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Abstract

The analysis of sports data, in particular football match outcomes, has always produced

an immense interest among the statisticians. In this paper, we adopt the generalised Poisson

difference distribution (GPDD) to model the goal difference of football matches. We discuss

the advantages of the proposed model over the Poisson difference (PD) model which was

also used for the same purpose. The GPDD model, like the PD model, is based on the

goal difference in each game which allows us to account for the correlation without explicitly

modelling it. The main advantage of the GPDD model is its flexibility in the tails by consid-

ering shorter as well as longer tails than the PD distribution. We carry out the analysis in a

Bayesian framework in order to incorporate external information, such as historical knowledge

or data, through the prior distributions. We model both the mean and the variance of the

goal difference and show that such a model performs considerably better than a model with

a fixed variance. Finally, the proposed model is fitted to the 2012-13 Italian Serie A football

data and various model diagnostics are carried out to evaluate the performance of the model.

Keywords: Bayesian methods; Generalised Poisson difference distribution; goal difference;

football data

1 Introduction

The statistical analysis of sports data, in particular football match outcomes, generates an enor-

mous interest worldwide. Betting on the outcome of football matches has a long tradition. In

addition, the football industry now attracts huge investments. As a result, the modelling and pre-

diction of football match outcomes is becoming ever more popular (Karlis and Ntzoufras, 2009;

Cattelan et al., 2013).

The outcome of football matches has been analysed from various perspectives such as mod-

elling loss/draw/win (Cattelan et al., 2013; Koning, 2000), number of goals (Karlis and Nt-

zoufras, 2003; Maher, 1982; Dixon and Coles, 1997) and goal differences (Karlis and Ntzoufras,
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2009; Clarke and Norman, 1995). Among these outcomes, goal difference has attracted special

attention because it eliminates the correlation between the teams and also we do not need to

assume that the number of goals scored by each team is marginally Poisson distributed (Karlis

and Ntzoufras, 2009).

Initially Clarke and Norman (1995) used the normal distribution to model the goal differences.

However, since goal difference may take on a small range of integers, a normal approximation may

not be valid (Karlis and Ntzoufras, 2006; Shahtahmassebi and Moyeed, 2014). Thus, techniques

that are based on distributions defined over both negative and positive integer values may improve

our inference of the goal difference. Karlis and Ntzoufras (2009) proposed the application of the

Poisson difference (PD) distribution as an alternative to the normal approximation. The major

drawback of the their model was the overestimation of number of draws. In addition, in double-

round-robin structure tournaments, it can be seen that the presence of the home advantage effect

results in a distribution with one or both tails being shorter or longer than the PD distribution.

To overcome these limitations of the PD distribution, we use the generalised Poisson difference

distribution (GPDD) (Shahtahmassebi and Moyeed, 2014). In this way, we still remove the effect

of the correlation between the scoring performance of the two competing teams, but the proposed

model introduces more flexibility in the tails. Similar to the PD model, the GPDD model can be

used to predict the outcome of the game, but cannot predict the final score.

We fit the model in a Bayesian framework, thus incorporating any available information about

each game via the prior distribution. Information that can be incorporated into the model can

be based on, e.g. historical knowledge or data, weather conditions and the fitness of a team.

Finally, the Bayesian approach allows for prediction of match outcomes via the posterior predictive

distribution. It can also produce quantitative measures relating to the performance of each team.

We carried out all our analyses in R 3.0.1 (R Core Team, 2013). The R functions for evaluating

and generating samples from the GPDD were written by the authors.

The remainder of the paper is organised as follows. In Section 2, we introduce the GPDD and

obtain its properties. Section 3 describes the GPDD model proposed for the purpose of modelling

goal differences. We describe the Bayesian approach in Section 4. A real data application based

on the match outcomes of the Italian League Serie A for the season 2012−2013 is described in

Section 5. Finally, we conclude and provide an overview of possible extensions in Section 6.

2 Generalised Poisson difference distribution

Let us assume X and Y are two non-negative integer random variables. The random variable

Z = X−Y follows a GPDD (Shahtahmassebi and Moyeed, 2014) if its probability density function

has the following form

fgpdd(Z = X − Y = z) = e−λ1−λ2−θ1z
∞
∑

y=0

(λ1, θ1)z+y (λ2, θ2)y e
−(θ1+θ2)y, (1)
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for any value of z ∈ Z, where

(λ, θ)x =
λ(λ+ xθ)x−1

x!
.

Lower limits for θ1 and θ2 have been set to ensure that there are at least five classes of non-zero

probabilities at both tails when θ1 < 0 or θ2 < 0:

max(−1,−λ1/m1) < θ1 < 1, (2)

max(−1,−λ2/m2) < θ2 < 1,

where m1, m2 ≥ 4 are the largest positive integers in which λ1 +m1θ1 > 0 and λ2 +m2θ2 > 0.

Therefore, for any z > m1 when θ1 < 0, or z < −m2 when θ2 < 0,

fgpdd(z|λ1, λ2, θ1, θ2) = 0.

Furthermore, parameters λ1 and θ1 refer to the positive half and parameters λ2 and θ2 to the

negative half of the GPDD. The GPDD(λ1, λ2, θ1, θ2) reduces to the PD distribution (Skellam,

1946) when θ1 = θ2 = 0:

GPDD(λ1, λ2, θ1 = 0, θ2 = 0) = PD(λ1, λ2) = e−λ1−λ2(
λ1
λ2

)z/2 I|z|(2
√

λ1λ2),

where Ir(x) is the modified Bessel function of order r Abramowitz and Stegun (1964). It may be

noted that the GPDD of Consul (1986) is a special case of our GPDD when θ1 = θ2.

The cumulants of the probability distribution of the random variable Z can be derived using

the following recurrence relation (see Shahtahmassebi and Moyeed (2014))

(1− θ1)(1− θ2)Lk+1 =(2− θ2)λ1θ1
∂2Lk

∂θ1∂λ1
+ (2− θ2)λ1

∂Lk

∂λ1
+ θ1θ2λ2

∂2Lk

∂θ2∂λ2

+ θ1λ2
∂Lk

∂λ2
− θ1

∂Lk

∂θ1
− θ2

∂Lk

∂θ2
− Lk, (3)

and the expression for the first four cumulants of the GPDD are obtained as follows

L1 =
λ1

(1− θ1)
− λ2

(1− θ2)
, (4)

L2 =
λ1

(1− θ1)3
+

λ2
(1− θ2)3

, (5)

L3 =
λ1 (2θ1 + 1)

(1− θ1)5
− λ2 (2θ2 + 1)

(1− θ2)5
, (6)

L4 =
λ1 (1 + 8θ1 + 6θ21)

(1− θ1)7
+
λ2 (1 + 8θ2 + 6θ22)

(1− θ2)7
. (7)
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where µ = L1 and L2 = σ2 are the mean and the variance of the GPDD.

Similar to the generalised Poisson distribution, in a GPDD parameters θ1 and θ2 add more

flexibility to the left and right tails. That is when θ1 > 0 and/or θ2 > 0, the GPDD will have

a longer left and/or right tail than a standard PD distribution. On the other hand when θ1 < 0

and/or θ2 < 0 the GPDD will have a shorter left and/or right tail than a standard PD distribution,

a property that had not been addressed by many alternative distributions to the Poisson difference

distribution (for further details see Shahtahmassebi and Moyeed (2014)).

3 A model for the goal differences

The description of the proposed methodology for the analysis of a tournament is simplified by

the assumption of an order for n matches among K teams that are involved in the tournament.

A convenient choice is to arrange the matches in chronological order, with games played at the

same time in alphabetical order of the home team. Let Xi and Yi be the number of goals scored

by the home and away team in the ith game, respectively and

Zi = Xi − Yi

be the goal difference of the ith match, i = 1, . . . , n played by the home team hi against the

visiting team vi, with hi, vi = 1, . . . ,K and hi 6= vi. We adopt a similar model set-up to the

traditional paired comparison models (Cattelan et al., 2013) in which the outcome of interest can

be described as a function of the difference in team abilities.

Let us assume the goal difference (an integer-valued variable) follows the GPDD with the

probability mass function given in (1). Setting the goal difference as the outcome of interest, we

model the mean and the variance of our GPDD model as follows

E(Zi) = µi = H + ahi
− avi (8)

Var(Zi) = σ2i = γ1 + |ahi
− avi | (9)

where ahi
and avi are the parameters representing the abilities of the home and visiting teams

in match i, H is a common home effect parameter for all teams and γ1 is a positive constant

for the variance. It can be seen that in this set-up the mean of the GPDD model is directly

affected by the home effect as well as home and visiting team abilities. The variance is defined in

a way that a larger difference between home and visiting team abilities results in a larger variance.

Furthermore, θ1 and θ2 are assumed to be constant with respect to team abilities given by the

following form

log(1− θ1) = γ2, (10)

log(1− θ2) = γ3, (11)

which allows us to have parameters over the real line. For the sake of parameter identifiability,
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we require one constraint in the set of abilities, e.g. the sum constraint
∑K

k=1 ak = 0. In the

prediction step, the parameters of λ1 and λ2 can be obtained by rearranging (4) and (5) as follows

λ1,i =

[

(1− θ2)
2 σ2i + µi

]

(1− θ1)
3

(1− θ1)2 + (1− θ2)2

=

[

exp(γ3)
2 (γ1 + |ahi

− avi |) + (H + ahi
− avi)

]

exp(γ2)
3

exp(γ2)2 + exp(γ3)2
(12)

λ2,i =

[

(1− θ1)
2 σ2i − µi

]

(1− θ2)
3

(1− θ1)2 + (1− θ2)2

=

[

exp(γ2)
2 (γ1 + |ahi

− avi |)− (H + ahi
− avi)

]

exp(γ3)
3

exp(γ2)2 + exp(γ3)2
· (13)

4 Bayesian inference

4.1 Prior distribution

In the Bayesian framework, we need to specify the prior distributions. Here we include information

from the previous year’s tournament as prior information in our analysis. The previous season

can be considered as a baseline for the following season’s results as the teams generally at least

intend to keep their current position in the table. Thus, it is realistic to consider these as prior

information. Thus, the prior distributions of home effect and team abilities are as follows,

H ∼ N(z̄, σ2z),

ak ∼ N(z̄k, σ
2
zk
), k = 1, . . . ,K,

where z̄ and σ2z are the mean and the variance of Zi, while z̄k and σ2zk are the mean and the

variance of the goal difference of team k in the previous year (Appendix A). For teams who are

promoted and playing for the first time, we assign a non-informative normal prior distribution

with mean zero and a large variance (e.g. 104) because by definition team abilities are measured

relative to other teams in the same league. That is a top team in one league does not have the

same ability as a top team or, for that matter, any other team in another league. Usually, the

bottom three teams are relegated from a higher league and replaced by three teams coming up

from the lower league to play in the following year’s tournament. Therefore, we can say that the

promoted teams start the new league with no prior information.

Finally, a non-informative gamma distribution is considered for γ1 and truncated normal prior dis-

tributions, N(0, 104), are assigned to parameters γ2, γ3 < log 2 (which we denote byN+(µ, σ; log(2))),

in order to satisfy the conditions in (2).
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4.2 Posterior distribution

We obtain our inference based on the posterior distribution of the parameter vector

ψ = (H, a1, . . . , aK−1, γ1, γ2, γ3).

As suggested above, we impose that average quality is 0, so all ak’s are in deviation from an

hypothetical average team with 0 quality, thus set the ability of the Kth team as follows

aK = −
K−1
∑

k=1

ak.

The posterior distribution of ψ can be obtained as

fpost(ψ|z) ∝ flike(z|ψ)fprior(ψ),

where the likelihood is given by

flike(z|ψ) =
n
∏

i=1

fgpdd(zi|λ1,i, λ2,i, θ1, θ2)

=

n
∏

i=1

fgpdd (zi| ψ) , (14)

and fprior(ψ) is the prior distribution given by

fprior(ψ) = fH(H)fa1(a1) · . . . · fak(ak−1)fγ1(γ1)fγ2(γ2)fγ3(γ3).

It can be seen that the posterior distribution is known up to a normalising constant and not

analytically tractable. Thus, in order to generate samples from the posterior distribution we use

MCMC methods, more specifically, the random walk Metropolis-Hastings (M-H) algorithm.

4.3 Metropolis Hastings algorithm

In the M-H algorithm, for each of the parameters H, a1, . . . , aK−1, we choose our proposal

distribution to be normal, such that in the jth iteration, for j = 1, . . . ,m, where m is the

number of iterations, the normal distribution is centred at the value from the previous iteration

for some suitably chosen value of the variance parameter. The proposal density for γ1 is γcand

1 ∼
Γ(α(j−1), β(j−1)), where

α(j−1) =
γ
(j−1)
1

2

σ2γ1
and β(j−1) =

γ
(j−1)
1

σ2γ1

and those of γ2 and γ3 are truncated normals with the mean centred on the current values.

The choice of the value of the dispersion parameter of the proposal distribution is an important
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point to consider in the case of random walk chains. A large value for the variance allows a greater

variation from the previous value, but will lead to a very small acceptance rate. On the other

hand, a small value of the variance results in draws which are close to the previous value with a

high acceptance rate (Gamerman and Lopes, 2006). The optimal choice for the variance of the

normal proposal is σ2 = c2Σ, where c ≈ 2.4/
√
d (d is the dimension of the parameter vector) and

Σ is the variance-covariance matrix based on the curvature of the posterior at the mode (Tanner,

1998).

4.4 Simulating posterior predictive distribution

Let Zpred = (Zpred

1 , . . . , Zpred

n )t be the goal differences of n matches which we wish to predict. The

posterior predictive distribution is defined as

fpred(Z
pred|z) =

∫

flike(Z
pred|ψ)fpost(ψ|z)dψ, (15)

where flike(Z
pred|ψ) may be given as

flike(Z
pred|ψ) =

n
∏

i=1

f(Zpred

i |ψ). (16)

To obtain the prediction distribution, we add the following steps to the MCMC algorithm. At the

jth iteration, j = 1, . . . ,m, where m is the number of MCMC iterations, repeat the following

steps, for i = 1, . . . , n:

1. Obtain

λ
pred,(j)
1,i and λ

pred,(j)
2,i ,

θ
pred,(j)
1 = 1− exp(γ

pred,(j)
1 ) and θ

pred,(j)
2 = 1− exp(γ

pred,(j)
2 )

where λ
pred,(j)
1,i , λ

pred,(j)
2,i , θ

pred,(j)
1 and θ

pred,(j)
2 are the GPDD model parameters which are

obtained by substituting the values of H, a1, . . . , ak, γ1, γ2 and γ3 at the jth iteration in

(10)-(13).

2. Randomly draw

Z
pred,(j)
i ∼ GPDD(λ

pred,(j)
1,i , λ

pred,(j)
2,i , θ

pred,(j)
1 , θ

pred,(j)
2 ),

where a random sample from the GPDD is obtained as the difference of the two generalised

Poisson random variables.

The posterior predictive distribution will be used to probabilistically quantify the response

variable which enables us to assess the goodness of fit and the overall performance of the model.

Therefore, if the predictive distribution, in general, is in agreement with the observed data, this

implies a good fit to the model. This also can be used to estimate the ranking distribution if the

competition had a different structure (Karlis and Ntzoufras, 2009; Lee, 1997).
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Mean Median 2.50% 97.50%

H 0.394 0.394 0.248 0.553
γ1 1.719 1.709 1.405 2.072
θ1 -0.037 -0.032 -0.163 0.062
θ2 -0.033 -0.028 -0.197 0.094

Table 1: Posterior mean, median and 95% credible intervals for the home effect (H), constant
term in the variance (γ1), θ1 and θ2.

5 Results

The GPDD model is fitted to a set of data from 2012-2013 Italian Serie A football league1. This

tournament comprises 20 teams with matches played between August 2012 and May 2013. The

tournament has a double-round-robin structure, so each team competes twice against all the other

teams in the league. The total number of matches is 20(20− 1) = 380 played over 91 days. On

average home and visiting teams scored 1.49 and 1.14 goals, respectively.

Informative prior distributions described in Section 4.1 were assigned to home effect and team

abilities (Appendix A: Table 4). The teams Sampdoria, Torino and US Pescara were promoted

to Serie A league in 2012-13, hence non-informative normal priors were assigned to their abili-

ties. After running the M-H algorithm, the Gelman and Rubin’s convergence diagnostic with the

statistic value of 1.01 suggested that we can consider the convergence of the MCMC chains after

15000 iterations (Gelman and Rubin, 1992). A further 5000 samples were collected after burn-in.

Table 1 provided summary statistics of the posterior predictive distribution of H, γ1, θ1 and

θ2. A positive home effect can be observed indicating that the expected goal difference is positive

when teams with equal abilities are playing. The small but negative values of θ1 and θ2 may

suggest that the distribution of the goal difference tends to have slightly shorter tails than a PD

distribution. It also suggests that though the left tail is slightly longer that the right tail, the

values of θ1 and θ2 are quite similar.

A plot of the 95% posterior interval for team abilities is provided in Figure 1. According to this

plot, Juventus, Napoli and Fiorentina have the highest abilities which is supported by the actual

overall goal difference. Also, it can be seen that the model predicted the abilities of Sampdoria,

Torino and US Pescara well.

Figure 2 depicts the observed and predicted frequencies for the overall goal differences. It

is evident that there is a close agreement between the observed and predicted values. The 95%

credible predictive intervals contains the observed value, indicating only minor deviation from the

data. Under the GPDD model it is expected that approximately 60 matches played at home

would finish with -1 goal difference, whereas in practice 50 games finished with -1 goal difference.

This was compensated by the number of games finished with a goal difference of -2 (expected

frequency 30 as against observed frequency 40).

Nevertheless, the posterior predicted distribution of the goal difference shows a strong agree-

1http://espnfc.com/?cc=5739
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Figure 1: Posterior mean and 95% credible intervals of the team abilities (a1, . . . , a20) and the
observed mean goal difference illustrated by red triangles.

ment between predicted and observed goal differences for each team (Table 2). Minor differences

were observed between the expected and observed goals. For 18 of the 20 teams, the difference

between the expected and observed goal differences were no greater than 2. There are only two

teams that had a difference of 3 goals. Furthermore, we ranked the teams based on the expected

goal difference. It can be seen that the top 10 and the bottom 5 teams have the same expected

and observed ranks in the final table. The predicted rank of teams with ranks 12-16 differ from

their observed ranks by only one position and that of the team with rank 11 (Torino) has an

observed rank of 13.

5.1 Model checking

The performance of the model is evaluated using a deviation score based on the predictive dis-

tribution used also by Karlis and Ntzoufras (2009) and compared with a GPDD model with a

constant variance with respect to team abilities. We compared the deviation of the predicted val-

ues of the quantity of interest from their corresponding observed values. Adopting the notations

of Karlis and Ntzoufras (2009), the deviation score was defined by

Deviation =

√

√

√

√

1

L

L
∑

l=1

(

E(Qpred

l |z)−Qobs

l

)2
(17)
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Figure 2: Posterior predictive distribution of the goal difference under the GPDD model along
with the observed frequency.

where Qobs

l is the observed quantity, E(Qpred

l |z) is the predicted quantity and L is the length of

vector Q. For the calculation of the deviations of the frequencies and the relative frequencies,

we used L = 13 in order to consider differences from −6 to 6, while for the deviations of the

expected differences from the final table, we set L = K = 20, i.e. the number of teams in the

league. The deviation scores were compared with a similar GPDD model with a fixed variance.

Let M1 be the GPDD model with a constant variance with respect to team abilities and M2 be

the GPDD model described in (8)-(9). It can be seen from Table 3 that modelling the variance

improves the fit of the model for this set of data.

In order to show that model M2 model outperforms model M1, we use the Bayes factor (BF),

which is defined as the ratio of marginal likelihood under one model to the marginal likelihood

under the other model (Gelman et al., 2003; Kass and Raftery, 1995; Plummer et al., 2006):

BF(M2,M1) =
flike,M2

(z|M2)

flike,M1
(z|M1)

=

∫

fprior,M2
(ψ|M2) flike,M2

(z|ψ′,M2) dψ
′

∫

fprior,M1
(ψ|M1) flike,M1

(z|ψ,M1) dψ
, (18)

where ψ and ψ′ are vectors of parameters under the M1 and M2 distributions, respectively and

flike,M1
(z|M1) and flike,M2

(z|M2) are marginal likelihoods under M1 and M2 models. A Bayes

factor greater than one ( or log(BF) > 0) supports M2 model over M1 model. In our case, we

obtain BF(M2,M1) = 5.60 which suggests that modelling the variance in addition to the mean

10



95% Credible interval

Precited (Obs) Rank Teams Observed Mean 2.5% 97.5%

1(1) Juventus 47 48 21 77
2(2) Napoli 37 35 10 62
3(4) Fiorentina 28 27 1 54
4(3) AC Milan 28 26 0 54
5(5) AS Roma 15 17 -9 44

6(6) Udinese 14 14 -11 40
7(7) Lazio 9 11 -15 38
8(8) Catania 4 5 -22 31
9(9) Parma -1 0 -26 25

10(10) Internazionale -2 -4 -32 23

11(13) Torino -9 -7 -33 18
12(11) Bologna -6 -8 -35 21
13(12) Sampdoria -8 -11 -37 14
14(15) Genoa -14 -11 -36 13
15(14) Cagliari -12 -12 -39 14

16.5(16) Chievo Verona -15 -17 -44 9
16.5(17) Atalanta -17 -17 -41 7
18(18) Palermo -20 -18 -46 7
19(19) Siena -21 -19 -46 6
20(20) US Pescara -57 -59 -92 -30

Table 2: Expected (observed) rank, observed goal difference, posterior mean and 95% credible
intervals of goal differences for the teams in the 2012-13 Italian Serie A football league.

M1 M2

Frequency (counts/games) 3.72 3.32
Relative frequency (counts) 0.01 0.008
Frequency of win/draw/loss 6.79 2.93

Relative frequency of win/draw/loss 0.017 0.006
Expected goal difference 6.22 1.81

Table 3: Deviations between observed and predictive measures for models M1 and M2.

considerably improves the fit.

Finally, Figure 3 illustrates predictions for the total number of wins/draws/losses for the next

season (2013-14 Italian Serie A football league) using the GPDD model. For the purpose of a

uniform comparison, the horizontal axes were sorted by the total number of wins (ascending from

left to right) for all the three panels. It can be seen that out of 60 observed wins/draws/losses,

56 values fall within the 95% credible intervals. In other words, in the top panel, the number

of wins was underestimated for Juventus and AS Roma, and overestimated for Bologna. On the

other hand, in the bottom panel, the number of losses was underestimated for Catania.

6 Discussion

In this paper, we proposed the application of the GPDD for modelling football data. The proposed

model has some interesting advantages over a similar PD model used for the same purpose. The

GPDD model, like the PD model, is based on the goal difference in each game which allows us to
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Figure 3: Predicted number of wins/draws/losses with median and 95% credible intervals and
observed values for 2013-14 Italian Serie A football league.

account for the correlation without explicitly modelling it as needed in any bivariate distribution.

The main advantage of the GPDD model to the PD model is its flexibility in the tails that allows

for shorter as well as longer tails than the PD distribution.

We carried out the analysis in a Bayesian framework which allowed us to incorporate external

information through the prior distributions. We chose the prior distributions of team abilities and

the home effect based on the previous year’s league table. We modelled both the mean and the

variance of the goal difference such that the variance was defined as a function of the absolute

difference in the team abilities. In this paper, we obtained small values for the estimates of the

parameters θ1 and θ2. However, the possibility to model the variance of the distribution appears

important. More importantly, the utilisation of the generalised Poisson difference distribution may

be more relevant in situations in which the tails of the distribution of the difference in scores are

longer, as for example with basketball data.

We demonstrated that such a model performs considerably better than a model with a fixed

variance. We could also see that the proposed model did not overestimate the number of drawn

games as was the case with the PD distribution. However, for the 2012-13 Italian Serie A football

data, our GPDD model predicted more games with -1 goal difference than that was actually

observed. This was, in fact, compensated by predicting fewer games with -2 goal difference.

Finally, various model diagnostics were carried out that showed that goal differences were explained

12



very well by the fitted GPDD model.

Our model in its current form does not allow for time-varying team abilities. Thus, an extension

would be to consider a dynamic model with varying team abilities and home effect. Another

possible extension of the model would be time varying home effect and team specific θ1 and θ2.
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A Prior mean and variance

Teams z̄j σ2zj Teams z̄j σ2zj
AC Milan 1.079 2.886 Catania -0.132 2.334
Napoli 0.526 2.959 Fiorentina -0.158 2.731
Udinese 0.447 2.038 Cagliari -0.237 2.834
Lazio 0.237 2.942 Chievo Verona -0.263 1.767
AS Roma 0.158 3.38 Palermo -0.263 3.118
Internazionale 0.079 3.264 Lecce -0.421 1.818
Parma 0.026 3.053 Genoa -0.5 2.797
Siena 0 3.297 Novara -0.79 2.603
Atalanta -0.053 2.159 Cesena -0.947 1.835

Table 4: Mean and variance of the goal difference of teams which played in 2011-12 Italian Serie
A league.
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