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Abstract

f. In training experiments with honey bees. the discrimination
of 6-pointed stars of different form and contrast is measured. The
following assumptions allow a quantitative description of these
results.

2. The bee computes the two-dimensional cross correlation
coefficient r., between the two shapes to be discriminated (the
rewarded shape and the one seen at present). This presupposes, that
the rewarded shape is stored in the memory point by point.

3. In addition to the cross correlation coefficient, the shapes
are discriminated by means of their contour length and their
contrast.

4. A noise is superimposed on the values stored in the memory.
Because of this noise, the accuracy of detecting the outline of the
stored shape depends on the value of the contrast. The Jower the
contrast, the less accurately is the outline detectable. The exactness
of the stored value of the contrast itself is also diminished by the
noise.

5. Although the results of these and of most previously
published experiments can be described quantitatively by this
model. some other results (Anderson, 1972: Mazochin- Porshnyakov,
1969) can certainly not be described in this way. In such cases, it
seems more probable that bees use abstract parametcers to discrimi-
nate the shapes because of the particular experimental method.

A. Introduction

The first experiments dealing with pattern recogni-
tion in honey bees were done by v. Frisch (1915),
Hertz (1935b) and Wolf (1935). In recent years, Ander-
son (1972), Cruse (1972a,b), Mazochin-Porshnyakov
(1969), Schnetter (1968, 1972), v. Weizsicker (1970)
and Wehner (1967, 1968b, 1969, 1971, 1972) have tried
by quantitative methods, to find the criteria of pattern
discrimination, which are the decisive ones for the bee.
Several hypotheses have been discussed: Wolf (1935)
proposed that the number of stimuli which a pattern
generates on the compound eye as the bee flies over
it is the decisive measure. Moreover, he postulated
that the shape generating the greater number of
stimuli - usually the shape with the greater contour
length - would always be favoured by the bee in-
dependently of any training. In a similar way the

contrast and the total area of a shape would influence
pattern discrimination.

In contrast to this. Hertz (1933) found that bees
could be trained in some cases to prefer the shapes
with less contour length. Hertz assumed. therefore,
that the bees apply at least two discrimination criteria:
firstly the “figural intensity”, which corresponds to the
contour length of a shape, and secondly the “figural
quality”, which cannot be defined exactly, but which
classifies together shapes as being of the same type
(e.g. striped patterns, n-pointed stars, checkerboards,
concentric annular rings). Schnetter (1968) later showed
that a bee is well able to discriminate two shapes
belonging to the same type (e.g. 4-pointed stars)
independent of which of the two shapes has the greater
contour length. He tested whether the difference of the
contour length of two shapes (Schnetter, 1968) or the
difference of the angles of the points (Schnetter, 1972)
could be the decisive criterion for the bees. For shapes
of the same type (4-pointed or 6-pointed stars) either
difference could account for the discrimination, but
neither could when the shapes were of different types.

Wehner (1969) could explain some of his results by
assuming a point-by-point comparison of the shapes,
as did, for example, Boynton et al. (1960) in describing
psychophysical experiments. This means, that the
presented shape would be compared with the rewarded
shape which must, therefore, be stored in the memory
point by point. This hypothesis however has not been
formulated quantitatively. With respect to other
experimental results Wehner (1971) postulated, that
not only the point-by-point comparison, but other
qualitatively described parameters (e.g. “orientation
of a stripe™) must be used by the bee when discriminat-
ing shapes.

Thus, none of these hypotheses provides a complete
quantitative description of the existing experimental
results. The purpose of the present paper, therefore,
is to test a hypothesis similar to one which has been
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put forward by several authors dealing theoretically (

with pattern recognition (v. Seelen, 1970; Anderson,
1968). These authors suggested that the comparison
of the two shapes may be done by using the two-
dimensional cross-correlation function of the two
shapes. Here 1 want to test the hypothesis that only
one single value of the cross-correlation function is
able to describe the experimental results. Firstly,
I shall test this hypothesis with experimental results
dealing with the discrimination of shapes of different
contrast; later, I shall test it with the published results
of Schnetter (1968) and Wehner (1967, 1968a,b, 1969,
1971), and with my own (Cruse, 1972a).

B. Experiments
1. Method

The experimental devise stood in a closed room which was
about 50 m from the bee hive. The round, horizontally lying experi-
mental plate was illuminated from above by six bulbs (15 W, DC).
The illumination of the white experimental plane was 55 lux (reflec-
tion spectrum see Fig. 1), As shapes, circles and various six-pointes
stars were used, all of them having the same area of 20 cm? (Fig. 2,
see also Schnetter, 1968, Fig. 3). They were cut out of a sheet of
aluminium, 0.5 mm thick, and coloured with black (b), dark grey
(dg) or light grey (Ig) epoxy varnish,

The luminance ratios of the white background and the shapes
was 100:9.6 (black shapes). 100:47 (dark grey) and 100:71 (light
grey). During the experiments eleven shapes lay on the plate in
annular array, The distance from one shape to the next was 15 cm.
One shape is rewarded: that is, on this shape the bee finds a little
watch-glass with sugar water. On all other shapes the watch-glass
is filled with water. After the bee has learnt to discriminate the
rewarded (positive) shape from the unrewarded (negative) shapes,
the number of choices of each shape was counted. Because during
one visit the bee can choose the rewarded shape only once, whereas
all other shapes can be chosen several times, one cannot really
compare the number of choices of the rewarded, positive shape with
the number of choices of the negative shapes. Therefore two positive
shapes were presented at the same time, one of them unrewarded
ie. with only water in the watch-glass. Then, a measure called the
choice frequency (ChF) - the number of choices of a negative shape
as a percentage of the number of choices of the unrewarded positive
shape - was used as a measure of discrimination of the two shapes.
For further details see Cruse (1972a). This method allows many
counts per unit time, but has the disadvantage that the lowest values
of choice frequency are much higher than in experiments where
only one pair of shapes had to be discriminated (Cruse, 1972a;
Schnetter, 1968). This lowest value, where the choice frequency
reaches a saturation level independent of increasing difference
between the shapes, shall be called the value of neutral choices (N),
following Jander (1968).

2. Series 1. Positive and Negative Shapes
with the Same Contrast

To look for the influence of the contrast on pattern
discrimination, nine experiments with three different
grey tones were performed. For each grey tone, in
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Fig. 1. Intensity R of light reflection from the experimental plate.
measured against MgO = 100%
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Fig. 2. Training shapes used in the experiments. All shapes have the

same area of 20 cm?®. The number ab ove left gives the symbol of the

shape used in the text, the number below right gives the contour
length in mm
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Fig. 3. The results of three experiments. using star no. 605 as the
positive shape. The choice frequency of the unrewarded shapes
has been measured. In each experiment the shapes had different
grey tones: black (closed circles), dark grey (crosses) and light grey
(open circles)
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Table 1. Results of Series 1. Positive and negative shapes have the

.ame contrast. The choice frequency to the negative shape is

measured in percent of the choices of the unrewarded positive shape.
The standard deviation is shown in brackets

;hapc Choice frequency
Pos. Neg. Black Dark grey Light gru
(in “i)) (m %o (m %)
0 601 93(x 9) 97(+15) 101+ 5)
0 602 86(17) 93(£ 6) 9%(+ 9)
0 603 Ti(+ 9) 74(+11) B9(+11)
0 604 68(+ 7) T4(£13) 78(+10)
0 605 56 (+ 10) 62(+11) T+ 8)
0 606 41(x 5) 60(+ 9) 64(+ 9)
0 607 M7 50(£ ) 3 M
0 608 28(+10) 38(+12) 36(4 9)
0 609 20(+ 4 35(116) 34(£13)
605 0 46(+ 6) 574+ 9 53(£19)
605 601 47(+ 8 56(+ 6) 63(+23)
605 602 50(£ 7) 61(+13) 68 (+18)
605 603 59(+20) Tt (+ 16) T8 (+24)
605 604 76(+ 8) 85(+15) 8S(+15)
605 606 69(17) T7(+ 16) 86(+15)
605 607 55(+11) 69(+ 7) TO(+11)
605 608 43(+ 6) 53(+14) 68(+ 7)
605 609 24(+ 10) 40(+1tt) 49(+ 14)
608 0 2 7N 29(+ 8) A+ 7
608 601 29(+ 9 35+ 7 B(+15
608 602 26(+10) 42(+10) 4+ 8
608 603 J0(+14) 40(+12) 47(% 8)
608 604 39(+12) 47(+12) 58(+15)
608 605 43(+12) 55(+ 7 Ti(+13)
608 606 60(+ 6) 73(+ 9) 84(+12)
608 607 72(+10) 88(+ 1) 98(+ 8)
608 609 72(4+10) 67(+ 9 64(+10)

three different experiments, the circle, the star no. 603
and the star no. 608 were used as positive shapes. One
example can be seen in Fig. 3. Here the star no. 605
has been rewarded. The ordinate represents the choice
frequency. Higher values mean, that the shape is more
easily confused with the positive shape than for lower
values. The results are shown for black shapes (closed
circles), dark grey shapes (crosses) and light grey
shapes (open circles). The complete results are shown
in Table 1. It can be seen, that black shapes are better
discriminated from one another than dark grey ones,
and these again better than light grey ones. Discrimina-
tion improves in the same way as when cnlarging the
difference of contour length.

3. Series 1. Positive and Negative Shapes
with Different Contrast

In order to see whether the contrast of the positive
shape has a different influence on pattern discrimina-
tion than the contrast of the negative shape, | performed

a second series of experiments with shapes of different
contrast in the same experiment. As in Series I, the
positive shape was presented twice — once rewarded,
once unrewarded. On the experimental plate lay
either two black shapes (the rewarded and the un-
rewarded positive shape), and nine unrewarded light
grey shapes (the negative shapes), one of them with
the same geometrical form as the positive shape, or,
correspondingly, in an alternative experiment, two
light grey and nine black shapes. In all these ex-
periments one shape very unsimilar to the positive
shape was removed in order to keep constant the
number of shapes lying on the experimental plate.

These experiments were done only with black and
light grey shapes. As in Series 1 the shapes no. 0, 605
and 608 have been used as positive shapes. When the
positive shape was black. the number of choices of
each light grey shape was determined (in percent of
the choices of the unrewarded positive shape). When
the positive shape was light grey, the number of
choices of each black shape was determined.

When [ did these experiments, 1 was interested only in the
qualitative influence of the contrast. This was the reason why |
measured the choices of the unrewarded positive shape only in
the two experiments with the circles as positive shapes. In all other
experiments [ only measured the number of choices of the negative
shapes. as one doces in transfer experiments.

To compare the results of all experiments, the shape which had
the same geometrical form as the positive shape but different
contrast was used as a reference shape. In the first experiment
{positive shupe 0y). the choice frequency of the shape O, (light grey
circle) was 53%, in the sccond experiment (positive shape 0,) the
choice frequency of the shape 0, was 67", In this way the results
of the other experiments were normalized: when the positive shape
wits 605, or 608, the choice requencies of 605, and 608, were set
at 53". When the positive shape was 605, or 608,, the choice
frequency of 605, and 608, were set at 67%.

The results are summarized in Table 2. As can be
seen, the light grey shapes can be better discriminated
from a positive black shape than the black shapes
from a positive light grey shape. This means that two
shapes can be discriminated better if the positive shape
has a higher contrast than the negative one, and worse
if the positive shape has a lower contrast. This is also
true if both shapes have the same geometrical form.

Qualitatively one can summarize these results in
the following way: The difference of two shapes for
bees increases with increasing contrast. The influence
of the contrast of the positive shape is greater than the
influence of the contrast of the negative shape.

C. Properties of the Cross-Correlation Coefficient
Before testing the hypothesis that the experimental
results may be described by some value of the cross-
correlation funcuon, [ shall first describe the most
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Table 2. Results of Series 1. Positive and negative shapes have

different contrast. The choice frequency to the negative shape is

measured in percent of the choices of the unrewarded positive shape.
The standard deviation is shown in brackets

Shape Choice Shape  Choice
Pos. Neg  freguency Pos.  Neg.  frequency
(in %) (in %)
0, 0, S3(i0) 0, 0,  67(x1D)
0, 601, 46(+ ) 0, 601,  65(%10)
0, 602, 42(+ 4 0, 602,  63(+9
0, 603, 36(% 4) . 603, S8(% 5)
0, 604, 32(+ 9 0, 604, 52{x 9)
0, 605, 26(% 8 0, 605,  44(+11)
0, 606, 24(+ 9) 0, 606, 42(+ )
0, 608, I8(+ 9) W 608,  35(+13)
0, 609, 19(+17) W 609, 30(+9)
60, 0, 23(+10) 605, 0,  38( 9)
605, 6()2,‘ 28(+16) 605, 602, 44(+12)
605, 603,  32(%14) 605, 603,  Si(+ )
605, 604,  39(+14) 605, 604,  S9(+ 9)
605, 605, 3 605, 605, 67
605, 606, 40(+ 7) 605, 606,  6i(+ 5)
605, 607, 3(+ih 605, 607,  48(+ 9)
605, 608,  25(%13) 605, 608,  45(+ 9)
605, 609,  21(+ 9 605, 609,  39(+ §)
608, 0, 11+ 5 608, 0,  25(+ 8)
608, 602, 18(% 3) 608, 602,  30(+12)
08, 603,  21(+ 8) 608, 603,  32(+12)
608, 604, 26(+ 7) 608, 604,  36(+11)
608, 605, 32(+ 7) 608, 605,  48(+ 8)
608, 606,  36(+13) 608, 606,  S3(+15)
608, 607, 42(+ 9) 608, 607,  64(+11)
608, 608, 53 608, 608, 67
608, 609, T+ 9 608, 609, 53(+ 5)

important characteristics of the cross-correlation
function. The formula for the cross-correlation func-
tion F(r) of two given functions f(x) and g(x) is as

xL

follows: F(r)= [ f(x)g(x+r)dx. The meaning of

this formula is shown in Fig. 4 for two simple rectangu-
lar functions f(x) and g(x). One of the two functions,
say f(x) is fixed, and the other function g(x) is shifted
by the value r. Then f(x) is multiplied with this new
function g(x + r) point by point and the integral of the
product is taken. This gives the value of the cross-
correlation function at point r. Figure 4 shows, how
the cross-correlation function F(r) of these two
functions f(x) and g(x) arises. In an analogous way,
a two-dimensional cross-correlation function F(r,s)

= H fx,g(x+r.y+s)ydxdy for the two-dimen-

sion;xl functions f(x,y) and g(x,y) can be built up.

11 o gix)
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] | —
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Fir = /f(X)'g(XH') dx

Fig. 4. Construction of the cross-correlation function F(r) of two
functions f(x) and g(x). For further explanation see text

Every optical pattern can be regarded as a two-dimen-
sional function, where x and y are the coordinates of
the plane of the receptor layer into which the pattern
is projected, and where the values of the function
f(x,y) correspond to the values of intensity at the
points (x, y). (Since, in the experiments discussed here,
only dark shapes on a white background are used,
intensity here means degree of darkness.) If therefore
the central nervous system is to be able to “compute”™
the whole cross-corretation function of the shape seen
at present and the rewarded shape, or only special
values of this function, it is required that the rewarded
shape be stored in the memory point by point.

Because the behaviour of the bees in these ex-
periments can be described by a one-dimensional
parameter (choice frequency from 0-100%), a whole
function such as F(r, s) cannot itself be an appropriate
description of that behaviour. Therefore, to find a
possible description, I looked for some special value
of that cross-correlation function.

One possible parameter, the integral over the

whole function | | F(r,s)drds, is ruled out because

T
it depends only on the value of the total area of the
positive and the negative shape. This means, that
different shapes of equal area cannot be discriminated.
Other general criteria for the form of the cross-correla-
tion function are difficult to define, because the form
of this function is very variable depending on the
shapes to be compared. Therefore, a value of the
cross-correlation function should be discussed, for
which it is not necessary to compute the whole cross-
correlation function beforehand.
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This is the so-called cross-correlation coefficient,
which corresponds to the normalized value of the cross-
correlation function at point (0, 0):

17 £ (3 g, ) dx dy

X,y s

I 72090 dxdy- [] g ) dxdy

if the origin of the coordinate axes x and y are set at
the centre of gravity of the shapes. The cross-correla-
tion coefficient r,, can assume values between 0 and 1,
considering functions with positive values only. The
value of r,, will be 1 when, and only when, the two
shapes compared are completely identical, and it
will be 0, when the two shapes have no common
points ie, when the condition f(x,y,)+0 and
g(x;, y) #0, does not apply. This of course is an
extreme case, which means that one of the two shapes
doesn’t exist at all. So the main characteristic of the
cross-correlation coefficient with respect to pattern
discrimination is that there should exist no invariant
class referring to different shapes. Furthermore the
cross-correlation coefficient is translation invariant,
size invariant, but not rotation invariant. With those
properties, the cross-correlation coefficient fulfills the
most important conditions postulated by Sutherland
(1968) for a system able to describe the pattern recogni-
tion of most studied animals.

The actual value of the cross-correlation coefficient
of two given shapes can be more easily determined
than the equation may suggest at first sight. Calling F*
the total area of the positive and F~ of the negative
shape, and A* and A~ the actual contrasts, the
denominator |/F*A**F~A~% can be computed. If
the two shapes are superimposed, so that the common
area G reaches a maximum (Fig. 5), the value of the
numerator is GA®T A”. Thus, the cross-correlation

GA* A~
xy = [/F*F’A”A—Z
G . ..
= W As this formula shows, r, , is independent

coefficient is as follows: r

of the contrast. Experimental results show however,
that bees can discriminate between shapes of the
same form but different contrast (Section B3). To
describe these results, one may assume that, in-
dependently of computing the cross-correlation coef-
ficient, the bee computes the difference of the contrast
of the positive shape and the shape seen at present.
This difference should then also be used for discrimina-
tion. To describe the results in another way, one could
use a three-dimensional cross-correlation coefficient.
To compute this, it must be assumed that the shapes

R™ G R"

RQ

Fig. 5. The positive shape (circle} and the negative shape (rectangle)

are laid on each other in such a way, that the common area G

reaches a maximum. Then the non-overlapping areas of the positive
shape, R*, and the negative shape, R ”, can be determined

are projected in a three-dimensional space, with
intensity being the third coordinate. In this three-
dimensional space the shape may be regarded as a
three-dimensional function in which the functional
values of all points will be 1, with the coordinate of
intensity less or equal to the actual intensity of the
shape in the corresponding point of the two-dimen-
sional function. The values of all other points in the
three-dimensional space should be 0. Then the value
of the three-dimensional cross-correlation coefficient
., _GMin4"4) G A,
TR R A Y E V4
A; £ A, 1f A = A,, this coefficient corresponds to the
two-dimensional cross-correlation coefficient r,,.

with

Another value with very similar properties is the maximum of
the normalized cross-correlation function. For this value you don't
need the restrictions referring to the coordinate axes. But as the
values of cross-correlation coefficient and this maximum are the
same for most shapes, especially for all pairs of shapes discussed in
this paper, we cannot discriminate between them. The values are
only unequal for pairs of shapes for which the common area G is not
maximum when the centres of gravity are superimposed. All the
other properties are the same for the cross-correlation coefficient
as well as for the maximum of the cross-correlation function. These
both values are identical with respect to the results discussed in this
paper.

Since the cross-correlation coefficient is translation
invariant, but not rotation invariant, the shapes could
only be superimposed by the bee by translatory
movement, This is correct, when the shapes are
demonstrated to the bee on a vertical screen. As
Wehner (1972) showed, the position of the bee’s head
does not rotate relative to the vertical axis while
looking at the shapes. But when the shapes are lying
on a horizontal plate, no favoured axis relative to the
shape exists, and so, in order to be able to detect the
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Table 3. The weighting factors and standard deviations by which the experimental results can be described when using the three-dimensional
cross-correlation coefficient r,,:

ChF =(100 - N}exp[~

t
o (~—2~-~ l) +C,(logK* -logK")H +N.

xyz

For details see text

Experiment no. C, A, 4,24, C, N Standard Mean of standard
A, TrET deviation deviation of the
s(in Y single experiments
§(in %

L1(b*,b7) 48 10 0.5 28 +73 + 97

I,2(dg".dg") 28 1.0 0.5 28 +5.8 +10.7

L3(igh.lg") 22 1.0 0.5 28 +8.0 +118

IL 1 (b*,1g"7) 48 1.3 0.5 28 +6.8 + 9.1

1,2(g",b") 2.4 13 0.5 28 +52 + 9.1

positive shape, the bee would have to rotate while
looking at the shapes. Therefore, as long as the
experimental design doesn’t give any preferred axis
relative to the shapes, one has to translate and rotate
the shapes until G reaches a maximum, when comput-
ing the common area G.

D. Application of the Cross-Correlation Coefficient
to the Experimental Results

To describe the results of the experiments in terms
of the equation for the cross-correlation coefficient r,
an approximation function is required. This is un-
likely to be linear. As a series of different computations
showed, a good approximation can be obtained by the
exponential function: ChF (choice frequency)

{
-]
constant. This equation however cannot yet be suf-
ficient because it takes no account of the dependence
on absolute contrast seen in Fig. 3 and Table 1. This
dependence is not very surprising — it is also true for
humans — but it cannot be explained by a cross-
correlation coefficient r, as the above equations show.
Without trying to find a hypothesis for it at present,
one must try to find a description of this phenomenon
by improving the approximation function. Since
identical shapes always produce a coefficient of r=1,
this can only be done by using an additional weighting
factor C, external to r: ie.,

1
”C‘(rz,,z ")}’

where C, depends on the contrast.

= 100 exp , where k is an arbitrary

ChF =100 exp

The data fits this modified approximation function
with a standard deviation of §= -+ 10.5%: this is not
very well compared with the standard deviations of the
experimental results. To make a better approximation,
one can consider the hypothesis obtained by other
experiments that the bees show a spontaneous
preference for the shape with the greater contour
length (Cruse, 1972a). Accordingly, the approximation
function should be extended as follows:

ChF = lOOexp[—’C,( 21 - 1)

xyz

+C,(logK™ —log K‘)” .

Here K* is the contour length of the positive, K~ of
the negative shape, C, is a weighting factor. The
standard deviation now reduces to s= +8.5%.
Another property of the experimental results has
not yet been taken into account by the approximation
function; namely that the value of choice frequency
does not reach the zero level (see Table 1, Fig. 3).
The lowest values are around 20-30%. Taking
into consideration these so-called neutral choices N
(Section B1), the approximation function becomes

1
Ci|l5——-1
l(riy; )

+C,(logK™ —logK™)

ChF = (100 — N) exp

o

With this approximation, the mean standard deviation
is §=+6.6% The standard deviations and the
weighting factors obtained by using this approxima-
tion function can be seen in Table 3. Comparing the
standard deviations around the approximation func-
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tion and the mean values of all standard deviations of
the single choice frequencies (Table 1, 2), this ap-
proximation is found to be satisfying. Mean values
of N and C, are used for this computation. The best
values are a little scattered in the single series, but there

is no systematic change. The values of —gL are con-
2

. } A

sistent with the hypothesis, because ;L has the value
2

1.0 for the Series I, 1, 2, 3, in which 4, = 4,. On the

A
other handA—1 has a value >1 for both Series 11,

2
fand 11, 2.

Let us now look at the weighting factor C,, the
evident meaning of which is that a pair of different
shapes can be discriminated more easily when the two
shapes are black than when they are light grey. Com-
paring the different values of C,, it is striking that
within these experiments the value is correlated with
the contrast of the positive shape. It could be supposed,
that this factor C, has something to do with the storing
of the rewarded shape in the memory. I shall refer to
this question later (Section E).

As a qualification to the values of the weighting factors one
should say something about how they were obtained. All these
factors were obtained by looking for the minimum corresponding

standard deviations, and then by taking the values of the weighting
factor. In the case of Series II, | the minimum was very flat, giving

. A . L
several pairs of C, and —AJ which fitted the approximation equally
2

well. Applying the same value for -=- as obtained in the Series 11. 2.
2
a valid procedure according to the theory, I get exactly the same

value for C, as in Series I, 1. So I chose this pair of weighting factors.

E. Meaning of Weighting Factor C,

Although a sufficient description of the experimen-
tal results is obtained with the model using the three-
dimensional cross-correlation coefficient r, ., it has a
decisive disadvantage: it requires a three-dimensional
storage space to store the positive shape. This seems
to be very unlikely because very uneconomical. Since
the experimental results can be as well described by
application of the two-dimensional cross-correlation
coefficient r,,, using some additional assumptions,
only the two-dimensional coefficient r,, will be used
in the following. This means that for storing the shape
only a two-dimensional layer is used in the memory.
Before discussing these necessary assumptions, let me
first speculate on the physiological meaning of the
weighting factor C,. The effect that can be described
by changing the weighting factor C,, is that the same

pair of shapes will be the better discriminated, the
higher the contrast. As mentioned above, the value
of C, is correlated with the contrast of the positive
shape. The essential difference in the treatment of the
positive and the negative shape is that the positive
shape must be stored in the memory, while the negative
one need not be, as the experimental procedure of
Wehner (1967) shows. and., if there are enough negative
shapes, surely is not. Therefore, one can assume that
the weighting factor C, has something to do with the
storing of the shape in the memory. If one takes into
account that some kind of noise is superimposed on
the stored signals in the memory. it must be that this
noise influences the accuracy of determination of the
margin of the shape. The possible accuracy of this
determination depends on the signal-to-noise ratio;
that is, with a constant noise amplitude, it depends on
the value of contrast. The higher the contrast. the
better the outline is detectable.

To explain why shapes with lower contrast are
confused with one another to a higher degree than
shapes with higher contrast, one can assume the
following. When comparing the shapes, there is a
tendency to make both shapes as similar as possible.
That means that the shapes will at first be super-
imposed until the common area G reaches a maximum
{Fig. 5). Then, if there is an inexactly definable outline,
the common area G is enlarged in the range of the
uncertainty of the outline. This leads to a higher cross-
correlation-coefficient, and so a greater confusion.
Asexplained above, this effect increases with decreasing
contrast,

In order to find out if this consideration is consistent
with the experimental results, it is necessary to do a
computation in which the two shapes are compared
point by point. This was done in the following way.
First one has to carry out a spherical transformation
with the shapes in order to take into account the
distortion of the shapes when projected to the convex
eye of the bee (Hertz, 1935a; Wehner, 1969).

This is done by projecting the shapes onto a sphere of 5§ cm
radius, which corresponds to a distance of 5 cm between shape and
bee. Then the area of the shape is divided into small elements of
1 mm?, which are arranged orthogonally. When seen from a distance
of Scm, two neighbouring elements are seen as f.1° apart. As
Kirschfeld (1973) could show, the angle between the axes of two
ommatidia is 3.2° in the x-direction (horizontal) and 2.3° in the
y/z-direction (vertical). This means that each unit of area seen by
one ommatidium consists of three elements of area in this computa-
tion. Therefore the screen used here is finer than that caused by the
ommatidial array. The screen doesn’t become coarser until the
distance between shape and bee becomes lower than 2-2.5 cm. At
these small distances, on the other hand, the distortion of the shape
can no longer be described by a spherical transformation, as the
measurements of Kirschfeld (1973) show.
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Table 4. The weighting factors and standard deviations by which the experimental results can be described when using the two-dimensional

ChF =(100 - N) exp[—

cross-correlation coefficient r,,:

af
lriy

For details see text

- l) +C,(logK* —logK“)+Af(A)H+N-

Experiment no. C, I3 A f(A) C, N Standard Mean of standard
deviation deviation of the
s(in % single experiments

: 5(in %)
Li(*'b7) 438 0.0 00 0.5 28 +8.1 + 97
1,2(dg*,dg") 48 0.4 0.0 0.5 28 +7.8 +10.7
L3(g",1g7) 43 0.7 00 0.5 28 +89 +11.8
IL1(b*,1g7) 4.8 0.0 0.65 0.5 28 +78 + 9.1
1,2(g*. b7) 438 0.6 1.4 0.5 28 +49 + 9.1

To get the values for the common area G and the
non-overlapping area R and R~ (Fig. 5), the values
of corresponding points of both shapes must be
compared. If both points have a value of intensity
greater than zero, they belong to the non-overlapping
area R or R™, except in the following case: cor-
responding to the consideration discussed above, a
point not belonging to the common area G but
neighbouring such a point, and belonging to the non-
overlapping area R~ of the negative shape, must be
added to the common area G with a certain probability.
That means, that the value of this point has to be
multiplied by a factor p< 1, and then added to G.
The smaller this value, the more accurately the outline
of the shape is defined in the memory.

This computation produces a satisfactory descrip-
tion of the experimental results of Series 1 with a
factor p=0 for black shapes, p=0.5 for dark grey
shapes and p=0.7 for light grey ones. The other
weighting factors and the standard deviations are to
be seen in Table 4. In these computations, the only
points which are regarded as “neighboured” to a
point of the common area G are those four which lie
in the orthogonal grating directly beneath this point.

In order to avoid a possible confusion, one should emphasize,
that the screen used here represents the unknown screen of the
hypothetical storage elements and has nothing to do with the
screen caused by the ommatidial pattern. As an estimate, however,
one can say that this would probably not be more subtile than the
screen of the ommatidial pattern. Accordingly the noise discussed
here is assumed to be produced in the memory itself and has nothing
to do with a visual noise produced by the transfer-properties of the
ommatidia or by the background of the presented shape.

To describe the results of the Series II by means
of the two-dimensional cross-correlation coefficient
r+,» one must firstly discuss some additional assump-
tions, as mentioned above. As discussed in Section D,

one could imagine, that the contrast of a shape is
measured and stored separately as an independent
parameter of this shape, and that the dissimilarity
between the values of contrast of the two shapes also
influences the discrimination of the shapes. This
means, that the approximation function has to be
enlarged by an additional term 4 f(4), which represents
this influence. As computations show, the real dif-
ference cannot fit the results of Series II. Therefore,
assumptions are made which partially correspond to
the assumptions dealing with the storing of the
geometrical form of the shape:

1. The term 4 f(A4) is proportional to the dif-
ference of the logarithms of the contrast values 4*
and A™.

2. Onto the stored signal in the memory represent-
ing the value of the contrast of the positive shape A,
a noise is superimposed which influences the accuracy
of the determination of this value.

3. When comparing the two values of contrast,
there is a tendency to make both values as similar as
possible.

In order to make possible a simple description,
let us assume that the value 4™ stored in the memory
can only fall between the limits (4" +d) and (4" — d).
d is a function of the amplitude of the superimposed
noise, which is regarded as constant. With this as-
sumption one obtains

A f(A)=|k-Min(log(4" +5)—log(4 "))

with —d<s< +d.

Here k is any weighting factor, and s is chosen as a
value between —d and +d for which the value of
4f(A) is a minimum (see assumption 3). As the
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Fig. 6. Results of Series 1. Positive and negative shapes have the same contrast. The choice frequency of the negative shapes (ChF) is plotted

1
against the value of U = ‘C, (r—zn 1) +C,(logK™ —logK ") + 4 f(A4)], computed for each pair of shapes. Closed circles: black shapes,
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Fig. 7. Results of Series 11. Positive and negative shapes have different contrast. The choice frequency of the negative shapes (ChF) is plotted

against the value of U =

C, (%.M 1) + C,(logK* —logK ™)+ 4 f(A4)]. computed for each pair of shapes. Closed circles: positive shapes
ey

black, negative shapes light grey. Open circles: positive shapes light grey, negative shapes black

weighting factors and standard deviations which are
obtained by the approximation function

ChF =(100—N) exp[—lC1 (r—lz— - 1)

xy

+C,(logK* —logK‘)+Af(A)H +N

in Table 4 show, this description is also satisfying.

Since for the four unknown values of 4 f(A), the factors k, d,
A, and A, only two equations are available, these values cannot
be computed. But in order to show that the term 4 f(4) can assume
the values shown in Table 4, one example should be demonstrated:
Ay = 1000, 4,, =240, d = 145, k =0.64.

Finally, the experimental results of Series I and
Series 11 can be seen in Fig. 6 and Fig. 7 respectively.

e
Tey

computed for each

On the abscissa are the values of U =

+0.5(logK* ~logK™)+4 [(A)

pair of shapes: on the ordinate, the choice frequency
is applied in the same way as in Fig. 3.

F. A Comparison with Former Experiments

Although the present results can be described by
the approximation function discussed above, it is not
possible to make predictions from them. Because,
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above all, the shapes applied here are rather similar
to one another (Fig.2) and can be arranged in a
continuous series, nearly every form-parameter, such
as contour length, for example, can give a good
description of these experiments by itself. On the other
hand, I earlier developed an empirical approximation
function with which I could describe a great number
of experimental results with very different shapes
(Cruse, 1972a,b). This empirical function has for
A* = A" the form:

R* and R~ are the non-overlapping areas of the
positive and the negative shape (Fig. 5). As the equa-
tions are similar, one would expect that these ex-
periments can also be described by an application of
the cross-correlation coefficient.

R*+R~ K*

ChF = 100 exp G F*+C} Iog—k—_-

_~C1

Ignoring the value of neutral choices N, the difference between

P
F* and (2)

the equations lies in the two terms: (1)
t F*F~ R*+R~ R*R™
o -l)= - l= + z
ey G G G
lies in the factor F* existing in (1), not in (2), and in the term

), So the difference

+ p-

existing in (2), not in (1). F* and F~ stand for the total arca of the
positive and the negative shape.

Let us look first at some experiments (Cruse, 1972a)
in which I tested the discrimination of shapes of
different forms and different size. These experiments
can be described by the approximation function
discussed here with a mean standard deviation of
§= £ 12.7%, which is not significantly different from
§=+122% given by the empirical formula. The
different factors were C, =024, C,=0.09, N =30.
The experimental results of Schnetter (1968) for the
discrimination of 4-pointed and 6-pointed stars can
also be described by this approximation formula with
a standard deviation of s = + 8.6 % when the weighting
factors C; =03, C,=6.0 and N=0 are used. A
second experiment of Schnetter (1968, Fig.5) is
consistent only with the description by the cross-
correlation coefficient, not with the empirical formula.
Here Schnetter tested the discrimination of two shapes
of equal form, but different size. The discrimination
was found to be independent of size over a very wide
range. According to the empirical formula, the
discrimination should improve with increasing size.
Wehner (1967, Fig. 2, 3; 1968, Fig. 6, 7, 12, 16; 1969,
Fig. 3) did experiments which could not be described
by the empirical formula very well (s=+14.7%).
These results can be described by the approximation
function with a mean standard deviation of §= + 11.7%
using the factors N=35 and C,=0. C, = 1.5 was the

Table 5. The values of 4 f{4) necessary to describe the experimental

series of Wehner (1968, Fig. 12). The angles refer to a distance of

5 cm, corresponding to the experimental device. The length of all
stripes was 130°, the width of the positive stripe 11°

Width of 1 2° 3 5° 33 53 84 103
neg. stripe
4 f(A4) 26 15 06 O 0 0 0 0

weighting factor for all series except two: in the first
of these, C, was 0.02 and in terms of the resuits men-
tioned above (Section D), the shapes of this series
were very thin stripes (« < 5°, the width is here described
by the angle, under which it is seen from a distance
of =25cm): When considering the contrast-transfer
properties of a compound eye, as discussed by Gotz
(1965) for Drosophila, such small shapes should seem
to the bee to have a lower contrast than in reality,
corresponding to a smaller value of C,. In the second
series (Wehner, 1968, Fig. 12) C, was 0.3. Here the
width of the positive stripe was « < 11°, whereas the
width of the negative stripes varied from a<1° to
o < 103°. With respect to the contrast-transfer function,
the contrast of a stripe should be the lower, the smaller
the stripe is. This would mean that the term 4 f(A)
should be different for each pair of shapes. Additionally,
the area of the stripes should increase, with increasing
width, whereby smaller stripes are influenced in a
relatively larger measure. As the directional-intensity
function of a single ommatidium, as measured by
Eheim and Wehner (1972), shows, the widening of the
shapes is expected to be 7°. If one takes this into
account in the computation, you get a description with
the particular values of 4 f(A4) shown in Table 5.
Qualitatively, these values correspond to the form of
the contrast-transfer function (Gotz, 1965).

Wehner (1971) did experiments, the results of
which he interpreted by assuming that the bees applied
the qualitative parameter “orientation of a stripe”.
Since these results have been obtained by transfer
experiments (that is, in the test the positive shape
cannot be seen by the bee) a quantitative evaluation is
only possible in a restricted way. Whereas these
results could be described by means of the empirical
formula with a standard deviation of s= +12.5%,
applying the cross-correlation coefficient the standard
deviation becomes s = +6.8%.

G. Discussion

As shown in the sections above, a great number of
published experiments can be described by this
approximation function. Since the various assump-
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tions which have been necessary to build up this
function are described in different sections, all these
assumptions should be summarized here:

i. The positive shape is stored point by point in
the memory.

2. The two-dimensional cross-correlation coef-
ficient r,, (or the maximum of the cross-correlation
function, see Section C) of the shape seen at present
and the positive shape stored in the memory is com-
puted. The measure for the probability of the bee’s
visiting the shape seen at present is a function of this
value r,.

3. This function also depends (a) on the difference
between the contour length of both shapes as a sort
of spontaneous preference for the shape with greater
contour length, and (b) on the absolute value of the
difference of the contrast of both shapes. These dif-
ferences are computed as the differences of the lo-
garithms of the contour lengths or the contrast values
respectively.

4. There is a continous noise superimposed on the
stored signals which represent the positive shape.
Because of this noise, the outline of the shape stored
in the memory point by point is the less accurately
detectable, the lower the contrast of the shape. When
comparing two shapes by cross-correlation, there is a
tendency to make both shapes as similar as possible.
This means, for geometrically different shapes, that
within this range of inexactly definable outline; the
common area G is enlarged.

5. In an analogous way, a noise is superimposed
on the stored value of the contrast of the positive
shape. Therefore, this value cannot be determined
exactly. When comparing the contrast of the positive
shape with the contrast of the shape seen at present,
again the tendency exists to make the difference as
small as possible.

If one looks at shapes with the same contrast, only assumptions
no. 1, 2 and 3 a are necessary. When contrast is changed from
experiment to experiment assumption no. 4 is necessary in addition.

If, furthermore, the contrast of the positive and the negative shape
is different, assumptions no. 3b and 5 have also to be applied.

The exponential function, used here as an ap-
proximation function, may be not the best approxima-
tion possible. Above all, it is unlikely that a good
approximation function starts with a slope very
different from zero. It seems more probable that a
subthreshold deviation from the positive shape should
give a coefficient re, <1, but not yet a measurable
discrimination. Such a function, starting with a flat
slope, could be demonstrated experimentally for the
colour discrimination of the honey bee by v. Helversen
(1972). Indeed, in my computation I find some cor-

Fig. 8. Some of the shapes used in the experiments of Anderson
(1972)

responding systematic deviations from my approxima-
tion function, especially for the experiments of Wehner.
As however the function of v. Helversen cannot be
described in a simple analytical manner, I have not
attempted to improve the approximation by using
this function.

The different weighting factors which are used in
describing the results of the different authors can
probably be accounted for the different experimental
conditions (contrast, light intensity, number of shapes
presented at the same time) or to different training
methods. The influence of the kind of the training
method was first made use of by Schnetter (1968) in
order to get better discriminations. Similarly, Anderson
(1972) obtained a significant discrimination following
special pretraining of pairs of shapes, which could not
be discriminated before.

Nevertheless, there are experimental results which
cannot be described by means of the model discussed
here. The just-mentioned results of Anderson (1972),
in fact, are only obtained in transfer experiments.
Although, therefore, a qualitative computation is only
appliable in a restricted way, it is clear that at least
some of these results cannot be described by the
model discussed here. Anderson trained bees on an
upright triangle as positive shape and a square as
negative shape, both on a vertical screen. In the test,
various other shapes were diplayed in pairs: for
example, similar shapes of different size, a triangle
turned about 180°, a trapezoid, and a triangle which
is enlarged by a segment of a circle (Fig. 8). While the
bees treated the upright triangles of different size, and
the triangle enlarged by the segment of a circle as
similar to the positive shape, the triangles of different
orientation, the squares and the trapezoid were
treated as more similar to the negative shape. If the
animal used the cross-correlation coefficient, the
trapezoid should have been much more similar to the
triangle than the triangle enlarged by a segment of a
circle. | would interpret these results, therefore, to
mean that in these experiments the bees applied the
pair of abstract parameters “shape with pointed top —
shape with flat top”, though this cannot be proved
from the results. Under “abstract parameter” here,
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such a quantity should be understood which cannot
be represented by a numerical value.

Mazochin-Porshnyakov (1969) also tried to explain
his results by postulating the application of such
abstract parameters as “inside — outside”, “coloured —
of one colour” and “large — small”.

Although the application of such abstract param-
eters by the bee could again not be proved, it secems
to be very probable. This ability could be understood
as being applied on one particular level of the CNS,
the processes implied in the model described here
being realized, if at all, at other levels of central nervous
processing. If the application of such abstract param-
eters by the bee could be proved, it could be inclused
in the model discussed here by the addition of further
assumptions, making use, perhaps of abstract algo-
rithm, as usually proposed only for higher vertebrates.
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