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Abstract

Two aspects of Taguchi’s methods for analyzing parameter design
experiments that can be improved upon are considered. It is shown how
using interaction graphs instead of marginal graphs, and how using the
sample variance instead of a signal-to-noise ratio, can lead to product
designs that are more robust to variation. The advantages of the alter-
native analysis will be illustrated by reanalyzing a case study considered
by Barker (1986).
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1 Introduction

Two aspects of Taguchi’s methods for analyzing parameter design exper-
 iments that can be improved upon are considered: 1) the use of interaction
graphs instead of marginal graphs, and 2) the use of the sample variance
and the sample mean instead of a signal-to-noise ratio and the sample mean
when the objective is to make the response as large as possible with mini-
mum variability. Barker's (1986) case study is reanalyzed using these methodé,
and p#rameter settings that should be more robust to variation are obtained.
Both topics illustrate applications of important statistical concepts that can
be readily understood by quality practitioners without sophisticated statistical
backgrounds. _

Examination of the alias chains and their sums of squares in an analysis of
variance (ANOVA) on the sample mean ¥ of Barker’s data shows that there is
strong evidence of the presence of an interaction. It is shown why the graph of
an interaction is more appropriate than the marginal graphs in the interpreta-
tion of the problem as well as in the selection of the best levels of the factors.
As indicated by Hunter (1985), Ryan (1988), and Gunter (1987), it has been a
matter of concern for statisticians that practitioners of the Taguchi methods of
quality assurance have often not considered the effects of interactions. Tribus
and Szonyi {1989) point out that interactions are to be expected in Barker’s
experiment, although they do not find them.

A number of statisticians have expressed a preference for the use of the
sample mean 7 and the sample variance s? instead of the sample mean 7 and
a signal-to-noise ratio as proposed by Taguchi for parameter design (see Box,
1988; Leon, Shoemaker and Kackar,1987; Pignatiello and Ramberg,1985). It is
shown why, in Barker’s example, using the variance instead of a signal-to-noise
ratio should lead to a more robust product design.

Barker’s case study is briefly reviewed in the second section. Section 3
shows that there is strong evidence of the presence of an interaction, and
scctions 4 and 6 show why an interaction graph is more appropriate than

marginal graphs in obtaining information on the problem and in the selection
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of the best levels of the factors. Section 5 indicates why use of the sample
variance is preferable to use of a signal to noise ratio to reduce variability. The
results of the analyses of the interactions and of the sample variance are used
in section 6 to obtain a product design that should be more robust to variation
than Barker’s. '

2 Barker’s Example

Barker (1986) gave an industrial application of the Taguchi methods of
parameter design. He examined the butterfly, a small plastic component in
the carburetor of a lawnmower engine. The main objective of the study was
to obtain the factor settings that produce consistently (i.e., with low variabil-
ity) large butterfly breaking strengths, so that the product design is robust to
variation.

The six factors in Barker’s example will be labeled as follows:

LABEL FACTOR LEVELS
A Feed ra.fe(Grarns /Min) 1600 1200 1400
B First screw RPM 400 440 480
C Second screw RPM 850 900 950
D Gate size -30 0 430
(thousands from nominal)
E First temperature(°F) 280 320 360

F Second temperature(®F) 320 360 400

Each one of these factors was considered at three levels, and 27 runs using
various combinations of levels of the factors were used. The 27 runs, which
are shown in Table 1, correspond to a 3%;7 design using columns 1,2,5,9,10
and 12 (factors A,B,C,D=ABC, E=AB?C? and F=AB2C respectively} of the
L27(3") orthogonal array. For each one of the 27 runs, 18 observations (in an

Ls orthogonal array) were made, from which the sample mean ¥, the sample



Table 1. Results of Barker’s Experiment

Run A B C D E F ¥ s SN
1 -1 -1 -1 -1 -1 -1 874 315 359

[
%]

-1 0 -1 -1 962 409 34.1
0 1 0 0 1216 36.7 404
-1 1 1 1208 464 39.2

[ 3]
(=}

2 -1 -1 0 0 0 0 1156 246 405
3. -1 -1 1 1 1 1 1062 363 368
4 -1 0 -1 0 0 1 1015 346 373
3 -1 0 0 1 1 -1 1176 354 39.1
6 -1 0 -1 -1 1152 243 40.5
7 -11 -1 1 1 0 1311 30.7 414
8 -1 1 0 -1 -1.1 939 354 368
9 -1 1 0 -1 1343 355 408
16 0 -1 -1 0 1 0 1116 21.9 405
1 0 -1 0 1 -1 1 1086 305 39.2
12 0 -1 1 -1 0 -1 111.9 293 40.0
3 0 0 -1 1 -1 -1 1057 28.0 393
i4 0 0 0 -1 0 0 1183 201 411
153 0 0 1 0 1 1 133.1 34.0. 415
6 0 1 -1 -1 0 1 1041 332 388
1T 0 1 0 0 1 -1 1445 354 423
18 0 1 1 -1 0 1335 214 422
9 1 -1 -1 1 0 1 825 416 33.2
20 1 -1 0 -1 1 -1 858 420 295
21 1 -1 1 0 -1 0 1204 335 40.4
22 1 -1 -1 1 0 993 36.7 38.0
23 1 6 ¢ -1 1 991 415 36.2

24 1

1

1

1

0
0
0 1 1 6 -1 1153 41.1 3838
1
1
1

[
-]



standard deviation s,and the “larger the better” signal-to-noise ratio SN =
—10log[3(1/42)/n] of the breaking strength of the butterfly were computed
(see Table 1). An analysis of variance (ANOVA) can be performed on each
one of the three statistics 7, s,and SN.

3 Interactions for 7

In reconsidering Barker’s example, Tribus and Szonyi (1989) point out that
the viscoelastic properties of plastic are very sensitive to temperature, so that
one would expect to see an interaction between temperature and feed rate,
or between temperature and dimensions (gate size). On the other hand, they
state that Barker’s use of the L7 orthogonal array guarantees that interactions
will not be observed. As will be shown in this section, there is strong evidence
of a B x E interaction in the data. The analysis that follows illustrates how,
even in highly confounded experimental designs with variables at three levels,
information on interactions can sometimes still be obtained.

The analysis of variance for 7 taking interactions into account is given in
Table 2. The “source” column of Table 2 gives the alias chains, or confounding
patterns, for the design. The alias chains are a consequence of Barker’s partic-
ular choice of six (out of the thirteen) columns in the L7(313) orthdgonal array
to correspond to the factors. The first six terms correspond to the main effects
and the components of two-factor interactions that they are aliased with, and
the next seven terms correspond to components of two-factor interactions that
are aliased with each other.

In considering an analysis of variance for main effects only (as Barker did
in Table VII}, the bottom seven sums of squares for interaction given in Table
2 are pooled to give the residual sums of squares. It is apparent from Table
2 that the sums of squares for interaction are vastly different, ranging from
.02/27 = .0007 to 8268.98/27 = 306.2585, with six orders of magnitude of
difference. It seems unreasonable to pool the interaction sums of squares to

estimate a commmon variance; .this inhomogeneity in the estimates of error
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provided by the interaction terms is evidence that there are interactions present
(see Addelman, 1962, p. 34).

To test for inhomogeneity in the pooled components of the residual sum of
squares, Bartlett’s criterion can be used (see Davies, 1956, pp. 288-289). The
test statistic is 23.73, which is highly significant when compared to Foy 600 =
2.8 at the a = 0.01 level of significance. This indicates that there is strong

evidence of the presence of interactions.

Table 2. ANOVA for 7, with factors and interactions

Source d.f. | Sum of Squares
A=DE? 2 25,489.58 /27
B=DF? 2 33,750.02/27
C=EF 2 44,015.54/27
D=AE? =BF? 2 | 22,766.96/27
E=AD=CF 2 12,150.02/27
F=BD=CE 2 20,643.86/27
AB=CD? 2 02/27
AB?=CE?=CF?=EF? | 2 .08/27
AC=BD?=BF=DF | 2 .02/27
AC?=BE? 2 8,268.98/27
AD?=BC=AE=DE | 2 .08/27
AF=CD=BE 2 8,217.62/27
AF?=B(? 2 02/27
Residual 0 0
Total 2% | 175,302.80/27

On the other hand, the two large sums of squares for interaction in Table 2
correspond to the terms AC? = BE? and AF = CD = BE, which contain the
two components BE? and BE of the B x E interaction. In order to test the
hypothesis that it is the B x E interaction that accounts for the large sums of

squares, the linear x linear component By x Ej, of the B x F interaction is



given in Table 3. The residual sum of squares is found by pooling the re-
maining components of the sums of squares corresponding to two-factor in-

The variance o?

teractions. can be estimated by the residual mean square,
whose extremely small value (compared to the other mean squares) gives un-
usually large values for the F-statistics. These indicate that all main gffects

and B;, x Ey, are highly significant.

Table 3. ANOVA for i, with factors and By x Ej,

Source df | Sum of squares | Mean square | F-statistic

A 2 25,489.58/27 | 12,744.79/27 | 637,239.5**
B 2 33,750.02/27 | 16,875.01/27 | 843,750.5**
C 2 44,015.54/27 | 22,007.77/27 | 1,100,388.5**
D 2 22,766.96/27 | 11,383,48/27 | 569,174.0**
E 2 12,150.02/27 | 6,075.01/27 | 303,750.0**
F 2 20,643.86/27 | 10,321.93/27 | 516,096.5**
BrxEp| 1 16,486.56/27 | 16,486.56/27 | 824,328.0%* .
Residual | 13 26/27 02/27

Total 26 | 175,302.80/27

**significant at a = .01

The model corresponding to the ANOVA in Table 3 can be written in

response surface notation (see Box and Draper, 1986) as

6 6
7, =+ E Bizi+ Z ,Bjjx_?,‘ + Baszaitsi + €

i=1 =1

(1)

where z;; is the i** value of the j* factor. In this notation, Factor A becomes
Factor 1, Factor B becomes Factor 2, etc. Factor A in Table 3 combines the
linear term B;z,; and the quadratic term §;;z%;. The linear x linear component
By, x Er, of the B x F interaction corresponds to the term Bosxq;7s;. The least

squares estimates of the § parameters and the corresponding ¢-statistics are
shown in Table 4,



TABLE 4. Response surface parameter estimates and

t-statistics

_ Parameter
Variable | Estimate | t-statistic
Intercept 131.58 6967.4
n -3.43 -535.2
zo 8.33 1299.0
T3 9.52 1483.5
T4 4.74 439.6
Ts 5.00 779.4
Tg -2.72 -423.5
a? 11.04 | -994.0
i -0.01 -1.0
z3 0.006 0.5
x3 -8.54 -769.0
x? -0.01 -1.0
zi -10.26 -923.5
TyTs 7.13 907.9

The model in equation (1) with the parameter estimates of Table 4 (ex-
cluding the terms in z3,z} and 2) reproduce exactly Barker’s values of the
mean response 7 given in Table 1. This explains the small value of the residual
sum of squares in Table 3. The mean square for the linear x linear component
of the B x E interaction shown in Table 3 is larger than the mean squares of
all factors except B and C (and is comparable to that of B), so that the Bx E
interaction is as important as most of the factors themselves.

Barker mentions that a three-level experiment should be performed if the
possibility of a second order (curved) relationship among the factors is antici-
pated. This line of reasoning leads to the consideration of interactions, since a
second order model includes not only the quadratic terms z? and z? for factors

¢ and 7, but also the interaction term z;z;.



4 Graphs

- This section illustrates how more information on a problem can be obtained
from interaction graphs than from marginal graphs.

Figure la for the B x E interaction shows the average of the values of 7,
the mean breaking strength of the butterfly, at the various combinations of B
- (First Screw RPM) and E (First Temperature) levels. Figures 1b and ¢ give
the marginal graphs of the average values of 7 at the three levels of B and £
respectively. .

Several practical conclusions may be drawn from the B x E interaction
graph of Figure la, namely:

1) The breaking strength ¥ of the butterfly diminishes with increasing tem-
perature E if the first screw is at 400 RPM (B = —1), while 7 increases

- with E (and increases sharply with E) if the first screw is at 440 or 480

RPM (B=0 or 1). The butterfly breaking strength is fairly insensitive
to changes in temperature E when B = —1, but is very sensitive when
B=1.

2) For each First Temperature level E, the butterfly breaking strength 7
increases with B (number of RPM’s). However, at the low temperature
E = —1 the breaking strength is fairly insensitive to changes in B, while
at the high temperature E = 1 the breaking strength is very sensitive to
changes in B.

These practical implications of the B x E interaction graph of Figure la are
not even suspected from the B and F marginal graphs of Figures 1b and lc,
which are the only ones considered by Barker.

As shown in Figure la, there is a large difference in the average response
¥ at levels 0 and 1 of E, but these differences average out to give the small
differences in response of the marginal graph for E (Figure Ic). This explains

why the B x E interaction has a larger mean square than factor E itself in the

ANOVA of Table 3.
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Figure 2. B X E interaction, and B and E marginals for SN
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For the signal-to-noise ratio SN, Figure 2a shows the B X E interaction
graph and Figures 2b and 2c show the B and E marginal graphs respectively.

5 Why s? instead of SN

As mentioned by Hunter (1985), Taguchi’s method of parameter design for
finding the best combination of levels of the factors consists of the following
stepsé 1) Find those factors that maximize the signal-to-noise ratio SN as a
measure of variability. 2) Find those factors (when they exist) that do not
have an effect on SN but that do affect the mean ¥, and use them to adjust
the response to target. These two steps are used to obtain consistently (i.e.,
with low variability) high (as the target) butterfly breaking strengths, so that
the product design is robust to variation. It will be shown that the signal-to-
noise ratio is not an appropriate measure of variability in Barker’s example, so
that the variance (or a function of it such as log s) is more suitable for step 1.
The factors affecting the sample mean 7 as a measure of location can then be
used to adjust the response to target.

When Barker ran the confirmation experiment at the selected optimal lev-
els, he found that “the variation in this verification experiment is still greater
than we can live with” (p. 41); he then proceeded to tighten tolerances to
reduce variation. Figure 2 shows the B x E interaction graph and the B and
E marginal graphs for the “larger the better” signal-to-noise ratio SN. Note
that they are just distortions of the cotresponding graphs for 7 given in Figure
1. It can be shown that, for the other variables, the graphs of SN are also
distortions of the graphs of . These pictorial results indicate that, in Barker’s
example, the signal-to-noise ratio SN is driven mainly by the “signal” 7, which
is only slightly contaminated by noise. In fact, the correlation coefficient be-
tween ¥ and SN is r = 0.86, which is highly significant (p < 0.001). This
means that SN and 7 are both measures of location, and that the “larger the
better” signal-to-noise ratio SN is not an appropriate measure of variability

in Barker’s example.
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Barker’s objective was not just to produce high butterfly breaking strengths,
but to make them consistently high. The engineering goal of consistency (i.e.,
low variability, or robustness) can be more efficiently approached by using the
variance, instead of a. signal-to-noise ratio, as a statistical measure of vari-
ability. The statistic logs can be used as a measure of variability instead of
the sample variance s? (or the standard deviation s) because the logarithmic

transformation gives improved statistical properties (see Kackar 1985, p. 184).

6 Suggested Levels

The best levels of the factors should be found from the interaction graphs
(instead of from the marginal graphs, which “average out” differences) when an
interaction is significant, and from the marginal graphs when the corresponding
interactions are not significant. Figure 2 illustrates the fact that the best
factor levels from an interaction graph and from marginal graphs do not always
coincide: from Figure 2a both B and E should be at level 1 to maximize SN,
while Figures 2b and 2c indicate that B and E should be at levels 1 and 0
respectively. From Figure la, the third levels of B and E maximize 7 for the
significant B x E interaction. 7

The numbers in Table 5 summarize the best levels of the six factors for
¥ and log,ys. The significance of the factors at the @ = 0.05 and a = 0.01
levels in the corresponding analyses of variance are also indicated. Factors A
and F should both be at level 0. Factors B,C and D are highly significant
in the ANOVA for 7 but not significant in that of log s, so that they should
be at levels 1, 1 and 0 respectively so as to maximize 7. To try to reduce
variability it seems reasonable to set factor E at its low level of -1, which is

highly significant in the ANOVA for s and moderately so for that of log s.
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Table 5. Best levels and significance of factors
for 7 and log s.

7] log s

A ** o**
B [** -1
C 1** -1
D 0** -1
E 14 1*
F 0** 0**
BxE **

*a = 0.05

*x a = 0.01

The best levels selected by Barker using 7 and SN and those suggested
here considering 7 and log s differ only in the settiﬁg of factor E {at level 1
in Barker with level -1 being proposed). An additional experiment should be
performed at the levels 0, 1, 1, 0, -1 and O for factors A, B,C,D,E and F

respectively, to confirm that the variability is reduced.

7 Summary

Two aspects of Taguchi’s methods of parameter design in quality assur-
ance that can be improved upon were considered. It was shown how use of
interaction graphs instead of marginal graphs, and use of the variance instead
of a signal-to-noise ratio, can lead to product designs that are more robust to
variation. These methods were illustrated using Barker’s case study.

There has been concern in the statistical community that users of the
Taguchi methods of quality assurance have often not taken interactions into
account. If factors are at three levels to be able to detect curved relationships,
then inclusion of all second order terms implies consideration of interactions.
Pignatiello and Ramberg’s (1985) application of the Taguchi methods illus-
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trates how, if interactions are present but are not taken into account, inaccu-
rate conclusions may be drawn. When an interaction is significant, the graph
of the interaction should be used instead of the marginal graphs to gain a
better understanding of the problem as well as for determining the best levels
of the factors in parameter design.
Barker’s objective was to produce consistently high butterfly breaking strengths.

In the pursuit of this engineering goal, it was shown that statistical considera-
tions lead to the use of the sample variance instead of a signal-to-noise ratio as
a measure of spread to achieve consistency (with the sample mean as a mea-
sure of location). It was pointed out that the “larger the better” signal-to-noise

ratio is not appropriate because it measures location instead of spread.
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