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ABSTRACT 

This paper addresses the problem of determining the weights for a 

set of linear filters (model "cells") so as to maximize the 

ensemble-averaged information that the cells' output values jointly 

convey about their input values, given the statistical properties of 

the ensemble of input vectors. The quantity that is maximized is the 

Shannon information rate, or equivalently the average mutual 

information between input and output. Several models for the role 

of processing noise are analyzed, and the biological motivation for 

considering them is described. For simple models in which nearby 

input signal values (in space or time) are correlated, the cells 

resulting from this optimization process include center-surround 

cells and cells sensitive to temporal variations in input signal. 

INTRODUCTION 

I have previously proposed [Linsker, 1987, 1988] a principle of "maximum 

information preservation," also called the "infomax" principle, that may account for 

certain aspects of the organization of a layered perceptual network. The principle 

applies to a layer L of cells (which may be the input layer or an intermediate layer 

of the network) that provides input to a next layer M. The mapping of the input 

signal vector L onto an output signal vector M, f:L ~ M, is characterized by a 

conditional probability density function ("pdf") p(MI L). The set S of allowed 

mappings I is specified. The input pdf PL(L) is also given. (In the cases considered 

here, there is no feedback from M to L.) The infomax principle states that a 

mapping I should be chosen for which the Shannon information rate [Shannon, 

1949] 

R(j) == f dL PL(L) f dM p(MI L) 10g[P(MI L)/PM(M)] (1) 

is a maximum (over allIin the set S). Here PM(M) == fdLPL(L)P(MIL) is the pdf 

of the output signal vector M. R is identical to the average mutual information 

between Land M. 
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To understand better how the info max principle may be applied to biological systems 

and complex synthetic networks, it is useful to solve the infomax optimization 

problem explicitly for simpler systems whose properties are nonetheless biologically 

motivated. This paper therefore deals with the practical computation of infomax 

solutions for cases in which the mappings! are constrained to be linear. 

INFOMAX SOLUTIONS FOR A SET OF LINEAR FILTERS 

We consider the case of linear model "neurons" with multivariate Gaussian input 

and additive Gaussian noise. There are N input (L) cells and N' output (M) cells. 

The input column vector L = (Lt,~, ... ,LNF is randomly selected from an 

N-dimensional Gaussian distribution having mean zero. That is, 

(2) 

where QL is the covariance matrix of the input activities, Q6 = J dL PL(L)LjLj • 

(Superscript T denotes the matrix transpose.) 

To specify the set S of allowed mappings !:L .... M, we define a processing model 

that includes a description of (i) how noise enters during processing, (ii) the 

independent variables over which we are to maximize R, and (iii) any constraints 

on their values. Figure 1 shows several such models. We shall analyze the simplest, 

then explain the motivation for the more complex models and analyze them in turn. 

Model A -- Additive noise of constant variance 

In Model A of Fig. 1 the output signal value of the nth M cell is: 

(3) 

The noise components "11 are independently and identically distributed (fli.i.d. ") 

random variables drawn from a Gaussian distribution having a mean of zero and 

variance B. 

Each mapping !:L .... M is characterized by the values of the {Cnj } and the noise 

parameter B. The elements of the covariance matrix of the output activities are 

(using Eqn. 3) 

(4) 

where ~nm = 1 if n = m and 0 otherwise. 

Evaluating Eqn. 1 for this processing model gives the information rate: 

R(j) = (1/2) In Det W(j) (5) 

where ~m = Q:!'/ B. (R is the difference of two entropy terms. See [Shannon, 

1949], p.57, for the entropy of a Gaussian distribution.) 
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If the components Cni of the C matrix are allowed to be arbitrarily large, then the 

information rate can be made arbitrarily large, and the effects of noise become 

arbitrarily small. One way to limit C is to impose a "resource constraint" on each 

M cell. An example of such a constraint is ~jqj = 1 for all n. One can then attempt 

directly, using numerical methods, to maximize Eqn. 5 over all allowed C for given 

B. However, when some additional conditions (below) are satisfied, further 

analytical progress can be made. 

Suppose the NL-cells are uniformly spaced along the line interval [0,1] with periodic 

boundary conditions, so that cell N is next to cell 1. [The analysis can be extended 

to a two- (or higher-) dimensional array in a straightforward manner.] Suppose also 

that (for given N) the covariance Q6 of the input values at cells i and j is a function 

QL(Sj) only of the displacement s'J from i to j. (We deal with the periodicity by 

defining Sab = b - a - Ya~ and choosing the integer Yab such that 

-N/2 S Sab < N/2.) Then QL is a Toeplitz matrix, and its eigenvalues {Ak} are the 

components of the discrete Fourier transform ("F.T.") of QL(S): 

Ak = ~sQL(s) exp( -2~ks/N), (-N/2) S k < N/2. (6) 

We now impose two more conditions: (1) N' = N. This simplifies the resulting 

expressions, but is otherwise inessential, as we shall discuss. (2) We constrain each 

M cell to have the same arrangement of C-values relative to the M cell's position. 

That is, Cnj is to be a function C(Sni) only of the displacement Sni from n to i. This 

constraint substantially reduces the computational demands. We would not expect 

Figure 1. 
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Four processing models (A)-(D): Each diagram shows a single 

M cell (indexed by n) having output activity Mn. Inputs {LJ may 

be common to many M cells. All noise contributions (dotted 

lines) are uncorrelated with one another and with {LJ. GC = 
gain control (see text). 
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it to hold in general in a biologically realistic model -- since different M cells should 

be allowed to develop different arrangements of weights -- although even then it 

could be used as an Ansatz to provide a lower bound on R. The section, 

"Temporally-correlated input patterns," deals with a situation in which it is 

biologically plausible to impose this constraint. 

Under these conditions, (Q:!') is also a Toeplitz matrix. Its eigenvalues are the 

components of the F.T. of QM(snm). For N' = N these eigenvalues are (B + A~k) , 

where Zk = ICkl2 and Ck == ~sC(s) exp( -2'TT~ks/N) is the F.T. of C(s). [This 

expression for the eigenvalues is obtained by rewriting Eqn. 4 as: 

QM(snm) = B8n_m.o + ~j.jC(snJQL(Sj)C(sm) ,and taking the F.T. of both sides.] 

Therefore 

R = (1/2)~k In[l + AJcZk/ B]. (7) 

We want to maximize R subject to ~sC(S)2 = 1, which is equivalent to ~Zk = N . 

Using the Lagrange multiplier method, we maximize A == R + 11-(~Zk - N) over all 

nonnegative {Zk}' Solving for (JA/ (JZk = 0 and requiring Zk ~ 0 for all k gives the 

solution: 

Zk = max[( -1/211-) - (B/Ak)' 0], (8) 

where (given B) 11- is chosen such that ~Zk = N. 

Note that while the optimal {Zk} are uniquely determined, the phases of the {ck} are 

completely arbitrary [except that since the {C(s)} are real, we must have Ck * = c_ k 

for all k]. The {C(s)} values are therefore not uniquely determined. Fig. 2a shows 

two of the solutions for .an example in which QL(S) = exp[ - (s/ So)2] with So = 6, 

N=N'=64, and B.:..:.l. Both solutions have ZO.±1 .. .. . ±6=5.417, 5.409, 5.378, 

5.306, 5.134,4.689,3.376, and all other Zk == O. Setting all Ck phases to zero yields 

the solid curve; a particular random choice of phases yields the dotted dHve. We 

shall later see that imposing locality conditions on the {C(s)} (e.g., penalizing 

nonzero C(s) for large I s I) can remove the phase ambiguity. 

Our solution (Eqn. 8) can be described in terms of a so-called "water-filling" 

analogy: If one plots B /Ak versus k, then Zk is the depth of "water" at k when one 

"pours" into the "vessel" defined by the B / Ak curve a total quantity of "water" that 

corresponds to ~Zk = N and brings the "water level" to ( -1/211-). 

Let us contrast this problem with two other problems to which the "water-filling" 

analogy has been applied in the information-theory literature. In our notation, they 

are: 

1. Given a transfer function {C(s)} and the noise variance B, how should a given 

total input signal power ~Ak be apportioned among the various wavenumbers 

k so as to maximize the information rate R [Gallager, 1968]? Our problem is 

complementary to this: we fix the input signal properties and seek an optimal 

transfer function subject to constraints. 
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2. Rate-distortion (R-D) calculation [Berger, 1971]: Given a distortion measure 

(that defines a "distance" between the actual input signal and an estimate of it 

that can be reconstructed from the channel's output), and the input power 

spectrum p.k}, what choice of {Zk} minimizes the average distortion for given 

information rate (or minimizes the required rate for given distortion)? In the 

R-D problem there is a process of reconstruction, and a given measure for 

assessing the "goodness" of reconstruction. In contrast, in our network there 

is no reconstruction of the input signal, and no criterion of the "goodness" of 

such a hypothetical reconstruction is provided. 

Note also that infomax optimization is not the same as computing which channel 

(that is, which mapping !:L .... M) selected from an allowed set has the maximum 

information-theoretic capacity. In that problem, one is free to encode the inputs 

before transmission so as to make optimal use of (Le., "achieve the capacity of") the 

channel. In our case, there is no such pre-encoding; the input ensemble is prescribed 

(by the environment or by the output of an earlier processing stage) and we need to 

maximize the channel rate for that ensemble. 

The simplifying condition that N = N' (above) is unnecessarily restrictive. Eqn. 7 

can be easily generalized to the case in which N is a mUltiple of N' and the N' M cells 

are uniformly spaced on the unit interval. Moreover, in the limit that 1/ N' is much 

smaller than the correlation length scale of QL, it can be shown that R is unchanged 

when we simultaneously increase N' and B by the same factor. (For example, two 

adjacent M cells each having noise variance 2B jointly convey the same information 

Figure 2. 
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Example infomax solutions C(s) for locally-correlated 

inputs: (a) Model A; region of nonnegligible C(s) extends over 

all s; phase ambiguity in Ck yields non unique C(s) solutions, two 

of which are shown. See text for details. (b) Models C (solid 

curve) and D (dotted curve) with Gaussian g(S)-l favoring short 

connections; shows center-surround receptive fields, more 

pronounced in Model D. (c) "Temporal receptive field" using 

Model D for temporally correlated scalar input to a single M cell; 

C(s) is the weight applied to the input signal that occurred s time 

steps ago. Spacing between ordinate marks is 0.1; ~ C(S)2 = 1 in 

each case. 

c 
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about L as one M cell having noise variance B.) For biological applications we are 

mainly interested in cases in which there are many L cells [so that C(s) can be 

treated as a function of a continuous variable] and many M cells (so that the effect 

of the noise process is described by the single parameter B/ N). 

The analysis so far shows two limitations of Model A. First, the constraint 

~iqi = 1 is quite arbitrary. (It certainly does not appear to be a biologically natural 

constraint to impose!) Second, for biological applications we are interested in 

predicting the favored values of {C(s)}, but the phase ambiguity prevents this. In 

the next section we show that a modified noise model leads naturally, without 

arbitrary constraints on ~iqi' to the same results derived above. We then turn to a 

model that favors local connections over long-range ones, and that resolves the 

phase ambiguity issue. 

Model B -- Independent noise on each input line 

In Model B of Fig. 1 each input Li to the nth M cell is corrupted by Li.d. Gaussian 

noise V l1i of mean zero and variance B. The output is 

(9) 

Since each Vni is independent of all other noise terms (and of the inputs {Li }), we find 

(10) 

We may rewrite the last term as B~l1m (~iqy!2 (~jc;)l/2. The information rate is 

then R = (1/2) In DetWwhere 

(11) 

Define c' ni == Cl1i(~kqk)-1/2 ; then J¥,.m = ~lIm + (~,.jc'lIiQbC' mj)/ B. Note that this is 
identical (except for the replacement C ~ C') to the expression following Eqn. (5), 

in which QM was given by Eqn. (4). By definition, the {C' nil satisfy ~iC';i = 1 for 

all n. Therefore, the problem of maximizing R for this model (with no constraints 

on ~jq;) is identical to the problem we solved in the previous section. 

Model C -- Favoring of local connections 

Since the arborizations of biological cells tend to be spatially localized in many cases, 

we are led to consider constraints or cost terms that favor localization. There are 

various ways to implement this. Here we present a way of modifying the noise 

process so that the infomax principle itself favors localized solutions, without 

requiring additional terms unrelated to information transmission. 

Model C of Fig. 1 is the same as Model B, except that now the longer connections 

are "noisier" than the shorter ones. That is, the variance of VIIi is <V;i> = B~(sn;) 

where g(s) increases with 1 s I. [Equivalently, one could attenuate the signal on the 

(i ~ n) line by g(sll;) 1/2 and have the same noise variance Bo on all lines.] 
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This change causes the last term of Eqn. 10 to be replaced by Bo8I1m~g(SIl)qi . 

Under the conditions discussed earlier (Toeplitz QL and QM, and N = N), we derive 

(12) 

Recall that the {ck } are related to {C(s)} by a Fourier transform (see just before Eqn. 

7). To cotppute which choice of IC(s)} maximizes R for a given problem, we used 

a gradient ascent algorithm several times, each time using a different random set of 

initial I C(s)} values. For the problems whose solutions are exhibited in Figs. 2b and 

2c, multiple starting points usually yielded the same solution to within the error 

tolerance specified for the algorithm [apart from an arbitrary factor by which all of 

the C(s)'s can be multiplied without affecting R], and that solution had the largest 

R of any obtained for the given problem. That is, a limitation sometimes associated 

with gradient ascent algorithms -- namely, that they may yield multiple "solutions" 

that are local, but far from global, maxima -- did not appear to be a difficulty in these 

cases. 

Fig. 2b (solid curve) shows the infomax solution for an example having 

QL(S) = exp[ - (S/sO)2] and g(s) = exp[(s/s.)2] with So = 4, s. = 6, N = N = 32, 

and Bo = 0.1. There is a central excitatory peak flanked by shallow inhibitory 

sidelobes (and weaker additional oscillations) . (As noted, the negative of this 

solution, having a central inhibitory region and excitatory sidelobes, gives the same 

R.) As Bo is increased (a range from 0.001 to 20 was studied), the peak broadens, 

the sidelobes become shallower (relative to the peak), and the receptive fields of 

nearby M cells increasingly overlap. This behavior is an example of the 

"redundancy-diversity" tradeoff discussed in [Linsker, 1988]. 

Model D -- Bounded output variance 

Our previous models all produce output values Mn whose variance is not explicitly 

constrained. More biologically realistic cells have limited output variance. For 

example, a cell's firing rate must lie between zero and some maximum value. Thus, 

the output of a model nonlinear cell is often taken to be a sigmoid function of 

(~iCII;L)· 

Within the context of linear cell models, we can capture the effect of a bounded 

output variance by using Model D of Fig. 1. We pass the intermediate output 

~iClIi(Li + VIIi) through a gain control QC that normalizes the output variance to 

unity, then we add a final (Li.d. Gaussian) noise term V'II of variance R.. That is, 

(13) 

Without the last term, this model wo~ld be identical to Model C, since mUltiplying 

both the signal and the VIIi noise by the same factor GC would not affect R. The last 

term in effect fixes the number of output values that can be discriminated (Le., not 

confounded with each other by the noise process V'II) to be of order Rl1!2. 

The information rate for this model is derived to be (cf. Eqn. 12): 
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(14) 

where V( C) is the variance of the intermediate output before it is passed through 

GC: 

(15) 

Fig. 2b (dotted curve) shows the infomax solution (numerically obtained as above) 

for the same QL(S) and g(s) functions and parameter values as were used to generate 

the solid curve (for Model C), but with the new parameter Bl = 0.4. The effect of 

the new Bl noise process in this case is to deepen the inhibitory sidelobes (relative 

to the central peak). The more pronounced center-surround character of the 

resulting M cell dampens the response of the cell to differences (between different 

input patterns) in the spatially uniform component of the input pattern. This 

response property allows the L .... M mapping to be info max-optimal when the 

dynamic range of the cells' output response is constrained.· (A competing effect can 

complicate the analysis: If Bl is increased much further, for example to 50 in the 

case discussed, the sidelobes move to larger s and become shallower. This behavior 

resembles that discussed at the end of the previous section for the case of increasing 

Bo; in the present case it is the overall noise level that is being increased when Bl 

increases and Bo is kept constant.) 

TemporaUy-correlated input patterns 

Let us see how infomax can be used to extract regularities in input time series, as 

contrasted with the spatially-correlated input patterns discussed above. We consider 

a single M cell that, at each discrete time denoted by n, can process inputs {LJ from 

earlier times i ~ n (via delay !ines, for example). We use the same Model D as 

before. There are two differences: First, we want g(s) = 00 for all s > 0 (input lines 

from future times are "infinitely noisy"). [A technical point: Our use of periodic 

boundary conditions, while computationally convenient, means that the input value 

that will occur s time steps from now is the same value that occurred (N - s) steps 

ago. We deal with this by choosing g(s) to equal 1 at s = 0, to increase as 

s .... -N/2 (going into the past), and to increase further as s decreases from +N/2 

to 1, corresponding to increasingly remote past times. The periodicity causes no 

unphysical effects, provided that we make g(s) increase rapidly enough (or make N 

large enough) so that C(s) is negligible for time intervals comparable to N.] Second, 

the fact that C,,; is a function only of s'" is now a consequence of the constancy of 

connection weights C(s) of a single M cell with time, rather than merely a convenient 

Ansatz to facilitate the infomax computation for a set of many M cells (as it was in 

previous sections). 

The infomax solution is shown in Fig. 2c for an example having 

QL(S) = exp[ - (S/So)2]; g(s) = exp[ -t(s}/s.J with t(s} = s for s ~ 0 and 

t(s} = s - N for s ~ 1; So = 4, Sl = 6, N = 32, Bo = 0.1, and Bl = 0.4. The result is 

that the "temporal receptive field" of the M cell is excitatory for recent times, and 
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inhibitory for somewhat more remote times (with additional weaker oscillations). 

The cell's output can be viewed approximately as a linear combination of a smoothed 

input and a smoothed first time derivative of the input, just as the output of the 

center-surround cell of Fig. 2b can be viewed as a linear combination of a smoothed 

input and a smoothed second spatial derivative of the input. As in Fig. 2b, setting 

BI = 0 (not shown) lessens the relative inhibitory contribution. 

SUMMARY 

To gain insight into the operation of the principle of maximum information 

preservation, we have applied the principle to the problem of the optimal design of 

an array of linear filters under various conditions. The filter models that have been 

used are motivated by certain features that appear to be characteristic of biological 

networks. These features include the favoring of short connections and the 

constrained range of output signal values. When nearby input signals (in space or 

time) are correlated, the infomax-optimal solutions for the cases studied include (1) 

center-surround cells and (2) cells sensitive to temporal variations in input. The 

results of the mathematical analysis presented here apply also to arbitrary input 

covariance functions of the form QL( I i - j I). We have also presented more general 

expressions for the information rate, which can be used even when QL is not of this 

form. The cases discussed illustrate the operation of the infomax principle in some 

relatively simple but instructive situations. The analysis and results suggest how the 

principle may be applied to more biologically realistic networks and input ensembles. 
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