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Abstract

In this paper we provide a framework for computable analysis of measure, probabil-
ity and integration theories. We work on computable metric spaces with computable
Borel probability measures. We introduce and study the framework of layerwise com-
putability which lies on Martin-Löf randomness and the existence of a universal ran-
domness test. We then prove characterizations of effective measure and integration
notions in terms of layerwise computability. On the one hand it gives a simple way
of handling effective measure theory, on the other hand it provides powerful tools to
study Martin-Löf randomness.
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1 Introduction

Computable analysis is mainly focused on topological spaces. This can be observed in
the main two frameworks of computable analysis: domain theory reduces every infinite
computation to a convergence process in the Scott topology (see [EH98] e.g.) while in the
theory of representations (see [Wei00] e.g.), the criterion for a representation to be acceptable
(the technical term is admissible) is that it is equivalent to the representation induced by
the topology of the space (the standard representation).

Computable analysis for measurable spaces and probability spaces has been much less
investigated. An effective presentation of measurable spaces is proposed in [WD06]. Com-
putability on Lp-spaces has been studied in [ZZ99], [Kun04], both for euclidean spaces with
the Lebesgue measure. Computability of measurable sets has been studied, on the real line
with the Lebesgue measure in [S̃an68] and on second countable locally compact Hausdorff
spaces with a computable σ-finite measure in [Eda07]. In the latter a computability frame-
work for bounded integrable functions is also introduced, when the measure is finite. A
general computable framework for integration is still lacking: nothing is developed for non
locally compact spaces, or for unbounded functions on general spaces with general measures.

On the other hand, another effective approach to probability theory has already been
deeply investigated, namely algorithmic randomness, as introduced by Martin-Löf in [ML66].
This theory was originally developed on the Cantor space, i.e. the space of infinite binary
sequences, endowed with a computable probability measure. Since then, the theory has been
mainly studied on the Cantor space from the point of view of recursion theory, focused on
the interaction between randomness and reducibility degrees. The theory has been recently
extended to more general spaces in [HW03, Gác05, HR09b].

In this paper, we propose a general unified framework for the computable analysis of mea-
sure and integration theory, and establish intimate relations with algorithmic randomness.
We first consider two natural ways (more or less already present in the literature) of giving
effective versions of the notions of measurable set, measurable map and integrable function.

Then we develop a third approach which we call layerwise computability and that, in a
sense, follows the idea that probability theory could be grounded on the algorithmic theory
of randomness. This new approach is based on the existence of a universal randomness test.
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This fundamental result proved by Martin-Löf in his seminal paper is a peculiarity of the
effective approach of mathematics, having no counterpart in the classical world. Making
a systematic use of this has quite unexpected strong consequences: (i) it gives topological
characterizations of effective measurability notions; (ii) measure-theoretic notions, usually
defined almost everywhere, become set-theoretic when restricting to effective objects; (iii)
the practice of these notions is rather light: most of the basic manipulations on computability
notions on topological spaces can be straightforwardly transposed to effective measurability
notions, by the simple insertion of the term “layerwise”. This language trick may look
suspicious, but in a sense this paper provides the background for this to make sense and
being practiced.

In this way, Martin-Löf randomness and the existence of a universal test find an appli-
cation in computable analysis. In [HR09a] we show how this framework in turn provides
powerful tools to the study of algorithmic randomness, and a general way of deriving results
in the spirit of [Dav01, Dav04].

In Sect. 2 we recall the background on computable probability spaces and define the
notion of layering of the space, which will be the cornerstone of our approach. In Sect. 3
we present two approaches to make measure-theoretical notions on computable probability
space effective. Some definitions are direct adaptations of preceding works, some others
are new (in particular the notions of effectively measurable maps and effectively integrable
functions). In Sect. 4 we present our main contribution, namely layerwise computability, and
state several characterizations. Being rather long, the proofs are gathered in the appendix.

2 Preliminaries

2.0.1 Computable metric space.

Let us first recall some basic results established in [Gác05, HR09b]. We work on the well-
studied computable metric spaces (see [EH98], [YMT99], [Wei00], [Hem02], [BP03]).

Definition 2.0.1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,

2. S = {si : i ∈ N} is a countable dense subset of X with a fixed numbering,

3. d(si, sj) are uniformly computable real numbers.

S is called the set of ideal points. If x ∈ X and r > 0, the metric ball B(x, r) is defined
as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0} of ideal balls, which
is a basis of the topology, has a canonical numbering B = {Bi : i ∈ N}. An effective open
set is an open set U such that there is a r.e. set E ⊆ N with U =

⋃
i∈E Bi. If Bi = B(s, r)

we denote by Bi the closed ball B(s, r) = {x ∈ X : d(x, s) ≤ r}. The complement of Bi

is effectively open, uniformly in i. If X ′ is another computable metric space, a function
f : X → X ′ is computable if the sets f−1(B′i) are effectively open, uniformly in i. Let
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R := R ∪ {−∞,+∞}. A function f : X → R is lower (resp. upper) semi-computable
if f−1(qi,+∞] (resp. f−1[−∞, qi) is effectively opn, uniformly in i (where q0, q1, . . . is a fixed
effective enumeration of the set of rational numbers Q). We remind the reader that there is
an effective enumeration (fi)i∈N of all the lower semi-computable functions f : X → [0,+∞].

2.0.2 Computable probability space.

In [WD06] is studied an effective version of measurable spaces. Here, we restrict our attention
to metric spaces endowed with the Borel σ-field (the σ-field generated by the open sets).

Let (X, d,S) be a computable metric space. We first recall what it means for a Borel
probability measure over X to be computable.

Theorem 2.0.1 (from [Gác05]). The setM(X) of Borel probability measures over X can be
made a computable metric space, with the Prokhorov distance and the finite rational convex
combinations of Dirac measures as ideal measures.

The induced topology is the weak topology, characterized by the weak convergence: µn
weakly converge to µ if and only if:∫

f dµn →
∫
f dµ for all continuous bounded f : X → R.

Theorem 2.0.2 (from [Eda96, Sch07, HR09b]). Let µ be a Borel probability measure. The
following statements are equivalent:

1. µ is computable,

2. µ(Bi1 ∪ . . . ∪Bin) are lower semi-computable, uniformly in i1, . . . , in,

3.
∫
fi dµ are uniformly lower semi-computable (fi are the lower semi-computable func-

tions).

Proposition 2.0.1. Let µ be a computable Borel probability measure. If f : X → [0,+∞) is
upper semi-computable and bounded by M then

∫
f dµ is upper semi-computable (uniformly

in a description of f and M).

Following [HR09b] we introduce:

Definition 2.0.2 (from [HR09b]). A computable probability space is a pair (X,µ) where
X is a computable metric space and µ is a computable Borel probability measure on X.

From now and beyond, we will always work on computable probability spaces.
The measures of ideal balls are generally only lower semi-computable. One can prove

that the radii of the balls can be adjusted so that the measure of their boundaries are null
(i.e. so that the balls become sets of µ-continuity). A ball B(s, r) is said to be µ-almost
decidable ball if r is a computable positive real number and µ({x : d(s, x) = r}) = 0.
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Theorem 2.0.3 (from [HR09b]). Let (X,µ) be a computable probability space. There is a
basis Bµ = {Bµ

1 , B
µ
2 , . . .} of uniformly µ-almost decidable balls which is effectively equiva-

lent to the basis B of ideal balls. The measures of their finite unions are then uniformly
computable.

Effective equivalence between B and Bµ means that every Bµ
i is an effective union of

elements of B, uniformly in i, and every Bi is an effective union of elements of Bµ, uniformly
in i.

2.0.3 Algorithmic randomness.

Here, (X,µ) is a computable probability space. Martin-Löf randomness was first defined in
[ML66] on the space of infinite symbolic sequences. Generalizations to abstract spaces have
been investigated in [ZL70, HW03, Gác05, HR09b]. We follow the latter two approaches,
developed on computable metric spaces.

Definition 2.0.3. A Martin-Löf test (ML-test) is a sequence of uniformly effective
open sets Un such that µ(Un) < 2−n.

A point x passes a ML-test U if x /∈
⋂
n Un. A point is Martin-Löf random (ML-

random) if it passes all ML-tests. We denote the set of ML-random points by MLµ.

If a set A ⊆ X can be enclosed in a ML-test (Un), i.e. A ⊆
⋂
n Un then we say that A is

an effective null set.
The following fundamental result, proved by Martin-Löf on the Cantor space with a

computable probability measure, can be extended to any computable probability space using
Thm. 2.0.3 (almost decidable balls behave in some way as the cylinders in the Cantor space,
as their measures are computable).

Theorem 2.0.4 (adapted from [ML66]). Every computable probability space (X,µ) admits
a universal Martin-Löf test, i.e. a ML-test U such that for all x ∈ X, x is ML-random ⇐⇒
x passes the test U . Moreover, for each ML-test V there is a constant c (computable from a
description of V ) such that Vn+c ⊆ Un for all n.

We will often use the following result, proved by Kurtz on the Cantor space, but easily
generalizable to any computable probability spaces using once again Thm. 2.0.3.

Proposition 2.0.2 (adapted from [Kur81]). MLµ is contained in every effective open set
having measure one.

One can suppose w.l.o.g. that the universal test is decreasing: Un+1 ⊆ Un.

Definition 2.0.4. Let (X,µ) be a computable probability space. Let (Un)n∈N be a universal
ML-test. We call Kn := X \ Un the nth layer of the space and the sequence (Kn)n∈N the
layering of the space.

The set MLµ of ML-random points can be expressed as an increasing union: MLµ =⋃
nKn.

We now introduce effective versions of notions from measure and integration theory on
computable probability spaces.
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3 Effective versions of measurability notions

In this section T : (X,µ) → Y will denote a measurable function between the computable
probability space (X,µ) and the computable metric space Y . We will consider effective
versions of the notions of measurable set, measurable map, and integrable function. There
are two main natural ways to define these effective versions:

3.1 The approach up to null sets

This approach is by equivalent classes. As a concequence, the obtained definitions cannot
distinguish between objects which coincide up to a null set.

3.1.1 Measurable sets.

This approach to computability of measurable sets was first proposed by S̃anin [S̃an68] on
R with the Lebesgue measure, and generalized by Edalat [Eda07] to any second countable
locally compact Hausdorff spaces with a computable regular σ-finite measure. We present
the adaptation of this approach to computable probability spaces (which are not necessarily
locally compact).

Let (X,µ) be a computable probability space and S the set of Borel subsets of X. The
function dµ : S2 → [0, 1] defined by dµ(A,B) = µ(A∆B) for all Borel sets A,B is a pseudo-
metric. Let [S]µ be the quotient of S by the equivalence relation A ∼µ B ⇐⇒ dµ(A,B) = 0
and Aµ be the set of finite unions of µ-almost decidable balls with a natural numbering
Aµ = {A1, A2, . . .}. We denote by [A]µ the equivalence class of a Borel set A.

Proposition 3.1.1. ([S]µ, dµ,Aµ) is a computable metric space.

The following definition is then the straightforward adaptation of [S̃an68, Eda07].

Definition 3.1.1. A Borel set A is called a µ-recursive set if its equivalence class [A]µ is
a computable point of the computable metric space [S]µ.

In other words, there is a total recursive function ϕ : N→ N such that µ(A∆Aϕ(n)) < 2−n

for all n. The measure of any µ-recursive is computable. Observe that an ideal ball need not
be µ-recursive as its measure is in general only lower semi-computable. On the other hand,
µ-almost decidable balls are always µ-recursive.

3.1.2 Measurable maps.

To the notion of µ-recursive set corresponds a natural effective version of µ-recursive map:

Definition 3.1.2. A measurable map T : (X,µ)→ Y is called a µ-recursive map if there
exists a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equivalent to the basis of
ideal balls B, and such that T−1(B̂i) are uniformly µ-recursive sets.
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3.1.3 Integrable functions.

Computability on Lp spaces has been studied in [ZZ99, Kun04] for euclidean spaces with
the Lebesgue measure. The L1 case can be easily generalized to any computable probability
space, and a further generalization including σ-finite measures might be carried out without
difficulties.

Let (X,µ) be a computable probability space. Let F be the set of measurable functions f :
X → R which are integrable. Let Iµ : F×F → [0,+∞) be defined by Iµ(f, g) =

∫
|f − g| dµ.

Iµ is a metric on the quotient space L1(X,µ) with the relation f ∼µ g ⇐⇒ Iµ(f, g) = 0.
There is a set F0 = {f0, f1, . . .} of uniformly computable effectively bounded functions
(|fi| < Mi with Mi computable from i) which is dense in L1(X,µ). F0 is called the set of
ideal functions.

Proposition 3.1.2. (L1(X,µ), dµ,F0) is a computable metric space.

This leads to a first effective notion of integrable function:

Definition 3.1.3. A function f : X → R is a µ-recursive integrable function if its
equivalence class is a computable point of the space L1(X,µ), i.e. f can be effectively
approximated by ideal functions in the L1 norm.

If f : X → R is integrable, then f is a µ-recursive integrable function if and only if so
are f+ = max(f, 0) and f− = max(−f, 0).

3.2 The approach up to effective null sets

On a metric space, every Borel probability measure is regular, i.e. for every Borel set A and
every ε > 0 there is a closed set F and an open set U such that F ⊆ A ⊆ U and µ(U \F ) < ε
(see [Bil68]). An effective µ-null set is then a null set for which this is effective. It can be
generalized to sets with positive measure, through the notion of effectively µ-measurable set.
We will see how to define effectively µ-measurable maps and effectively µ-integrable functions
using the same idea.

3.2.1 Measurable sets.

Edalat [Eda07] already used regularity of measures to define µ-computable sets, a notion that
is stronger than µ-recursivity. Let us consider the adaptation of this notion to computable
probability spaces (for coherence reasons, we use the expression “effective µ-measurability”
instead of “µ-computability”).

Definition 3.2.1. A Borel set A is effectively µ-measurable if there are uniformly ef-
fective open sets Ui, Vi such that X \ Vi ⊆ A ⊆ Ui and µ(Ui ∩ Vi) < 2−i.

example: The whole space X is effectively µ-measurable. More generally, an effective
open set is effectively µ-measurable if and only if its measure is computable. The Smith-
Volterra-Cantor set, which is an effective compact subset of [0, 1] whose Lebesgue measure
is 1/2, is effectively λ-measurable (λ denotes the Lebesgue measure). �
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3.2.2 Measurable maps.

To the notion of effectively µ-measurable set corresponds a natural effective version of mea-
surable map:

Definition 3.2.2. A measurable map T : (X,µ) → Y is effectively µ-measurable if
there exists a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equivalent to the
basis of ideal balls B, and such that T−1(B̂i) are uniformly effectively µ-measurable sets.

3.2.3 Integrable functions.

In [Eda07] a notion of µ-computable integrable function is proposed: such a function can be
effectively approximated from above and below by simple functions. This notion is devel-
oped on any second countable locally compact Hausdorff spaces endowed with a computable
finite Borel measure. In this approach only bounded functions can be handled, as they are
dominated by simple functions, which are bounded by definition. We overcome this problem,
providing at the same time a framework for metric spaces that are not locally compact, as
function spaces.

The following definition is a natural extension of the counterpart of Def. 3.2.1 for the
characteristic function 1A of an effectively µ-measurable set A.

Definition 3.2.3. A function f : X → [0,+∞] is effectively µ-integrable if there are
uniformly lower semi-computable functions gn : X → [0,+∞] and upper semi-computable
functions hn : X → [0,+∞) such that:

1. hn ≤ f ≤ gn,

2.
∫

(gn − hn) dµ < 2−n,

3. hn is bounded by some Mn which is computable from n.

Remark 3.2.1. Let us define the hypographs (see [BZW99] for a study of these sets)

hypo(f) := {(x, y) ∈ X × [0,+∞] : y < f(x)},
hypo(f) := {(x, y) ∈ X × [0,+∞] : y ≤ f(x)}.

Let A = hypo(f): one has
∫
f dµ = (µ × λ)(A). Let Fn := hypo(hn) and Un := hypo(gn +

2−n). In the computable metric space X × [0,+∞], Un as well as the complement of Fn are
effectively open, Fn ⊆ A ⊆ Un and (µ× λ)(Un \ Fn) < 2−n+1.

Hence if effectively measurability of sets was defined for σ-finite measures, the set A
would be effectively (µ× λ)-measurable.

Observe that a set A is effectively µ-measurable if and only if its characteristic function
1A is effectively µ-integrable.
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4 The algorithmic randomness approach: Layerwise

computability

4.1 Layerwise computability

We remind the reader that every computable probability space comes with a canonical
layering (Kn)n∈N (see Def. 2.0.4).

Definition 4.1.1. A set A is layerwise semi-decidable if it is semi-decidable on every
Kn, uniformly in n. In other words, there are uniformly effective open sets Un such that
A ∩Kn = Un ∩Kn for all n.

In the language of representations, a set A is layerwise semi-decidable if there is a machine
which takes n and a Cauchy representation of x ∈ Kn as inputs, and eventually halts if and
only if x ∈ A (if x /∈ Kn, nothing is assumed about the behavior the machine).

Definition 4.1.2. A set A is layerwise decidable if it is decidable on every Kn, uniformly
in n. In other words, both A and its complement are layerwise semi-decidable.

In the language of representations, a set A is layerwise decidable if there is a machine
which takes n and a Cauchy representation of x ∈ Kn as inputs, halts and outputs 1 if x ∈ A,
0 if x /∈ A.

Definition 4.1.3. A function T : (X,µ)→ Y is layerwise computable if it is computable
on every Kn, uniformly in n. In other words, there are uniformly effective open sets Un,i
such that T−1(Bi) ∩Kn = Un,i ∩Kn for all n, i.

Here, B = {Bi : i ∈ N} is the basis of ideal balls of Y . Using the language of rep-
resentations, T is layerwise computable if there is a machine which takes n and a Cauchy
representation of x ∈ Kn as inputs and outputs a Cauchy representation of T (x). We could
also say that the sets T−1(Bi) are uniformly layerwise semi-decidable.

Actually, every computability notion on computable metric spaces has in principle its
layerwise version. For instance one can define layerwise lower semi-computable functions
f : X → R.

Let us state some basic properties of layerwise computable maps, when considering the
push-forward measure ν defined by ν(A) = µ(T−1(A)).

Proposition 4.1.1. Let T : (X,µ)→ Y be a layerwise computable map.

• The push-forward measure ν := µ ◦ T−1 ∈M(Y ) is computable.

• T preserves ML-randomness, i.e. T (MLµ) ⊆ MLν. Moreover, there is a constant c
(computable from a description of T ) such that T (Kn) ⊆ K ′n+c for all n, where (K ′n)
is the canonical layering of (Y, ν).

• If f : (Y, ν)→ Z is layerwise computable then so is f ◦ T .
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• If A ⊆ Y is layerwise decidable (resp. semi-decidable) then so is T−1(A).

The first point implies that in the particular case when Y = R, a layerwise computable
function is then a computable random variable as defined in [Mül99]: its distribution ν over
R is computable. Observe that when ν is the push-forward of µ, layerwise computability
notions interact as the corresponding plain computability ones; however, without assumption
on ν the last three points may not hold.

As shown by the following proposition, if layerwise computable objects differ at one
ML-random point then they essentially differ, i.e. on a set of positive measure.

Proposition 4.1.2. Let A,B ⊆ X be layerwise decidable sets and T1, T2 : (X,µ) → Y
layerwise computable functions.

• If A = B mod 0 then A ∩MLµ = B ∩MLµ.

• If T1 = T2 almost everywhere then T1 = T2 on MLµ.

We can even strengthen this result, obtaining a layerwise version of Prop. 3.1.4.5 in
[Hoy08].

Proposition 4.1.3. Let A,B be layerwise semi-decidable sets. If A ⊆ B mod 0 then A ∩
MLµ ⊆ B∩MLµ. More generally, if f, f ′ : X → [0,+∞] are layerwise lower semi-computable
functions such that f ≤ f ′ almost everywhere then f ≤ f ′ on MLµ.

4.2 Characterizations of effective measure-theoretic notions

4.2.1 Measurable sets.

The notion of effective µ-measurable set is strongly related to Martin-Löf approach to ran-
domness. Indeed, if A is a Borel set such that µ(A) = 0 then A is effectively µ-measurable if
and only if it is an effective µ-null set. If A is effectively µ-measurable, coming with Cn, Un,
then

⋃
nCn and

⋂
n Un are two particular representative of [A]µ which coincide with A on

MLµ. We can even go further, as the following result proves.

Theorem 4.2.1. Let A be a Borel set. We have:

1. A is µ-recursive ⇐⇒ A is equivalent to an effectively µ-measurable set.

2. A is effectively µ-measurable ⇐⇒ A is layerwise decidable.

The equivalences are uniform. Let A be a µ-recursive set: it is equivalent to a layerwise
decidable set B. By Prop. 4.1.2 the set A∗ := B ∩MLµ is well-defined and constitutes a
canonical representative of the equivalence class of A under ∼µ. If A is already layerwise
decidable then A∗ = A∩MLµ. The operator ∗ is idempotent, it commutes with finite unions,
finite intersections and complements. For instance, if A,B are µ-recursive then A∗ ∪ B∗ is
a layerwise decidable set which is equivalent to A ∪ B, so it coincides with (A ∪ B)∗ by the
preceding lemma.
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Proposition 4.2.1. If A be a layerwise semi-decidable then

• µ(A) is lower semi-computable,

• µ(A) is computable if and only if A is layerwise decidable.

4.2.2 Measurable maps.

We obtain a version of Thm. 4.2.1 of measurable maps.

Theorem 4.2.2. Let T : (X,µ)→ Y be a measurable map. We have:

1. T is µ-recursive ⇐⇒ T coincides almost everywhere with an effectively µ-measurable
map.

2. T is effectively µ-measurable ⇐⇒ T is layerwise computable.

The equivalences are uniform. Observe that if almost all implications directly derive from
Thm.4.2.1, the first one is not so easy as we have to carry out the explicit construction of
an effectively µ-measurable function from the equivalence class of T .

Let T be µ-recursive: there is a layerwise computable function T ′ which is equivalent to
T . Let T ∗ be the restriction of T ′ to MLµ. By Prop. 4.1.2 T ∗ is uniquely defined.

4.2.3 Integrable functions.

We know from Thm. 4.2.1 that A is effectively µ-measurable if and only if A is layerwise
decidable, which is equivalent to the layerwise computability of 1A. As a result, 1A is
effectively µ-integrable if and only if 1A is layerwise computable. The picture is not so
simple for unbounded integrable functions: although

∫
f dµ is always computable when f is

effectively µ-integrable, it is only lower semi-computable when f is layerwise computable.

Proposition 4.2.2. Let f : X → [0,+∞].

• If f is layerwise lower semi-computable then
∫
f dµ is lower semi-computable (uni-

formly in a description of f).

• If f is bounded and layerwise computable then
∫
f dµ is computable (uniformly in a

description of f and a bound on f).

Hence, we have to add the computability of
∫
f dµ to get a characterization.

Theorem 4.2.3. Let f : X → [0,+∞] be a µ-integrable function. We have:

1. f is a µ-recursive integrable function ⇐⇒ f is equivalent to an effectively µ-integrable
function.

2. f is effectively µ-integrable ⇐⇒ f is layerwise computable and
∫
f dµ is computable.
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The equivalences are uniform, but a description of
∫
f dµ as a computable real number

must be provided.
If f is effectively µ-integrable then f = supn hn = infn gn on MLµ. Observe that the

equivalence relation induced by the L1 norm coincides with the equivalence relation “being
equal µ-almost everywhere”. Hence by Prop. 4.1.2, to the equivalence class of any µ-recursive
integrable function f corresponds a unique layerwise computable function f ∗ defined on MLµ.

We now get a rather surprising result, which is a weak version of Prop. 4.2.1 for integrable
functions.

Proposition 4.2.3. Let f : X → [0,+∞] be a layerwise lower semi-computable function. If∫
f dµ is computable then f is layerwise computable.
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A Proofs from Section 4.1

Proof of Proposition 4.1.1

• Let V be an effective open subset of Y . T−1(V ) is a layerwise semi-decidable set, so
there are effective open sets Un such that T−1(V ) ∩ Kn = Un ∩ Kn. Henceν(V ) =
µ(T−1(V )) = supn(µ(Un) − 2−n) is lower semi-computable. Everything is uniform in
V .

• Let U (resp. U ′) be the universal test in (X,µ) (resp. (Y, ν)). T−1(U ′n) are uniformly
layerwise semi-decidable sets and µ(T−1(U ′n)) = ν(U ′n) < 2−n. By Lem. B.0.1 there is
a constant c such that T−1(U ′n+c) ⊆ Un. In other words, Kn ⊆ T−1(K ′n+c).

• There is c such that T (Kn) ⊆ K ′n+c. As T is computable on Kn and f is computable
on K ′n+c, uniformly in n, f ◦ T is computable on Kn, uniformly in n.

• The same kind of argument can be used.

Proof of Proposition 4.1.2.

We show that A ∩ Kn ⊆ B ∩ Kn for all n. There are effective open sets Un, Vn such that
A∩Kn = (X \Vn)∩Kn and B∩Kn = Un∩Kn. Hence (A∩Kn)\(B∩Kn) = Kn\(Un∪Vn) is
the complement of an effective open set of measure one, so it contains no ML-random point
by Prop. 2.0.2, hence it is empty as Kn ⊆ MLµ.

The second point is a corollary. We know from Prop. 4.1.1 that the common push-
forward measure ν is computable. Let Bν = {Bν

1 , B
ν
2 , . . .} be a basis of ν-almost decidable

balls provided by Thm. 2.0.3. For each i, the ball Bν
i is layerwise decidable so the sets

T−1
1 (Bν

i ) and T−1
2 (Bν

i ) are layerwise decidable and equivalent, so they coincide on MLµ by
the first point. In other words, the restrictions of T1 and T2 to MLµ coincide.

Proof of Proposition 4.1.3

We first prove it for effective open sets U, V such that U ⊆ V mod 0. Let F ⊆ U be a finite
union of closed balls. F \ V is the complement of an effective open set and µ(F \ V ) = 0, so
it contains no ML-random point (Prop. 2.0.2) hence F ∩MLµ ⊆ V ∩MLµ. As this is true
for every finite union of closed balls F ⊆ U , U ∩MLµ ⊆ V ∩ML.

Now, let A,B be layerwise semi-decidable sets such that A ⊆ B mod 0. Let n ∈ N:
there are effective open sets U, V such that A ∩Kn = U ∩Kn and B ∩Kn = V ∩Kn. Let
U ′ = U ∪Un and V ′ = V ∪Un (where Un = X \Kn): U ′ ⊆ V ′ mod 0 so A∩Kn = U ′∩Kn ⊆
V ′ ∩Kn = B ∩Kn. And this is true for all n.

Finally, if f, f ′ are layerwise lower semi-computable and f ≤ f ′ almost everywhere, then
for q ∈ Q, A = f ′−1(q,+∞] and B = f−1(q,+∞] are layerwise semi-decidable sets satisfying
A ⊆ B mod 0, so A ∩MLµ ⊆ B ∩MLµ. Hence if x ∈ MLµ, f ′(x) > q =⇒ f(x) > q for all
q ∈ Q. In other words, f(x) ≤ f ′(x).
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B Proofs from Section 4.2

Proof of Theorem 4.2.1.

1. Let Ai be an effective sequence of finite unions of µ-almost decidable open balls such
that µ(A∆Ai) < 2−i. Ai can be expressed as an effective union of µ-almost decidable balls

whose closure are contained in Ai. Let A
′
i be a finite union of the corresponding closed balls

such that µ(A′i) > µ(Ai)− 2−i. One has A
′
i ⊆ Ai and the complements of A

′
i are uniformly

effective open sets. The class [A]µ has two canonical representatives that are effectively µ-

measurable: lim inf A
′
i and lim supAi and the sets Fn =

⋂
i>nA

′
i and Un =

⋃
i>nAi witness

their effective µ-measurability. Conversely, let A be effectively µ-measurable, coming with
Fn, Un. Expressing Un as an effective union of µ-almost decidable balls, one can effectively
extract a finite union An such that µ(An) > µ(Fn). Then A∆An ⊆ Un \ Fn so µ(A∆An) <
2−n.
2. If A is effectively µ-measurable, coming with Fn, Un then Un \ Fn is a ML-test, so there
is c such that (Un+c \ Fn+c) ∩ Kn = ∅ for all n. One easily gets A ∩ Kn = Un+c ∩ Kn =
Fn+c ∩Kn. Conversely, if A is layerwise decidable, then the complements of Fn := A ∩Kn

and F ′n := (X \ A) ∩ Kn are uniformly effective open sets. The sets Fn and Un = X \ F ′n
make A effectively µ-measurable.

Proof of Proposition 4.2.1

Let Un be effective open sets such that A∩Kn = Un ∩Kn. First, µ(A) = supn(µ(Un)− 2−n)
is lower semi-computable. We suppose now that µ(A) is computable and show that A is
effectively µ-measurable. Let Vn = Un ∪ (X \ Kn). A ⊆ Vn and µ(Vn) ≤ µ(A) + 2−n.
Expressing Un as an effective union of µ-almost decidable balls, one can effectively extract
a finite union An such that µ(An) > µ(A) − 2−n (indeed, µ(Un) > µ(A) − 2−n). Now,
Fn := An ∩Kn ⊆ Un ∩Kn ⊆ A. So Fn, Vn make A effectively µ-measurable, hence layerwise
decidable.

Proof of Theorem 4.2.2

1. Let T be a µ-recursive map. We construct an effecively µ-measurable function T ∗ such
that T = T∗ almost everywhere. We will need some lemmas:

Lemma B.0.1. Let An be uniformly layerwise semi-decidable sets such that µ(An) < 2−n.
There exists c such that Kn ∩ An+c = ∅ for all n.

Proof. There are uniformly effective open sets Un
p such that Kp ∩ An = Kp ∩ Un

p . Let

Vn = Un+1
n+1 . As µ(X \Kn+1) < 2−n−1, µ(Vn) ≤ 2−n so (Vn)n∈N is a ML-test, hence there is c

such that Kn∩Vn+c = ∅ for all n. We conclude observing that Kn∩An+c+1 = Kn∩Un+c+1
n ⊆

Kn ∩ Vn+c.

Lemma B.0.2. Let Ai be uniformly µ-recursive sets. The set
⋃
iAi is µ-recursive if and

only if its measure is computable. In this case, (
⋃
iAi)

∗ =
⋃
iA
∗
i .
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Proof. This is a corollary of Prop. 4.2.1. Indeed, A∗i being uniformly layerwise decidable,⋃
iA
∗
i is layerwise semi-decidable. If its measure is computable then it is layerwise decidable

by Prop. 4.2.1. Hence A :=
⋃
iAi, which is equivalent to it, satisfies A∗ = (

⋃
iA
∗
i )
∗ =

(
⋃
iA
∗
i ) ∩MLµ =

⋃
iA
∗
i .

Construction of T ∗.

Let T : (X,µ) → Y be a µ-recursive map, coming with a basis B̂ = {B̂1, B̂2, . . .} of the
topology on Y such that the sets Ai := T−1(B̂i) are uniformly µ-recursive. The sets A∗i are
then well defined. Let x ∈ ML: we define Sx :=

⋂
i:x∈A∗

i
B̂i.

Claim. Sx contains at most one point.

Proof. Let ε > 0 and E = {i : B̂i has radius < ε}. As Y =
⋃
i∈E B̂i, MLµ = X∗ =

(T−1(Y ))∗ = (
⋃
i∈E Ai)

∗ =
⋃
i∈E A

∗
i by Lem. B.0.2). Hence there is i ∈ E such that x ∈ A∗i ,

so Sx ⊆ B̂i whose diameter is less than 2ε. As this is true for every ε > 0, it follows that
diam(Sx) = 0.

Lemma B.0.3. Sx is not empty.

Proof. As we have just seen, for each i there is a ball B̂ni such that x ∈ (T−1(B̂ni))
∗ and B̂ni

has a radius < 2−i. Let si be the center of the ball B̂ni . The sequence (si)i∈N is a Cauchy
sequence. Indeed, let i < j: x ∈ A∗ni ∩A

∗
nj

= (T−1(B̂ni ∩ B̂nj))
∗, so B̂ni ∩ B̂nj 6= ∅ and hence

d(si, sj) < 2−i+1. Let y be the limit of si, which exists by completeness of Y . We now state
and prove two claims which will enable us to conclude.

Claim. For every k, if x ∈ A∗k then y ∈ cl(B̂k).

of the claim. Indeed, for all i, B̂k ∩ B̂ni 6= ∅ as x ∈ A∗k ∩ A∗ni . So y is also the limit of a

sequence of points belonging to B̂k.

Claim. For every k, if x ∈ A∗k then y ∈ B̂k.

of the claim. There is a r.e. set E such that B̂k =
⋃
i∈E B̂i and cl(B̂i) ⊆ B̂k for all i ∈ E. As

B̂k, B̂i are all effectively µ-measurable, A∗k =
⋃
i:cl(Bi)⊆Bk A

∗
i by Lem. B.0.2 so there is i ∈ E

such that x ∈ A∗i hence y ∈ cl(B̂i) ⊆ B̂k by the preceding claim.

Now we conclude the proof of lemma B.0.3: y ∈
⋂
k:x∈A∗

k
B̂k = Sx.

Let us define T ∗ : MLµ → Y by {T ∗(x)} := Sx for all x ∈ MLµ. Of course, the function
T ∗ can be seen as a function of X by extending it in an arbitrary measurable way.

Claim. For every k, if T ∗(x) ∈ B̂k then x ∈ A∗k.

Proof. If T ∗(x) ∈ B̂k then there is i such that B(T ∗(x), 2−i+1) ⊆ B̂k. Hence B̂ni ⊆ B̂k so
x ∈ A∗ni ⊆ A∗k.
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Finally, for x ∈ ML we have T ∗(x) ∈ B̂k ⇐⇒ x ∈ A∗k, so T ∗−1(B̂k) = A∗k = (T−1(B̂k))
∗

hence we get the following property:

T ∗−1(B̂i) = (T−1(B̂i))
∗ for all i. (1)

From this it directly follows that T ∗ is effectively µ-measurable and that it coincides with
T almost everywhere. So we have proved the first implication of point 1.

Conversely, if there is a basis B̂ = {B̂1, B̂2, . . .} such that the sets T−1(B̂i) are uniformly
effectively µ-measurable, then these sets are uniformly µ-recursive by Thm. 4.2.1 (point 1)
so T is µ-recursive. Moreover, by the same theorem (point 2.) the sets T−1(B̂i) are uniformly
layerwise decidable so there are uniformly effective open sets Un,i such that Kn ∩ T−1(B̂i) =

Kn ∩ Un,i. As B̂ is effectively equivalent to B, T is layerwise computable.
Suppose now that T is layerwise computable. By Prop. 4.1.1 the push-forward measure

ν = µ ◦ T−1 is computable: let B̂ be a basis of ν-almost decidable balls provided by Thm.
2.0.3. As T is layerwise computable, the sets T−1(B̂i) are uniformly layerwise decidable,
hence effectively µ-measurable, so T is effectively µ-measurable.

Proof of Proposition 4.2.2

• For n, δ > 0, let Aδ,n = f−1(δn,+∞]. One has δ
∑

n>0 1Aδ,n < f ≤ δ(1 +
∑

n>0 1Aδ,n),
so
∫
f dµ = supδ

∑
n>0 µ(Aδ,n). As Aδ,n is a layerwise semi-decidable, uniformly in δ, n,∫

f dµ is lower semi-computable.

• Let a be a bound on f . Then
∫
f dµ = infn(

∫
f1Fn dµ+a2−n) is upper semi-computable

by Prop. 2.0.1. Applying the same argument to a − f gives that
∫
f dµ = a −∫

(a− f) dµ is lower semi-computable.

Proof of Theorem 4.2.3

The proof goes this way:

(a) f is a computable point of L1(X,µ) ⇒ f is equivalent to an effectively µ-integrable
function,

(b) f is effectively µ-integrable ⇒
∫
f dµ is computable and f is layerwise computable,

(c)
∫
f dµ is computable and f is layerwise computable ⇒ f is a computable point of

L1(X,µ)

This will imply point 1. and one implication of point 2. To derive the other implication, let
us make a preliminary observation.

Lemma B.0.4. If f is effectively µ-integrable and f ′ = f on MLµ then f ′ is also effectively
µ-integrable.
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Proof. Let hn, gn be associated to f . The problem is that hn ≤ f ′ ≤ gn may not be satisfied
outside MLµ. To correct this we construct g′n (resp. h′n) which coincides with gn (resp. hn)
on MLµ and such that g′n = +∞ and h′n = 0 outside MLµ. We put g′n := gn + 2−ntµ where
tµ =

∑
n 1Un (Un being the universal ML-test) and h′n := hn1Kin where in is a computable

sequence such that Mn2−in < 2−n where Mn is a bound on hn.

Hence if f is layerwise computable and
∫
f dµ is computable then f is equivalent to an

effectively µ-integrable function f2 (by (c) and (a)) which is in turn layerwise computable
(by (b)). Using Prop. 4.1.2, f2 = f on MLµ. By the preceding lemma, f is then effectively
µ-integrable, so the other implication of point 2. is proved.

We now prove (a), (b) and (c).
(a) Let f be a computable point of L1(X,µ) and fn a computable sequence of ideal functions
such that

∫
|f − fn| dµ < 2−n. The class of f in L1 has two effectively µ-integrable repre-

sentatives lim inf fi and lim sup fi. The functions gn := supi>n fi and hn := infi>n fi witness
their effective µ-integrability.
(b) Let f be effectively µ-integrable, coming with hn, gn. First,

∫
f dµ = supn

(∫
gn dµ− 2−n

)
=

infn
(∫
hn dµ+ 2−n

)
is both lower and upper semi-computable.

Let Un = {x : ∃p, gn+2p(x)−hn+2p(x) > 2−p}. By Tchebychev inequality, µ{x : gn+2p(x)−
hn+2p(x) > 2−p} ≤ 2p

∫
(gn+2p − hn+2p) dµ ≤ 2−n−p so µ(Un) ≤

∑
p 2−n−p ≤ 2−n. Un is then

a ML-test so there is c such that Kn ∩ Un+c = ∅ for all n. Hence on Kn, gn+c+2p − 2−p ≤
hn+c+2p ≤ f ≤ gn+c+2p ≤ hn+c+2p+ 2−p for all p, so f = supp(gn+c+2p−2−p) = infp(hn+c+2p+
2−p) which is both lower and upper semi-computable, uniformly in n.
(c) Let f be a layerwise computable function such that

∫
f dµ is computable. We first use

the following (easy) equality∫
|f − g| dµ =

∫
f dµ+

∫
g dµ− 2

∫
min(f, g) dµ (2)

which holds for nonnegative integrable real functions f, g. Then we use Prop. 4.2.2: if
g is a layerwise computable bounded function then so is min(f, g), hence

∫
min(f, g) dµ is

computable from g and a bound on g. From this is follows that if g = fi ∈ F0 is an ideal
function then

∫
|f − fi| dµ is computable, uniformly in i. In other words, the distances of f

to ideal points of L1(X,µ) are uniformly computable so f is a computable point of L1(X,µ).

Proof of Proposition 4.2.3

Let f be a layerwise lower semi-computable such that
∫
f dµ is computable. Using equality

(2) in the Proof of Theorem 4.2.3 and Prop. 4.2.2,
∫
|f − fi| dµ is upper semi-computable

for fi ∈ F0, uniformly in i. It follows that f is a computable point of L1(X,µ), as for each n
one can effectively find fi such that

∫
|f − fi| dµ < 2−n. By Thm. 4.2.3 f is then equivalent

to a layerwise computable function f ′. We now apply Prop. 4.1.3 to f and f ′: they are
layerwise lower semi-computable and almost everywhere so they coincide on MLµ, so f is
layerwise computable.
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