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AN APPLICATION OF THE CORRELATION STRUCTURE
OF A MARKOV CHAIN FOR THE ESTIMATION

OF SHIFT PARAMETERS IN QUEUEING SYSTEMS
UDC 519.21

O. A. VOĬNA AND E. CZAPLA

Abstract. The problem on the estimation of shift parameters of a queueing system
M/M/1/0 from distorted data observed during a time interval between two sequential
states of the system is considered in this paper. The information about the states of
the system is not available. Asymptotic properties of the estimators are studied.

Consider a queueing system M/M/1/0 containing a single server whose service inten-
sity is ν. The input of the server is characterized by the intensity λ. Let s1, s2, . . . , sk, . . .
be the sequence of moments when customers either arrive at the system or leave it. As-
sume also that we do not know whether a certain moment sk, k = 0, 1, . . . , is a time
when the service of a customer is terminated or it is a moment when a customer leaves
the system because it is overloaded. Denote by µ(t) the number of customers in the
queueing system at the moment t and note that µ(t), t ≥ 0, is a stochastic process. Let
the stochastic process x(k), k = 0, 1, . . . , be defined as follows:

(1) x(k) = µ(sk), k = 0, 1, . . . .

Assume that the system is under observation during a time interval [0, T ] and let the
observations

ξ̄T =
{

ξ1, ξ2, . . . , ξK(T ), ξ
′
K(T )

}
be made with some delay during the intervals

τk = sk − sk−1, k = 1, 2, . . . , s0 = 0.

The delay θµ depends on the state µ of the queueing system at the moment sk. In other
words, if

K(T ) = max{k, sk ≤ T},
then

ξk = τk + θx(k−1), k = 1, 2, . . . , K(T ), ξ′K(T ) = T − sK(T ) + θx(K(T )).

Note that the information about the states µ(t) of the system is not available; thus the
vector {x(0), x(1), . . . , x(K(T ))} is unknown. The problem therefore is to estimate the
shift parameters θ = {θ0, θ1} by using partially distorted observations ξ̄T and known
parameters (λ, ν). It is worthwhile mentioning that the classical statistical methods of
estimation of parameters (say, the maximum likelihood method) are not helpful for the
queueing system described above because of lack of statistical information.

A method of estimation based on the correlation structure of a Markov chain is pro-
posed in [3]. Some applications of this method for the estimation of the vector of shift
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parameters θ0 = {θ0
0, θ

0
1} is announced in [1, 2]. We state and prove the corresponding

results in this paper.
For the sake of simplicity we assume that the estimators are constructed from a vector

of observations ξ̄N = {ξ1, ξ2, . . . , ξN} of a given size N . We study the properties of these
estimators as N is increasing. The results can easily be reformulated for the case where
the system is observed on an increasing time interval [0, T ] and the size of the vector of
observations ξ̄T =

{
ξ1, ξ2, . . . , ξK(T ), ξ

′
K(T )

}
is random and equals K(T ) + 1.

The process µ(t), t ≥ 0 (thus the process x(t), t ≥ 0, too) has only two states
for systems of the M/M/1/0 type and therefore the vector θ of the unknown shift of
parameters is two-dimensional:

µ(t) ∈ {0, 1}, θ = {θ0, θ1}.
Let ξ̄N = {ξ1, ξ2, . . . , ξN} be the statistical data used to construct estimates for un-

known coordinates of the vector θ. Note that

ξk = sk − sk−1 + θx(k−1), k = 1, 2, . . . , N.

Consider the following statistics:

q
(1)
N =

1
N − 1

N−1∑
l=1

ξlξl+1,(2)

q
(2)
N =

1
N − 2

N−2∑
l=1

ξlξl+2.(3)

Lemma 1. The statistics q
(1)
N converges in probability as N → ∞ to the random vari-

able Q1 defined as follows:

(4) Q1 =
1

λ + 2ν

(
θ1 +

1
λ + ν

) (
2ν

(
θ0 +

1
λ

)
+ λ

(
θ1 +

1
λ + ν

))
.

This means that

(5) lim
N→∞

P
{∣∣∣q(1)

N − Q1

∣∣∣ > ε
}

= 0

for an arbitrary positive number ε > 0.
The statistics q

(2)
N converges in probability as N → ∞ to the random variable Q2

defined as follows:

Q2 =
ν2

(λ + ν)(λ + 2ν)

(
θ0 +

1
λ

)2

+
2λν

(λ + ν)(λ + 2ν)
+

(
θ0 +

1
λ

) (
θ1 +

1
λ + ν

)

+
ν2 + λν + λ2

(λ + ν)(λ + 2ν)

(
θ1 +

1
λ + ν

)2

.

(6)

This means that

(7) lim
N→∞

P
{∣∣∣q(2)

N − Q2

∣∣∣ > ε
}

= 0

for an arbitrary number ε > 0.

Proof. It follows from the definition of the queueing system M/M/1/0 and by using prop-
erties of general right continuous Markov chains with continuous time ([4, Chapter VI])
that the stochastic process x(k), k = 0, 1, . . . , defined by relation (1) is a homogeneous
ergodic Markov chain with discrete time whose matrix of one-step transition probabilities
is given by

(8) P =
∥∥∥∥ 0 1

ν
λ+ν

λ
λ+ν

∥∥∥∥ .
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The stationary distribution π = {π0, π1} of the chain x(k), k = 0, 1, . . . , is defined by
the following equalities:

(9) π0 =
ν

λ + 2ν
, π1 =

λ + ν

λ + 2ν
.

Without loss of generality we assume in what follows that the initial distribution of the
chain x(k), k = 0, 1, . . . , coincides with its stationary distribution (see [4, Chapter V]),
and therefore x(k), k = 0, 1, . . . , is a second-order stationary ϕ-mixing stochastic process
(see [5]). Moreover there exist two numbers C > 0 and 0 < ρ < 1 such that the mixing
coefficient can be represented in the following form:

ϕ(n) = Cρn, n = 1, 2, . . . .

Applying the general result on the structure of purely discontinuous Markov chains
with continuous time ([4, Chapter VI]) we prove that the vector of observations

ξ̄N = {ξ1, ξ2, . . . , ξN}

is such that

(10) ξt ∼ ξ(t)(x(t)), t = 1, 2, . . . , N,

where the symbol “∼” stands for the stochastic equivalence of random variables and{
ξ(l)(x), x ∈ {0, 1}, l = 0, 1, 2, . . .

}
is a family of random variables that are independent of the stochastic process x(k),
k = 0, 1, . . . , are mutually independent for different l, and whose distribution does not
depend on l. Moreover

P
{
ξ(0)(0) > t

}
= e−λ(t−θ0), t > 0,(11)

P
{
ξ(0)(1) > t

}
= e−(λ+ν)(t−θ1), t > 0.(12)

It is easy to see that the process defined by relation (10) also is a second-order sta-
tionary ϕ-mixing stochastic process. Its mixing coefficient ϕ̄(n) is of the following form:

(13) ϕ̄(n) = 2Cρn, n = 1, 2, . . . .

Consider two stochastic processes ηi(t), i = 1, 2, t = 1, 2, . . . , defined as follows:

(14) ηi(t) = ξtξt+i, i = 1, 2, t = 1, 2, . . . .

Obviously ηi(t), i = 1, 2, t = 1, 2, . . . , are second-order stationary ϕ-mixing stochastic
processes and their mixing coefficient is given by (13). The ergodic theorem for second-
order ϕ-mixing stochastic processes [4, 5] implies that

1
n

n∑
t=1

ηi(t) → E(ηi(t)), i = 1, 2,

as N → ∞ with probability one. A straightforward calculation completes the proof of
Lemma 1. �

Now let the vector π of the stationary distribution of the chain x(k), k = 0, 1, . . . , be
defined by relation (9) and let P (2) =

∥∥p
(2)
ij

∥∥ be its matrix of two-step probabilities, that
is,

P (2) = P 2.
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Consider the following statistics:

Yn(0) =

√√√√
q
(1)
n +

ν(λ + ν)
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

, Yn(1) =

√√√√ (λ + ν)2
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

,

where q
(1)
N and q

(2)
N are defined by relations (2) and (3), respectively.

Theorem 1. The probability that the system of equations

(15)

{∑1
i=0

∑1
j=0 πipijxixj = q

(1)
N ,∑1

i=0

∑1
j=0 πip

(2)
ij xixj = q

(2)
N

has solutions approaches one as N → ∞.
If the parameters of an M/M/1/0 system are such that

(16) (θ1 − θ0) −
ν

λ(λ + ν)
> 0,

then

θ∗0(n) = Yn(0) −
√

λ + ν√
ν

Yn(1) − 1
λ

,(17)

θ∗1(n) = Yn(0) +
√

ν√
λ + ν

Yn(1) − 1
λ + ν

.(18)

Furthermore, if

(19) (θ1 − θ0) −
ν

λ(λ + ν)
< 0,

then the statistics

θ∗0(n) = Yn(0) +
√

λ + ν√
ν

Yn(1) − 1
λ

,(20)

θ∗1(n) = Yn(0) −
√

ν√
λ + ν

Yn(1) − 1
λ + ν

(21)

are consistent estimators of the parameters {θ0, θ1}. This means that

(22) lim
n→∞

P{|θ∗i (n) − θi| > ε} = 0, i = 0, 1,

for any positive number ε > 0.

Proof. First we consider the system of equations

(23)

{
xT πPx = Q1,

xT πP 2x = Q2,

where x = (x0, x1) is the vector of unknowns, xT means the transposition of x, and Q1

and Q2 are defined by equalities (4) and (6), respectively. Put

Φ0(θ0, θ1) = E
(
ξ(0)(0)

)
= θ0 +

1
λ

,(24)

Φ1(θ0, θ1) = E
(
ξ(0)(1)

)
= θ1 +

1
λ + ν

.(25)

It follows from the proof of Lemma 1 that the vector x∗ = (x∗
0, x

∗
1) is one of the solutions

of the system of equations (23) where

x∗
0 = Φ0(θ0, θ1), x∗

1 = Φ1(θ0, θ1).
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Consider the matrix

Π̂ =

∥∥∥∥∥
√

ν√
λ+2ν

0

0
√

λ+ν√
λ+2ν

∥∥∥∥∥
and let the matrix A be defined by

A = Π̂P Π̂−1

or, in the explicit form, by

A =

∥∥∥∥∥ 0
√

ν√
λ+ν√

ν√
λ+ν

λ
λ+ν

∥∥∥∥∥ .

It is easy to see that
AAT = AT A.

Now we change the variables x = (x0, x1) for z = (z0, z1) as follows:

(26) z = Π̂xT .

Then the system of equations (23) becomes of the form{
zAzT = Q1,

zA2zT = Q2.

The eigenvalues of the matrix A are

a1 = 1, a2 = − ν

λ + ν
,

while

u(1) =
( √

ν√
λ + 2ν

,

√
λ + ν√
λ + 2ν

)
, u(2) =

(
−

√
λ + ν√
λ + 2ν

,

√
ν√

λ + 2ν

)
are the corresponding eigenvectors. Note that the matrix

U =
∥∥∥∥u(1)

u(2)

∥∥∥∥
is orthogonal, that is U−1 = UT , or in other words,

UUT = UT U =
∥∥∥∥1 0
0 1

∥∥∥∥ .

Denote by Λ the diagonal matrix of the eigenvalues of the matrix A:

Λ =
∥∥∥∥a1 0

0 a2

∥∥∥∥ .

Then
UAUT = Λ.

Moreover
UA2UT = Λ2.

Now we use the variables z = (z0, z1) such that

yT = UzT or zT = UT yT .

The transformation of variables can be written explicitly as

z0 =
√

ν√
λ + 2ν

y0 −
√

λ + ν√
λ + 2ν

y1,(27)

z1 =
√

λ + ν√
λ + 2ν

y0 +
√

ν√
λ + 2ν

y1.(28)
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Then the system of equations (23) becomes of the form{
yΛyT = Q1,

yΛ2yT = Q2.

One can easily find four solutions of the latter system by considering all possible combi-
nations of

y0 = ±Y (0), y1 = ±Y (1),
where

Y (0) =

√
Q1 +

ν(λ + ν)(Q2 − Q1)
ν2 + (λ + ν)2

, Y (1) =

√
(λ + ν)2(Q2 − Q1)

ν2 + (λ + ν)2
.

Taking into account the above changes of variables (27), (28), and (26) we conclude that
all the solutions of the system of equations (23) are given by

x0 = (±Y (0)) −
√

λ + ν

ν
(±Y (1)),(29)

x1 = (±Y (0)) +
√

ν√
λ + ν

(±Y (1)).(30)

It follows from (24) and (25) that both coordinates x∗
0 and x∗

1 are positive for the solu-
tion x∗ of the system of equation (23). Since x∗ is one of the above four solutions, it is
of the form

x∗
0 = Y ∗(0) −

√
λ + ν

ν
Y ∗(1), x∗

1 = Y ∗(0) +
√

ν√
λ + ν

Y ∗(1).

Thus Y ∗(0) = Y (0).
Now we determine the sign of Y (1) in relations (29) and (30) for the solution x∗.

Condition (16) is equivalent to the condition that the difference Φ1(θ0, θ1)−Φ0(θ0, θ1) is
positive. Similarly, condition (19) is equivalent to the condition that the same difference
is negative. On the other hand, it follows from (27), (28), and (26) that

(31) Y ∗(1) = −
√

λ + ν√
λ + 2ν

z∗0 +
√

ν√
λ + 2ν

z∗1 =

√
(ν)(λ + ν)
λ + 2ν

(Φ1(θ0, θ1) − Φ0(θ0, θ1)).

Therefore Theorem 1 follows from (31) and Lemma 1. �

Now we study the rate of convergence of the statistics θ∗(n) = (θ∗0(n), θ∗1(n)) defined
in Theorem 1 to the vector of unknown parameters θ = (θ0, θ1). Consider the vector

∆θ∗(n) = θ∗(n) − θ

and let us study the behavior of the distribution of ∆θ∗(n) as n → ∞. This allows one to
obtain the rate of convergence of the vector of estimators θ∗(n) to the vector of unknown
parameters θ as well as to construct interval estimators for unknown parameters and
statistical tests for testing hypotheses about the parameters.

Consider a vector stochastic process η(t) = (η1(t), η2(t)), t = 1, 2, . . . , where ηi(t),
i = 1, 2, t = 1, 2, . . . , are defined by relations (14). We also consider the random vectors
qn =

(
q
(1)
n , q

(2)
n

)
and

∆qn =
(√

n
(
q(1)
n − E

(
q(1)
n

))
,
√

n
(
q(2)
n − E

(
q(2)
n

)))
,

where the statistics q
(1)
n and q

(2)
n are defined by relations (2) and (3), respectively. Using

the relationship between the statistics q
(i)
n , i = 1, 2, and stochastic processes

ηi(t), i = 1, 2, t = 1, 2, . . .
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(cf. (2), (3), and (14)) and the central limit theorem for second-order stationary ϕ-mixing
stochastic processes whose mixing coefficient satisfies condition (13) [4, 5] one can obtain
the following result.

Lemma 2. The distribution of the random vector ∆qn weakly converges as n → ∞ to
the multivariate normal distribution with zero vector of expectations and the covariation
matrix

B =
∥∥∥∥b11 b12

b21 b22

∥∥∥∥ .

Moreover,

bii = E(ηi(1) − Qi)2 + 2
∞∑

t=2

E(ηi(1) − Qi)(ηi(t) − Qi), i = 1, 2,(32)

b12 = b21 = E(η1(1) − Q1)(η2(1) − Q2)

+
∞∑

t=2

E
[
(η1(1) − Q1)(η2(t) − Q2) + (η1(t) − Q1)(η2(1) − Q2)

]
.

(33)

Let the vector x∗(n) = (x∗
0(n), x∗

1(n)) be defined by the equalities

x∗
0(n) =

√√√√
q
(1)
n +

ν(λ + ν)
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

−
√

λ + ν√
ν

√√√√ (λ + ν)2
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

,

x∗
1(n) =

√√√√
q
(1)
n +

ν(λ + ν)
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

+
√

ν√
λ + ν

√√√√ (λ + ν)2
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

if condition (16) holds for the parameters of a system M/M/1/0, or by the equalities

x∗
0(n) =

√√√√
q
(1)
n +

ν(λ + ν)
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

+
√

λ + ν√
ν

√√√√ (λ + ν)2
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

,

x∗
1(n) =

√√√√
q
(1)
n +

ν(λ + ν)
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

−
√

ν√
λ + ν

√√√√ (λ + ν)2
(
q
(2)
n − q

(1)
n

)
ν2 + (λ + ν)2

if condition (19) holds.
Consider the random vector

∆x∗(n) =
(√

n(x∗
0(n) − x∗

0),
√

n(x∗
1(n) − x∗

1)
)
,

where the random variables x∗ = (x∗
0, x

∗
1) are defined by relations (24) and (25). It

follows from equalities (17), (18), (20), (21), (24), and (25) that
√

n∆θ∗(n) = ∆x∗(n).

It is seen from the proof of Theorem 1 that the vector x∗(n) = (x∗
0(n), x∗

1(n)) and the
vector y∗(n) = (y∗

0(n), y∗
1(n)) of solutions of the system{

yΛyT = q
(1)
n ,

yΛ2yT = q
(1)
n

are such that
(y∗(n))T = UΠ̂(x∗(n))T

(irrespective of either condition (16) or condition (19) holding).
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We introduce the vector y∗ = (y∗
0 , y∗

1) by putting

(y∗)T = UΠ̂(x∗)T

and consider the vector

∆y∗(n) =
(√

n(y∗
0(n) − y∗

0),
√

n(y∗
1(n) − y∗

1)
)
.

Then

(∆y∗(n))T = UΠ̂(∆x∗(n))T or (∆x∗(n))T = Π̂−1UT (∆y∗(n))T .

On the other hand, the following system of equations

(34)

⎧⎨
⎩

a1

[
(y∗

0(n))2 − (y∗
0)2

]
+ a2

[
(y∗

1(n))2 − (y∗
1)2

]
= q

(1)
n − E

(
q
(1)
n

)
,

a2
1

[
(y∗

0(n))2 − (y∗
0)2

]
+ a2

2

[
(y∗

1(n))2 − (y∗
1)2

]
= q

(2)
n − E

(
q
(2)
n

)

holds, since E(q(i)
n ) = Qi, i = 1, 2, where a1 and a2 are eigenvalues of the matrix A

defined in the proof of Theorem 1. Using the matrices

W =
∥∥∥∥a1 a2

a2
1 a2

2

∥∥∥∥ , Hn =
∥∥∥∥y∗

0(n) + y∗
0 0

0 y∗
1(n) + y∗

1

∥∥∥∥
the system of equations (34) can be rewritten in the following form:

(35) WHn∆y∗(n) = ∆qn.

Now we apply Theorem 1 and use properties of multivariate normal distributions, as-
ymptotic behavior of the random vector ∆qn obtained in Lemma 1, and the relationship
between the vectors ∆θ∗(n), ∆x∗(n), ∆y∗(n), and ∆qn to prove the following result.

Theorem 2. The distribution of the random vector ∆θ∗(n) of errors of the estima-
tion of the vector of unknown parameters θ = (θ0, θ1) weakly converges as n → ∞ to
the multivariate normal distribution with zero vector of expectations and the covariation
matrix

K =
(
Π̂−1UT H−1W−1

)
· B ·

(
Π̂−1UT H−1W−1

)T

,

where the matrix B is defined in Lemma 2, while the matrices W and H are given by

W =

∥∥∥∥∥1 − ν
λ+ν

1 ν2

(λ+ν)2

∥∥∥∥∥ , H =
∥∥∥∥2y∗

0 0
0 2y∗

1

∥∥∥∥ .
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