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Abstract— This paper presents the application of four 

nonlinear methods of feature extraction in slewing bearing 

condition monitoring and prognosis: these are largest 

Lyapunov exponent, fractal dimension, correlation dimension, 

and approximate entropy methods. Although correlation 

dimension and approximate entropy methods have been used 

previously, the largest Lyapunov exponent and fractal 

dimension methods have not been used in vibration condition 

monitoring to date. The vibration data of the laboratory 

slewing bearing test-rig run at 1 rpm was acquired daily from 

February to August 2007 (138 days). As time progressed, a 

more accurate observation of the alteration of bearing 

condition from normal to faulty was obtained using nonlinear 

features extraction. These findings suggest that these methods 

provide superior descriptive information about bearing 

condition than time-domain features extraction, such as root 

mean square (RMS), variance, skewness and kurtosis. 

I. INTRODUCTION 

The monitoring of slewing bearing condition requires the 
selection and extraction of features of vibration signals.  
Features of vibration signals are the key points in clustering, 
classification, pattern recognition, condition monitoring, fault 
diagnosis, and prognosis methods. From numerous existing 
features, the selection of the most appropriate features for 
studying the condition of slewing bearings is not a simple 
task. Two different approaches to feature extraction used in 
bearing condition monitoring can be identified in the 
literature [1], [14], [15]. Both approaches extract linear time-
domain features, such as root mean square (RMS), variance, 
skewness, and kurtosis. Further, the condition of the bearing 
is already known, and the extraction of features is used to 
identify the bearing condition. Hence the use of features is 
solely to convince the occurrence of faulty condition. These 
two approaches are not appropriate for the current project on 
the condition monitoring on very low speed slewing bearing 
for several reasons.  

The approach used in [1], [15] is not appropriate for this 
project because in this approach faulty signals are usually 
acquired from artificial bearing faults or seeded defect on 
inner race or outer bearing race. In this study, collecting the 
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different kinds of slewing bearing signals from corresponding 
different fault conditions would be extraordinarily difficult. It 
is difficult because: (1) the slewing bearing is expensive. 
Therefore we could not buy more than one and apply 
different fault condition on each bearing; and (2) an artificial 
fault is difficult to apply on the bearing due to the advanced 
technology required to dismantle the outer race and inner 
race from the whole bearing. 

The approach used in [14] is not appropriate for this study 
because the features are usually extracted from a well-known 
faulty bearing signal, where the signal is easily identified by 
the naked eye. In our study, however, it is very difficult to 
distinguish between faulty bearing signal and normal signal 
because they similar. This is because when the bearing runs 
in very low rotational speed, the generated vibration signal is 
very weak. The limitations of the methods discussed above 
motivated us to prove that the existing linear time-domain 
features, such as root mean square (RMS), variance, 
skewness, and kurtosis, are less sensitive in feature extraction 
for slewing bearing, and other potential features need to be 
identified. In this paper, we propose the application of four 
nonlinear methods for feature extraction: largest Lyapunov 
exponent, fractal dimension, correlation dimension and 
approximate entropy. 

 

 

 

Figure 1.  Flowchart of nonlinear features extraction application in slewing 

bearing condition monitoring and prognosis method. 
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II. NONLINEAR METHODS OF FEATURE EXTRACTION 

Slewing bearings are typically operating in very low 
rotational speed, in reversible mode, and under high axial 
and radial loads. When the slewing bearings start to 
deteriorate, the vibration signals cannot be treated as linear 
because the contacts between rolling elements and defects 
spots produce low energy local instabilities at irregular 
intervals. This low energy is deeply masked in background 
noise and susceptible to noise interference, consequently 
linear time-domain features fail to detect the faulty to 
normal bearing condition. In practice, multiple defects more 
frequently occur than single defects, therefore the vibration 
signals are considered completely irregular (chaotic) [2]. In 
this paper the application of four nonlinear methods of 
feature extraction: largest Lyapunov exponent, fractal 
dimension, correlation dimension and approximate entropy 
are presented. Unlike to linear features, nonlinear features 
are based on phase space or reconstruction vectors as shown 
in Fig. 1. Suppose ),...,,( Nyyy 21=Y is the original time 
series or vibration signal in one second with sampling 
rate, N . The phase space or reconstruction vectors X of the 
original time series Y can be defined as follows: 
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where J represents reconstruction delay and can be 
computed by time lag/�t, m represents the embedding 
dimension and M represents the number of reconstructed 
vectors. The relation between N , J , m and M can be defined 
in the following form: JmMN )( 1-+= or JmNM )( 1--= . 
Thus the dimension of X with predetermined J and m is 
an mM × matrix. For instance, if Y is the vibration data 
with N =15, ),...,,( 1521= yyyY , and select J =2 and m =6, 
thus the phase space of the vibration signal Y is the 
matrix X with size of 5 x 6 as defined: 
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The nonlinear behavior of X in Eq. (1) or (1a) can be 
identified and analyzed using the nonlinear features 
extraction explained in subsections II.A through II.D. 

A. Largest Lyapunov exponent, 1λ  

The Lyapunov exponent algorithm is an old method and 
has been used in some areas such as biomedical engineering 
field especially in the analysis of electroencephalography 
(EEG) signal [3]. The Lyapunov exponent algorithm 
measures the exponential divergence (positive or negative) of 
two initial neighboring trajectories in a phase space. The 

objective is to quantify the appearance of disturbances 
corresponding to the signal abnormality. In other words, the 
Lyapunov exponent method measures the degree of chaos in 
certain time due to any disturbances. In this paper the term 
disturbances refers to any local instability vibration signal 
due to the dynamic contact between rolling elements and 
defect spots. This paper uses the largest Lyapunov exponent 
algorithm proposed by Rosenstein [4]. After the 
reconstruction vector in (1) computed, the largest Lyapunov 
exponent algorithm starts with the calculation of initial 
Euclidean distance, 0d between phase space X and new phase 
space newX  as defined 

)()( ii new0 XXd -=            (2) 

The new phase space )(inewX  is calculated by creating 
an mM × matrix, where the matrix of )(inewX for i  = 1, 2, 
..., M is the row-vector replication of )(iX . The additional 
constraint was determined to separate the nearest neighbors 
which are separated by a distance greater than the mean 
period of the vibration signal. 

ji -  > mean period             (3) 

Introducing another counter as a sub looping to incorporate 
(3) in algorithm called j , where j = 1, 2, ..., M . Equation (3) 
means: if absolute value of subtraction thi and

th
j as 

i and j progresses is less than the mean period, the member 
of 0d (with respect to j ) is replaced by any a predetermined 
value which is much greater than the maximum value 
of )(i0d . Thus the modified distance vectors, )( j0_newd is 
obtained. The minimum distances )(i0�  and the position of 
minimum distances, )(im� of the modified distance 
vectors, )( j0_newd are then computed. 

( ))(min])(),([ jii 0_newm0 d�� =               (4) 

It noted that the value of initial minimum 
distance, )(i0� is no used for further calculations. Only the 
position where the minimum distance is obtained denotes 
by )(im� , is further employed. 

The next step is the calculation of the new distance measure, 
d(i), which is measured the distance between X(i) and 
X(�p(i)) (with respect to i). 

d(i) = || X – Xnew(i) ||               (5) 

In order to improve the accuracy of distance 
measures, )(id , Sato et. al [5] gives an alternative formula 
based on k iteration. In this paper k iteration is used from 1, 
2, ..., M . Taking the sum of the )(id and then dividing it by 
the number of point iterations, M , then compute the mean 
value of )(id is computed; it becomes the modified distance 
measure, )(inewd based on k iteration. The formula is 
computed as 

∑
-
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1
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Referring to basic largest Lyapunov exponent formula 
[4], the relation between )(inewd and largest Lyapunov 
exponent, )(i1λ  defined by the following form: 
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where iC is the initial separation and ∆t is the sampling 
period of vibration signal. By taking the logarithmic of both 
sides (7), a new formula is derived: 

   ).(ln)(ln tiCi j �λ+≈ 1newd                 (8) 

As seen in (8) that iC is unnecessary for estimating 1λ . 

Thus, the largest Lyapunov exponent can be computed using 
a least-square fitting equation defined by 

)(ln)( i
t

i newd
�

1
=λ1          (9) 

B. Fractal Dimension, D  

Fractal dimension can be used to measure the complexity 
of vibration signals. This method is one of phase space 
methods which examine the dynamical behaviours of phase 
space or reconstruction vectors. The commonly used 
algorithm of fractal dimension was proposed by Higuchi [6]. 
Once the phase space or signal reconstructed is obtained (1), 
the mean absolute length between the reconstructed 
vector

th
j  

and (
th

j -1) of X can be defined as follows: 
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end
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where J represents reconstruction delay and m is embedding 
dimension. Assuming that mL is proportional to Dm- , then 
taking the logarithmic natural of )/( m1 and mL . Hence, the 
fractal dimension, D can be computed using standard least-
square fitting method. 

C. Correlation Dimension, )(lC  

Correlation dimension provides a tool to quantify self-
similarity. A larger correlation dimension corresponds to a 
larger degree of complexity and less-similarity.  An earlier 
application of correlation dimension in bearing fault 
diagnosis was presented by Logan and Mathew [7]. The 
frequently used procedure to estimate the correlation 
dimension was introduced by Grassberger and Procaccia [8]. 
To calculate correlation dimension, the reconstructed matrix 
(1) are used as the input for the correlation dimension 
algorithm. The correlation dimension is derived from the 
correlation integral given by: 
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where iX , jX  are the position vectors on attractor, l  is the 
distance under consideration, )(xΘ is the Heaviside step 
function, 0=Θ )(x

 

if 0≤X , 1=Θ )(x

 

if 0>X , k is the 
summation offset, M is the number of reconstructed vectors 
from the original vibration signal, and )(lC  is the correlation 
dimension. 

D. Approximate Entropy, ApEn  

The approximate entropy computes the value of 
regularity in the signal. Smaller value indicates more regular 
behaviour and higher value of it indicates less regularity on 
the data set. An earlier application of approximate entropy in 
bearing signal is presented by Yan, [9]; however, the paper 
discusses about the high speed rolling element bearing signal. 
Yan [9] mentioned that the deterioration of machine 
condition was followed by the increase of number of 
frequency components. This condition will decrease the 
regularity and increase the corresponding approximate 
entropy value. Similar to three other nonlinear features 
described above, approximate entropy uses reconstruction 
vectors (1) as an input. According to [9] the initial step of 
approximate entropy is measures the distance ))(),(( jXiXd  
between two vectors )(iX and )( jX which can be defined as 
the maximum difference in their respective corresponding 
elements: 

)|)()(|(max))(),((
,...,,

1+1+=
21=

kjxkixjXiXd
mk

            (12) 

where i = 1, 2, …, 1+- mN , j = 1, 2, …, 1+- mN , and N is 
the number of data points contained in the time series. For 
each vector )(iX , a measure that describes the similarity 
between the vector )(iX and all other vectors )( jX , where 

ij≠  can be constructed as 

[ ]{ }∑
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where j = 1, 2, …, 1+- mN  and the Heaviside step function, 
)(xΘ  is similar to the symbol in correlation dimension where 

0=Θ )(x

 

if 0≤X , 1=Θ )(x

 

if 0>X . 

The symbol r  in (13) denotes a predetermined tolerance 
value, defined as 

)(. Ystdkr =                                  (14) 

where std )(Y means is the standard deviation of original time 
series or vibration signal, Y and k  is a constant )( 0>k . By 
defining 
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the approximate entropy value of time series can be 
calculated as 

)]()([lim),( rrrmApEn
mm

N

1+

∞→
φ-φ=                  (16) 

III. SLEWING BEARING DATA 

The vibration accelerated life test data used in this paper 
were acquired from laboratory slewing bearing test-rig. The 
test-rig was operated in continuous rotation at speed of 1 
rpm. The slewing bearing used was an axial/radial bearing 
supplied by Schaeffler (INA YRT260) with an inner and 
outer diameter of 260mm and 385mm. The vibration data 
were acquired from four accelerometers installed on the inner 
radial surface at 90 degree to each other. The accelerometers 
were IMI608 A11 ICP type sensor. The accelerometers were 
connected to high speed Pico scope DAQ (PS3424). To 



  

minimize noise from laboratory environment, the vibration 
data was collected at midnight outside of working hours with 
4880Hz sampling rates. The vibration data was collected 
during the period from February to August 2007 (138 days). 
In order to accelerate the bearing defect, coal dust was 
injected into the bearing on mid-April 2007 (58 days from 
beginning). 

 

Figure 2.  Schematic of laboratory slewing bearing test-rig. 

The schematic of slewing bearing test-rig showing the 
main drive reducer, the hydraulic load and how the bearing is 
attached is shown in Fig. 2. The axial load was applied via 
hydraulic pressure approx. 30 tonnes. 

IV. RESULT AND DISCUSSION 

An initial vibration analysis was conducted to detect the fault 
occurrence in slewing bearing under test using FFT method. 
This method is very common in practice to see whether the 
fault has been occurred or not. The reference fault 
frequencies of slewing bearing are presented in Table I. If the 
dominant frequencies of FFT of slewing bearing data match 
with one or more of the fault frequencies shown in Table 1, it 
indicates fault has occurred. However, the energy spectrum 
of the slewing bearing is dominated by several high 
frequencies signal as shown in Fig. 3(b). The low energy 
slewing bearing signal is buried in high frequencies signal 
and make FFT fail to detect the bearing fault frequencies. 

TABLE I.  SLEWING BEARING FAULT FREQUENCIES [21] 

Fault frequencies (Hz) 
Defect Mode 

Axial Radial 

Outer ring (BPFI) 1.32 0.55 

Inner ring (BPFO) 1.37 0.55 

Rolling element (BSF) 0.43 0.54 

 

The slewing bearing fault frequencies shown in Table 1 are 
calculated when the bearing rotates at 1 rpm. Different 
rotational speeds yield different fault frequencies. 

Another condition monitoring method was carried out 
using time-domain features extraction such as root mean 
square (RMS), variance, skewness, and kurtosis. These 
features are commonly used due to the ease of computation 
and the certain physical sense. In high rotational speed 
bearing cases, these features are sensitive to represent the 

bearing condition. The increase of these features indicates the 
bearing condition is change. A brief description of those 
features and a list of references detailing some of their 
applications are presented in Table II. 
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Figure 3.  (a) Original vibration signal of 3rd May (b) FFT. 

The time-domain features extraction results of slewing 

bearing data are shown in Fig. 4. If the features are less 

sensitive, the increase of these features value related to 

bearing condition as time progresses is unable to detect, 

therefore the parameter called degradation index (DI) is 

needed. In this paper, DI is used to compare the performance 

of time-domain and nonlinear features extraction. It was 

simply calculated by measuring the fluctuation interval 

between maximum and minimum value of calculated feature 

respect to index of i . The DI is defined by 

 

end

izizi

ifor

)):1((min-)):1((max)(DI

L:1

=

=

         (17) 

 

where, L is the number of data acquisition days from 

February to August, which is 138 in our case, and z  is the 

calculated feature which can be largest Lyapunov exponent 

feature, fractal dimension feature, correlation dimension 

feature or approximate entropy feature. The DI in (17) keeps 

the highest interval between maximum and minimum value 

of certain feature, z . It is updated once the current DI 

represents by DI( i ) is greater than prior DI denotes by 

DI( 1-i ). This DI form is selected in this paper to facilitate 

the features with negative fluctuation as shown in RMS and 

kurtosis. In high rotational speed bearing cases, such thing is 

rarely occur, features are usually increased progressively 

when the bearing condition alter from normal to faulty. 

 Another aim of computed degradation index is for 

prediction purpose. In prognosis method DI is usually used 

as an object being predicted. The prognosis algorithm is 

expected to predict the posterior value of DI based on the 

prior values of DI. The common prognosis method used is 

a 

b 



  

data-driven method. The development of prognosis methods 

and algorithm based on calculated DI will be carried out in 

the future work. 

TABLE II.  TIME DOMAIN FEATURES 

Description Feature 

Name Brief Overview Formula Refs. 

R
M

S
 

As fault developed the 

RMS value will 

increase progressively. 

However, RMS has 

shortcoming that is 

unable to provide the 

information of incipient 

fault stage while it 

decreases with the fault 

development [12]. 
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The DI of RMS, variance, skewness and kurtosis feature 

are presented in Fig. 5. According to Fig. 5 the increase of 

DI in time-domain features extraction result as day 

progresses is relatively small and it is not consistent among 

the four features. Thus the information related to bearing 

degradation condition especially initial severe failure is not 

clearly visible. The interesting results are shown in RMS and 

kurtosis which shows similar jumped DI in day 90. 

Further, largest Lyapunov exponent, fractal dimension, 

correlation dimension and approximate entropy are extracted 

and the results are presented in Fig. 6. In contrast, the results 

show that there is a significant fluctuation in the last period 

of bearing operating time. The DI is also computed from 

these features and the results are shown in Fig. 7. Compared 

to time-domain features, the DI of the nonlinear features 

gradually increased and show consistent result. There is a 

maximum interval represents by d  occurred in four features 

in the day of 90 which similar to RMS and kurtosis features. 

This indicates the incipient severe failure. To clarify the 

assumption that there is a severe failure has occurred in 

slewing bearing, the slewing bearing was dismantled for 

inspection after August 31
st
 2007 which is after day 138. 

Considering the severity of the damage, it is expected that 

the damage had started around day 90. Some of the defective 

regions can be clearly seen in Fig. 8. 
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Figure 4.  Time-domain features extraction results (138 days). 
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Figure 5.  Deterioration index (DI) of time-domain features (138 days). 
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Figure 6.  Nonlinear features extraction results (138 days). 
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Figure 7.  Deterioration index (DI) of nonlinear features (138 days). 
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Figure 8.  (a) A view of damaged rollers in axial plane (b) Outer raceway 

damage 

V. CONCLUSION 

The use of sensitive features for low-speed slewing 

bearing is an important factor in low-speed slewing bearing 

condition monitoring and prognosis. According to the 

selected features, deterioration index is computed. 

Monitored deterioration index is needed in order to set the 

threshold when the machine should be stopped or when the 

predictive maintenance should be carried out. By doing this 

the breakdown maintenance can be avoided. The merits of 

proposed nonlinear features have been explained. However, 

the shortcoming is the complexity of computation and the 

longer time their estimation takes than time-domain features. 
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