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Abstract

Differentiating anomalous network activity from normal

network traffic is difficult and tedious. A human analyst

must search through vast amounts of data to find anomalous

sequences of network connections. To support the analyst’s

job, we built an application which enhances domain knowl-

edge with machine learning techniques to create rules for

an intrusion detection expert system. We employ genetic al-

gorithms and decision trees to automatically generate rules

for classifying network connections. This paper describes

the machine learning methodology and the applications em-

ploying this methodology.

1. Introduction

Existing intrusion detection systems rely heavily on hu-

man analysts to differentiate intrusive from non-intrusive

network traffic. The large and growing amount of data con-

fronts the analysts with an overwhelming task, making the

automation of aspects of this task necessary. Whether com-

plete automation is possible or even desirable is debatable.

We describe the use of machine learning techniques which

provide decision aids for the analysts and which automati-

cally generate rules to be used for computer network intru-

sion detection.

The Applied Research Laboratories of the University of

Texas at Austin (ARL:UT) has developed significant ex-

pertise in the area of machine learning through internal

research and development. This research has been ap-

plied to a number of applications in which machine learn-

ing techniques, such as generation of finite state machines

and pattern matching, have been used[5][6]. The Network

Exploitation Detection Analyst Assistant (NEDAA) is one

such application, combining artificial intelligence rule gen-

eration with a classic expert system as an enhancement for

intrusion detection systems (IDS).1 In this paper we give

an overview of machine learning techniques used and we

describe some of the successes and problems encountered

in applying these techniques to computer network intrusion

detection.

Our application layers machine learning techniques onto

an existing network-based IDS deployed to protect military

subnetworks. On each military subnetwork there is a probe

that filters and logs network traffic to a central database[8].

A rule set is used to analyze archived data for intrusive pat-

terns. The pattern matching has traditionally been simple,

looking for exploitive activity such as connections from cer-

tain IP addresses with histories of intrusive behavior. How-

ever, an intrusion into a computer network can be more

complex, with the complexity being both spatial and tempo-

ral. An example of this type of intrusion is a ‘low and slow’

attack consisting of intrusive behavior over hours, days or

weeks that may originate from multiple network sources.

Machine learning can be applied to this problem to extend

human pattern recognition. Automated techniques are ideal

for this application because they can monitor and correlate

vast numbers of intrusive signatures.

1Contracts N00039-0051, Task Order No. 0293 and Task Order No.
0273 and ARL:UT IR&D Programs No. 0000859 and 0000875.



2. Machine Learning Techniques

Our current implementation of NEDAA contains rule

generation modules that interface with two ARL:UT arti-

ficial intelligence (AI) software packages: a genetic algo-

rithm tool set and a decision tree generator. These mod-

ules can be customized for specific applications and data

sources. The choice of AI techniques employed stemmed

from our previous experience with genetic algorithms, and

literature research into other applicable methods. The ge-

netic algorithm software package was a logical platform

from which to tackle the difficult problem of intrusion de-

tection. The use of decision trees for rule generation was

made to provide a deterministic alternative to genetic algo-

rithms.

VulcanRG, the machine learning component of the

NEDAA system, generates rules for compilation into intru-

sion detection systems. These rules are generated by the

genetic algorithm and by decision tree packages developed

at ARL:UT. We currently use VulcanRG to generate rules

for one deployed IDS and one experimental system. Many

of the examples presented in this paper are derived from ac-

tual runs of the machine learning components of NEDAA.

2.1. Genetic Algorithms

Genetic algorithms are a family of problem-solving tech-

niques based on evolution and natural selection. They are

essentially a type of search algorithm, and as such, can be

used to solve a wide variety of problems. This section gives

a brief overview of genetic algorithms.

The goal of genetic algorithms is to create optimal so-

lutions to problems. Potential solutions to the problem to

be solved are encoded as sequences of bits, characters or

numbers. The unit of encoding (usually a single bit in tra-

ditional genetic algorithms) is called a gene, and the en-

coded sequence is called a chromosome. The genetic al-

gorithm begins with a set (population) of these chromo-

somes and an evaluation function that measures the fitness

of each chromosome, i.e. the ‘goodness’ of the problem

solution represented by the chromosome. It uses reproduc-

tion (one of several operators collectively called crossover

operators) and mutation (the spontaneous alteration of a sin-

gle gene) to create new solutions, which are then evaluated.

The selection of chromosomes for survival and recombina-

tion is biased toward the fittest individuals. The recombi-

nation/evaluation sequence is iterated many times, and if

the problem is well-constructed, strong solutions gradually

emerge.

The genetic algorithm package we have developed is a

generalization of the classic genetic algorithm. Our genetic

algorithm does not mandate the encoding of solutions into

low-level chromosomes. If crossover and mutation opera-

tors can be imposed on the solutions themselves, domain

specific information can be used to expedite the search. If a

low-level encoding was required in such cases, this domain

specific knowledge would be unusable. In cases where a

crossover or mutation operator cannot be imposed on the

space of solutions, a classic genetic algorithm (with encod-

ing to chromosomes) is used.

2.2. Decision Trees

Decision trees are structures used to classify data with

common attributes. Each decision tree represents a rule

which categorizes data according to these attributes. A de-

cision tree consists of nodes, leaves, and edges. A node of

a decision tree specifies an attribute by which the data is

to be partitioned. Each node has a number of edges which

are labeled according to a possible value of the attribute in

the parent node. An edge connects either two nodes or a

node and a leaf. Leaves are labeled with a decision value

for categorization of the data.

Example 1 A decision tree to detect intrusive behavior

based on the data in Table 1

In this example IP Port, and System Name label the

nodes, intrusion and normal label the leaves, and the la-

beled arrows are the edges. The generated decision tree is

shown in Figure 1.
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Table 1. Example Intrusion Data

IP Port System Name category

004020 Artemis normal
004020 Apollo intrusion
002210 Artemis normal
002210 Apollo intrusion
000010 Artemis normal
000010 Apollo normal

Figure 1. Example Intrusion Decision Tree
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This decision tree could be turned into the following rule
(in C++ form):

if(System Name == Artemis){
intrusion = false;

}
else if(System Name == Apollo){
if(IP Port == 002210){
intrusion = true;

}
else if(IP Port == 004020){
intrusion = true;

}
else if(IP Port == 000010){
intrusion = false;

}
}

We use Quinlan’s[7] ID3 algorithm to construct decision

trees from structured data (such as the data in Table 1). The

ID3 algorithm uses information theoretic precepts to cre-

ate efficient decision trees. Given a structured data set, a

list of attributes describing each data element, and a set

of categories to partition the data into, the ID3 algorithm

determines which attribute most accurately categorizes the

data. A node is established and labeled by this attribute.

The edges coming from this node are labeled with the pos-

sible values of the partitioning attribute. The data set is then

divided into subsets by the values of this attribute. If a sub-

set is completely categorized, then the edge terminates in

a leaf labeled by the categorization. Otherwise the subset

is subdivided further by creating a new node and repeating

this process recursively.

Figure 2. Pruned Decision Tree
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Decision trees constructed by the ID3 algorithm are

based on the training set used to construct them. In or-

der for a decision tree to generalize the information learned,

the decision tree must be pruned. Pruning replaces certain

nodes with leaves. A simple example of pruning involves

removing all nodes and leaves which terminate in a default

category. In Figure 2 we show the tree of Figure 1 after it

has been pruned. All connections are assumed to be normal

if they are not classified as intrusions. The pruned decision

tree can be turned into the following code:

intrusion = false;

if(System Name == Apollo){
if((IP Port==002210)||(IP Port==004020)){
intrusion = true;

}
}

3. Machine Learning applied to Intrusion De-
tection

The NEDAA machine learning approach uses analyst-

created training sets for rule development and analyst deci-

sion support. In the current implementation the training in-

formation is comprised of database views queried from the

archived network events (Table 3). From this training data,
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the machine learning modules generate rules of the form:

if < condition > then < action >

These rules can be compiled into the expert system for

intrusive event detection, or used to simplify the analyst’s

task by summarizing large sets of training data into sim-

ple rule sets. It is important to note that the quality of the

synthesized rules depends on the quality of the training set.

Any classification errors in the training set will propagate

into the resulting rule set.

Table 2. Example Training Data

Source IP Dest IP Source Port Dest Port Protocol Intrusion

123.202.72.109 225.142.187.12 001360 000080 IP true
123.202.72.109 225.142.187.12 001425 000080 IP true
123.202.72.109 225.142.187.12 001488 000080 IP true
123.202.72.109 225.142.187.12 001559 000080 IP true
123.202.72.109 225.142.187.12 001624 000080 IP true
123.202.72.109 225.142.187.12 002156 000080 IP true
123.202.72.109 225.142.187.12 002158 000080 IP true
225.142.147.75 150.216.191.119 001624 000080 IP true
225.142.187.19 125.250.187.19 004207 000025 IP true
233.167.15.65 225.142.187.12 004607 000025 IP false
233.167.15.65 225.142.187.12 004690 000025 IP false
139.61.51.70 225.142.187.12 001052 000021 IP false

142.142.5.113 225.142.187.12 001572 000080 IP false
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3.1. Applying Genetic Algorithms

In the current version of NEDAA, we use genetic algo-

rithms to evolve simple rules for monitoring network traffic.

These rules are simple single-connection patterns for differ-

entiating normal from abnormal network connections. The

rules are evolved by creating patterns which match a set of

anomalous connections and a set of normal connections (as

reported by an analyst). These patterns are used as the firing

conditions of rules of the form if < pattern matched >

then < generate alert >.2 The goal is to develop rules

which match only the anomalous connections. Such rules

can then be used to filter historical records and new connec-

tions so that the analyst can concentrate on those which are

suspicious.

The patterns created by the genetic algorithm corre-

sponds to the format of incoming connections and are com-

binations of specific connection attribute values and ‘wild
2As there is a clear 1-1 correspondence between rules and patterns, we

will use the terms interchangeably for the remainder of this section.

cards’. Examples of attributes used in the current version of

NEDAA include: source IP address, destination IP address,

source IP port, destination IP port, and network protocol.

The initial population (see section 2.1) is comprised of

random rules; an example is shown in Table 3. The chro-

mosome for a rule is comprised of 29 genes: 8 for source

IP (2 hexadecimal digits per address field), 8 for destina-

tion IP, 6 for source port, 6 for destination port, and 1 for

protocol. Each gene can be either a specific numeric value

in the appropriate range for the field or a wild card. The

chromosome for the rule in Table 3 is shown in Figure 3.3

When a rule is used to filter connections, each connection

is converted to a 29-field format corresponding to the gene

structure of a rule as described above. A rule matches a

connection if and only if every non-wildcard gene in the

rule matches the corresponding field in the connection.

Table 3. Sample rule

Attribute Value

Source IP 42.22.e5.bc (66.34.229.188)
Dest IP 15.b*.6e.76 (21.176+?.110.118)
Source port 047051
Dest port 912320
Protocol TCP

Figure 3. Chromosome for rule in Table 3

(4; 2; 2; 2;14;5; 11; 12; 1; 5;11;�1;6; 14;

7; 6; 0; 4; 7;0;5; 1; 9;1;2;3; 2; 0;17)

The evolutionary process of the genetic algorithm re-

quires some form of fitness measure on individual popu-

lation members. In NEDAA, this fitness measure is based

on the actual performance of each rule on a pre-classified

data set. Each rule is used to filter a data set comprised

of connections marked as either anomalous or normal by

an analyst, and the fitness function rewards partial matches

of training connections that have been designated as anoma-

lous. If a rule completely matches an anomalous connection
3The value of�1 in the 12th field represents a wild card.
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it is awarded a bonus; if it matches a normal connection it

is penalized. As a result, succeeding populations are biased

toward rules that match intrusive connections only. After

a certain number of generations, the genetic algorithm is

stopped, and the best unique rules are selected.

The classic genetic algorithm described earlier tends to

converge on a single ‘best’ solution to any given problem.

In the case of a rule set, however, it is generally not suf-

ficient to find a single rule. Multiple rules are generally

needed to identify unrelated types of anomalies; several

‘good’ rules are more effective than a single ‘best’ one. In

mathematical terms, this requirement translates to the con-

cept of finding local maxima as opposed to the global max-

imum of the fitness function. Genetic algorithms evolve so-

lutions which maximize (or minimize) the fitness function.

A traditional genetic algorithm will attempt to find a global

maximum of the fitness function, and will continue until

all solutions in the population have converged to this maxi-

mum. In contrast, the problem of discovering multiple rules

to filter incoming connections based on different criteria is

essentially that of discovering multiple local maxima of the

fitness function.

In order to find local maxima of the fitness function,

and hence multiple rules, we employed niching techniques.

Conceptually, niching in genetic algorithms is similar to

that in nature; different species that share an environment

generally inhabit different niches in order to exploit re-

sources and minimize competition. In genetic algorithms,

niching strategies attempt to create subpopulations which

converge on local maxima. The two standard ways of nich-

ing are sharing and crowding[4]. Sharing degrades the fit-

ness of solutions based on the number of other solutions

which are nearby (similar). When the fitness is degraded

in this manner, overcrowded niches become less hospitable,

forcing solutions to other local maxima which may be less

populated. In crowding, solutions which are generated by

the crossover of two ‘parent’ solutions replace the nearest

(most similar) solutions in the population.

Both sharing and crowding use the concept of nearness,

or similarity, in order to maintain population diversity. A

distance metric must be imposed either on the space of solu-

tions or on the space of chromosomes in order to use either

of these niching methods. Unless a domain specific dis-

tance metric is determined for the problem, the Hamming

distance is used[4]. The Hamming distance between two

chromosomes is the number of genes which differ between

the two chromosomes. We use the Hamming distance and a

variation of crowding in order to generate a diverse rule set.

3.2. Applying Decision Trees

We use the ID3 algorithm to create decision trees which

classify connections based on the attributes listed in Table 3.

The generated decision tree can be pruned to determine con-

nections which have similar attributes to those in Table 3. In

this way decision trees generalize information learned dur-

ing their construction. A pruned decision tree generated by

the ID3 algorithm based on data in Table 3 is shown in Fig-

ure 4.

Figure 4. Intrusion Detection Decision Tree
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The rules produced by the decision trees are of a slightly

different nature than those produced by genetic algorithms.

The genetic algorithms use niching to create a population

of unique rules; ideally each rule at its own local maxima.

Decision trees on the other hand create a single rule with

a number of different clauses. Each clause is equivalent

to a single rule in the genetic algorithm population. Each

element of training data falls into one of the clauses in the
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decision tree and hence is represented in the final rule. The

‘completeness’ of the final rule, with respect to the training

data, is an advantage that decision trees have over genetic

algorithms, and dispenses with the need for niching in the

decision tree component.

The rules developed by the decision tree component, like

the genetic algorithm rules, are sensor level rules. These

rules are used to filter single connections. Currently, the

generated decision trees provide an elaboration of the ‘Hot

IP’ list; a list which enumerates IP addresses with previous

anomalous activity. This extension of the ‘Hot IP’ list al-

lows an intrusion detection system to differentiate between

normal and anomalous activity from a Hot IP address.

4. Future Plans

The goal of machine learning as applied to network in-

trusion detection is to generate a minimal rule set which

can detect intrusion signatures generalized from previous

activity. We want a minimal number of rules for rapid re-

sponse and efficiency in the expert system. Rule complex-

ity must mirror complexity of attacks; as hackers become

more skilled our AI techniques need to create correspond-

ingly complex rules. Our primary near-term goal is to ex-

tend the machine learning components to correlate and fil-

ter sets of connections as opposed to single connections.

We will combine connection filtering with other informa-

tion the IDS records (events, strings matched etc.) to create

complex rules based on data annotated by analysts. More

complex rules will look for connection patterns which are

extensive in both space and time. Ideally these rules will be

able to detect the ‘low and slow’ attack.

There are many ways to build rules that are based on

a number of connections, events, etc. One way is to cre-

ate rules which can cause other rules to be activated. This

method, known as rule chaining, allows complex sequences

of events to be detected[3]. Given a number of rules of the

form fif < predicate > then < action >g, the execution

of one rule’s action during a cycle may trigger the successful

evaluation of another rule’s predicate on subsequent cycles.

In this way rules may communicate with each other to de-

tect complex behavior. Incoming connections may activate

certain rules, which in turn may activate other rules. This

process may continue indefinitely until a message triggers

an alarm to the intrusion detection system, or until no new

messages are created. We are investigating the alteration

of the genetic algorithm component to create rules which

chain in this manner.

Enhancements to the current decision tree module would

be useful for extending their current utility. Decision trees

work best for attributes with a small number of values.

Planned enhancements would allow for the use of many-

valued attributes[1]. The ID3 algorithm builds decision

trees from an annotated data set. If the data set is aug-

mented, a new decision tree must be built to encompass

the changes. Building a decision tree is computationally in-

tensive. In order to avoid this computation new algorithms

have been developed to update existing decision trees based

on new information[2]. This allows us to build scalable de-

cision trees, and thus continually refine the rule set as new

information becomes known to the analyst. We will investi-

gate scalable decision tree construction as an enhancement

to our current system.

We are also looking to employ the decision tree module

to identify anomalous sequences of network events. Deci-

sion trees can be used to cluster network events into similar

categories based on common attributes. Intrusive sequences

of network events would be associated with sequences of

corresponding clusters. By labeling these sequences as in-

trusive, we can generalize the specific intrusion sequences

to encompass similar sequences.

The decision tree module currently generates decision

trees by maximizing the information gain ratio at each level

of the tree. This produces a decision tree which attempts to

accurately differentiate network events based on their com-

mon attributes. By replacing the information gain ratio with

a distance function on the set of training data, the resulting

decision tree would partition the training set into subsets

defined by similarity. By using a distance function with a

scalable decision tree builder, one could create a decision
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tree which clusters the set of archived network events. This

decision tree would contain almost all of the information of

the archived data, but in a more manageable and compact

format.

This decision tree snapshot of the archived network traf-

fic could be used to create rules which chain to detect com-

plex intrusions. Each network event would fall into a unique

partition determined by the decision tree. Sequences of net-

work events would be mapped to sequences of correspond-

ing partitions. Since all elements in a given partition are

similar, a sequence of partitions could represent a number

of related (but distinct) sequences of network events. By

building rules based on sequences of partitions generated

by known intrusion signatures, rules could be built which

detect those intrusions, and other similar sequences of net-

work events.

The decision trees built to cluster data have additional

value beyond rule generation for intrusion detection. These

decision trees represent snapshots of the archived data,

which can be used when lightweight approximations of the

archived data are necessary.

In addition to enhancing our current suite of machine

learning techniques, we also intend to research other artifi-

cial intelligence methods applicable to intrusion detection.

Methods such as neural nets, and statistical methods may

have utility in expanding our capabilities. The complexity

of attacks that we can detect will improve as our machine

learning techniques improve.

5. Conclusion

We have adapted existing machine learning applications

to develop rules for a deployed IDS. The rule generation

component of NEDAA is layered onto an expert system

that enhances the ability of the IDS to filter anomalous con-

nections. The current machine learning approach uses ge-

netic algorithms and decision trees. The rules we have de-

veloped and deployed differentiate anomalous connections

from normal network connections. Planned near-term im-

provements will allow for more complex rule development.

Created rule sets are to be evaluated against known data sets

such as training data from the DARPA Intrusion Detection

Evaluation. Preliminary analysis of the DARPA Intrusion

Detection Evaluation Data using our machine learning com-

ponents has yielded patterns in the data set attributed to the

contrived nature of the training data.

The main result of the presented material is the produc-

tion of rules for compilation into the expert system. We are

pursuing the creation of rules to detect complex network in-

trusions to maximize the utility of the expert system, and

to produce a dynamic rule base capable of detecting new

attack signatures.
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