122 0 0 0
j10c5a6 110 0.015 110 4 110 6 110 0 0 0

j10c5b1 130 0.000 130 1 130 13 130 0 0 0
j10c5b2 107 0.000 107 1 107 6 107 0 0 0
j10c5b3 109 0.000 109 1 109 9 109 0 0 0
j10c5b4 122 0.000 122 2 122 6 122 0 0 0
j10c5b5 153 0.000 153 1 153 6 153 0 0 0
j10c5b6 115 0.000 115 1 115 11 115 0 0 0

j10c5c1 68 0.031 68 32 68 28 68 0 0 0
j10c5c2 74 0.016 74 4 74 19 74 0 0 0
j10c5c3 71 0.016 72 a 71 240 71 0 1.4 0
j10c5c4 66 0.031 66 3 66 1017 66 0 0 0
j10c5c5 78 0.094 78 14 78 42 78 0 0 0
j10c5c6 69 0.000 69 12 69 4865b 69 0 0 0

j10c5d1 66 0.046 66 5 66 6490b 66 0 0 0
j10c5d2 73 0.110 73 31 73 2617b 73 0 0 0
j10c5d3 64 0.015 64 15 64 481 64 0 0 0
j10c5d4 70 0.000 70 5 70 393 70 0 0 0
j10c5d5 66 0.031 66 1446 66 1627b 66 0 0 0
j10c5d6 62 0.062 62 8 62 6861b 62 0 0 0

j10c10a1 139 0.015 139 1 139 41 139 0 0 0
j10c10a2 158 0.125 158 18 158 21 158 0 0 0
j10c10a3 148 0.047 148 1 148 58 148 0 0 0
j10c10a4 149 0.141 149 2 149 21 149 0 0 0
j10c10a5 148 0.000 148 1 148 36 148 0 0 0
j10c10a6 146 0.156 146 4 146 20 146 0 0 0

j10c10b1 163 0.000 163 1 163 36 163 0 0 0
j10c10b2 157 0.131 157 1 157 66 157 0 0 0
j10c10b3 169 0.000 169 1 169 19 169 0 0 0
j10c10b4 159 0.015 159 1 159 20 159 0 0 0
j10c10b5 165 0.016 165 1 165 33 165 0 0 0
j10c10b6 165 0.016 165 1 165 34 165 0 0 0
j10c10c1 115 0.062 115 a 127 c 113 1.8 1.8 12.4
j10c10c2 117 0.141 119 a 116 1100 116 0.86 2.6 0
j10c10c3 116 0.234 116 a 133 c 98 18.4 18.4 35.7
j10c10c4 120 0.281 120 a 135 c 103 16.5 16.5 31.1
j10c10c5 125 0.721 126 a 145 c 121 3.3 4.1 19.8
j10c10c6 106 0.046 106 a 112 c 97 9.3 9.3 15.5

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 143

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

Table 4: Solutions of Test Problems (continued)

Problem GAs
Cmax

GAs
CPU

AIS
Cmax

AIS
CPU

B &B
Cmax

B & B
CPU

LB of
Cmax

GAs
% deviation

AIS
% deviation

B & B
% deviation

j15c5a1 178 0.031 178 1 178 18 178 0 0 0
j15c5a2 165 0.015 165 1 165 35 165 0 0 0
j15c5a3 130 0.015 130 1 130 34 130 0 0 0
j15c5a4 156 0.015 156 2 156 21 156 0 0 0
j15c5a5 164 0.046 164 1 164 34 164 0 0 0
j15c5a6 178 0.032 178 1 178 38 178 0 0 0

j15c5b1 170 0.015 170 1 170 16 170 0 0 0
j15c5b2 152 0.015 152 1 152 25 152 0 0 0
j15c5b3 157 0.015 157 1 157 15 157 0 0 0
j15c5b4 147 0.015 147 1 147 37 147 0 0 0
j15c5b5 166 0.016 166 2 166 20 166 0 0 0
j5c5b6 175 0.015 175 1 175 23 175 0 0 0

j15c5c1 85 0.031 85 774 85 2131b 85 0 0 0
j15c5c2 91 0.156 91 a 90 184 90 1.1 1.1 0
j15c5c3 87 0.109 87 16 87 202 87 0 0 0
j15c5c4 89 0.000 89 317 90 c 89 0 0 1.1
j15c5c5 75 A 74 a 84 c 73 2.27 1.4 15.1
j15c5c6 91 0.047 91 19 91 57 91 0 0 0

j15c5d1 167 0.015 167 1 167 24 167 0 0 0
j15c5d2 84 0.406 84 a 85 c 82 2.4 2.4 3.7
j15c5d3 83 0.015 83 a 96 c 77 7.8 7.8 24.7
j15c5d4 84 0.188 84 a 101 c 61 37.7 37.7 65.6
j15c5d5 80 0.105 80 a 97 c 67 19.4 19.4 44.8
j15c5d6 82 0.406 82 a 87 c 79 2.53 3.8 10.1

j15c10a1 236 0.015 236 1 236 40 236 0 0 0
j15c10a2 200 0.015 200 30 200 154 200 0 0 0
j15c10a3 198 0.063 198 4 198 45 198 0 0 0
j15c10a4 225 0.031 225 12 225 78 225 0 0 0
j15c10a5 182 0.016 182 2 183 c 182 0 0 0.5
j15c10a6 200 0.031 200 2 200 44 200 0 0 0
j15c10a1 222 0.031 222 3 222 70 222 0 0 0

j15c10b2 187 0.047 187 1 187 80 187 0 0 0
j15c10b3 222 0.015 222 1 222 80 222 0 0 0
j15c10b4 221 0.016 221 1 221 84 221 0 0 0
j15c10b5 200 0.094 200 1 200 84 200 0 0 0
j15c10b6 219 0.031 219 1 219 67 219 0 0 0

a: GAs and AIS could not reach LB value in 1600 s., b: B&B reaches LB value more than 1600 s , c: B&B could not reach LB value,
B&B CPU

As it will be noticed from Table 4, better results
for a and b type problems than c and d type
problems have been obtained. The machine

configurations have an important effect on the
complexity of problems that effects the solution
quality. GA algorithm has found the optimal

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 144

Kahraman et al.

12

solutions for all a and b type problems like AIS
algorithm (47 problems), although B&B has found
the optimal solutions for 46 problems. c and d type
problems are relatively hard problems. Neron et al.
(2001) grouped some of the problems as hard
problems. For these problems, they could not reach
the optimal solutions in a short time. The difference
of these problems is mainly sourced from their
machine configurations (all of these problems are c
or d type problems). There are 30 problems in that
group (the c and d types of 10x5 and 15x5
problems). The rest of the problems (all a, b types
and 10x10 c type problems) are referred as easy
problems.

For hard problems, the proposed GA algorithm
found LB values for 18 of the 24 problems while

AIS found LB values for 17 of the 24 problems.
Also for these hard problems GA found a better
makespan value than AIS and B&B methods. For
only two problems, GA could not reach the AIS’s
makespan value. These problems are represented in
bold in Table 4.

The average % deviation from LB for GA is
smaller than AIS and B&B methods’. There are 53
easy problems. Both of these methods, AIS and
B&B, could not reach LB values for 6 of the
problems. But the average % deviation from LB for
GA algorithm is smaller than AIS and B&B
methods’. In Table 5, the percentage of the solved
problems and the average % deviation values for
easy and hard problems are presented.

Table 5. Performances of three methods

 Easy problems Hard Problems
Method % Solved %Deviation % Solved % Deviation

GA 88.7 0.95 70.8 3.05
AIS 88.7 0.99 66.7 3.13

B & B 88.7 2.17 70.8 6.88

As it is clearly seen from Table 5, the least
deviation belongs to GA. AIS is the second with a
0.08 % difference. B&B is the worst of all with
almost two times larger deviation than the others.

Also the computational results are compared
with the earlier study of Alaykıran et al. (2007).

The average % deviations from LB due to the
machine layout types are calculated for GA
solutions and compared with the solution of
Alaykıran et al.’s (2007) AS algorithm. The
computational results are given in Table 6.

Table 6. The average % deviation from LB due to the machine layout types

Layout type a b c d
AS 0.27 0.4 1.93 11.17 Average percentage

deviations GA 0.00 0.00 2.97 5.81

As it is seen in Table 6, the proposed GA found
the optimal solutions for all a and b type problems,
although Alaykıran et al.’s (2007) AS algorithm
could not find optimal solutions. Also for d type
problems the proposed GA found a smaller average
% deviation from LB than Alaykıran et al.’s (2007)
AS algorithm’s. But for c type problems Alaykıran
et al.’s (2007) AS algorithm found a smaller
average % deviation from LB than the proposed
GA.

The proposed GA can not be compared to the
AIS and B&B according to CPU times because the
configuration of the computers, in which the
considered problems were solved, are different
from one to another. The 1600 CPU time is used
only a stopping parameters of GA.

4. Conclusion

In this paper, we propose an effective GA for HFS
scheduling problems with the objective of
minimizing makespan. The considered problem is a
NP-Hard problem. Most of the studies to solve that
problem are approximate methods rather than an
exact method, which guarantees optimal solution.
The test problems are benchmarking problems used
in the literature. The percentage deviations from
lower bounds are calculated. The findings are
compared with another study that tested the same
problems. We obtained better solutions with the
proposed GA algorithm. When all problems are
considered; the average deviation of the GA
Algorithm is 1.50 % while the average deviations

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 145

An application of effective genetic algorithms for Solving Hybrid Flow Shop Scheduling Problems

of AIS and B&B are 1.657 % and 3.6 %,
respectively. Also it can be seen in Table 4 that the
CPU times of the GA are much smaller than AIS
and B&B. The proposed GA is a good problem
solving technique for a scheduling problem and
may be used for some other industrial problems.

Acknowledgements

The authors would like to thank Jacques Carlier and
Emmanuel Neron for the benchmark problems,
solution files and any kind of help.

References

1. R. Linn, and W. Zhang, Hybrid Flow shop
scheduling: A Survey, Computers and Industrial
Engineering. 37 (1999) 57-61.

2. O. Engin, and A. Döyen, A New approach to solve
hybrid flow shop scheduling problems by artificial
immune system, Future generation computer
systems. 20 (2004) 1083-1095.

3. J. N. D. Gupta, Two-stage hybrid flowshop
scheduling problem, Operational Research Society,
39 (1988) 359-364.

4. M. A. Hong Wang, A new model in designing neural
network in optimization: A hybrid neural network
approach to machine scheduling, (Business
Administration Graduate Program, The Ohio State
University, Thesis, 1998).

5. T. S. Arthanari and K.G. Ramamurthy, An extension
of two machines sequencing problem, Opsearch. 8
(1971) 10-22.

6. J. A. Hoogeveen, J. K. Lenstra, and B. Vettman,
Minimizing the Makespan in a multiprocessor flow
shop is strongly NP-Hard, European Journal of
Operational Research. 89 (1996) 172-175.

7. L. Wang, L. Zhang, and D. Zhenga, An effective
hybrid genetic algorithm for flow shop scheduling
with limited buffers, Computers & Operations
Research. 33 (2006) 2960–2971.

8. C. Oğuz, and M. F. Ercan, A Genetic Algorithm for
Hybrid Flow-Shop Scheduling With Multiprocessor
Tasks, Journal of Scheduling. 8 (2005) 323–351.

9. T. Li-Xin, W. Y. P. Source, and Z. Xuebao, Genetic
descent algorithm for hybrid flow shop scheduling,
Automatica Sinica. 28(4) (2002) 637-641.

10. W. Xia, P. Hao, S. Zhang, and X. Xu, Hybrid flow
shop scheduling using genetic algorithm,
Proceedings of the 3nd world congress on
Intelligent control and Automation. (2000) 537-541.

11. J. Carlier, and E. Neron, An exact method for
solving the multiprocessor flowshop, R.A.I.R.O-R.O.
34 (2000) 1-25.

12. S. A. Brah, and J.L. Hunsucker, Branch and bound
algorithm for flow shop with multiple processors,
European Journal of operations Research. 51
(1991) 88-89.

13. D. L. Santos, J. L. Hunsucker, and D. E. Deal,
Global lower bounds for flow shops with multiple

processors, European Journal of Operational
Research. 80 (1995) 112-120.

14. F. Riane, A. Artibs, and S.E. Elmaghraby, A Hybrid
three stage flow shop problem: Efficient heuristics
to minimize makespan, European Journal of
Operational Research 109 (1998), 321-329

15. M. C. Portman, A. Vignier, D. Dardilhac, and D.
Dezalay, Branch and Bound crossed with GA to
solve hybrid flowshops, European Journal of
Operational Research. 107 (1998) 389-400.

16. H. T. Jessen, and M. Weizhen, On-line algorithms
for hybrid flow shop scheduling, International
conference on computer science and informatics.
(1998) 134-137.

17. O. Moursli and Y. Pochet, A branch and bound
algorithm for the hybrid flow shop, International
journal of production economics. 64 (2000) 113-
125.

18. H. Soewandi, and S.E. Elmaghraby, Sequencing
three stage flexible flowshops with identical
machines to minimize makespan, IIE Transactions.
33 (2001) 985-983

19. E. Neron, P. Baptiste, and J. N. D. Gupta, Solving
hybrid flow shop problem using energetic reasoning
and global operations, Omega The international
journal of management science, 29 (2001) 501-511.

20. L. Tang, W. Liu, and J. Liu, A Neural network
model and algorithm for the hybrid flow shop
scheduling problem in a dynamic environment,
Journal of Intelligent Manufacturing. 16 (2005)
361-370.

21. L. Yang, H.G. Yu, and X.Y. Geng, Planning and
scheduling algorithm based on TOC for complex
hybrid flow shop problems, Computer integrated
manufacturing systems. 11(1) (2005) 97-103.

22. M. Zandieh, S. M. T. F. Ghami, and S. M. M.,
Husseini, An Immune algorithm approach to hybrid
flow shops scheduling with sequence-dependent
setup times, Applied Mathematics and Computation.
180 (2006) 111-127

23. W. Zhong, X.F. Xu, and S. Deng, Evolutionary
algorithm for solving multi-objective hybrid flow-
shop scheduling problem, Computer Integrated
Manufacturing Systems. 12(8) (2006) 1227-1234.

24. H. Allaoui and A. Artiba Scheduling two stage
hybrid flow shop with availability constraints,
Computers and Operations Research. 33 (2006)
1399- 1419.

25. M. Haouari, L. Hidri, and A. Gharbi 2006, Optimal
Scheduling of a two stage hybrid flow shop, Math.
Meth. Oper. Res. 64 (2006) 107-124.

26. K. Alaykıran, O. Engin, and A. Döyen, Using ant
colony optimization to solve hybrid flow shop
scheduling problems, Int. J. Adv. Manuf. Technol.
(2007) Article in press.

27. P. Caricato, A. Grieco, and D. Serino, TSP- based
scheduling in a batch-wise hybrid flow shop,
Robotics and Computer-Integrated Manufacturing.
23 (2007) 234-241.

28. A. Janiak, E. Kozan, M. Lichtenstein and C. Oğuz
Metaheuristic approaches to hybrid flow shop
scheduling problem with a cost related criterion,

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 146

Kahraman et al.

14

International journal of production economics. 105
(2007) 407-424.

29. S. Vob, and A. Witt, Hybrid flow shop scheduling as
a multi-mode multi project scheduling problem with
batching requirements: A real world application, Int.
J. Production Economics. 105 (2007) 445-458.

30. D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, (Addison
Wesley Publishing, The University of Alabama,
1989)

31. S. H. Yoon, J. A. Ventura, An application of genetic
algorithms to lot-streaming flow shop scheduling,
IEE Transactions 34 (2002) 77—787.

32. M. Gen, and R. Cheng, Genetic Algorithms &
Engineering Optimization, (John Wiley & Sons,
New York, 2000)

33. T. Yamada, and R. Nakano, A Genetic Algorithm
Applicable To Large Scale Job Shop Problems,
Proceedings of The Second International
Conference on Parallel Problem Solving from
Nature, (Elsevier Science Publishers, 1992).

34. İ. Kaya, O. Engin, A new approach to define sample
size at attributes control chart in multistage process:
An application in engine piston manufacturing
process, Journal of Materials Processing
Technology. 183 (2007) 38-48.

International Journal of Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 134-147

Published by Atlantis Press 147

