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0. Summary. The problem considered is that of finding the ‘“best” linear
function for discriminating between two multivariate normal populations, ;
and m, , without limitation to the case of equal covariance matrices. The “best”
linear function is found by maximizing the divergence, J'(1, 2), between the
distributions of the linear function. Comparison with the divergence, J(1, 2),
between m; and m, offers a measure of the discriminating efficiency of the linear
‘function, since J(1, 2) > J'(1, 2). The divergence, -a special case of which is
Mabhalanobis’s Generalized Distance, is defined in terms of a measure of in-
formation which is essentially that of Shannon and Wiener. Appropriate as-
sumptions about m; and 7 lead to discriminant analysis (Sections 4, 7), principal
components (Section 5), and canonical correlations (Section 6).

1. Introduction. The following extract from Section (4), ‘“Scientific Method,”
of Cherry [15] is pertinent. “. . .the idea of information has existed in early times
and has gradually entered into a great variety of sciences, to a certain extent
integrating them together. Nowadays the concept of information would seem
to be essential to all research workers, and as universal and fundamecntal as
the concepts of energy or entropy. Speaking most generally, every time we make
any observation, or perform any ‘experiment’, we are seeking for information;
the question thus arises: How much can we know from a particular set of ob-
servations or experiments? The modern mathematical work, at which we have
glanced, seeks to answer in precise terms this very question which, in its origin,
is an epistemological one. But first a word of caution: the term ‘information’
has been used by different authors as having different meanings.. . . The informa-
tion supplied by an experiment may perhaps be thought of as a ratio of a pos-
teriori to the a prior: probabilities (strictly, the logarithm of this ratio).”

R. A. Fisher’s measure of information (intrinsic accuracy) was introduced
to compare the merits of different estimates. Shannon and Wiener’s measure of
information was introduced to define and measure that which is being conveyed
by a communication system, the latter considered as a stochastic process. (See
references in [9], [15].)

The author and Leibler, in [9], generalized Shannon and Wiener’s definition
to the abstract case and showed that it and Fisher’s definition are not unrelated.
Properties of a measure of divergence between statistical populations, defined
in terms of the measure of information, were also derived in [9].

Other approaches to a definition of the distance or divergence between two
populations, and the applications of such a concept, have been made by Maha-
lanobis [10], Bhattacharyya [16], [17], and Rao [18].
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INFORMATION THEORY 89

The measure of divergence and its properties, as derived in [9], may be ap-
plied in particular to the problem of discrimination between certain multi-
variate normal populations by means of linear functions. We do not limit our-
selves to the case of equal covarlance matrices. Although no essentially new
results are derived in the following, it is believed that the methods and under-
lying uniformity of approach may be of pedagogical interest.

Matrix notation, methods and results are used and assumed known to the
reader. For the purpose of this paper we limit ourselves to a discussion using
population parameters and do not consider problems of estimation or distribu-
tion. Attention is invited to Bartlett [2], Brown [3], Cochran and Bliss [4],
Kendall [8], Penrose [11], Smith [12], Tintner [13] and Wilks [14] for discussions
of related problems and additional references to the literature.

2. Divergence.

(a) Definition. If two multivariate normal populations =, and m have the
respective probability densities fi(z;, x2, - - - , 2x), ¢ = 1, 2, then the divergence
between m and . is defined by [9]

’,

(2'1) J(ly 2) = f(fl(xly cee ’xk). - f2(x17 e )xk)) IOg:;:gi’.—:.’i:; dxl' : 'dxk-

The mean information for discrimination between m; and m, per observation
from ; is defined by [9]

I(1:2) = ffl(xl’ <o, ) log-[l.(fl_’_'_':.’_f’i) dxy -+ - day

(2.2) ﬁ(("’" I‘ o ) P(my)
_ | Ty, 05T - T
= ffl(xl, » @) log P(wy |21, -, 2%) dzy do log P(my)’

where P(w;) and P(w;| 21, --- , 2x) are respectively the a priori and a pos-

teriori probabilities for m; , ¢ = 1, 2, and a corresponding definition for I(2:1).
It is seen that J(1, 2) = I(1:2) + I(2:1).

If
(23) Yo = YalT1, 22, -+, Ta), a=1,2;"',",-7’570,
are functions of the random variables z; , x2, - - , i , such that the distribu-

tion of the y’s is given by the probability density function

(24) gi(yl y Y25, 70, yr)) 1= 1, 2,

"1 This approach has been found helpful in presenting certain aspects of multivariate
analysis to a class at the George Washington University.
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according as the z’s come from m, or 7, , then the divergence between the popula-
tion of y’s is defined by [9]

J'(1,2) .
(2.5)
gl(yl, ctty yr)
gz(yly ] yf)
and the mean information for discrimination between m; and =, per observation
from ¢i1(y1, +- - , yr) is defined by [9]

= f(gl(yl, oY) — g,y ur) log dy -+ dyr,

26 I'(1:2 =f ! Md oo dy,
(2:6) (1:2) 91(y Yr) oggz(yl,m‘,yr) Y1 Yrs

and a corresponding definition for I’(2:1). It is seen that J'(1, 2) = I'(1:2) +
re:1).

(b) Properties. The following properties of I, I’, J and J’ will be utilized.
(For proofs see [9].)

i I(1:2) > 0; J(1, 2) > 0, with equality if and only if fi = f; a.e.;
i I, J are additive for independent random variables;
iii I(1:2) > I'(1:2); J(1, 2) > J'(1, 2), with equality if and only if

hy, -, m) - 9y, -,y ae.
fawr, <o ) gy, o,y

in which case we say the functions y1, 2, --- , ¥- are sufficient. The ratio
J'(1, 2)/J(1, 2) is the discrimination efficiency of the y’s in the sense that N
observations of the y’s will in the mean discriminate as well as n observations
of the 2’s where NJ’ = nJ.

(c) Particular cases. If we denote the one-column matrix of the means of
population m; by u¢y , 2 = 1, 2, and the matrix of variances and covariances of
population =; by ¢ , ¢ = 1, 2, then evaluating (2.1) and (2.2) leads respectively
to

iv

J(1,2) = } trllcw — om)(dm — dm)l

+ 3o — k) (D + @)k — ra)

@.7)

k1 -
(2 8) 1(112) = %log !l—:(%—: — § + §tl‘ o) 0'(21)

+ 3uw — pe) @ ko — ),

where tr A is the trace (or spur) of the matrix A and the prime on a matrix

denotes the transpose.
If oq) = 0@ = o, then (2.7) becomes

(2.9) J(1,2) = (ke — p@)o (ke — pe) = 877,
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where § = pa) — pe , and the last member in (2.9) is k times Mahalanobis’s
Generalized Distance ([4] p. 162, [10]), and (2.8) becomes
(2.10) I(1:2) = %'07%.

If uay = pe , then (2.7) becomes
ey T02 =l - s@) (o — o)l
=} trowoy + § tr ooy — k,

which for the single variate case is

1 1 1le? 102
oL _1\y_1let la
(2.12) J(1,2) = §(o1 — 02) (a§ a§> 25 + 25t 1,

and (2.8) becomes

|ow |

(2.13) 1(1:2) = 3 log bt 0,
low ] 2

which for the single variate case is

o

Qs

DO =

+

(2.14) 1(1:2) = 3 log 2 %

U-Ni‘ (XYY
ST
.

3. Linear discriminant function. Let us consider the following problem: De-
termine the values of the coefficients oy , - -+ , a , such that for

(3.1) Y= ol + oy + -+ + b

the value of J'(1, 2) is a maximum, when z;, 2, -+, zx come from = and
w2 . Depending on the assumptions regarding m and r, we are led to a number
of now classical results.

4. Equal covariance matrices. Assume that ¢qy = 0@ = o; since y in (3.1)
is normally distributed, we have as the single variate case of (2.9)

(4.1) J'(1,2) = (B(yw) — EQ@m))/oy = (@8)/)doa),

where « is the one-column matrix of the «; , 7 = 1,2, --- , k, and § is defined as
in (2.9). By selecting the o’s such that

(4.2) as = 8, o =o',
) —laar —1
(4.3) 7,2 =220~ v = J(1,9),

so that with the o’s as given by (4.2), the linear function y of (3.1) is sufficient,
"and J'(1, 2) attains its maximum possible value (cf. [2], (3], [4], [5]).
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6. Principal components. Let us assume that pg) = p(, in which case, as
we have seen, J(1, 2) is given by (2.11). For the linear function (3.1) we then
derive, in view of (2.12),

) _ 1 a'o'(l)a 1 a'a(z)a
J(1,2) =22 laoma
2dcga  2dopa

(5.1)
To find the values of the a’s which will maximize (5.1), the usual calculus pro-
cedures yield the result that the o’s must satisfy

(5.2) cwe = Ao@a,

where X is a root of the determinantal equation

(5.3) | ow — Mo | =0,

all roots of which are real and positive. Let these roots be A, A2, -+, M\s,
arranged in ascending order. Corresponding to the root A;, and using (5.2), it
is found that (5.1) may be written as

(5.4) J'1,2N) =M+ -2%; -1,

and that

55) SI0EN =3 ENHET )~k =J0),
since

(5.6) 2N = trog o), Z:: = trom o ;
also, using (2.13) and (2.14), we have

(5.7) r:2N) = ~3log i =3 + ¥,

k
(5.8) I(1:2) = —%log Mdg «++ N\ — I_éc +id> = _EII’(I:Z;)\.-).

To determine the value for which (5.4) is a maximum, proceed as follows.
Consider the function

(5.9) W =Rt -, > 0.

By examining the derivatives of f(\), it is readily determined that f(\) is a
minimum for A = 1, is monotonically increasing for A > 1, is monotonically
decreasing for 0 < X\ < 1, andf(A) = f(1/A). Thus, the maximum of (5.4) occurs
for A; or A according as

(5.10) M <1 or A > 1,
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and the best linear discriminant function (3.1) is the one for which the o’s
respectively satisfy

(511) sma = Moga  Or  oma = Ao (@)
.
To illustrate, let us take

1( 12,496.8 —6,786.6) o = 1 (136,972.6 \58,549.0)
e @ = )

(612) ow=7\ _g786.6 32985.0 49\ 58,5490 71,496.1

which are respectively the treatments and residual values of Table I, p. 177 of
Bartlett [2]. Using the values of (5.12), we find as the roots of (5.3)

(5.13) M o= 0.44158, A, = 6.38381,

so that (5.4) yields

(5.14) J'(1, 2; \) = .35309; J'(1, 2; \;) = 2.27023;
and from (5.5) we have that

(5.15) J(1, 2) = .35309 + 2.27023 = 2.62332.

Since MA; > 1, the best linear discriminant function is that associated with A,
(as is also evident from (5.14)), and (5.11) becomes

(5.16) 1( 124968 —6,786.6\(e1) _ 6.38381 (136,972.6 58,549.0\( s
) 7\ —6,786.6  32,985.0/\ 0z 49 58,549.0 71,496.1/\ey/’

or

5.17) {112418.10:1 + 60181.5a; = 0,
60181.504 + 32217.3a; = O,

leading to

(5.18) a = —.5350;,

that is, the linear function (see p. 179 of [2])

(5.19) Yy = x3 — 0.5351;

is 86.5%, efficient, since

(5.20) T2 /7(1,2) = 222028 — 565,

Using the values in (5.13), we have from (5.8)

(5.21) I(1:2) = 1.89449,
and since J(1, 2) = I(1:2) + I(2:1) [9], «
(5.22) I(2:1) = 72883,
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For the linear function in (5.19) associated with \; , we have from (5.7)

(5.23) I(1:2;%) = —bloghs —} + 3 = 176502,
and since J'(1, 2; As) = I'(1:2;Xg) + I'(2:1; o),
(5.24) I'(2:1; \) = .50521.
These values are summarized in Tabl:e 1.
TABLE 1
N = 44158 A = 6.38381
Ir'(1:2) 12947 1.76502 | 1.89449 = I(1:2)
I'(2:1) .22362 50521 72883 = I(2:1)
J'(1,2) .35309 2.27023 2.62332 = J(1,2)

From Table 1 it seems reasonable to infer that the linear function (5.19) is

affected by the treatments.
If now we assume in particular that

(5.25) ooy =P, oo =1I,

where P is the matrix of population correlation coefficients, and Iy is the identity
matrix of order k, then

J(1,2) = 3tr (P — I)T — P7H)]
= tr (P 4+ P! — 2I)

1<, 1~ phisenGeD- -k
i1 £.12- « « (=1) (1)« »

S SR . ,
i=1 =11 —pisee (=) G+D) - -k

(5.26)

where p* are the diagonal elements of P, and piiz...cioysnyeeeks € = 1,2, <+ -, k
are the population multiple correlation coefficients, and

(5.27) I(1:2) = —%log|P|.

The best linear disecriminant function (3.1) is that for which the o’s satisfy
(5.28) Pa = Ma or Pa = \a,

according as M < 1 or M\; > 1, where Ay < N2 < - -+ < )\ are the roots of
(5.29) | P — A | =0,

all of which are real and positive. It is easily verified ([6], [14]) that

{X'P“X =9/ + o+ /N,

(5.30) XX =yt t ooe + g,
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where y; is the value of (3.1) corresponding to

(5.31) Pa = \a.
For the bivariate case in particular, we have
_(1 »
(5.32) P = (p 1),
(5.33) I(1:2) = —}log(1 — "), J(1,2) = p*/(1 — 0’
(5.34) |P— M| =N =204+ 1—p" =0,
(5.35) M=1-—p A=1+4 p, p>0,
(5.36) M=14p N=1-p . p<0,
’ . . 1-— 14 ____1___, _ _ I-?2
(5.37) J'(1,2;\) = 5 + 20 — ) 1= 20 =)’
1+ p 1 0
5.38 J(1,2;\) = —1=_-r__
(6.38) @22 ===+ 57 20T + )
2 2 2
11 o. 1 9:-%) = P P - P _
(5'40) J,(I; 2; x1)/"(17 2) = (1 + P)/zy
(5.41) J'(1,2;0)/J(1,2) = (1 — p)/2,

(6:42) I'(1:2;M) = —jlog(l — p) =5 + 3(1 — p) = —3log(l — p) — 3p,
(6.43) I'(1:2;N) = —3log(1 +p) =3 + 3(1 + p) = —F1log(1 + p) + 30,
(5.44) n= (@ — 2)/V2; Y2 = (21 + 22)/V2,

1 . (@1 — x2)? (1 + 2)?
2 __ ==
1= @' =2pmmtaf) =55+ 5N

(545

Note that if p > 0, the best linear discriminant function corresponds to A;’
as is evident from (5.40), and also from the fact that A, = 1 — p* < 1.

6. Canonical correlation. Let us assume that pua = u(), and that

_ (212 _(Za0
(6.1) o = (En 222) ) oo = (0 222>,

where
Zu = (‘751'): 7',.7 =12---, kl’

2o = (o'n), T,8=k1+1, e )kl-l—kﬁ:k,

212 = (0‘.‘,), 221 = Egz .
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Since, as may be readily verified,

(6.2) (Ikx . 0 )(211 212><Ik1 . Ty Em> _ (211 0 )
_221ET1 Ik2 221 222 0 Ikg 0 222 _221 2?11 212 y

.

we have

(zn 2u>" _ (Ik, -0 zu)(zn‘ 0 )( L, 0 )
o1 oo 0 I, 0 Zni/\—2uz0i L,
_ <zrf + 20 20 2% 2n 26 — 20 e zah)
—231 Za 21 o1 ?

(6.3)

where Zg.; = Zos — 2212.1-11212 . Thus (Cf [1] p- 182)

;tr[ <zu zu> _ (zu o\ f(=n 01> _ (Zu zu)“

: 2o 2o 0 2 0 2% 291 2o

St [( 0 212><—le1 Zn Zoa Zu 2T 2T 2o z;él)]
Zu 0 21 Za 20 % —Zn1

(Em w1 Za 20

J(1,2)

I

I

(6.4)

= +tr : —
3 Za I Zi 222%1)

= tr 2y 5 21 S = tr Zp 2o —ks,

where the dots indicate matrices which are not needed, and

0 Za k Zu Ze\( 20 0)
0) — 1 _ %41
I:2) = $lg T5 5 T~ i (221 =2\ 0 =3
Zoo Zoo
(6.5)
o' | Zu || Za |
0 Zp Zu || 22
— 1 B R R St N N
= & log 21 2 blog Zu |
221 222 E21 222
If we write the linear function of (3.1) as
(6‘6) Yy = lel + et + ﬁklxkl + ’lek1+1 + M + 7k2xk1+k3 ]

then (5.2) may be written as

) <zu Eu) <ﬁ> N <zu 0 ) <B>’

Zn Za/ \¥ 0 22/ \v
where B and v are respectively the one-column matrices of 8y, - , B, and
Yi, *** » Yk, and (5.3) may be written as

l (1 —=MN2Zn Zye
Za 1 — N3

(6.8)
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Since (6.7) is equivalent to
ZuB + 2y = AZufb,

6.9)
z21ﬁ4+ 2227 = )\22277
or
1 _
B= - —x e,
(6.10) .
I Zu 2 2y + (1 — N)Zpy = 0,
we conclude that (6.8) is equivalent to
(6.11) | ZuZTi Zu— '2n| = 0,

where p* = (1 — A\)%. According to (5.3), the roots of (6.8) are all real and posi-
tive. If we take k; < k, , then since k = k; + k, , and the determinant of (6.11)
is of order k.,

6.12) ANi=1-—p;, Negti = 1+ prgpr—iy, 20=1,2, -4+ ko,

Mgt = * 00 = Moglly—hp) = 1,

where p; > p2 > -+ > pi, . We may also conclude that —1 < p; < 1 since
the N’s cannot be negative. The p; are Hotelling’s canonical correlations [7].
The results of (5.4) now become

= 1 2
' “\s 11 + p) + 1,2 |
J (1, 2 N) 2(1 p:) 21 4 2D 1 2p,/(l -+ p,),
1 Plf +1—i
JL 2 M) = 320 = pporrd) + e — 1 = 3 ’
6.13) 'L 25 M) = 31 — proaa) + 50— o) ST~

J(1,25N) =3+3—-1=0,
i=1 -, k,f=hka+ 1, o, ks 4+ (by — k),

or
(6.14) J'(1, 2;M) + J'(1, 25 Mewa—s) = p¥/(1 — pY), t=1,2 -k,
and from (5.5) and (5.8) respectively

(6.15) J(,2) = 2 pi/ (1 — pd),

(6.16) I(1:2) = —3log (1 — pD)(1 — p3) ++- (1 — piy).

Since
' Mie=(1—p)1 +p)=1-p}<1,
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the best linear discriminant function (6.6) corresponds to the value A;, or to
the largest canonical correlation.

If we pose the problem of finding the best pair of linear discriminant funec-
tions
6.17) {ﬂ =121+ < + Br, Tiy,

V=Nt Ve Trgka
then we want to maximize (see (5.33))
2 ’ 2
» Z 'Y)
(6.18) T, 2y = 22— (‘8 = ; .
7 L—ps  (BZuBf)(y'Zny) — (B'Zrv)

The usual methods lead us again to the condition (6.9), where (1 — \)* = p}, .
We thus see that the canonical correlation coefficients are the values of p,, ,
and

(619) J'(l, 2; Miy Vi) = J'(l, 2; Ai) + J'(l, 2; )\k+1—s'), 1= ]., 2, crty kz .

The best pair of linear discriminant functions thus corresponds to pi, that is,
the largest of the canonical correlations.
To illustrate, let us take as oa) the matrix

1.0000 .6328

(6.20) T LT

.0586 .0655

which is Kelley’s data discussed on p. 342 of [7]. As the roots of (6.8) we find
(cf. Ex. 28.4, p. 351, of [8])

(6.21) M\ = 0.6055, A = 0.9312, A = 1.0688, A = 1.3945,

(6.2 {pi = (1—.6055)(1.3945 —1) = .1556,
p; = (1—.9312)(1.0688 —1) = .0047,
6.23) J'(1,2;N) = 1285, J'(1,2;\) = .0025,
J'(1,2;8) = .0022,  J'(1,2;\) = .0558,
(6.24) : _‘:fpg = 200 = 1843, I%g,,—g = O~ 004,
(6.25) J(1,2) = .1843 + .0047 = .1890.

The linear function associated with A; is 68.09, efficient. The pair of linear
functions (6.17) related to the correlation p; = .1556 (see [7], [8] loc.cit.),



INFORMATION THEORY 99

w = —2.7772z; + 2.26552, ,
V= —24404.’1/‘3 + X4

(6.26)

are 97.59, efficient (and thus pragtically sufficient) since
J'(1,2;N) 1285 J'(1, 2; mw) _ 1843

2 “Fia 0~ %% “igm - 1m0~ 0
Using the values in (6.22), we have from (6.16)
(6.28) I(1:2) = —%log (.8444)(.9953) = .0869,
and therefore
(6.29) I(2:1) = .1890 —.0869 = .1021.
Similarly
(6.30) I'(1:2; py, ) = —% log(.8444) = .0846,
(6.31) I'2:15 1, ») = .1843 —.0846 = .0997.
These values are summarized in Table 2.
TABLE 2
MLy, K2, V2
I'a:2) .0846 .0023 .0869 = I(1:2)
I'2:1) .0997 .0024 L1021 = I(2:1)
J'(1, 2) .1843 .0047 .1890 = J(1, 2)

From Table 2 it seems reasonable to infer that the linear functions (6.26)
are the only such components. (See p. 342 [7].)

7. Discriminant functions with covariance. Assume that
Zn 2p
(7.1) o = o@ = ;
2y 2y
with 211, 212, Za1 , 222 as defined in (6.1). Let the one-row matrix of means be
(7'2) (ﬂ(n ) VZ‘&')): 1= 11 27

where the u’s are the means of the first k; variables, and the »’s the means of
the last k&, variables. Assume that vqy = v . Then

| ’ <z11 212>—1 <8>
(7.3) J(1,2) = (5, 0) )
Zn Zo 0
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where ¢ is defined as in (2.9). Using the value of the inverse matrix as given

in (6.3) it follows that

(7.4) J(1,2) = 2706 + ¢ T ZuZmiSnSTie.
Let )

(7.5) Yi = i, )
then

(7.6) J'(1,2) = &'Z7je.

172,'°' .~kl,

The gain due to the use of the covariance variates i, 41, **° , Tk 44, in the

linear diseriminant function is thus given by (see [4])

where
(7.8 » = 82T 20 Zon Zu Turd
' PO

and A will take on a value between the smallest and largest root of the deter-

minantal equation
(7.9) | ST ZeZmZaZs — A2 | = 0.

Indeed, since the quadratic form in the denominator of A is positive definite,

there exists a real nonsingular transformation

(7.10) § = Ay,

such that

MY Ny A M
yi+ o+

where A1, A2, *** , A, , are the roots of (7.9), or

(7.11) A

’

(7.12) | 12220 — A2u | = 0.
If k, > k., then since
ANu  Ze A — 2122 Za 2w
Zn Zaa - 0 Zo21
(7.13) I)\zu 0
- ! Za 2y — % Ezllelzmly
it follows that
(7.14) Z1e Zoo1 2o — AZu|=0= '222.1 - %En 0 2
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Since Zp1 = Zoe — Zu>1i1 , the right member of (7.14) reduces to
(7.15) | ZnZ0Ze — p'Zn| =0,

where o> = M/(1 + \). Compa{ison with (6.11) shows that the roots of (7.15)

are the canonical correlations.
In the case ks = 1, there is only one canonical correlation and it is the multi-

ple correlation of 2 on z; , %2, * - , Zx—1, 50 that
J(l 2) p]f.m...(k_l) 1

(7.16) 2 =14+A2<L1+ = .
J,(17 2) 1 - plf.m...(k_l) ]. - p,f.u...q,_”

Thus, using the values for the Rabbits X doses components in Table 2 p.
157 of Cochran and Bliss [4], we have for the matrix (7.1),

3223 1200 | 1259
1(1200 3137 | 1340
1259 1340 | 2351
and
1259 1200 3223 1259
1340 1373 1340 1200 1340
. = 774
(7.18) 3223 1200 74,
1200 3137
774
(7.19) pr1e = 5357 = 3%
1
4 —_
(7.20) TS = =3 = 1.50.

On p. 162 of [4] it was concluded that the use of covariance gives 509, more

information.
Solving for the coefficients of the discriminant function in the equations

(see [4], p. 157)
3223a; + 1200a; + 12593 = —1197.2 X 33,
(7.21) 12000; + 3137a; + 134005 = —844.3 X 33,
1259¢c; + 13400 + 235105 = 0,
it is found that (see (4.2), (4.3))
(7.22) 33J = 1197.2 X 41848 4 844.3 X .27070 = 729.556.
If we solve (omitting the covariance variable)
32238, + 12008, = —1197.2 X 33 -

7.2
(7.28) 12008, + 31378; = —844.3 X 33
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for the coefficients of the linear discriminant function, it is found that (see
(4.2), (4.3))

(7.24) 33J" = 1197.2 X .31629 4 844.3 X .14815 = 503.845,

and *

729.556

503845 — 1.45 < 1.50.

(7.25) J/J' =

8. Conclusion. It is seen that the multivariate analysis techniques of dis-
criminant analysis, principal components and canonical correlations are indeed
closely related concepts associated with a linear discriminant function, and
differing primarily in the assumption about the underlying populations.
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