
An Applications Oriented Guide to Lagrangian
Relaxation

MARSHALL L. FISHER Department of Decision Sciences

The WImrton School

University of Pennsylvania

Philadelphia, Pennsylvania 19104

Lagrangian relaxation is a tool that is increasingly being used
in large-scale mathematical programming applications, such
as last year's CPMS/TIMS Management Achievement Award
winner (Bell et al. 1983). In this tutorial, Marshall Fisher pro-
vides a practical guide to the use of the approach with many
examples and illustrations.

In the last decade, Lagrangian relaxation

has grown from a successful but largely

theoretical concept to a tool that is the

backbone of a number of large-scale ap-

plications. While there have been several

surveys of Lagrangian relaxation (for

example. Fisher [1981] and Geoffrion

[1974]) and an excellent textbook treat-

ment [Shapiro 1979], more extensive use

of Lagrangian relaxation in practice has

been hampered by the lack of a "how to

do it" exposition similar to the treatment

usually accorded linear, dynamic, and in-

teger programming in operations research

texts. This article is intended to at least

partially fill that void and should be of

interest to both developers and users of

Lagrangian relaxation algorithms.

Lagrangian relaxation is based upon the

observation that many difficult integer

programming problems can be modeled

as a relatively easy problem complicated

by a set of side constraints. To exploit this

observation, we create a Lagrangian prob-

lem in which the complicating constraints

are replaced with a penalty term in the ob-

jective function involving the amount of

violation of the constraints and their dual

variables. The Lagrangian problem is easy

to solve and provides an upper bound {for

a maximization problem) on the optimal

value of the original problem. It can thus
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LAGRANGIAN RELAXATION

be used in place of a linear programming

relaxation to provide bounds in a branch

and bound algorithm. The Lagrangian

approach offers a number of important

advantages over linear programming

relaxations.

1 will first formulate the Lagrangian re-

laxation concept in general terms and

then demonstrate its use extensively on a

numerical example. I begin with an in-

teger programming problem of the follow-

ing form:

Z = max ex

Ax^b. (P)

Dx « e

X ̂  0 and integral,

whereX isn x l, fc ism x l, e isk x 2 and

all other matrices have conformable

dimensions.

We assume that the constraints of (P)

have been partitioned into the two sets Av

^ b and Dx ^ e so that (P) is relatively

easy to solve if the constraint set Ax ^b is

removed. To create the Lagrangian prob-

lem, we first define an m vector of non-

negative multipliers u and add the non-

negative term u(b-Ax) to the objective

function of (P) to obtain

max ex + u(b-Ax)

subject to Ax "^ b

Dx ^e

X 5f 0 and integral.

It is clear that the optimal value of this

problem for u fixed at a nonnegative value

is an upper bound on Z because we have

merely added a nonnegative term to the

objective function. At this point, we

create the Lagrangian problem by remov-

ing the constraints Ax '^b io obtain

Zn(u) = max ex + uib-Ax)

Dx ^e

X ̂  0 and integral.

Since removing the constraints Ax ^b

cannot decrease the optimal value, Z f̂uJ

is also an upper bound on Z. Moreover,

by assumption the Lagrangian problem is

relatively easy to solve.

There are three major questions in de-

signing a Lagrangian-relaxation-based

system: (a) which constraints should be

relaxed, (b) how to compute good multi-

pliers H, and (c) how to deduce a good,

feasible solution to the original problem,

given a solution to the relaxed problem.

Roughly speaking, the answer to (a) is

that the relaxation should make the prob-

lem significantly easier, but not too easy.

For (b) there is a choice between a general

purpose procedure called the subgradient

method and "smarter" methods which

may be better but which are, however,

highly problem specific. Similarly, the an-

swer to (c) tends to be problem specific. I

will use a numerical example to illustrate

considerations (a), (b), and (c) as well as

to compare Lagrangian relaxation to the

use of linear programming to obtain

bounds for use in a branch and bound al-

gorithm. I will conclude with a small sur-

vey of past applications and an assess-

ment of future prospects.

An Example

The example shown below will be used

throughout the paper to demonstrate

concepts.

Z = max 16 X, -I- 10 X2 -I- 4 x< (1)

subject to 8x, + 2x2 + xj + 4xj ^ 10 (2)

X; + X2 ê 1 (3)

X3 + X4 ^ 1 (4)

Oexj « 1,/ = 1 4 (5)

Xj integral, y = l, . . . , 4 (6)

If we dualize constraint (2), we obtain the
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following Lagrangian relaxation.

ZD(U) = max

+ (0-u)x3 -I- (4-

X, + X2 « 1

-I-

(3)

X3 +X,^1 (4)

O^xj ^ 1,/ = 1, . . . , 4 (5)

Xj integral, j = l, . . . , 4 (6)

It is easy to solve this relaxation if the

dual variable u is fixed at some nonnega-

tive value. Note that if the objective coef-

ficient of any variable is not positive, we

can set that variable to 0. Otherwise, we

choose either x, or X2 and either Xj or X4

to set to 1, depending on which has the

larger objective function coefficient.

The Subgradient Method for Setting the

Dual Variables

Here I'll use our numerical example to

develop and demonstrate a method for

obtaining dual variable values that pro-

duce a tight bound. Ideally, u should

solve the following dual problem.

Zfl = mm Z[f(u), u > 0.

Before presenting an algorithm for this

problem, it will be useful to develop some

insight by trying different values for the

single dual variable u in the example.

Table 1 gives a list of seven values for «,

together with the associated Lagrangian

relaxation solution, the bound Zi)(u), and

Z for those Lagrangian solutions that are

feasible in (P). In the case of M = 1 , there

are four alternative optimal Lagrangian

solutions which are all shown. The values

for u exhibited were obtained using an in-

telligent trial-and-error process. It is use-

ful to think of the single constraint (2) that

we have dualized as a resource constraint

with the right side representing the avail-

able supply of some resource and the left

u
0

6

3
2
1

1/2

3/4

X,

1

0

0

0

1

1

0

0

1

1

Lagrangian

X2

0
0

1

1

0

0

1

1

0

0

Xs

0
0

0

0
0

0

0
0
0

0

X4

1

0

0

0

0

1

0

1

1

1

Solution

Z,,(u)
20

60

34
26

18

18

18

18

19

18.5

Value of
Lagrangian
solution if

feasible

0
10
10
16

10
14

Table 1: Lagrangian solutions for possible dual
variable values.

side the amount of the resource de-

manded in a particular solution. We can

then interpret the dual variable « as a

"price" charged for the resource. It turns

out that if we can discover a price for

which the supply and demand for the re-

source are equal, then this value will also

give a tight upper bound. However, such

a price might not exist. Beginning with u

= 0, we discover that the Lagrangian re-

laxation solution demand for the resource

exceeds the available supply by two units,

suggesting that we should use a larger

value for u. We next try u = 6 and dis-

cover that we have over-corrected in the

sense that all variables are 0 in the La-

grangian solution and none of the re-

source is used. We next try a sequence of

dual values in the interval between 0 and

6, obtaining the results shown in Table 1.

For the values tested, the tightest

bound of 18 was obtained with u = 1, but

at the moment we lack any means for con-

firming that it is optimal. It is possible to

demonstrate that 18 is the optimal value

for ZD(U) by observing that if we substi-

tute any x into the objective function for
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the Lagrangian problem, we obtain a

linear function in u. Figure 1 exhibits this

family of linear functions for all Lagrang-

ian relaxation solutions that are optimal

for at least one value of «. The fact that

we must maximize the Lagrangian objec-

tive means that for any particular value of

u, Zp(u) is equal to the largest of these

linear functions. Thus, the Zi,(u) function

is given by the upper envelope of this

family of linear equations that is shown as

a darkened piecewise linear function in

Figure 1. From this figure it is easy to see

that H = 1 minimizes Z,,(MJ.

Figure 1 also provides motivation for a

general algorithm for finding w. As

shown, the ZD(U) function is convex and

differentiable except at points where the

Lagrangian problem has multiple optimal

solutions. At differentiable points, the de-

Figure 1: The piecewise linear Z//HJ function.

rivative of Zu(u) with respect to u is given

by 8:f, + 2 :̂; -t- x, + 4a:, - 10, where x is

an optimal solution to (LRu). These facts

also hold in general with the gradient of

the Zi,(u) function at differentiable points

given by Ax - b. These observations

suggest that it might be fruitful to apply a

gradient method to minimization of Zf,(u)

with some adaptation at the points where

Zi,(u) is nondifferentiable. This has been

nicely accomplished in a procedure called

the subgradient method. At points where

Zi,(u) is nondifferentiable, the subgra-

dient method chooses arbitrarily from the

set of alternative optimal Lagrangian so-

lutions and uses the vector Ac - b for this

solution as though it were the gradient of

Z,,(u). The result is a procedure that de-

termines a sequence of values for u by

beginning at an initial point w" and apply-

ing the formula

u' ' ' - max {0, i/' - ^.(b - Ax")}. (6)

In this formula, t^ is a scalar stepsize and

x^ is an optimal solution to fLR,/), the

Lagrangian problem with dual variables

set to M" .

The nondifferentiability also requires

some variation in the way the stepsize is

normally set in a gradient method. To

gain insight into a sensible procedure for

setting tt;, we have provided in Tables 2,

3, and 4 the results of the subgradient

method applied to the example with three

different rules for tu- In the first case, iu is

fixed at one on all iterations, and we see

that the subgradient method oscillates be-

tween the values u = 0 and « = 2. In the

second example, i^ converges to 0 with

each successive value equal to half the

value on the previous iteration. In this

case, the subgradient method behaves
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u' =0
u' =0 - ( - 2 ) = 2
u^ =max {O, 2-8} = 0
u' =0 - ( - 2 ) = 2
u' =max {O, 2-8} = 0
Table 2: Subgradient method with 1^=1 for
alU.

u" =0
u' =0 - ( - 2 ) = 2
u' =max {O, 2 - 1/2(8)} = 0
u' =0 - ¥4-2) = V2
u ' =1/2 - V8(-2) = 3/4

u' =^k - l/16(-2) = %
H* =% - l/32(-2) = 15/16
Table 3: Subgradient method with ti =1, V2,

i/' =0
w' =2
w' -max {0, 2 - 1/3(8)} = 0
u' =0 - l/9(-2) = 2/9
u* =2/9 - l/27(-2) = .296
u' =.296 - l/81(-2) = .321
w' =.321 - l-243(-2) = .329
u' =.329 - l/729(-2) = .332
Table 4: Subgradient method with tfc=l, 1/3,
1/9, 1/27, 1/81, . . .

nicely and converges to the optimal value

of w = 1. In the final case, /̂  also con-

verges to 0, but more quickly. Each suc-

cessive value is equal to one-third the

value on the previous iteration. In this

case the subgradient method converges to

u — 1/3, showing that if the stepsize con-

verges to 0 too quickly, then the subgra-

dient method will converge to a point

other than the optimal solution.

From these examples we suspect that

the stepsize in the subgradient method

should converge to 0, but not too quickly.

These observations have been confirmed

in a result (see Held, Wolfe, and Crowder

[1974]) that states that if as k ~> ^,

/^^O and 2 ^^00
/ = i

then Zodt") converges to its optimal value

Zi,. Note that Table 3 actually violates the

second condition since 2 /,—> 2, thus

showing that these conditions are suffi-

cient but not necessary. A formula for t^

that has proven effective in practice is

In this formula, Z* is the objective value

of the best known feasible solution to (P)

and \̂ - is a scalar chosen between 0 and 2.

Frequently, the sequence K^ is determined

by starting with X̂  = 2 and reducing A.̂-

by a factor of two whenever Zo(u'') has

failed to decrease in a specified number of

iterations. Justification for this formula, as

well as many other interesting results on

the subgradient method, is given in Held,

Wolfe and Crowder [1974]. The feasible

value Z* initially can be set to 0 and then

updated using the solutions that are ob-

tained on those iterations in which the

Lagrangian problem solution turns out to

be feasible in the original problem (P). Un-

less we obtain a u" for which Zo(u'') =

Z*, there is no way of proving optimality

in the subgradient method. To resolve

this difficulty, the method is usually ter-

minated upon reaching a specified itera-

tion limit.

Other procedures that have been used

for setting multipliers are called

multiplier-adjustment methods.

Multiplier-adjustment methods are

heuristics for the dual problem that are

developed for a specific application and

exploit some special structure of the dual
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problem in that application. The first

highly successful example of a

multiplier-adjustment method was Erlen-

kotter's [1978] algorithm for the uncapaci-

tated location problem.

By developing a multiplier-adjustment

method specifically tailored for some

problem class, one is usually able to im-

prove on the subgradient method. How-

ever, because the subgradient method is

easy to program and has performed

robustly in a wide variety of applications,

it is usually at least the initial choice for

setting the multipliers in Lagrangian

relaxation.

Returning to our example, we have ob-

tained through the application of La-

grangian relaxation and the subgradient

method a feasible solution with a value of

16 and an upper bound on the optimal

value of 18. At this point, we could stop

and be content with a feasible solution

proven to be within about 12 percent of

optimality, or we could complete solution

of the example to optimality using branch

and bound, with bounds provided by our

Lagrangian relaxation. In the next section

I'll show how such an approach would

compare with more traditional linear

programming based branch and bound

algorithms.

Comparison with Linear Programming

Based Bounds

In this section I will compare Lagrang-

ian relaxation with the upper bound ob-

tained by relaxing the integrality require-

ment on X and solving the resulting linear

program.

Let ZIP denote the optimal value of (P)

with integrality on ;i: relaxed. Let's start

by comparing Z^p for the example with

the best upper bound of 18 obtained pre-

viously with Lagrangian relaxation. To

facilitate this comparison, we first write

out the standard IP dual of the example.

Let u, V,, and V2 denote dual variables on

constraints (2), (3), and (4) and ivj a dual

variable on the constraint Xj ^ 1. Then

the LP dual of example (1) - (5) is

min lOu + V, + V2 + w, + W2 + w'a

-\- W4

8u + V, + w, ^ 16

2u + V, -\- W2 ^ 10

U + V2 + W3 ^ 0

4w + U2 + ui.! 5= 4

H, V,, V2, H ' l , . • • , U^4 ^ 0 .

The optimal solution to the primal LP is

X, = 1, X2 = 0, X3 = 0, X4 = yz and the

optimal solution to the dual LP is M = 1,

V, = 8, V2 = w, = ... W4 = 0. To verify

that each of these solutions is optimal,

simply substitute them in the primal and

dual and observe that each is feasible and

gives the same objective value 18.

This exercise has demonstrated two in-

teresting facts. First, Z,,p = 18, the same

upper bound we obtained with Lagrang-

ian relaxation. Secondly, the LP dual var-

iable value of « = 1 on constraint (2) is

exactly the value that gave the minimum

upper bound of 18 on the Lagrangian

problem. These observations are part of a

pattern that holds generally and is nicely

summarized in a result from Geoffrion

[1974] which states that Zo ^ Z^p for any

Lagrangian relaxation. This fact is estab-

lished by the following sequence of rela-

tions between optimization problems.

Zo = min {max {ex + u (b-Ax))}

u 3=0 X Dx ^^e

.X 5= 0 and integral

^ min {max {ex + u (b-Ax))}
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Dx

(by LP duality) = min {min ub + ve}

vD ^ c - uA

= min ub + ve

u,v^o uA + vD ^ c

(by LP duality) = max ex

Ax ^b

Dx ^e

X ^0

= Zu>

Besides showing that ZD ^ Z^p, the

preceding logic indicates when ZD = Z^p

and when Zo < Z^p. The inequality in

the sequence of relations connecting Zo

and Z[,p is between the Lagrangian prob-

lem and the Lagrangian problem with in-

tegrality relaxed. Hence, we can have Zp

< Zi_p only if this inequality holds strictly

or conversely, Zo = Zip only if the La-

grangian problem is unaffected by remov-

ing the integrality requirement on x.

In the Lagrangian problem for the orig-

inal example, the optimal values of the

variables will be integer whether we re-

quire it or not. This implies that we must

have Z,, = Z,_p, something that we have

already observed numerically.

This result also shows that we can im-

prove the upper bound by using a La-

grangian relaxation in which the variables

are not naturally integral.

An Improved Relaxation

An alternative relaxation for the exam-

ple is given below.

Zo(Vi,V2) = max {\()-v,)x, + {\Q-Vt)x2

+ (O-I'2)J^3 + (4-t?z)X4 + V, + V2

subject to 8x, + 2x2 + X3 + 4x^ ^ 10 (2)

0 ^ Xj ^ 1, ; = 1 , . . . , 4 (5)

Xi integral, j = l. . . . , 4 (6)

In this relaxation, we have dualized con-

straints (3) and (4) and obtained a relaxa-

tion which is a knapsack problem. Al-

though this problem is known to be dif-

ficult in the worst case, it can be solved

practically using a variety of efficient

knapsack algorithms such as dynamic

programming. Because the continuous

and integer solutions to the knapsack

problem can differ, the analytic result ob-

tained in the previous section tells us that

this relaxation may provide bounds that

are better than linear programming.

This is confirmed empirically in Table 5,

which shows the application of the sub-

gradient method to this relaxation. We

begin with both dual variables equal to 0,

and in four iterations, we converge to a

dual solution in which the upper bound

of 16 is equal to the objective value of the

feasible solution obtained when we solve

the Lagrangian problem. Hence, Lagrang-

ian relaxation has completely solved the

original problem. In this example we have

set the stepsize using the formula given

previously with X̂  = 1.

This example illustrates that with care-

ful choice of which constraints to dualize,

Lagrangian relaxation can provide results

that are significantly superior to LP-based

branch and bound. The choice of which

constraints to dualize is to some extent an

Lagrangian Solution
V, V2 K X, X3 X., x^ Zo(v,,Vg) Z*

0 0 1 1 1 0 0 26 0

13 0 1 0 0 0 1 17 4

(feasible with Z = 4)

0 0 1 1 1 0 0 26 4

11 0 1 1 0 0 0 16 16

(feasible with Z = 16)

Table 5: The subgradient method applied to
the improved relaxation.

INTERFACES 15:2 16



LAGRANGIAN RELAXATION

Construction of Branch
and Bound Tree

upper bound and
possibly feasible
solution

node of the tree

Z* —best known
feasible value

u° —initial multiplier
value

k= 0

Adjustment of Multipliers

— If k=0 goto Block C.

— If Zplu*") < Z* or Iteration Limit
reached, return to Block A.

— Othenwise set
u"" * max (0, u^-t^ (b-Ax"))

k - k* 1

Solution ot Lagrangian Problem

Solve (LR ,̂k).
Update Z* if the Lagrangian Solution
x*- is feasible in primal problem.

Figure 2: Generic Lagrangian relaxation
algorithm.

art, much like formulation itself. Typi-

cally, one will construct several alternative

relaxations and evaluate them, both em-

pirically and analytically, using the result

on quality of bounds presented in the

previous section. The alternative relaxa-

tions can be constructed in one of two

ways. One way is to begin with an integer

programming formulation and select dif-

ferent constraints to dualize. Alterna-

tively, one can begin with some easy-to-

solve model such as the knapsack prob-

lem or shortest-route problem which is

close to, but not exactly the same as, the

problem one wishes to solve. Then try to

add a set of side constraints to represent

those aspects of the problem of interest

which are missing in the simpler model.

A Lagrangian relaxation can be obtained

by dualizing the side constraints that have

been added.

Summary of Concepts

Up to this point, I have developed the

concept of Lagrangian relaxation

"piecemeal" on an example. We can now

formulate and present a generic Lagrang-

ian relaxation algorithm.

Figure 2 shows a generic Lagrangian re-

laxation algorithm consisting of three

major steps. The first step is the standard

branch and bound process in which a tree

of solution alternatives is constructed with

certain variables fixed to specified values

at each mode of the tree. These specified

values are passed from block A to block B

together with Z*, the objective value of

the currently best known feasible solu-

tion, and starting multipliers u".

In blocks B and C, we iterate between

adjusting the multipliers with the subgra-

dient update formula (6) to obtain a new

multiplier value u'' and solving the La-

grangian problem to obtain a new

Lagrangian solution .v*. This process con-

tinues until we either reach an iteration

limit or discover an upper bound for this

node that is less than or equal to the cur-

rent best known feasible value Z*. At

this point, we pass back to block A the

best upper bound we have discovered to-

gether with any feasible solution that may

have been obtained as a result of solving
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the Lagrangian problem. In my experi-

ence, it is rare in practice that the Lagrang-

ian solution will be feasible in the origi-

nal problem (P). However, it is not un-

common that the Lagrangian solution will

be nearly feasible and can be made feasi-

ble with some minor modifications. A sys-

tematic procedure for doing this can be

applied in block C and constitutes what

might be called a "Lagrangian heuristic."

Lagrangian heuristics have been vital to

the computational success of many appli-

cations, such as those described in Fisher

[1981; 1982], and may well prove to be as

important as the use of Lagrangians to ob-

tain upper bounds.

It is not uncommon in large-scale appli-

cations to terminate the process depicted

in Figure 2 before the branch and bound

tree has been explored sufficiently to

prove optimality. In this case the Lagrang-

ian algorithm is really a heuristic with

some nice properties, such as an upper

bound on the amount by which the heu-

ristic solution deviates from optimality.

Past Applications and Future Prospects

A brief description of several instances

in which Lagrangian relaxation has been

used in practice should give the flavor of

the kinds of problems for which Lagrang-

ian relaxation has been successful.

Bean [1984] is concerned with the prob-

lem of determining divestitures over time

from a portfolio in order to maximize total

return subject to a return on equity

minimum in each period imposed by an

outside force such as a parent organiza-

tion. The algorithm he has developed has

been applied in the land development

industry.

Fisher, Jaikumar, Greenfield and Kedia

[1982] describe a Lagrangian algorithm for

scheduling a fleet of tank trucks engaged

in bulk delivery of products such as liquid

oxygen, liquid nitrogen, or petroleum

products. Bell et al. [1983] describe the

successfu] application of this algorithm at

Air Products and Chemicals, which has

resulted in a reduction in distribution ex-

pense of about $2 million per year.

Shepard [1984] describes a project that is

underway to adapt this procedure to the

scheduling of Exxon tank trucks deliver-

ing petroleum products, such as gasoline,

for use at service stations.

Fisher, Greenfield, Jaikumar and Lester

[1982] discuss the application in the Clini-

cal Systems Division of DuPont of an al-

gorithm for vehicle routing that is based

on a Lagrangian relaxation algorithm for

the generalized assignment problem. This

algorithm has also been applied to a

number of other distribution operations,

such as the one at Edward Don and Com-

pany that is described in Walter and

Zielinski[1983].

Glover, Karney and Klingman [1979]

deal with a manpower planning problem

in which individuals must be assigned to

jobs to make use of their skills and also be

provided with adequate job satisfaction.

The Lagrangian relaxation algorithm they

develop has been applied to a very large

instance of this problem faced by the US

Navy.

Glover, Klingman and Ross [1984] ad-

dress a large-scale product development

and distribution problem. The results of

their work have been used for over 20

months at a company interested in estab-

lishing a five-year monthly operating plar

for introducing new products and deter-
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mining product distribution to customers

consistent with its standing contracts,

technological limitations, and governmen-

tal regulations. Their algorithm was cred-

ited with providing insights and suggest-

ing strategies that led to very large

savings.

Graves and Whitney [1979] and Graves

and Lamar [1983] treat the problem of de-

signing an assembly system by choosing

from available technology a group of re-

sources to perform certain operations. The

choices cover people, single purpose

machines, narrow purpose pickplace

robots, and general purpose robots. Their

work has been applied in a number of in-

dustries, including the design of robot as-

sembly systems for production of au-

tomobile alternators. Graves [1982] has

also discussed the use of Lagrangian

relaxation to address production planning

problems from an hierarchical

perspective.

Manero [1984] has applied Lagrangian

relaxation to the check processing opera-

tions of a large New York bank. The

specific decisions involved included rout-

ing of vehicles that were picking up

checks at branch banks and scheduling

personnel involved in check processing.

Mulvey [1980] is concerned with con-

densing a large data base by selecting a

subset of "representative elements." He

has developed a Lagrangian-relaxation-

based clustering algorithm that deter-

mines a representing subset for which the

loss in information is minimized in a well

defined sense. He has used this algorithm

to reduce the 1977 US Statistics of Income

File for Individuals maintained by the Of-

fice of Tax Analysis from 155,212 records

to 74,762 records.

The application described in Shepard-

son and Marsten [1980] involves

the scheduling of personnel who must

work two duty periods, a morning shift

and an afternoon shift. Their algorithm

determines optimal schedules for each

worker so as to minimize cost and satisfy

staffing requirements. Helsinki City

Transport has applied this algorithm to

bus crew scheduling.

Van Roy and Gelders [1981] discuss the

use of Lagrangian relaxation for a particu-

lar problem arising in distribution.

In each of the applications described

above, development of the Lagrangian re-

laxation algorithm required a level of in-

volvement on part of skilled analysts that

is similar to that required in the use of

dynamic programming. Just as some in-

sight into a problem is required before

dynamic programming can be applied

fruitfully, it is generally nontrivial to dis-

cover a Lagrangian relaxation that is com-

putationally effective. Moreover, once this

has been done, the various steps in the

algorithm must be programmed more or

less "from scratch." Often this process

can be made easier by the availability of

an "off the shelf" algorithm for the La-

grangian problem if it is a well-known

model, such as a network flow, shortest

route, minimum spanning tree, or knap-

sack problem.

Despite the level of effort required in

implementing Lagrangian relaxation, the

concept is growing in popularity because

the ability it affords to exploit special

problem structure often is the only hope

for coping with large real problems. For

the future, it remains to be seen whether
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Lagrangian relaxation will continue to

exist as a technique that requires a sig-

nificant ad hoc development effort or

whether the essential building blocks of

Lagrangian relaxation will find their way

into user-friendly mathematical pro-

gramming codes such as LINDO or IFPS

OPTIMUM. Such a development could

provide software for carrying out steps A

and B in the generic flowchart as well as a

selection of algorithms for performing

step C for the most popular easy-to-solve

models. It would then be left to the

analyst to decide which constraints to

dualize and to specify which of the possi-

ble Lagrangian problem algorithms to use.
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