An Application of Stochastic Context Sensitive Grammar Induction to Transfer Learning: Appendix

Eray Özkural

May 26, 2014

Appendix

Derivation Lattice

A derivation lattice that shows the derivation of the expression (sqr (sqr x) using a subset of a stochastic grammar for Scheme is provided in Fig. 1. We do not demonstrate the entire grammar here because it is too long for a single example. Instead, we refer to a small fragment which is appropriate for display. Here, we show how how a context-sensitive grammar can encode type information, whereas the grammar can distinguish between number variables and string variables. The derivation we are going to demonstrate is the following:

$$
\begin{equation*}
(\text { define }(\operatorname{sqr} x)<\operatorname{bod} y>) \Rightarrow^{*}(\text { define }(\operatorname{sqr} x)(* x x)) \tag{1}
\end{equation*}
$$

which we reduce to the derivation of a single non-terminal body:

$$
\begin{equation*}
<b o d y>\Rightarrow^{*}(\text { define }(\text { sqr } x)(* x x)) \tag{2}
\end{equation*}
$$

Sample Stochastic Grammar Fragment for Scheme

Following are rules for the stochastic grammar fragment for the example in Scheme. The syntax of the rules follow the typical Baus-Naur Form, where nonterminals are written as a-nonterminal, and terminals are written as a-terminal. A variable* denotes that the non-terminal is repeated zero or more times, while variable ${ }^{+}$denotes that the non-terminal is repeated one or more times. The only change is that, under each rule, the probability of the rule is written in addition. This grammar fragment is a subset of the Scheme grammar that we use in our prototype system. It is only given for demonstrating how the derivation lattice may be used to derive a sentence from a given stochastic grammar.

Note that context-sensitive productions have been added for the sake of demonstration of useful derivation compression.

$$
\begin{gathered}
\text { body } \rightarrow_{1.0} \text { definition* sequence } \\
\text { sequence } \rightarrow_{1.0} \text { command }^{*} \text { expression } \\
\text { command } \rightarrow_{1.0} \text { command }^{*} \text { expression }
\end{gathered}
$$

Figure 1: A sample derivation lattice

```
    procedure-call }\mp@subsup{->}{0.2}{}\mathrm{ (operator operand*)
    procedure-call }\mp@subsup{->}{0.4}{}\mathrm{ std-procedure
    procedure-call }\mp@subsup{->}{0.4}{}\mathrm{ previous-solution
```

```
std-procedure }\mp@subsup{->}{0.2}{*}\mp@subsup{\mathrm{ operand }}{}{+
std-procedure }\mp@subsup{->}{0.2}{}+\mp@subsup{\mathrm{ operand}}{}{+
std-procedure }\mp@subsup{->}{0.1}{}\mathrm{ - operand }\mp@subsup{}{}{+
std-procedure }\mp@subsup{->}{0.1}{}/\mp@subsup{\mathrm{ operand}}{}{+
std-procedure }\mp@subsup{->}{0.1}{}\mathrm{ string? str-operand
std-procedure }\mp@subsup{->}{0.1}{}\mathrm{ string? make-string
std-procedure }\mp@subsup{->}{0.1}{}\mathrm{ string-length str-operand }\mp@subsup{}{}{+
std-procedure }\mp@subsup{->}{0.1}{}\mathrm{ string-append str-operand }\mp@subsup{}{}{+
```

$$
\begin{gathered}
\text { operand } \rightarrow_{1.0} \text { expression } \\
* \text { operand } \rightarrow_{0.9} \text { num-operand } \\
* \text { operand } \rightarrow_{0.1} 2
\end{gathered}
$$

```
expression }\mp@subsup{->}{0.2}{}\mathrm{ variable
expression }\mp@subsup{->}{0.1}{}\mathrm{ literal
expression }\mp@subsup{->}{0.1}{}\mathrm{ procedure-call
expression }\mp@subsup{->}{0.1}{}\mathrm{ lambda-expression
expression }\mp@subsup{->}{0.1}{0}\mathrm{ conditional
expression }\mp@subsup{->}{0.1}{}\mathrm{ assignment
expression }\mp@subsup{->}{0.1}{}\mathrm{ derived-expression
expression }\mp@subsup{->}{0.1}{}\mathrm{ abstract-expression
expression }\mp@subsup{->}{0.1}{}\mathrm{ frequent-expression
```

$$
\begin{aligned}
\text { variable } & \rightarrow_{0.5} \text { num-variable } \\
\text { variable } & \rightarrow_{0.5} \text { str-variable } \\
\text { num-variable } & \rightarrow_{0.6} \times \\
\text { num-variable } & \rightarrow_{0.4} \mathrm{y} \\
\text { str-variable } & \rightarrow_{0.6} \mathrm{~S} \\
\text { str-variable } & \rightarrow_{0.4} \mathrm{~W}
\end{aligned}
$$

