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ABSTRACT

The linear programming model with stochastic 
elements in the vector of cost coefficients or the vector 
of resource requirements has been approached in many 
ways. The foremost attempts at a solution involve the 
transformation of the model to a deterministic equivalent. 
There are a number of deterministic equivalents which 
have been developed for this purpose.

The objective of this study is to develop an 
experimental model which can be used to evaluate proposed 
deterministic equivalents to the stochastic programming 
model. This experimental model has been designed to 
determine the responses of a deterministic equivalent 
to induced changes in the properties and the positions 
of the stochastic parameters which appear in the linear 
programming model.

Three different linear deterministic equivalents 
were evaluated in this study. These were the one-stage 
expected value approach, the two-stage slack approach 
to programming under uncertainty, and the active approach 
to linear programming under risk.

The experimental model' was used to evaluate, in 
turn, two. different variations of an empirical stochastic



linear programming problem in terms of each deterministic 
equivalent. Two variations of the empirical problem 
were analyzed so that conclusions could be stated for 
either a tightly constrained or a slightly constrained 
problem. A Monte Carlo simulation of each of these 
empirical problems was also performed. The results of 
these simulations were used as standards with which to 
evaluate the results of each deterministic equivalent.

The experimental procedure was divided into three 
phases. In the first phase the stochastic parameters were 
limited to the vector of resource requirements, in the 
second phase the stochastic parameters appeared only in 
the vector of cost coefficients, while in the third phase 
the stochastic parameters appeared in both vectors 
simultaneously. In all cases the stochastic parameters 
were assumed to be normally and independently distributed 
with known means and variances, while the non stochastic 
parameters in the problem were assumed to be constant 
and equal to their expected values.

In all three phases of the experiment the deter
ministic equivalents were analyzed for each experimental 
problem as the positions of the stochastic parameters 
changed and as the variances of the stochastic parameters 
increased. For all initial conditions and for each of 
the deterministic equivalents.,, the null hypothesis of 
no difference between the results of the simulation

viii



approach and the results of. the deterministic equivalent 
was tested at the levels of significance of a = .01 and 
a = . 05.

In the first phase of the experiment an analysis 
of the results indicated that the two-stage slack approach 
yielded better results than either of the other deter
ministic equivalents evaluated. The results of the 
two-stage slack approach were generally feasible on the 
average, were not significantly different from the results 
of the simulation approach at either level of significance, 
and were consistent with respect to the two experimental 
problems considered. The expected value approach was 
found to yield the best results in phase two of the 
experiment. This approach yielded results which were 
generally feasible on the average, were not affected by 
the increases in the variances of the stochastic parameters, 
and were very reliable regardless of the type of problem 
analyzed. In the third phase the two-stage approach 
again yielded the best results. The results were generally 
feasible on the average and statistically the same as the 
results of the simulation approach at both levels of 
significance.



CHAPTER I

INTRODUCTION

Objective of the Study 
The linear programming model with stochastic 

elements in the vector of cost coefficients or the vector 
of resource requirements has been approached in many ways. 
The foremost attempts at a solution involve the trans
formation of the model to a deterministic equivalent.
There are a number of deterministic equivalents which 
have been developed for this purpose.

When the linear programming model containing 
stochastic parameters is transformed to a deterministic 
equivalent, then it is desirable to question the efficiency 
of the transformation used. In particular, three deter
ministic equivalents are evaluated. These are the one- 
stage expected value approach, the active approach to 
programming under risk, and the two-stage slack approach.

In order to determine the effectiveness of each 
deterministic equivalent, a Monte Carlo simulation of 
the stochastic model is used in this study as a standard 
for comparison. For each set of specifications of the 
model, the expected value of the optimal solutions derived

1



from each deterministic equivalent is contrasted with 
the expected value of the optimal solutions, derived from 
a simulation of the model. These expected values should 
not be considered optimal solutions in terms of the 
variables of the model. They are each estimates of the 
respective 'expected values of the optimal objective 
function values which are determined by randomly selecting 
from the distributions of the stochastic parameters speci
fic values, which are then used to solve for a conditional 
optimal solution of each of the respective deterministic 
equivalents and of the simulation model.

The objective of this study is to determine the 
response of each of the types of deterministic equivalents 
indicated above to induced changes in the properties and 
the positions of the stochastic parameters which appear 
in the linear programming model. Each deterministic 
equivalent is to be evaluated under these changing 
conditions by utilizing the simulation solution as a 
standard. Specifically this study is concerned with the 
determination of the specific conditions under which any 
particular deterministic equivalent performs better than 
the others, and how much efficiency is lost in the 
application of each of these deterministic equivalents.

Although the primary objective of this study 
is the .evaluation of those deterministic equivalents 
to the stochastic programming model which were mentioned



above, it should also be .pointed out that the develop
ment of an experimental model which can be used for 
this purpose is also an important result of this study.
The reader should realize that the experimental model 
which was developed for this study is flexible in that 
it can be applied to the analysis of any proposed 
deterministic equivalent to the stochastic programming 
model.

Justification of the Study
The parameters of the linear programming model 

must be constant in order to use the simplex algorithm 
to correctly solve the model. The investigator would 
rarely meet a real world situation fulfilling this 
requirement for fixed parameters. Due to this fact the 
use of the simplex algorithm to solve most real world 
models is not theoretically justified. To overcome the 
problem created by the presence of the stochastic 
parameters, a deterministic equivalent to the model can be 
formulated and then solved.

It should be understood that the use of a deter
ministic equivalent to solve a stochastic programming 
model is analogous to the use of the expected value of a

"̂ In this study only linear deterministic equiva- • 
lents are considered. The reader should realize, however, 
that deterministic equivalents to the stochastic linear 
programming model can be non-linear. Some of these non
linear equivalents are also referred to in the next 
chapter.



variable to test an hypothesis or make a decision involving 
that variable. . Use of the expected value of a variable 
in no way implies that the expected value completely 
describes the properties of the variable or, for that

<1,

matter, the variable itself. The expected value of a 
variable is merely an efficient means of taking into 
account the influence of that variable in a deterministic 
decision-making procedure.

Similarly a deterministic equivalent can never 
be exactly the same as the stochastic model that it 
replaces. The deterministic equivalent represents an 
attempt to include in the deterministic solution proce
dure of a stochastic programming model the effects 
resulting from the presence of the variable parameters 
in that model.

The optimal solution of the model derived from a 
deterministic equivalent can only be considered to be 
an approximation to the true optimal solution of the 
stochastic model. The closeness of this approximation 
depends upon the deterministic equivalent which is used, 
the properties of the stochastic parameters, and the 
positions of these stochastic parameters in the model.
The utilization of any particular deterministic equivalent 
should be investigated under changing conditions with 
respect, to the properties and the positions of. the 
stochastic parameters in the programming model.



If a relationship can be found between the 
properties and the positions of the stochastic parameters 
on the one hand and the closeness of the approximate 
solution to the true optimal solution on the other, then 
the investigator can use a particular deterministic 
equivalent with increased confidence. In effect, this 
relationship can be used to select the particular deter
ministic equivalent which minimizes the error incurred 
in approximating the true optimal solution to a stochastic 
programming model under a given set of initial conditions.

Scope and Limitations of the Study
The particular linear programming model utilized

in this study to achieve the stated objective is an
2agricultural production model. The stochastic parameters, 

when they appear in the model, are assumed to be indepen
dently distributed with normal distributions with known 
means and variances. The location of the stochastic 
parameters are restricted to the vector of resource 
requirements and the vector of profitability coefficients.

2This model was formulated from data determined 
from an empirical study presented in M. M. Babbar, "Dis
tributions of Solutions of a Set of Linear Equations (With 
an Application to Linear Programming)," Journal of the 
American Statistical Associations L (September, 1955), 
85H-r869 . This same problem was used to generate results 
for a study of linear programming under risk found in 
J. K. Sengupta and J. H. Portillo-Campbell, "A Fr.actile 
Approach to Linear Programming Under"Risk," Management 
Science", XVI (January, 197.0), .29 8.-308.



It should be recognized that there are numerous 
ways in which the stochastic parameters can appear in 
the two vectors mentioned above. Specifically there are 
three general cases' that can be identified. Stochastic 
parameters may appear in only the. vector of resource 
requirements, only the vector of profitability coeffi
cients, or in both vectors.

There are numerous ways in which the stochastic 
elements can appear in either of the vectors. For example, 
in the first general case all the parameters in the 
vector of resource requirements may be stochastic, or 
only some defined subset of these parameters may be 
stochastic. The same can be said for the vector of 
profitability coefficients. In the third general case, 
the matter is only compounded since various combinations 
of stochastic elements in both vectors must be considered.

In the case where there are n variables and m 
constraints in a model, then there are n elements in 
the vector of profitability coefficients and m elements 
in the vector of resource requirements. If only the 
vector of resource requirements is assumed to contain
stochastic elements, then there are C. combinationsm a.
in which i elements may be stochastic. The total number
of ways in which stochastic elements may be combined in

m
the vector of resource 'requirements is then. V C..ill. n x



7

m * Vn
I c .

i£l 111 1V

1 c .i=l n 1■ i

n
Similarly, there are • £ nC- total ways in which

i=l
stochastic elements can be combined in the vector of

profitability coefficients and

total ways in which stochastic elements can be combined 
in both vectors simultaneously.

If the problem under investigation contains a 
large number of variables, a large number of constraints, 
or a large number of both variables and constraints; 
then an investigation of these three general cases would 
be quite lengthy. Because of this, the agricultural 
production model utilized in this study is restricted 
to a small number of both variables and constraints.

The justification for this restriction is reinforced 
by the fact that each initial formulation of the model can 
also be expanded. For example, once it has been determined 
which elements of the model are stochastic elements; then 
the properties of these stochastic elements can be 
changed. In this study only the effects induced by a 
change in the variances of the stochastic parameters are 
to be evaluated.

Outline of the Study 
The formal presentation of the study is divided 

into1 five parts. Chapter one ■presents the objective,' 
the Justification, and the scope and limitation of the



study. The theories of stochastic linear programming 
models are presented in chapter two. Special emphasis 
is placed upon the development of deterministic equiva
lents to these models. Chapter three discusses the 
requirements of simulation studies, with special emphasis 
given to the generation and testing of pseudorandom 
numbers. The particular deterministic equivalents which 
are tested in this study are highlighted in chapter four. 
This chapter includes a detailed statement of the experi
mental procedure used to achieve the stated objective. 
Chapter five is a summary of the results obtained from 
the simulation experiments and a statement of the con
clusions drawn from this study.



CHAPTER II

STOCHASTIC LINEAR PROGRAMMING MODELS 

Introduction
The initial development of the stochastic linear

1programming model is attributed to George Dantzig. Since 
the appearance of this initial formulation, there have 
been many contributions made to the development of a 
theory of stochastic linear programming. It is necessary 
to assimulate this existing knowledge into a suitable 
format which can serve as a means of relating the results 
of the present study to the existing reservoir of under
standing .

The objective of this chapter is to present the 
general theories of stochastic linear programming models. 
This objective can be accomplished through a dual classi
fication system. The various stochastic linear programming 
models which have appeared in the literature and the 
various solution techniques which have been developed can 
both be classified. In attempting to classify the 
solution techniques special emphasis will be placed

"^George B. Dantzig, "Linear Programming Under 
Uncertainty," Management Science, I (April-July, 1955), 
197-206.

9
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upon the development of the different deterministic 
equivalents to the various stochastic linear program
ming models.

General form of the stochastic 
linear programming model

The generalized primal linear programming model CLP)
can be formulated as follows:

Maximize: Z = C'X ,
subject to: AX ^  B , and

X _> 0 [1]
In this model C is a Cn x 1) vector of profitability
coefficients, A is a (m x n) matrix of technological
coefficients, and B is a (m x 1) vector of resource
restrictions. The dual associated with this model can
be stated as:

Minimize: Z = B'W ,
subject to: A'W ^ C , and

W > Q [23
The parameters A, B, and C in the models stated above
are deterministic. In the primal model the set of
inequalities form a convex polyhedral set over which
the objective function is to be maximized. There are
many solution procedures which can be used to find the
maximum value of the objective function of the model.
The simplex algorithm is one such procedure which is
designed to move from one basic feasiable solution to
the next while simultaneously increasing the value of



the objective function along its searching path. Once.
the basic feasible solution, which maximizes the value
of the objective function is found, the algorithm
indicates that this maximum has been found. If the
basis which maximizes the objective function contains
m non-zero elements in the solution vector X then this
is a nondegenerate basic feasible solution. If there
are less than m non-zero elements in X, then the solution
is degenerate. A similar presentation can be made for

2the dual problem.
If some of the parameters of the LP model are 

considered to be stochastic, then the model fits the 
general description of a stochastic linear programming 
model (SLP). The SLP model takes account of the fact 
that there is a probability associated with each specific 
set CA, B, C) which forms the structure of the model.
For example

P[A, B, C] = (A, B, C)k = pk [3]

where P stands for probability. It can be seen that:
pk = [PCA = Ah ) A  PCB = B± ) A  P(C = Cj)] , and

£ p, = 1 , for all possible k, [4]
k K

where A^, B^, and (h indicate specific values that these 
parameters can take on.

2George Hadley, Linear Programming (Reading, 
Massachusetts: Addison-Wesley Publishing Company, Inc.,
1963) , pp. 221-272.
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The general formulation of the SLP model provides
an appropriate starting point from which the different
specific models can be deduced. These specific models

3can be classified under three broad headings: chance-
constrained programming, two-stage programming under 
uncertainty, and linear programming under risk.

uThe chance-constrained programming model replaces 
the set of constraints of the LP model with a new set 
of conditions which can be stated as

P[AX < B] > a , and
X > 0 [53

where P stands for probability and a is a Cm x 1) column 
vector such that any particular satisfies the 
condition 0 _< 1. This vector contains a prescribed
set of constants that are probability measures of the 
extent to which constraint violations are allowed.

5The two-stage programming under uncertainty model 
can be briefly stated as

3J. K. Sengupta, G. Tintner, and C. Millham, "On Some 
Theorems of Stochastic Linear Programming with Applications," 
Management Science, X (October, 1963), lM-4-145.

aA, Charnes and W. W. Cooper, "Chance-Constrained 
Programming," Management Science, VI (October, 1959), 7 3-79.

5G. B. Dantzig and A. Madansky, "On the Solution of 
Two-Stage Linear Programs Under Uncertainty," in Proceedings 
of the Fourth Berkeley Symposium on Mathematical Statistics-  
and Probability, ed. by Jerzy Neyman (Berkeley: University
of California Press, 1961), I, 165-176; and A. Madansky,
"Dual Variables in Two-Stage Linear Programming Under Uncer
tainty," Journal of Mathematical Analysis and' Applications,
VI (February, 196 3), 9 8-108.
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minimize; Z = C'X + E . [F'Y]
y

under the conditions
AX + DY > B ,t=3 y

X > 0 , Y > 0  . C6]
In this formulation the vector B contains random elements,
E is the expected value operator, F and Y are (r x 1) column 
vectors, and D is a Cm x r) matrix. This formulation 
introduces an additional variable Y into the model. The 
model in Ceil must be minimized with respect to both X 
and Y.

The linear programming under risk classification 
encompasses all the approaches which are concerned with 
the statistical distribution of the objective function.
Models of this type consider the parameters of the LP 
model to be random variables with known probability 
distributions. Given this premise these models attempt 
either the optimization of the expected value of the 
objective function or the derivation of the statistical 
distribution of the objective function values.

Chance-Constrained Programming Models
Definition

In this section the chance-constrained interpretation 

fiG. Tintner, "Stochastic Linear Programming with 
Applications to Agricultural Economics," in Proceedings of 
the Second Symposium on Linear Programming, ecT by H. A. 
Antosiewicz (Washington: National Bureau of Standards, 1955), 
I; and J. K. Sengupta, G. Tintner, and B. Morrison,



and its corresponding deterministic equivalents are defined. 
The different deterministic equivalents, related to chance- 
constrained programming, result from the different 
objectives which can be first formalized and then optimized 
by using these models.

A. Charnes and W. W. Cooper initially interpreted
the SLP model as a chance-constrained model. They define
the general class of SLP models in this way:

The problem of stochastic (or better, chance- 
constrained) programming is here defined as follows: 
Select certain random variables as function of random 
variables with known distributions in such a manner 
as (a) to maximize a functional of both classes of 
random variables subject to (b) constraints on 
these variables which must be maintained at pre
scribed levels of probability. More loosely, the 
problem is to determine optimal stochastic decision 
rules under these circumstances.?

This definition equates all SLP models to chance-constrained
programming models. The "optimal stochastic decision rule"
mentioned in the definition refers to the transformation
of the model to a specific deterministic equivalent which
depends upon the form of the decision rule employed.

Charnes and Cooper are not alone in their formu
lation of deterministic equivalents to SLP models based

' gupon a chance-constrained interpretation of the model.

"Stochastic Linear Programming with Applications to 
Economic Models," Economica, XXX, No. 119 (1963 ), 262-276.

nCharnes and Cooper, "Chance-Constrained Program
ming," 73.

8Shinji Kataok.a, "A Stochastic Programming Model," 
Econometrica, XXXI (January-April, 1963), 181-196; B. L. 
Millar; and H. M. Wagner, "Chance-Constrained Programming



The justification for this interpretation is that whenever 
stochastic parameters appear in a constraint of a program
ming model, then the question of that constraint being 
satisfied, once the optimal solution is found, can only 
be stated in probabilistic terms. H. Theil, for example, 
reports that "It is hardly reasonable to require that 
such an inequality [constraint] holds with certainty; 
indeed, it is much more reasonable to require that it 
holds with a sufficiently large probability."

Charnes and Cooper emphasize that "...optimization 
under risk immediately raises very important questions 
concerning a choice of rational objectives."'*'^ In 
accordance with this feeling these authors examined 
three different types of objectives. These objectives 
include (1) an expected value optimization, (2) a minimum 
variance objective, and (3) a maximum probability model.

with Joint Constraints," Operations Research, XXIII (Novem- 
ber-December, 1965), 930-945; J. K. Sengupta, "Safety 
First Rules Under Chance-Constrained Linear Programming," 
Operations Research, XVII, (January-February, 1969), 112- 
132; Gifford H. Symonds, "Chance-Constrained Equivalents 
of Some Stochastic Programming Problems," Operations 
Research, XVI (November-December, 1968), 1152-1159 ; H.
Theil, ^Some Reflections on Static Programming Under 
Uncertainty," Weltwirtschaftliches Arch'iv, LXXXVII No. 1 
(1961), 124-1381 Van de Panne and W. Popp, "Minimum- 
Cost Cattle Feed Under Probabilistic Protein Constraints," 
Management Science, IX (April, 1963), 405-430.

Q Theil, "Some Reflections on Static Programming,"
124-125.

■*"̂ A. Charnes and W. W. Cooper, "Deterministic Equiva 
lents for Optimizing and Satisficing Under Chance Con
straints," Operations Research, XI (January-February, 1963) 
2 2 . ■
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These objectives are referred to respectively as Cl) the
E-model, (2) the V-model, and (3) the P-model.11

Regardless of the objective sought and the
model which results from the formalization of that
objective, all chance-constrained models can be transformed
to some type of deterministic equivalent. The specific
structure of this deterministic equivalent depends upon
the choice of an objective and a suitable transformation.

The transformation is referred to as a decision
rule. The decision rule is stated in terms of the
parameters of the model, that is, the decision rule is
some function of A, B, and C. The unknowns of the
chance-constrained model are transformed according to
this decision rule which can be stated generally as

X s 4><A, B, C) . [7]
The function, <f>, should be chosen and applied in a
manner that "...guarantees that the X values, as generated,
will satisfy the chance constraints and optimize Cthe

12objective function]...."

E-model13
The expected value model can be stated as

1:LIbid. , 23.
1^Ibid., 19-20. For a discussion of different 

classes of the decision rule see this source and also 
A. Charnes and M. J. L. Kirby, "Some Special P-Models 
on Chance-Constrained Programming," Management Science,
XIV (November, 1967), 183-195.

13 Charnes and Cooper, "Deterministic Equivalents,"25—30.



Maximize: E[C’X]
subject to: F[AX <. B] _> a ,

X = DB [8]
where the symbols have the same meanings as before.
In the model E is the expected value operator and P is 
the symbol for probability. Charnes and Cooper consider 
A to be a matrix of known constants and B and C to be 
uncorrelated vectors each containing at least one random 
element,

The last expression in the model in [8] indicates 
that a linear transformation of the variables in X is 
to be performed before a solution to the model is attempted. 
This transformation serves the purpose of converting a 
chance-constrained model, formulated in terms of the 
variables in X, into a deterministic equivalent in terms 
of the’variables in D. The matrix D contains (n x m) 
unknowns which, when determined, are then used to specify 
the value of the variables in X.

Substituting the decision rule into the objective 
function of the model yields

E[C'X] = E [C1DB] = E[C*]DE[B] [9]
If the E[C*] and the E[B] are defined respectively as 

and Ug, then the objective function can be written as

Maximize: Dpg . [10]
A consideration of the function in [10] reveals that this

14Ibid., 26.
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function contains deterministic parameters with the 
variables being contained in the matrix D.

The conversion of the probabilistic constraints 
to corresponding deterministic constraints begins with 
substituting the function X = DB into the set of constraints 
Making this substitution the constraint set can be written 

P[ADB < B] _> a . [11]
This set of constraints contains stochastic elements in 
the B vector. If a^ and b^ are the ith row of A and B 
respectively, then the ith constraint can be written

P[aiDB < bi] > a± . [12]

If Pg is defined as the mean vector of the parameters B, 
then the mean of the ith element, b . , can be written u. .3 3. 3 .

A A 1

In addition B and b^ can be defined respectively as

B = B - yB
A

and = bi - ub _ • [13]

The variate (a^DB - b^) , which is obtained from 
the left-hand side of the expression in [12], is assumed 
to be symmetrical and to be completely specified by its 
first two moments. Specifically this deviation is 
assumed to be normally distributed.'*"'’ Given the assump
tion of symmetry the left-hand side of [12] can be written 
as

P[a±DB - b L < 0] = P D ^  - a±DB > Q]. [14]

15Ibid., 26-27«
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Solving the expressions in [13] for B and b^ and substi
tuting these results into [14] yields the following results

A A

P[b- - a.DB > 0] = P[b. + pi, - a-D(B + x i =  i i
> 0] [15]

= P[b. - a.DB > -u,
i

+ aiDuB3 [16]
2 16 If E[b^ - a^DB] is assumed to be greater than zero, then

this expression can be divided into the two terms of the
expression [16] to yield

b . - a . .DB a. x -^b. + aiDlJB.

/E[b. - a.DB]2 / E [ b 7 a . D B ] 2
[17]

Upon inspection it can be seen that the left side of this 
expression is a standard deviate. By replacing the left 
side of the above expression with and then substituting 
the whole expression into [12] yields

Zi *
-ybi + aiDyB

- a-DB]2
[18]

This last expression can also be presented as

16Ibid., 27. This assumption is made by the 
authors to simplify the derivation of the model.



ri
-'»bi '+ ai ^ B  

• /E[b. - a.DB]2
>, ai [19]

where F. is the cumulative distribution function of Z..1 X
17If is assumed to be greater than 0.5, then 

the expression on the right within the parentheses in 
[18] must be negative due to the properties of the 
standard normal deviate. This can be expressed as

-y +
  ---------  < F-- Co.] = -K_. [2 0]J A A rs   J- J- (X*
/E[bi - a±DB]* 1

where F.^ is the inverse distribution function of the x
standard normal deviate for the ith constraint. In [2 0]
K is a positive constant whose value can be determined
U • <1

given the probability level assigned to the ith constraint 
being satisfied.

In order to develop a deterministic equivalent 
which is a convex programming problem, each constraint in 
the constraint set [2 0] is first rewritten and then 
separated into an equivalent pair. Rewriting [20] yields

17Ibid. This assumption is a realistic one when 
one considers practical applications relative to managerial 
policy problems. See for example: A. Charnes and W. W.
Cooper, "Chance Constraints and Normal Deviates," Journal 
of the American Statistical Association, LVII (March, 1962), 
134-148j and A. Charnes, W. W. Cooper, and G. H. Symonds, 
"Cost Horizons and Certainty Equivalents: An Approach to
Stochastic Programming of Heating Oil," Management Science, 
IV (April, 1958), 235-263.
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- V  * aiD̂ B ̂  * V  ^Cbi - aĵ DB]21 1
or

C213

Since each term on the right hand side of this inequality 
is positive and their product is positive, then the

Upon separating the constraints a new set of variables 
is introduced into the model. The variable, v., serves

These slack variables are used to coordinate the two
constraint sets in [223. The first set of constraints
in [2 2 3 is composed of the fixed parameters , a^,

i
and as well as the variables D and v». The second D x
set of constraints contains the stochastic parameters
b. and B and the fixed element K in addition to the 
1 °i

fixed parameter mentioned above. This second group of
constraints incorporates the risk-taking elements of 
the original chance-constrained model into this determina
tion equivalent j while the first group of constraints

expression on the left hand side must also be positive. 
Separating the set of constraints yields

18the role of a slack variable for the ith constraint.

A

18Ibid., 29.
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incorporates the original structural parameters into this
19deterministic equivalent.

Since each term in the second expression in [22] 
is positive, the sense of the inequality is unaltered if 
each' term in the inequality is squared. The resulting 
pair of constraint sets equivalent to the constraint sets 
is [21] is

Wb. - i ViX

V-2 > K2 E[b. - a.DB]2 . ' [23]1 -— Ot * X 1X
Rearranging the constraints in [23] yields 

vb. " aiDUB - vi i 0X

-K2 E[b. - a.DB]2 + v? > 0 . [24]i x x  x «

These constraints can be simplified by use of the following 
definitions

Ui [D] = (ubi - aiDUB) , and

a2[D] = E[bi - a ^ B ] 2 . [25]

The constraints of the deterministic equivalents can then 
20be wrxtten

li^[D] - v^ ^ 0

-K2 S?[D] + v? > 0 [26]x x =

19Ibid.
20The presentation- of the constraints in this form 

differs from the presentation of Charnes and Cooper. The
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Each set of constraints above corresponds to a convex set;
21so that their intersection is also convex.

The implication is that the deterministic equiva
lent to the E-model of a chance-constrained programming 
model is a convex programming problem. This deterministic 
equivalent can be written if the objective function [10] 
is combined with the set of constraints above. This yields 

Maximize:

subject to: y^CD] - v^ ̂  0 ,
9  ̂9 9

~K2 (XT[D] + vf > 0 ,i i  =

vi > 0 . [27]

This deterministic equivalent is stated in terms of the
variables D and v. where the d ..1s are the structural
variables and the v^'s are slack variables. The value
of the slack variables can be increased so that the
inequalities in [27] become equalities. In the special
case when the elements of the B-vector are perfectly
correlated, then the model above contains only linear 

2 2constraints. This would allow the use of the simplex 
algorithm in solving this model since the objective 
function of the model is also linear.

constraints in this form can be applied directly to the 
solution of specific models. In their appendix the authors 
utilize the constraints in the form in which they are 
presented in this text.

21Ibid. 28-29.
22Ibid. 35-38.
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v j i 23 V-model.
The minimum, variance model can be stated in the 

following way
Minimize: E[C'X - C0,X°]2
subject to: P[AX £  B] _> a ,

X = DB . [28]

As in the E-model, A is a matrix of known values
and B and C are vectors which contain the stochastic
elements. The effects, which result from a change in
the objective of optimization, are incorporated only
into the objective function of the model in [28]. This
objective function states that the model seeks to minimize
the squared deviation between the value C'X and some
desired value C°’X°, which is predetermined by the

2 4decision-maker.
The derivation of the deterministic equivalent to 

this model is similar to the derivation of the determinis
tic equivalent for the expected value model, in view of 
the fact that the constraints of this model are the same 
as the constraints in the expected value model. By 
applying the decision rule X = DB to the constraints in 
[2 8]; it can be seen that this operation should yield 
the same results that were determined in the expected

23Ibid., 30.
24Ibid. See the footnote on this page for the 

interpretation to apply when p V values are used in place 
of C ,  c



value model. The application of the decision rule in the 
objective function of [2 8] yields

Minimize E[C'DB - C0,X0]2 [29]

which is the objective function of the deterministic 
equivalent to the V-model. If the expression in [29] 
is defined as V[D],.then the deterministic equivalent 
to the V-model can be written

Minimize: V[D]
subject to: y^[D] - v^ _> 0 ,

~ K a±a l m  + v? > 0
vi > 0 . [30]

This deterministic equivalent is a convex programming 
problem since these constraints are the same as those in 
[27]. In addition any differences in the and v^'s
which result from the solution of the deterministic 
equivalents of the expected value and the minimum variance 
models are entirely due to difference in the functional 
forms of the objective function of the two models.

P-model.
In this model the objective is to maximize the 

probability of achieving some specified C0,X°, which is 
determined from the aspiration level of the decision-maker. 
This model can be formalized as

25I b i d . 30-33. See also Charnes and Kirby,
"Some Special P-Models," 183-195.



Maximize: P[C'X £  C°'X°]
subject to: P[AX _< B] _> a ,

X = DB . [31]
By utilizing the decision rule X = DB and transforming
this model in the same manner as the E and V-models were 
transformed, the deterministic equivalent for the P-model 
can be written

Maximize: v /w0 o
subject to: - v q >, U qO ,

-VCD] + w* > 0 ,

y^[D] - >_ 0 ,

-K„ tr?[D] + v? > 0 ,1 r =
> 0 . [32]

The last three constraints in this deterministic equivalent 
are the same constraints that appear in the expected value 
and the minimum variance models. In conjunction with 
these, two additional constraints result from the derivation. 
These additional constraints constitute the objective 
functions of both of the previous deterministic equivalents. 
The v's and w Ts which appear in both the objective function 
and the constraints are slack variables.

The objective function of this model is stated as 
a fractional and assumes "...a minimax-like character 
in the sense that maximization of. vQ/wo represents a
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striving toward cooperatively maximizing vQ while
2 6minimizing w ." Since the constraints still form a

convex set and since the objective function is a
fractional, the following transformation can be performed
to replace the fractional programming problem with a

27 Assuming w q > 0,simple convex programming problem.
define a variable t, which is used to transform the 

✓

variables of the fractional programming problem, as 
follows

w = tw = 1 o o [33]

The remaining variables D and v are transformed by the 
following relationships 

D = tD , and
v = tv . [34]

Substituting in [32] for w q , D, and v the above trans
formation yields the following convex programming problem 

Maximize: vQ
osubject to: ” VG ~

-V[E] + w^ > 0 o ==
VT^D] + v^ _> 0 

-K a?[D] + v? > 0
~ai"1

w = 1  o
t,v± _> 0 [35]

.26Charnes and Cooper, "Deterministic Equivalent," 32.
2 7A. Charnes and W. W. Cooper, "Programming with 

Linear Fractional Functionals," Naval Research Logistics
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where

VCD] = E[C'DB - tC°'X°]2 ,

a?[Dl = E[tb± - a ^ B ] 2

ViCD] = - a in V  * [36]

This last model in [3 5] is the convex programming problem 
which is the deterministic equivalent to the P-model of 
a chance-constrained programming problem.

The foregoing should not be interpreted as a 
complete presentation of deterministic equivalents to 
chance-constrained models. The reader should consider 
the fact that the deterministic equivalents which result 
depend upon the type of decision rule which is used to 
transform the original model. Only a linear decision 
rule was considered in this discussion. Various transfor
mations that can be used to derive deterministic equivalents
to chance-constrained models have appeared in the litera- 

2 8ture. These other transformations are not considered

Quarterly, IX (September-December, 1962), 181-186. In 
this source theorems can be found which establish the 
criteria for converting a fractional functional program
ming problem to a convex programming problem.

2 8In addition to references made in other parts 
of this chapter, the reader can also consider: A. Charnes,
W. W. Cooper, and G. L. Thompson, "Constrained Generalized 
Medians and Hypermedians As Deterministic Equivalents for 
Two-Stage Linear Programs Under Uncertainty," Management 
Science, XXII (September, 1965), 83-112; A. Charnes,
M. J. L. Kirby, and W. M. Raike, "Solution Theorems In 
Probabilistic Programming: A Linear Programming Approach,"
Journal of Mathematical Analysis and Applications, XX
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here since the purpose of this discussion has been primarily 
to classify chance-constrained models according to the 
objective functions used in the model.

Two-Stage Programming Under Uncertainty
The two-stage programming model refers to all 

stochastic programming models which allow adjustments 
to be made once the stochastic elements of the model have 
been observed to be equal to specific values. These 
adjustments are made by including in the stochastic 
programming model a new variable which attempts to com
pensate for infeasible solutions which result from the 
previous actions of the decision-maker. The solution 
of a stochastic programming model by utilizing a two-

2 9stage approach has been referred to as the slack solution.

30Slack solution.
The slack solution can be explained if one 

considers the linear programming model

(December, 1967), 565-582; Fredrik S. Hillier, "Chance- 
Constrained Programming With 0-1 or Bounded Continuous 
Decision Variables," Management Science, XIV (September, 
1967), 34-57; and Gifford H. Symonds, ^Deterministic 
Solutions For A Class of Chance Constrained Programming 
Problems," Operations Research, XV (May-June, 1967),
495-512.

29 A. Madansky, "Methods of Solution of Linear 
Programs Under Uncertainty," Operations Research, X (July- 
August, 1962), 463-471.

30Ibid., 468-470.



Minimize: C'X
subject to: AX _> B ,

X > 0 [373
In this model, if the A matrix and the B vector were to 
contain stochastic elements, then the possibility would 
arise that an optimal solution to the model could violate 
some of the constraints of the model. This possibility 
is dependent upon the subsequent observations on the 
elements of the A matrix and the B vector.

Instead of minimizing the objective function C ’X 
over the convex set defined by A and B, the two-stage 
solution procedure allows an adjustment to be made after 
calculating X and subsequently observing A and B. This 
adjustment for the possible infeasibility of a selected 
X is in the form of a new variable, Y, with a corresponding 
penalty cost given by F'Y, where F is a vector of penalty 
cost coefficients. Both F and Y are Cm x 1) vectors 
corresponding to the dimensions of B. The choice of the 
vector Y depends not only on the original -stochastic 
parameters A and B but also upon the initial solution 
vector X. In view of the inclusion of this new variable,
Y, the objective function of the resultant model must 
also be adjusted to take into consideration both the

1

cost, C’X, and the penalty cost, F'Y, which may be 
incurred.
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This two-stage programming model is a special
31case of a general class of programming models which 

can be stated
Minimize,,: E . [C'X + F'Y]x m m ysubject to: AX + DY = B ,

X > ° ,
Y > 0 [33]

In this general model A and D are Cm x n) matrices,
C, X, F, and Y are (n x 1) vectors, and B is a Cm x 1) 
vector composed of stochastic elements with known
distributions. The objective function is composed of
two types of cost, the cost associated with each element 
of X and the penalty cost associated with each element 
of Y.

The general model in [3 8] can be specialized 
to the two-stage programming model by considering DY 
to be equivalent to CY+ - Y ). The vector Y that yields 
the smallest penalty cost for each A, B, and X would 
then be composed of two parts.

If B > AX, then
Y+ = B - AX and

. Y" = 0 . [39]

31Ibid., 46 8. The reader can also consider the 
treatment presented in Dantzig and Madansky, "Solution of 
Two Stage Linear Programs," 165-166.



If B < AX, then 
Y+ = 0 and
Y“ = AX - B [40]

In some cases some of the rows of A and B may not be
stochastic. If this is the case then the corresponding
constraints contain no Y elements. These constraints

32are then called fixed constraints on X.
The objective function of the general model in 

[3 8] can also be specialized to accommodate the two-stage 
programming model. Since the choice of Y depends upon 
both B and X, the objective function can be formulated 
to minimize C'X plus the expected smallest penalty cost.

The two-stage programming model can then be written
Minimize: C'X + E . [F'Y]rain^
subject to: AX + (Y+ - Y _) = B ,

X > 0, Y >, 0 [41]
where Y* and Y~ are defined in [39] and [40]. From the 
format it can be seen that the Y's act as slack variables 
either reducing the left side of the equation when 
infeasibility occurs or increasing the left side of the 
equation when the initial solution X does not utilize 
the total resources available in B. If the ith.row of 
A and B contain deterministic elements, then the ith 
constraint is a fixed constraint and can therefore be 
written without the variable Y.

Madansky, "Methods of Solutions," 46 9.



The assumption implied in the model above is that 
for* each X £  0, which satisfies all the constraints, and 
for each B there exists a Y such that (X, Y) is feasible.
As an alternative to this assumption define "...K as the 
convex set of the X's such that each XeK is nonnegative 
and has an associated Y for each A and B such that 
(X, Y) is feasible. The problem is, then, to find XeK 
that minimizes C'X + E . [F'Y]."miUy

Linear Programming Under Risk 
Those models that are classified under this 

general heading can be grouped into two distinct classes. 
The first class contains one-stage linear programming 
models under uncertainty. There are two different solution 
procedures that can be used to solve these models. These 
procedures are called the expected value solution and 
the "fat" solution. The second class contains the models 
that are formulated to specify the statistical distribution 
of the objective function of a stochastic model. These 
models can be formulated in terms of either an active or 
a passive approach to the problem. Whether an active 
or passive approach is used to specify the statistical 
distribution of the objective function, these models 
assume that the distributions of the parameters of the 
stochastic model are known. In effect the models which

3 3Ibid., The reader can also consult Dantzig and 
Madansky, "Solution of Two Stage Linear Programs," 166.
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fall into this category are referred to as linear 
programming models under risk.

34One-stage model
The expected value solution

The implication of an expected value solution to 
a one-stage stochastic linear programming model can best 
be explained if first a deterministic linear programming 
model is stated in terms of a matrix game. Consider the 
deterministic model

Minimize; C'X 
subject to: AX _> B ,

X >, 0 . [42]
This model is feasible and finite "...if and only if the 
matrix game with payoff matrix

0 A -B
Q = -A' 0 C

B 1 - C 0

has an optimal mixed strategy (X^, Y^, t) such that 
35t > 0." Under these conditions the solutions to the

primal and the dual model are given by
X = X /t and o
Y = Y0/t . [44]

34Madansky, "Methods of Solutions," 464-468.
35Ibid., 464-465. The reader should also consider 

the reference given in the cited text.



When the parameters of the programming model are
stochastic and an expected value solution to that model
is attempted, then the■corresponding matrix game has a
payoff matrix E[Q] with an optimal strategy given by
(Y*, X 1 , t) where t > 0 and E is the expected value
operator. In this case the expected value solution of

A Mthe model is X = 3T/t. This solution minimizes the model 
Minimize: E[C’]X
subject to: E[A]X _> E[B] ,

X > 0 • [45]
The solution vector X is nonnegative, but may 

not guarantee that the constraint set in [42] is satisfied. 
Let S be defined as the set of permanently feasible X's,- 
that is

{XsS: X > 0, PrCAX > B] = 1} . [46]
Now if CECA], E[B]) is a member of the set of values (A, B)
and if X is permanently feasible, then X is a solution
to the stochastic programming model.

The necessary and sufficient conditions for the
*expected value solution X to be an optimal solution can 

be determined from the payoff matrix given in [43] if the 
following definitions are made:

Z' = CY*, X 1, t) and 
M[Q] = QZ ’ . [47]

The term Z*' is defined as the optimal set of 
strategies for the matrix game E[Q], and the term M[Q]
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is the product of the original payoff matrix and the vector 
comprising the optimal strategies.

The first m-rows of the matrix M[Q3 can be 
written (AX - Bt). These rows correspond to the constraints 
of the primal model stated in [42]. Since t > 0, then 

(AX - Bt) > 0 if and only if
AX/t = AX5' > B CH83

for all A and B. The conclusion is that the expected value 
solution is optimal, if and only if, for all values of A 
and B, the first m-rows of M[Q] are nonnegative.

If the ith row is one of the first m-rows of M[Q], 
then this row can be written

Mi [Q] = ail^l + ai2^2 + ••• + ain^n " h i t ' I-l+9-3
The necessary and sufficient conditions for the expected
value solution to be optimal are satisfied if the minimum •
of M.[Q] with respect to the elements ( a - ..., a- , b.)

36is greater than or equal to zero.

The "fat" solution
The "fat" solution was initially proposed as a 

means of accounting for uncertainties which may develop in
the long-run when a deterministic solution to a programming

36Ibid., 466. Kadansky assumes that the set of 
possible values , ..., ain> ^i^ a bounded convex
polyhedron and that the minimum of M.[Q] is taken subject 
to that condition.



37model was the basis upon which decisions were made.
The procedure which would yield a "fat" solution involves 
ignoring the random variation and providing plenty of 
"fat" in the deterministic version of the model. Consider 
the model stated in [42] where now the parameters (A, B) 
are stochastic. Utilizing the "fat" solution one would 
postulate a pessimistic (A, B) and then solve the non
stochastic program. The choice of the appropriate 
pessimistic values of the stochastic elements should be
such that the optimal solution to the program is from

3 8the set of permanently feasible X's. In the situation 
where there are a finite number of possible (A, BJ's, the 
set of permanently feasible X's can be described as those 
X's that satisfy the mR constraints

A Cr)X > B (r>J for r = 1, . . . , R, and
X > 0 . [50]

The optimal solution of the stochastic program is the 
X, from the set of permanently feasible X's, which minimizes 
C'X subject to the constraints stated in [50] above. In 
the case where C contains stochastic elements, the function 
to be minimized can be stated as E[C']X.

3 7George B. Dantzig, "Recent Advances in Linear 
Programming," Management Science, II (January, 1966), 131; 
Salah E. Elmaghraby, "An Approach to Linear Programming 
Under Uncertainty," Operations Research, VII CMarch-April, 
1959), 208-209.

^®Madansky, "Methods of Solution," 467.



Distribution models
The approach taken toward stochastic linear 

programming models which concerns itself with the speci
fication of the distribution of the objective function 
was introduced by Gerhard Tintner. This approach is 
based upon the assumption that the parameters of a 
linear programming model are random variables with 
known probability distributions. These models have been 
described in the following way.

If all the parameters in a linear programming 
problem are random variables, the problem becomes 
a stochastic programming problem. A passive 
solution exists if the activities are not chosen 
in advance. We have an active solution if the 
proportion of the resources to be devoted to 
various activities are chosen. By numerical 
methods we can determine approximations to the 
various distributions and choose the optimal one 
[solution] according to some criteria.

It can be seen that the distribution model, specified by
Tintner, is approached from two different points of view.
It is the objective of this section to specify both the
passive and the active approaches to the distribution
model.

39G. Tintner, "A Note on Stochastic Linear Program 
ming," Econometrica, XXVIII (April, 19 60), 490.

40These two approaches are specified in Sengupta, 
Tintner, and Morrison, "Stochastic Linear Programming with 
Applications," 262-276; J. K. Sengupta, G, Tintner, and 
G. Millham, "On Some Theorems of Stochastic-Linear Program 
ming with Applications," Management Science, X COctober, 
1963), 143-159; and K. D. Cocks, "Discrete Stochastic 
Programming," Management Science, XV (September, 1968), 
72-79.
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The passive approach
In the passive approach the objective is to 

determine the expected value and variance of the distribu
tion of the optimal objective function values. This can 
be formally stated as: Find the E[Z(X)] and V[Z(X)] in
the model

Maximize; Zk =

subject to: AkXk < >

Xk > 0 , for k - 1, ..., N. [51]

The parameters A, B, and C are randomly distributed with 
known distributions, such that Ak , B^, and Ck are specific 
values that each respective parameter may take on. The 
specific value of each parameter is determined a priori 
from the characteristics of its distribution and substituted 
into the model in [51] to determine an optimal value of 
the objective function Z^. If this process is repeated 
N'times, with N optimal values of the objective function 
being determined, then the expected value and variance 
of the optimal objective function values can be defined as

N
E[Z(X)] =■ I Z(X), P[ZCX). ]

$  9V[ZCX)] =• I {Z(X)k-E[ZCX)k ]}2P[Z<X)k ] , [52]
where

P[ZCX)k ] = P[A = ,Ak ^  B 5 Bk-0 C = Ck] . [53]

This appraoch assumes "...that in almost all possible 
situations, i.e. » for almost all possible variations of



the parameters, the conditions of the simple nonstochastic
Lilinear program are fulfilled and the maximum achieved."

The active approach
iiOThe model utilized in the active approach can

he formalized as
Maximize: Z = C'X
subject to: AX — B U ,

X > 0 . [54]
In this model U is a Cm x n) matrix with the elements
u^j satisfying the conditions

u- . > 0 , and
n
I u.. = 1 . [55]

j = l 30
Further, X and B are square, diagonal matrices with the
elements of the X and B vectors making up the respective
diagonals of these matrices. The vector of cost
coefficients is C.

The u-.'s are allocation ratios such that u..13 13
indicates the proportion of the resource i which is used 
for activity j. These allocation ratios are exogenous 
variables and are determined by the policies of the 
decision-maker. The only conditions placed upon these 
ratios are those stated in [55 3 above which imply that 
all resources' must be completely used up. .

41Sengupta, Tintner, and Millham," Theorems of 
Stochastic Linear Programming," 145.

^2Ibid.



In the active approach the objective is also to 
determine the probability distribution of the optimal 
values of the objective function given the alternative 
values that can be assumed by the parameters A, B, and C,
In this case, however, the distribution of the optimal 
values of the objective function is also dependent upon 
the allocation matrix U. The implication is that a set 
of distributions of optimal objective function values 
results from the set of allocation matrices that are 
employed. In effect the decision-maker can measure the 
effects of various policy decisions upon the distributions 
of the optimal objective function values by simply changing 
the matrix U.

A specific decision rule must be established in 
order to distinguish among the different distributions 
which can result due to the employment of alternative 
sets of allocation ratios. Three different decision 
rules or criteria of optimization under risk have been 
utilized to distinguish among the distributions explained 
above. These are the expected value criteria, the
fractile criteria, and the portfolio or aspirations level

. . .  43criteria.

ii 3These three criteria are specified for the case 
where the C vector is randomly distributed in the following: 
J. K. Sengupta and J. H. Portillo-Campbell, "A Fractile 
Approach to Linear Programming Under Risk," Management 
Science, XVI (January, 1 9 7 0 2 9 8 - 3 0 8 ;  and A. M. Geoffrion, 
Stochastic Programming with Aspiration or Fractile Cri

teria," Management Science, XIII (May, 1967), 672-679.
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Expected value criteria.--Under the expected value criteria 
the choice among the distributions of the optimal objective 
function values is made by selecting the distribution 
with the maximum expected value. If K different allocation 
matrices are considered, then the maximum value in the set 

{ECZCX)]u=Ui , E[ZCX)]U=U^

E[Z (X) ]Tr_n } C563
k

is selected. This selection indicates the set of allocation 
ratios which optimizes the stochastic model.

Fractile criteria.— The fractile criteria specifies that 
the a-fractile of the distribution of optimal objective 
function values is to be optimized. Selecting the maximum 
value from the set

’ FuCZ3U=U2 >

FaCZ]u = u } E57]
K

satisfies this decision rule. In this relation the a is 
a predetermined constant such that F_iZ] is the a-fractile 
of the distribution of optimal objective function values.

Portfolio criteria.— The application of the portfolio 
criteria requires that the variance of the distribution 
of optimal objective function values is minimized under 
the additional constraint that the expected values of 
these same distributions are at least equal to some



preassigned level. This criteria involves selecting the 
minimum from the set

'{v[zcx)3u=u , vczcx)]u _u ,

. ,  VCZCXJJy.y } [583
R

subject to the additional constraint that the 
E[ZCX)3U=U^ . , ..., E[ZCX)]U=U > PQ

where
0 < R < K , and [593

PQ is a predetermined profit level.
The fractile criteria possesses an important

tillcharacteristic. Consider the case when a = 0.5. In 
this situation the fractile criteria yields the same 
results as the expected value criteria. Similarly, an 
appropriate value of a can be determined such that the 
results from the application of the fractile criteria 
and the portfolio criteria are the same. In effect the 
expected value criteria and the portfolio criteria are 
special cases of the fractile criteria.

Computationally the fractile criteria is difficult 
to apply since for the most part the objective function 
is nonlinear. Consider the case where a > 0.5 and only 
the C vector is stochastic, having a multivariate normal

ail Sengupta and Portillo-Campbell, "A Fractile 
Approach Under Risk,". 299-300.
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distribution with mean M and variance V, the model can
45then be written

Maximize; M'X - qCX'VX}372
subject to; AX <, B ,

X > 0 , [60J
where q is a positive standard normal deviate and M'X and
(X'VX) are the mean and variance of the objective function
Z = C'X. Iterative algorithms have been developed to

46analytically solve a model of this type.

Summary
The purpose of this chapter has been to classify 

into groups the stochastic linear programming models which 
have appeared in the literature. These groups consist of 
Cl) the chance-constrained programming models, (2) the 
two-stage programming under uncertainty model, and (3) the 
linear programming under risk model. Within each classifi
cation various solution procedures or deterministic 
equivalents to these models were then indicated. The 
E-model, the V-model, and P-model were shown to be 
deterministic equivalents to the chance-constrained 
programming models. The two-stage programming under 
uncertainty model was approached through a slack solution.

45Ibid., 299.
46 Ibid., 300-301. See also: Geoffrion, "Stochastic

Programming with Aspiration Criteria," 672-679: and 
Kataoka, "A Stochastic Programming Model," 181-196.
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And the linear programming under risk models were classified 
as either one-stage models or distribution models.

The reader should realize that , even though the 
classification scheme above is all-inclusive, not all 
possible solution techniques or deterministic equivalents 
to these models have been presented. The emphasis in this 
chapter has been upon the classification of the models.
The more important solution techniques have been included 
in order to enhance this objective.



CHAPTER III 

REQUIREMENTS FOR SIMULATION STUDIES

Introduction 
The experimental results of this study are 

generated by using a simulation procedure. A discussion 
of the Monte Carlo simulation technique is therefore a 
necessary prerequisite to the presentation of the experi
mental model used in this study. This chapter meets 
this objective by defining simulation and briefly pre
senting the properties and characteristics of Monte 
Carlo simulation models. Special emphasis is placed 
upon the development and the testing of the pseudorandom 
number generator which is used in this study.

Operations research models can utilize different 
problem-solving procedures. These are (1) the analytical, 
(2) the numerical, and (3) the simulation procedures.^

The analytical procedure is based upon mathematical 
deduction. The decision-maker works from a set of defined 
assumptions adhering to all the rules of mathematical logic 
until the solution is derived. The expression of the

W. Thompson, Operations Research Teclmiques 
(.Columbus, Ohio: Charles E. Merrill Books, 19673 , ■
pp. 4-6,

46



model in a mathematically rigid way is the essential 
prerequisite for using an analytical procedure. In effect 
the relationships among the variables in the model must 
be both identified and rigidly defined.

The numerical procedure is one in which the 
assumptions and the relationships among the variables 
of the model are exactly defined, but the solution to 
the model is obtained through a less formal trial-and- 
error technique. The use of the numerical procedure 
is restricted to those models where either no analytical 
procedure is applicable or where the analytical procedure 
is too inconvenient to apply.

A simulation procedure is used when the model of 
the system is too complex for the effective use of either 
of the two other procedures. In the simulation procedure 
a set o f synthetic variables, representing an analogous 
'set of real world variables, is manipulated with the 
purpose of arriving at conclusions about the real world 
system being studied. The first step of this procedure 
is the representation of the real world situation in the 
form of an abstracted model. The model must then be 
manipulated in order to generate a set of synthetic outputs 
which are characteristic of the real world system.

Monte Carlo Simulation
Simulation has been described as an experimental 

technique involving logical and mathematical models of a
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real world system. The experimentation is performed under
stochastic or dynamic conditions. In addition the
experimental results from a simulation experiment which
is run on a computer may not necessarily be determinable

2by analytical methods.
The essence of the above statements is that 

simulation is a special kind of experimentation. Speci
fically it is mathematical experimentation. Simulation 
has been considered a form of mathematical experimentation 
by many authors. For example, J. M. Hammersly and D. C. 
Handscomb classify simulation as a tool of experimental
or theoretical mathematics which relies upon the deductive 

3process. James R. Jackson concludes that
Mathematical experimentation [simulation] may be an 
appropriate research technique when interesting 
problems appear too difficult for the effective 
application of the traditional deductive approach.
From a mathematical point of view, the conclusions 
reached can rarely be thought of as more than con
jectures ; but it seems to me that when a high degree 
of confidence can be placed in experimentally reached 
conclusions, they are of virtually the same practical 
interest as would be proven theorems with the same 
content.,. . . It is important to note that I am 
proposing simulation experimentation as a supplement ^
to mathematical analysis, not as a substitute therefor.

2Thomas H. Naylor,.et al., Computer Simulation 
Techniques (New York: John Wiley and Sons, 1966}, pp. 2-3.

3 J. M. Hammersly and D. C. Handscomb, Monte Carlo 
Methods (.London: Methuen, 1964), p. 1.

4James R. Jackson, "Simulation as Experimental 
Mathematics," in Symposium on Simulation Models: Methodology
and Applications to the Behavioral Sciences ed. by Austin C. 
Hoggatt and Frederick E. Balderston (Cincinnati, Ohio: 
South-Western Publishing Co., 1963), p. 246.



Monte Carlo methods comprise that segment of 
simulation techniques which is concerned with experiments 
having a stochastic or probabilistic structure. The 
stochastic components of. the system are included in the 
model through the use of a random number generator.
Monte Carlo simulation is an efficient means of analyzing 
and solving stochastic models when these models are 
considerably complex. In some cases a Monte Carlo 
simulation may be the only means available for analyzing 
and solving a stochastic model.

The justification for using a Monte Carlo simu
lation to derive the results of this study is based upon 
the size and the objective of the study. With regard 
to size, the reader should recall the numerous initial 
formulations of the stochastic linear programming model 
which can be established. Each of these initial formu
lations is then considered under varying assumptions 
concerning the stochastic elements and in terms of the 
different deterministic equivalents to the stochastic 
model. A Monte Carlo simulation can efficiently analyze 
such a large scale model.

The objective of this study is the evaluation of 
the performance of the different deterministic equivalents 
under varying conditions. Monte Carlo simulation is an 
efficient means of analyzing the internal interactions 
among the components of a model when the assumptions and,



or, the parameters of the model are allowed to change.
The most important feature of Monte Carlo simulation is 
the flexibility which it allows the researcher in manipu
lating the components of a: model.

5Random Number Generators
A Monte Carlo simulation is as valid as the random 

number generator which is used to produce the values of 
the stochastic elements which are integral parts of the 
simulation. For each simulation it is important to select 
a random number generator which has been properly tested. 
The verification of the random number generator is an 
essential part of any simulation experiment.

This section contains a general discussion of 
random number generators with emphasis upon the con- 
gruential methods of generating random numbers. The 
specific random number generator used in the simulation 
experiment described in this work is explained at the end 
of this section. The verification of this generator is 
the topic of the next section of this chapter.

There are many alternative methods available for 
generating random numbers. This section is limited to 
a discussion of digital computer methods for their 
generation. Digital computer methods' provide for. the 
internal generation of a sequence of digits by a recurrence 
relationship-. The immediate advantage of this procedure

5Naylor, Computer Simulation Techniques, pp. 43-6 7.



is the small amount of computer memory required to perform 
the operation. An additional advantage is that the 
process, is totally reproducible.

The use of a recurrence relationship may appear 
to be in conflict with the randomness required of the 
digits in the sequence. Since each digit in the sequence 
can be determined from the previous digit or from some 
set of previous digits through the recurrence relationship 
then the process is technically not random. The process 
is defined as random if and only if the sequence meets 
certain statistical tests of randomness. If these sta
tistical tests are met, the sequence is called a series 
of pseudorandom numbers.

The desirable properties of a sequence of 
pseudorandom numbers generated internally on a digital 
computer are that the numbers be Cl) uniformly distributed 
(2) statistically independent, (3) reproducible, and 
(4) nonrepeating for a sufficient length. This last 
property refers to the period of the sequence of numbers. 
In addition the generator should require a minimum amount 
of computer memory and should generate the pseudorandom

gnumbers at a high rate of speed.

6Ibid., p. 46.
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Congruential Methods for Generating
Pseudorandom Numbers

Most computer codes for generating random numbers
use some variation of the congruential method developed

7by D. H. Lehmer. The congruential method is speedy, 
reproducible, and requires only a small amount of computer 
memory. The period of the sequence of random numbers 
depends upon the particular congruential method used. 
Whatever congruential method is used statistical tests 
should be performed on the sequence of numbers to determine 
whether they are uniformly distributed and statistically 
independent. Most congruential generators satisfy the 
statistical tests of uniformity and independence.

Fundamental congruential 
relationship

Congruential methods are based on a fundamental
congruential relationship. This relationship can be
expressed in the following way.

Two integers a and b are congruent modulo m  if 
their difference is an integral multiple of m.
The congruence relation is expressed by the 
notation a = b (mod m) which reads "a is con
gruent to b modulo m.’'8

7D. H. Lehmer, "Mathematical Methods in Large-Scale 
Computing .Units,M Annals Computer Laboratory Harvard 
University, XXVI' (.1951) 14-1-146 .

g
Naylor, Computer Simulation Techniques, p. 6H.
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The implications of this definition are (1) that (a - b) 
is divisible by m and (2) that a and b leave identical 
remainders when divided by the absolute value of m.
This relationship can be expressed as the following 
recursive formula

n^+1 =■ an^ + c Cmod m) , [lj
Qwhere n^, a, c, and m are all nonnegative integers.

Given a constant multiplier a and an additive constant c, 
this formula establishes the relationship between any 
number in a sequence and the previous number.

The period, h, of the above formula is the length 
of the sequence before a number repeats itself, that is, 
before n^ = nQ . Once a number in the sequence is repeated, 
then the series will duplicate itself; that is, = n^,
nh+2 = n2 9 e"tc * Theorems are available to show that the 
congruential methods have a finite period which depends 
upon the constants in the recursive formula in Cl].19

Basic types of congruential 
generators

Three congruential methods have been developed 
for generating pseudorandom numbers. Each of these 
methods is based upon the relation in [1]. Each method

9Ibid., p. 48. .
19Ibid. , pp. 65-66. The reader should also refer 

to M. D. MacLaren and G. Marsaglia, "Uniform Random Number 
Generators," Journal of the Association for Computing 
Machinery, XII^ CJanuary, 1965J, 86-89.



is designed to generate a sequence of pseudorandom, numbers 
with a maximum period in a minimum amount of time. These 
methods are Cl) the additive congruential method, (2) the 
multiplicative congruential method, and (3) the mixed 
congruential method.

11Additive congruential method
The additive congruential method assumes that k 

random numbers are provided in computer memory. The 
sequence of pseudorandom numbers is computed by means 
of the congruence relationship

ni+l - ni + ni-k îaod ^
The pseudorandom numbers generated in this way have a
period which depends upon k and m. Statistical tests
have indicated that k = 16 is the smallest value which

12will yield acceptable random numbers.

Multiplicative congruential 
methodic

The multiplicative congruential method is based 
upon the congruence relationship

ni+l " ^ i  (mod m) , [3]

■^Naylor, Computer Simulation Techniques, p. 49,
56-57.

-^b . F. Green, J. Smith, and L. Klem, "Empirical 
Tests of an Additive Random Number Generator," Journal of 
the Association for Computing Machinery, VI C0ctober,1959), 
537.

13Naylor, Computer Simulation Techniques, pp. 49, 
51-54.------------------------- ---------------------
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where a is a positive constant. This relationship yields
a sequence of positive integers less than m. The period
of the sequence depends upon both the constant multiplier
a and the initial value in the series n . Conditions cano
be placed upon these constants to insure a maximum period. 
Statistical tests have been performed which indicate 
that the multiplicative congruential method generally 
yields a sequence of pseudorandom numbers which is

la.uniformly distributed and statistically independent.

15Mixed congruential method
The mixed congruential method is based upon the

recursive relationship as it is expressed in Cl] with
both a and c not equal to zero. With this method the
maximum period depends upon the constants a and c. Little
or no effect upon the statistical properties of the sequence

16is attributed to the initial value n .o
Some investigators have expressed dissatisfaction 

with the congruential methods discussed above. The essence 
of this criticism is the failure of the congruential 
methods to always satisfy the requirement for serial

14MacLaren, "Uniform Random Number Generators,"
86-89; and T. E. Hull and A. R. Dobell, "Random Number 
Generators," SIAM Review, IV (July, 19 62) 238-242.

15Naylor, Computer Simulation Techniques, pp. 49,
55-56.

^ J .  L. Allard, A. R. Dobell, and T. E. Hull, "Mixed 
Congruential Random Number Generators for Decimal Machines 
Journal of the Association for Computing Machinery, X 
TApril, 1963), 131-141. --------- -- -----------



independence. Two remedies have been proposed to
alleviate this problem. R. R. Coveyou and M. Greenberger
have determined theoretical conditions on the values of
a, c, and m in the fundamental congruential relationship
in [1] which will guarantee a small serial correlation
among the numbers in the sequence. These empirical
studies specify that a value of a = /m will yield the
smallest value for the correlation coefficient regardless

18of the value of c. The second remedy proposed by M. D. 
MacLaren and G. Marsaglia is called the combination 
method. With this procedure a mixed congruential generator 
is used to randomly determine an index which is used to 
select a random number from a set of stored random numbers. 
The stored random numbers are generated by the multiplica
tive congruential method such that the ith number is
replaced by a new value when i is the index generated by

19the mixed congruential method.

17MacLaren, "Uniform Random Number Generators,"
pp. 86-89.

1 8R. R. Coveyou, "Serial Correlation in the 
Generation of Pseudo-Random Numbers," Journal of the 
Association for Computing Machinery, VII (January, 1960), 
72-74-; and M. Greenberger, "An a Priori Determination of 
Serial Correlation in’ Computer Generated Random-Numbers," 
Mathematics of Computations, XV (October, 1961), 384-386.

19MacLaren, "Uniform Random Number Generators,"
pp. 83-86.
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The random number generator 
used in this study

The random, number generator used in the simulation 
experiment of this study is shown in the appendix to 
this chapter. The generator is a multiplicative con
gruential generator with multiple initial values. This

2 0generator is recommended for use on the IBM 3 60 computer.
Random real numbers between zero and one and random

31integers between zero and 2 are computed with this 
generator. The random integer produced at any stage is 
used as the input value for determining the random number

2 9at the next stage. The period of this generator is h =. 2 
The multiple initial values have been added to the genera
tor by this researcher in order to reduce the serial 
correlation among the numbers in the sequence.

Recalling the multiplicative congruential 
relationship

ni+l ~ ^ i  (mod m) , [4-]

it is necessary to specify the values of the constants 
in that relationship which guarantee a maximum period 
and a minimum value of the serial correlation coefficient 
for the sequence of numbers generated by the relationship. 
The condition on the multiplicative constant a is that

2 0This generator can be found in the IBM Application 
Program, System 360 Scientific Subroutine Package, X360A - 
Cm - 03X). Version III, p. 77..' The reader Is also referred 
to IBM Manual C2Q-8011 on random number generators.
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21it must be odd and relatively prime to m. Since the 
IBM 36 0 computer is a binary computer m = 2^ where b 
is the number of binary digits in a word. (The. value of 
b is thirty-one for the IBM 36 0 computer.) The values 
of a which satisfy the.condition above can be expressed 
as

a = 8t ± 3 , [53
22where t is any positive integer.

According to the conditions set down by Coveyou 
and Greenberger, values of a should be chosen to minimize 
the first order serial correlation of the numbers in the 
sequence. A value of a approximately equal to I'm, which 
is equal to 2 ^  2 in this case, should be chosen. The 
value of a recommended with this generator is 65539. It 
was found that this value does not satisfy the condition 
for minimizing the serial correlation of the sequence.
As an alternative to the above integer the value 46331 
is used with the generator since this integer satisfies 
all the conditions stated above.

The condition on the initial value, nQ , specifies 
that it be any positive odd number. To meet the design 
of this particular random number generator eleven initial 
values of nQ are stored in computer memory. The first ten

21Naylor, Computer Simulation Techniques, pp. 6 3-64.
Two integers are relatively prime if the greatest common 
divisor of the two integers is one.

22Ibid., pp. 51-52,
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of these values are the multiple starting values to be 
used to generate a pseudorandom number. The eleventh 
value is used to randomly determine an index which indicates 
which starting value is to be used to determine that 
pseudorandom number. Each time that a particular starting 
value is used it is updated, that is the ith pseudorandom 
number in integer form serves as the starting value for 
the generation of the next pseudorandom number. The eleven 
values of nQ used with this generator are shown in the 
appendix.

Verification of the Random
Number Generator

Three types of statistical tests are used to verify
the random number generator described at the end of the
last section. These types of tests are (1) a uniform
frequency test, (2) a serial correlation test, and (3) a 

2 3test of runs. First, second, and third order serial 
correlation tests are performed on the sequence of pseudo
random numbers generated. Two types of runs tests are 
performed. These involve runs above and below the mean 
and runs up and down. The FORTRAN program written to 
perform these tests and the results of the tests are pre
sented in the appendix to this chapter.

2 3Ibid., pp. 57-62. . The tests, described in this 
section are based upon the corresponding tests presented 
in this reference.
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Each test is designed to be pun on a predetermined 
number of groups with each group containing a predeter
mined number of pseudorandom numbers. The purpose for 
arranging and testing the random numbers in groups is 
that the consistency of the generator with respect to 
its meeting a particular test can be observed. In addition 
subsequent groups, which were not originally planned for, 
can be tested along with the initial groups at a later 
time without having to again generate the initial groups.

Uniform Frequency Test
The uniform frequency test is a chi-square test

used to test whether the sequence of pseudorandom numbers
is uniformly distributed. The test is performed on a
sequence of AM consecutive sets of AN pseudorandom 

24numbers.
The generator produces real numbers between zero 

and one. This interval is divided into ten subintervals. 
The expected number of pseudorandom numbers in each group 
which falls into each subinterval is AN divided by ten.
Let fj denote the actual number of pseudorandom numbers 
in the subinterval

Cj - 1)/1Q <. r < j/lDj where j = 1,2,...,1Q [63

24-In explaining the logic behind these tests the 
variable names used in the FORTRAN program are incorporated 
into the text whenever such an inclusion is beneficial to 
the reader.



The statistic

10 C£- - vtt)2 10..2 . ^ 3  10' . 10 AN,2 r,.
*3. - X  T5H-------- SfT '.i Cfj HrJ L7J3=! Jo 3=1

is then distributed according to a chi-square distribution
25with nine degrees of freedom.

This chi-square statistics is computed for each
of the AM groups of AN pseudorandom numbers. These AM 

2values of are then grouped into four intervals in the
following way. Let be the number of the resulting 

ovalues of X]_ which lie between the Ci - l)th and the ith 
quartile of a chi-square distribution with nine degrees 
of freedom. Since the expected number of x^ values which 
fall in each interval is AM divided by four, then the 
statistic

4
XF =■ AM '± Lx tFi " T Tm )2 [8]

is chi-square distributed with three degrees of freedom.
The hypothesis concerning the randomness of the sequence

2of pseudorandom numbers is rejected if the statistic Xp 
is greater than a critical value of the chi-square 
statistic with three degrees of freedom. The critical

2 5In this statistic and in all the others to be 
explained the values of AM and AN must be chosen so as 
to guarantee that the expected number of elements falling 
into each subinterval is greater, than five, This is 
based upon the assumptions under which a chi-square test 
is performed.



value is determined by assuming a given level of signi
ficance at which the hypothesis is tested.

Serial Correlation Test 
Serial correlation tests are used to determine 

the independence of successive pseudorandom numbers in 
a sequence. First, second, and third order serial 
correlation tests are run. These tests respectively 
determine the independence between the ith and the 
(i + h)th pseudorandom number in the sequence. The value 
h equals one for the first order test, two for the second 
order test, and three for the third order test.

The serial correlation tests used in this study 
are also based upon a chi-square distribution. For 
each set of AN pseudorandom numbers let f d e n o t e  the 
number of pseudorandom numbers which fall in the intervals 

(j - 1)/10 _< r^ < j/10 and

(k - 1)/10 < r±+h < k/10 [9]

where the intervals are the same as those used in the 
uniform frequency test. In the expressions above j and k 
range from one to ten, i ranges from one to CAN - h ) , 
and h equals one, two, or three respectively for the

? Rfirst, second, or third order serial correlation test.

2 6For the sake of clarity, the remainder of the
discussion is in terms of only one serial correlation test
To perform the three tests the only change in procedure 
involves using a different, value of h.



The statistic
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is chi-square distributed with ninety-nine degrees of 
freedom, since there are one hundred classes into which a 
pair of successive pseudorandom numbers can fall. This 
statistic is determined for each of the AM groups of 
pseudorandom numbers.

2 2The statistic (X2 “ is calculated for each
of the AM groups of pseudorandom numbers. This statistic
is distributed according to a chi-square distribution

27with ninety (100 - 10) degrees of freedom. Let Sj
2 2denote the number of values of (x2 “ X]_5 which lie between 

the (j - 1) th and the jth quartile of a chi-square 
distribution with ninety degrees of freedom. Then the 
statistic

2 - 4  r /*. AM ,2 r-_
XS ~ AM  ̂ j “ 4 ^

is chi-square distributed with three degrees of freedom.
The serial independence of the sequence of pseudorandom
numbers is established at a given level of significance

2 2if the values Xp Xg each less than the critical

•2 7Ibid., p. 59. The reader is also referred to 
I. J. Goodl ^Oh the Serial Test for Random Sequences," 
Annals of Mathematical Statistics, XXVIII (March, 1957), 
262-264.



64

value of "the chi-square statistic with three degrees 
of freedom.

Runs Tests
Runs tests are concerned with the particular 

arrangement of the pseudorandom numbers within the sequence. 
Since the pseudorandom numbers should be uniformly dis
tributed, the mean of the numbers should equal the median 
of the numbers.

The test for runs above and below the mean is 
designed to result in a rejection of the hypothesis of 
randomness if the sequence of numbers is such that any 
number, which is greater than Cor less than) the mean or 
median of the numbers in the sequence, is repeatedly 
followed by a number which is also greater than (or less 
than) the mean or median of the numbers in the sequence.
If the generator is producing pseudorandom numbers then 
the conditional probability that some number is
greater than the mean, given that r^ is greater than the 
mean, is equal to the probability that is less than
the mean given that r^ is greater than the mean. A similar 
equality holds for the conditional probabilities in the 
case when r^ is less than the mean.

A similar argument can be made concerning the 
test for runs up and down. In this case the hypothesis 
of randomness is rejected if the numbers in the sequence 
are repeatedly larger (or smaller) than the previous numbers.
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Runs above and below 
the mean

Since the generator* produces pseudorandom numbers
over the interval from 0 to 1,. then the mean of the 
pseudorandom numbers should be 0.5. Each of the AN 
pseudorandom numbers in each group can be classified as 
either greater than, less than, or equal to 0.5. For 
each sequence of AN pseudorandom numbers a corresponding 
sequence can be constructed. If r^ < 0.5, define s^ = 0; 
and if r^ > 0.5, define = 1. Values of r^ exactly 
equal to 0.5 are improbable and are not counted as a run. 
The runs in s^ are accumulated by size and are then 
compared with the expected number of runs of each size. 
The expected number of total runs is (AN + l)/2 and the 
expected number of runs of any length k is

where 0^ is the observed number of runs of a given size 
i and is the expected number of runs of size i.

The larger the size of a run the smaller is the 
probability of a run of that size. Therefore the expected

be taken in performing this' chi-square test to include in

(AN - k + 3) 
Jk+I [12]

The chi-square statistic for this test can be written

[13]

number of runs of fairly large size is small. Care must
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the test only terms whose expected values exceed five. 
Whenever for a given run size the expected number of runs 
of that size is less than five, then this run size and all 
larger run sizes must be grouped into a single class in 
order for the chi-square test to be performed correctly.
The last term in the test compares the observed and 
expected numbers of runs of some size j and all sizes 
larger than j. The largest run size which has an expected 
value greater than or equal to five depends upon AN, the 
number of pseudorandom numbers generated in a group.

Once the number of terms to be included in the 
chi-square test is known, then the degrees of freedom 
for the test is one less than the number of terms. All 
the statistical tests in this study were performed on 3 0 
groups of 400 pseudorandom numbers each. That is AM = 3 0  
and AN = 400. In the test of runs above and below the 
mean, run sizes as large as five had expected values 
greater than five. The last term of the chi-square test 
then compared the observed and expected number of runs 
of sizes six or more. The degrees of freedom then
associated with this test is five.

2The statistic Xy^g must be determined for all
AM groups of pseudorandom numbers. Let s. denote the

2number of the resulting X^yg values that lie between the 
(j - l)th and the jth quartile of a chi-square distribution 
with five degrees of freedom. The statistic

t
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x2 = n r  X  Cs3 - “ )2

is then chi-square distributed with three degrees of 
freedom. The test is met at a given level of significance 
if this value is less than a critical value of chi-square 
with three degrees of freedom.

Runs up and down
The test for runs up and down is analogous to the

test for runs above and below the mean. For each sequence
of AN pseudorandom numbers again a corresponding sequence
can be constructed. If a particular pseudorandom number r^
is less than the next number in the sequence then

- 0. When r^ is greater than then s^ = 1. The
runs in s^ are then accumulated by size. The expected
number of total runs is (2AN - l)/3; the expected number
of runs of length k is

2[(k2 + 3k + D A N  - Ck3 + 3k2 - k - 4)] rnr^--------------------+-T r ,-------------------  L153

for k less than (AN - 1); and the expected number of runs
of length CAN - 1) is (2/ANl).

2The statistic Xjj/p can ke de£ined in & similar
2fashion as the statistic XA/B in C133. Again care must 

be taken to include in this test only run sizes whose 
expected numbers are greater than five. With AM = 3 0 and 
AN = 400, run sizes up to a length of three have expected



values greater than five. The last term in the test
therefore compares the observed and expected numbers of
run sizes of four or more. The degrees of freedom of
the statistic Xy/y 'three.

2The statistic Xy/y determined for each of the
AM groups of pseudorandom numbers. Again the number of

othe values of Xy/y which fall into the various quartiles 
of a chi-square distribution with three degrees of freedom 
are determined. A statistic analogous to that 'in [14j is 
then found and the test is completed in a similar fashion.

The test results
The sequence of pseudorandom numbers is tested 

by arranging the sequence into 30 (AM) groups with 40 0 (AN) 
pseudorandom numbers in each group. The sequence numbers 
of the pseudorandom numbers in the first set of the 30 
groups run from 1 to 12,000. The test results shown 
in the appendix were obtained by running and testing 
12 sets of groups. The total number of pseudorandom 
numbers tested is 144,000.

The hypothesis of randomness is tested at a level 
of significance of a = .05 and a - .01. The critical 
values of the chi-square statistic with three degrees 
of freedom at these levels of significance are respectively 
7.814.73 and 11.3449.

The results of these different tests are presented 
in Table 1 in the appendix. The generator passed all



■tests of randomness at a level of significance of a = .01.
At the significance level of a = .05 the generator failed 
the various tests on three occasions. The first order 
serial correlation test led to a rejection of the hypothesis 
of independence for the set of pseudorandom numbers with 
sequence numbers from 120,001 to 132,000. Similarly the 
second order serial correlation test led to, a rejection of 
the hypothesis for the numbers whose sequence numbers are 
from 108,001 to 120,000. On one occasion the test of

i
runs above and below the mean led to a rejection of the 
hypothesis of randomness. This occurred for the pseudo
random numbers with sequence numbers from 132,001 to 
144,000.

The failure to accept the hypothesis on these 
three occasions at the level of significance of a = .05 
does not lessen the confidence that this generator is 
producing a sequence of numbers which can be assumed to 
be random. These three failures represent a smaller 
proportion of failures than that considered acceptable 
at the 0.5 level of significance.



APPENDIX

FLOW CHART OF THE 
RANDOM NUMBER GENERATOR

SET VALUE 
OF A

------------- V ---------------
GENERATE A RANDOM NUMBER 
TO SET POSITION INDEX-I

START

READ 11 INITIAL 
VALUES-IX

DETERMINE IX(I) 
FROM INDEX

CONVERT 
IY TO YFL
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FLOW CHART OF THE STATISTICAL TEST
RUN ON THE RANDOM NUMBER GENERATOR

^ START~^

GENERATE A PSEUDO
RANDOM NUMBER-YFL

\y_

DETERMINE
RUNS

RUN SIZES 
TEST U/D

FOR

\
DETERMINE

RUNS
RUN SIZES 
TEST A/B

FOR

,\1/
DETERMINE INTERVAL INTO WHICH YFL 
FALLS FOR UNIFORM FREQUENCY TEST

DETERMINE INTERVAL INTO WHICH YFL 
FALLS FOR ALL SERIAL CORRELATION TEST

GO TO 1

DETERMINE EXPECTED NUMBER 
OF VARIOUS SIZES FOR RUNS

OF RUNS 
TEST U/D

\/
CALCULATE Xu/D F0R 
. RUNS TEST U/D
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DETERMINE EXPECTED NUMBER OF RUNS 
OF VARIOUS SIZES FOR RUNS TEST A/B

LOCATE Xy/D VALUE FOR RUNS TEST U/D 
IN AN APPROPRIATE INTERVAL

LOCATE x 2 VALUE FOR RUNS TEST A/B 
IN AN APPROPRIATE INTERVAL

CALCULATE xj VALUE FOR 
UNIFORM FREQUENCY TEST

.......................  \/ . ..

LOCATE Xi VALUE FOR UNIFORM 
FREQUENCY TEST IN AN APPROPRIATE INTERVAL

CALCULATE x^/b F0R 
RUNS TEST A/B

CALCULATE EACH x\ VALUE 
FOR ALL SERIAL CORRELATION TEST

DETERMINE EACH (Xg - VALUE 
FOR ALL SERIAL CORRELATION TEST

I



LOCATE EACH “ X2> VALUE FOR
ALL SERIAL CORRELATION TEST 
IN AN APPROPRIATE INTERVAL

c NO ̂ 7  AM = 3oT?^>
<^ YES
/\

DETERMINE EXPECTED NUMBER OF 
Xj}/D AND x^/B VALUES FALLING 

INTO AN APPROPRIATE INTERVAL

--------------- V---------------
CALCULATE AN OVERALL x2 VALUE 
FOR THE TESTS OF RUNS U/D AND 

THE TEST OF RUNS A/B

CALCULATE 
SERIAL CORRELATION TEST

FOR ALL

DETERMINE EXPECTED NUMBER OF
X2 VALUES FALLING INTO AN

APPROPRIATE INTERVAL FOR THE 
UNIFORM FREQUENCY TEST

DETERMINE EXPECTED NUMBER OF 
Cx2 " X1J VALUES f a l l i n g INTO
AN APPROPRIATE INTERVAL FOR 
ALL SERIAL CORRELATION TEST



__________ Sk____________
CALCULATE Xp FOR 

UNIFORM FREQUENCY TEST

STOP
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K im T K AN PROGRAM (J I1 TUT RANDOM NUMBER GI: NE PA TOR

C THE RANDOM NUMBER GENERATOR. USED I S A TkO STAGE
MIJLT I PL 1 CAT I V T CfiMGkU E M T 1 AL GENERATOR. THE F I R S T  STAGE 
DETERMINE S RANDOMLY TIIT I X ( I )  VALUL TO Hl USE 11 IN THE 
DETERMINATION OF THE RANDOM NUMB I: R ■ THE SECOND STAGE 
DETERMINES TMF RANDOM NUMIU-K I T S E L F .  THIS PROCEDURE IS 
USED TFJ M I N I M I / E  TMF SERIAL CORkE LA Tt ON. I X ( I )  IS THE 
PUS IT  I UN DF THt  LL I N I T I A L  VALUES.  Tt IL LAST VALUE I E .  
I X ( 11)  IS THE I N I T I A L  VALUE FOR THE INDEX GENERATOR. 
THE.' REMAINING LO I N I T I A L  VALUES ARE THE VALUES TO BE 
USED IN DETERMINING THE RANDOM NUMBERS THEMSELVES.  
DIMENSION IX I 11)
COUNT = 0.0 
D02 1 = 1 , 1 1  
I X I  I )  = C

2 CONTINUE 
D03 1= 1, 1 1 
R B A D l 5 , 9 0  ) I X I I  )

90  F O RM A T! 17)
3 CONTINUE
4 C0UNT=C0UNT+1.

1 = 11
20 I IX= I X C I )

I Y = I I X *  46 3 31  
IF! IY ) 5,6 , 6

5 I Y = I Y + 2 1 4 7 4 8 3 6 4 7  +1
6 Y FL = IY 

I X !  I  ) = I Y
Y F L = Y F L * . 4 6 5 6 6 1 3 E - 9
I F( I .NE . 1 1 ) GLI TO 21
I F ( Y F L  . L T  . . 1 ) GO TO 1 1
I F I Y F L . L T . . 2 ) GO TO 12
I F I Y F L . L T . . 3 ) GO TO 13
I F ! Y F L . L T  . . 4 ) GO TO 14
I F ! Y F L . L T . . 5 ) GO TO 1 5
I F I Y F L . L T .  . 6 ) GO TO 16
I F ! Y F L . L T . . 7 ) GO TO 17
I F ! Y F L . L T .  , 0  ) GO TO 18
I F ! Y F L . L T . . 9 ) .GO TO 19
1 =  10
GO TO 20

11 1 = 1
GO TO 20 

12 1=2
GO TO 20

13 1=3
GO TO 20

14  1=4
GO TO 20

15  1=5
GO TO 20

16 1=6
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17 

1 8 
19
21
91

92 
7

C

c

GO TO 20 
I =7
GO TO 20 
1=0
GO TO 20 
1 - 9
GO TO 20 
W R I T E ! 6 , 9  1) YFL
FORMAT! / ] X , »RANDOM NUMBER I S * , A X , F 2 0 . 1 5 )  
I I M C O U N T . L T .  10 0)  GO TO 4 
0 0 7 1 = 1 , 1 1
W R I T E ( 6 , 9 2 ) I » I X { I )
FORMAT( / 1 X T " I X ( 1 3 , ' )  I S * , 2 X , I 1 0 )
CONTINUE
STOP
END

THE ELEVEN I N I T I A L  VALUES ( I X )  USED 

WITH THE RANUUM NUMBER GENERATOR

I X ( I ) NUMB ER
5 3 7 3 1 5 3
6 2 A 9 3 1 9 
1137861  
7 3 1 6 1 4 1  
1360 819 
2 5 6 2  763 
3 5 3 4 C 3 3  
1 6 7 8 5 6 7  
1 4 4 3 4 5 3  
1074  817 
1 6 3 5 3 5 9

2
3
4
5
6
7
8 
9
10
11
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C COMPUTER PROGRAM OF THE S T A T I S T I C A L  TEST

C RUN ON THE RANDOM NUMBER GENERATOR

THI S PROGRAM CONTAINS A M U L T I P L I C A T I V E  
CONGRUENT IAL RANDOM NUMBER GENERATOR AND S I X DIFFERENT 
TEST THAT CAN BE USED TO TEST ANY PSEUDORANDOM NUMBER 
GENERATOR. THE TEST INCLUDE t l )  A UNIFORM FREQUENCY 
TEST,  ( 2 ) ,  1 3 ) ,  ( A )  TEST FOR F I R S T ,  SECOND, AND THIRD 
ORDER SERIAL CORRELATION,  ( 5 )  A TEST FOR RUNS ABOVE 
AND ObLOW THE .MEAN, AND ( 6 )  A TEST FOR RIJNS UP AND 
DOWN. THESE TEST ARE DESIGNED SO THAT THEY CAN f)E 
AF F I XED TO ANY PROGRAM WHICH WILL  GENERATE PSEUDO
RANDOM NUMBERS. IN AD D IT I ON  THE SERIAL CORRELATION 
TESTING PROCEDURE CAN BE MODIF IED SO AS TO TEST FOR 
HIGHER ORDER SERIAL  CORRELATION.

THE RANDOM NUMBERS ARE GENERATED IN ' A M 1 SETS OF 
' A N *  NUMBERS. FOR EACH SET OF ' A N 1 NUMBERS ALL SIX 
TEST ARE CONDUCTED. THE RESULTS FOR EACH TEST I N TURN 
ARE THEN COMBINED INTO A CORRESPONDING TEST ON ALL 
•AN*  NUMBERS.

A L I S T  OF THE MAJOR VARI ABLES FOLLOWS.
3̂ # 4; # # 3̂ # >;c 3,̂  # 4 £ ) | t  i;t 4; 3|: jf: :>;* i|£ 4; 4; 4: # ij: 4; #>;£ ;>,{ i;; j;t

VARIABLES IN THE RANDOM NUMBER GENERATOR
IX C I ) ........... I N I T I A L  VALUES.  THESE ARE READ I N .
A N ....................NUMBER OF RANDOM NUMBERS IN A GROUP (GE.  5 0 )
AM....................NUMBER OF GROUPS ( GE . 2 0 )
Y F L .................RANDOM NUMBER IN FLOATING POINT MODE
I Y ....................RANDOM NUMBER IN F I XE D  POINT MODE. THE NEW

I X I  I ) .

VARIABLES IN THE FREQUENCY TEST
X I N T R ........... NUMBER OF CLASSES INTO WHICH A RANDOM NUMBER

IS PLACED.
U ...................... NUMBER OF S U B D I V I S I O N S  INTO WHICH THE AM

DIFFERENT CHI -SQUARE VALUES ARE PLACED FOR 
THE O VER-ALL  CHI -SQUARE TEST.

C H I S Q ........... THE CHI - SQUARE VALUE FOR THE UNIFORMITY
TEST FOR EACH SET AM.

F C H I S Q . . . .THE CHI -SQUARE VALUE FOR THE UNIFORMITY 
TEST FOR ALL AM SETS.

VARIABLES IN THE CORRELATION TEST
I RHO.............. INDI CATES HIGHEST CRDER SERIAL  TEST TO BE

PERFORMED.
T C H I S Q . . . .THE CHI - SQUARE VALUE FOR THE SERI AL  TEST.

F I RS T ORDER TEST I S  SUBSCRIPTED I , SECOND 
ORDER TEST TS SUBSCRIPTED 2 ,  THIRD CRDER 
TEST IS SUBSCRIPTED 3 .

D I C H I ........... THE DIFFERENCE BETWEEN FCHISQ AND TCHI SQ.
T H I S  VALUE I S  CHI -SQUARE D I S T R IB UT E D AND IS
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C USED IN TESTI  NO HACH SET AN FOR l f 2 ,  AND 3
C DRO !;K SE RI AL  COR RE L AT I UN.
C S C H I ...............THE CHI -SQUARE VARIABLE USED TO TEST ALL AM
C SETS FDR 1 ,  2 ,  AND 3 GRDFR SERI AL
C CORRELATION.
C
C VARIABLES IN RUNS TESTS
C RUNS ABOVE AND BELOW THE MEAN
C I R UN ................ NUMBER OF RUNS OF THE SIZE I NDI CATED IN THE
C SUBSCRIPT.
C ICOUNT. . . .NUMBER OF TOTAL RUNS.
C C H I R U N . . . .CHI -SQUARE VALUE COMPARING ACTUAL RUN
C S I ZE S WITH EXPECTED RUN S I Z E S .
C C H I R U T . . .  . CHI -SQUARE VALUE USED TO TEST ALL  AM SETS
C FOR RUN S I ZES ABOVE AND BELOW THE MEAN.
C RUNS UP AND DOWN
C J RU N............... ALL THESE VARIABLES CORRESPOND TO THEIR
C JCOUNT COUNTERPARTS IN THE RUNS TEST DESCRIBED
C CHIRUN ABOVE.
C CHIRUT
C
C
C DIMENSION STATEMENTS
C *«>;<>* * * ),'i v ̂ * * * * # >:« >;< =;< * * * >;< >:> =:< * * $ * * * * * * m &  ̂ >•, *  * # # & * * * * * --it * ̂ *

DIMENSION I X I  L I  ) , F J K I 3 ,  L 0 t 10)
R I MENS ION F J I  10 J , CAPFJ t  A) , U I C H H 31 , SUM!31 , DIF F J K ( 3)
DIMENS ION S D I F F ( 3 ) , SI  3 , A) , S U D I ( 3 1 , SCHI ( 3 )  , T C H I S U I 3 )
DI  MENSrON I RUN I 20)  , JRUNI  2 0 ) , E X R U I 2 0 ) , C H I R U N ! 2)  
DIMENSION C H 1 R U T I 2 , A) , S D I 12) , D I 12)  , R U C H I 12)

C I N I T I A L I Z I N G  STATEMENTS FOR THE * AM1 SETS
C * alt######* >J< # # * #aj( * if s}: a,t if if H,-if.* * #  s(t

AN=AOO.
N=AN
AM=30 .
M = AM
X I N T K = 1 0 .
U=A .O 
IRHO= 3 
I IU = U
I NTR=XI NTR 
D02 1 = 1 , 1 1  
I X I  I ) =0

2 CONTINUE 
D 0 3 1 = 1 , 1 1
R FAD I 5 , 9 0  ) I X t t )

90  FORMAT! 1 1 0 )
3 CONTINUE 

D 0 2 0 0 0 I Q Q = 1 , 12 
D062 1 = 1 , I I U  
C A P F J I I ) = 0 . 0

62  CONTINUE
D 0 8 5 1 = 1 , IKHU 
D 0 8 5 J = 1 , I I U  
St  I * J ) = 0 .
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85 CONTINUE 
D084 I = 1 , 2  
0 0 8 4 J = 1,  I IU 
C H IK UT l  I , J  1 =0 .

84 CONTINUE
I N I T I A L I Z I N G  STATEMENTS FOR EACH SET IN TURN# sjs # # »!* # # * # # # * lit # # # * * * * * * # * * # * # * # * * # * * * * * # * # # * # £ * # # * # V # * #
K K = 0

86 KK = KK +1 
DCI83I=1 , 2
CHI  RUN( I ) = 0 .

83 CONTINUE
0 0 2 9 1 = 1 , I NTR 
F J ( I 1 = 0 .

29 CONTINUE
002 8 IS= 1,  IKHO 
DO 2 8L J  = 1 , INTR 
0 0 2 8LK = 1,  INTR 
F J K ( I S , L J , L K ) = 0 .

28 CONTINUE 
L J = 0 
LJK = 0 
L K J =0 
LK = 0 
I GR = 0 
I LT = 0 
I COUNT = 0 
0 0 1 0 7  1= 1, 20 
I R U N I I ) = 0  

107  CONTINUE 
J COUNT = 0 
IUP = 0 
IDW=0
0 0 1 4 0 1 = 1 , 2 0  
JRUN I I )=0 

140  CONTINUE 
0 0 5 0  I 1 = 1 , N
THE RANDOM NUMBER GENERATOR.
A M U L T I P L I C A T I V E  CONGRUENT I A L  GENERATOR WITH MULTIPLE 
STARTING POINTS # * * * * # * # # # # * # # # # # * # # # * * # # * # # * * # * * # * * * *  
1 = 11 

20  I I X = I X ( I )
I Y=11 X# 4 6 3 3 1  
I F { I Y ) 5 , 6  , 6

5 I Y = I Y + 2 1 4 7 4 8 3 6 4  7 +1
6 YFL = IY 

I X I  I ) = I Y
Y F L = Y F L # . 4 6 5 6 6 1 3 E - 9  
I F !  I .NE . 1 1 ) GO TO 21 
I F ! Y F L . L T  . .  1) GO TO U  
I F I Y F L . L T  . . 2 )  GO TO 12 
I F ! Y F L . L T .  . 3 )  GO TO 13 
I F I Y F L . L T . . 4 }  GO TO 14 
I F I Y F L . L T . . 51  GO TO 15
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I F ( Y F L . L T . - 6 i  GG TO 16 
I F I Y F L . L T  . . 7 )  GO TO 1 1 
I F 1 Y F L  . L T  . . 8 )  GO TO 18 
I F I Y F L . L T  . . 9 )  GO TO 19 
1 =  10
GO TO 20 

11 1 = 1
CO TO 20 

12 1=2
GO TO 20

13 1=3
GO TO 20

14 1=4
GO TO 20 

13 1=5
GO TO 20 

16 1=6
GO TO 20

17 1=7
GO TO 2 0

18 1=8
GO TO 20 

19 1=9
GO TO 20
DETERMINING RUN SIZES FOR RUNS (UP EDOWN) TEST
# if if. >;{*( ft# >;:*;( jje s{t s> ## # Jjt# i|t if. # £ * jj; * * $ # # £ * # j(t if. if.

21 I F( I I . E g .  1 ) GO TO 129
I F t F Y F L . G T . Y F L )  GG TO 121 
IF  t l U P . r o . Oi  GO TO 120 
I UP = IUP + 1
I F ( 1 I . E Q . N )  J R U N t I  U P ) = J R U N ( I  U P ) +1 
GO TO 129

120 JCUUNTsJCOUNT+1
I F { I 1 . G T .  2) JRUN { IDW)=JRUIM{ I D h )  + 1
IDW = 0
I U P = I U P + 1
I F t l l . F O . N J  J R U N t 1 UP) = J R U N t I  UP) + 1 
GO TO 129

121 I F ( IDW.EQ. O ) GO TO 123 
IDW=IDW+1
I Ft  I I . E G . N )  J R U N t I D W ) = J R U N t I O W ) +1 
GG TO 129

123 JC0UNT=JC0UNT+1
I F [ I I . G T . 2 )  J R U N t I  U P >= J R U N t I U P )  + 1

124  I UP=0
I DW=IDW + 1
I F t  I I . E Q . N )  J R U N t I D W ) = J R U N t I D W J + l  

129  FYFL=YFL
DETERMINING RUN SIZES FOR RUNS t ABOVE E BELOW) TEST

#>;<&;$;&>;(/< A# >;< jftsfs sf( # jjt# jjesjs
I F t Y F L . G T  . . 5 )  GO TO 102  
I F t  I L T . E Q  . 0 )  GO TO 101 
I L T = I L T  + 1
I F t  1 1 . E U . N )  I R U N t I L T ) = I R U N ( I L T J + 1
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GO TO 105
101 I C 0 U N T = 1 C 0 U N T H

F F ( I I  .EM.  1) GO TO LC4 
I RUM( I GR) = IRUM( I G R > + 1 

104 I GR =0
I L T = I L T + 1
I F ( I 1 . E O . M  I KUNt  I L T ) = I RUN ( I LT)  +1 
GO TO 105

102 I F ( I G R . E Q . O )  GO TO 103 
IGR=1GR+1
I F t  I I . E O . N )  IRUNt  I GR) = I RUN( I G R 1+1 
GO TO 105

103 I C DU NT = I CC UN T+ l
I F t  I 1 . E O .  1) GO TO 106 
IRUNt  IL T ) = I RUN t I L T J  + 1 

106 I L  T = 0
I GR=IGR +1
I F t  I I . E U .N )  IRUNt  I G R ) = I R U N t I G R 3+1 
DETERMINING THE I NTERVALS INTO WHICH THE RANDCM 
NUMBERS FALL FOR THE UNIFORM FREQUENCY TEST AND THE 
1ST » 2ND( 3 RD ORDER SE RI AL  CORRELATION TEST
s(: >j< >Je ){< He # j{e l|; # # ̂ =i: # jjt # # )J; if j,1! iji %  >;< ajr j{! # # 4-' J1/ # if J(s Xf # # X< & >tf X" Xs X< Xs Xt Xt ijs
I F  t YFL . L T . . 1) GO TO 4 L
I F t Y F L . L T . . 2 ) GO TO 42
I Ft  YFL .L T. . 3) GO TO 4 3
I F t  YFL . L T . . 4 ) GO TO 44
I F t Y F L . L T . . 5 ) GO TO 45
I F t Y F L . L T . . 6 ) GO TO 46
I F t Y F L . L T . . 7 ) GO TO 4 7
I F  t YFL . L T . . 0 ) GO TO 48
I F t Y F L . L T . . 9 ) GO TO 49
L = 1 0 
GO TO 51 

A 1 L = 1
GO TO 51

42 L = 2
GO TO 51

43 L = 3
GO TO 51

44 L =4
GO TO 51

45 L = 5
GO TO 51

46  L = 6
GG TO 51

47  L = 7
GO TO 51

48  L = 8
GO TO 51

49  L =9
51 F J t L ) = F J t L ) + l .

I F t  1 1 . EQ• 1} GO TO 75 
I F t  1 1 - 3 ) 7 0 ,  7 1 ,  72 

70 LJK=L
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GU TU 5 0
71 LKJ = L

Gfl TO 50
72 LK = L

F J K ( l f L J , L J K ) = F J K ( l t L J , L J K ) + l .
F J K < 2 , L J TL K J > = F J K [ 2 TL J , L K J ) + 1 .
F J K ( 3 , L J , L K  ) = F J K { 3 , L J , L K  ) + l .
L J = L J K  
LJ K =L K J  
LKJ =LK
I F t I I . N E . N )  GO TO 50
F J K t  1 , L J , L J K ) = F J K (  l t L J , L J K )  + l .
F J K t l , L J K TL K J ) = F J K { l , L J K , L K J > + l .
F J K t  2 , L J , L K J  ) = F J K t  2 , L J , L K J )  + l .
GO TO 50 

75 L J = L  
50 CONTINUE

CHI -SQUARE TEST ON TOTAL RUNS AND RUN S I ZES FOR RUN UP 
UP AND DOWN * * * * *  S[! S[C *  * *  *  *  *  *  *  *  *  *  *  *  * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  

CNT =JCOUN T 
E X C N T = t 2 . *  A N - 1• ) / 3 .
CM I TER = I t C N T — EXCN T ) * *  2 ) /EXCNT 
S UEXRU = 0 .
D O l 30 I = 11N 
A 1= I.
FAC = A 1 + 3 .
R = FAC
D 0 L 3 1 J = 1 | N  
A J = J
I F t  ( R - A J » . EG .  1.  ) GO TO 132 
F A C = F A C * ( R - A J )

131 CONTINUE
132 E X R U t I  1 = 2 . * { [ (A 1 * * 2 ) + 3 . * A 1 + 1 . ) * A N - ( { A I * * 3 ) + 3 . * C A I * * 2 ) -  

1A t - 4 . ) ) /FAC
SUEXRU = SUEXKU+E XRU( I )
I F t E X R U t  I > - G E . 5 . J  GO TO 130
EXRUt ! ) = (  ( 2 . * A N - 1 . 1 / 3 . I - t S U F X R U - E X R U t I )  )
I F t E X R U t  I ) . G E . 5 . )  GO TO 160  
EXRUt  I —1 ) =  EXRUt I - l J + E X K U t I )
I R J = I -  1 
GO TO 161

160 IRJ = I
GO TO 161 

130  CONTINUE
161 JDUM=Q 

D 0170  1=1,  IRJ
I F t I  . E Q .  IRJ  )G0 TO 170 
JDUM=JDUM+JRUN{ I )

1 70  CONTINUE
JRUNt  I R J ) =JCGUN T-JDUM 
D 0 1 6 2 I = 1 ,  IRJ
RUDI FF  = ( { J R U N t I ) —EXRU t I ) 1 * * 2 ) / E X R U t I )
I I  = 1
CHI  RUNt I I  )=CHIRUN t I  I J + R U D I F F
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L 62 CUNT INIJE
CH I RUM ( I I ) = CHTRUNt I I 1 +C h I T Jr R
CHI -SQUARE TEST ON TOTAL RUNS AND RUN S I ZES FOR RUN 
ABOVE AND BELOW 
CNT=ICOUNT 
E XCNT = t AN + 1 . 1 / 2 .
C H I T E R = ( t C N T- E X C N T ) * * 2 ) /EXCNT 
SUEXRU=0.
DO L 10 1= 1» N 
A I = I
EXRUt I ) = ( A N —A 1 + 3 .  } / ( 2  . * # (  I + 1) )
SUEXRU=SUEXRU+EXRU( I I
I F ( E X R U t  I ) . GE . 5 . ] GO TO 11C
EXRUt I ) = (  t AN+ 1.  ) / 2 . ) - { S U E X R U —E X R U t I I )
I F t EX RUt  I I .GE . 5 . J GO TO 164 
EXRUt 1—1 ) =EXRU( I -  1 J + E X R U t I )
I R I = 1 - 1  
GO TO 16S

164  I R I = I
GO TO 165 

110 CONTINUE
1 65  JDUM=0

DO 171 1 = 1, I R I
I F t  I . E G . I R I  iGO TO 171
J D U M = J D U M + I R U N t I )

171 CONTINUE
I R U N t I R I } = ICOUNT-JDUM 
D0166  1 = 1,  I R I
RUD I F F = ( t IRUNt I I - E X R U ( I ) 1 * * 2 ) / E X R U t I )
I 1 = 2
CHI  RUN{ I I ) =C HI RU Nt  I I ) +RUDIFF

166 CONTINUE
CHI RUNt I I  ) =CHI RUNt  I I ) +CHI  TER
P O S I T I O N I N G  CHI -SOUARE VALUES OF RUNS TEST INTO
APPROPRIATE INTERVALS
DO 150 1= 1,  2
I F t  I . EQ « 2 I GO TO 167
I F t C H I R U N t I  ) . L T . 1 . 9 2 2 5 6 IGO TO 151
I F t  C H I R U N ( I ) . L T . 3 . 3 5 6 6 5 J GG TO 152
I F ( CHIRUN t I ) . L T . 5 . 3 8 5 2 7 I GO TO 153
GO TO 168
I Ft C H I R U N ( I ) . L T . 3 . 4 5 4 6 C ) GO TO 151
I F t C H I R U N  ( I ) . L T .  5.  34 812 ) GO TO 152
I F t C H I R U N t  I ) • L T . 7 . 8 4 C 8 0 IGO TO 153

168  IU = 4
GO TO 154

151 IU= 1
GO TO 154

152 I U = 2
GO TO 154

153  I U = 3
154  CHIRUTt  I ,  I U )  = C H I R U T t I  , I U )  + 1 .
150  CONTINUE

C CALCULATING C H I - S G U A R E t 1) VALUES
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SUD IFF  = 0 .
0 0 5 3  J = 1, INTR 
D I F F = ( F J { J ) - A N / X I N T K ) * * 2  
SUDI FF= SUDI FF+ D IFF 

53 CONTINUE
CHI  SQ={ X I N T R / A N ) * S U D I F F  

C P O S I T I O N I N G  EACh CH I -SQUARE { I ) VALUE INTO INTERVALS

I F t C H I S Q . L T . 5 . 8 9 8 8 3 ) GO TO 63
I F ( CHISQ .LT . 8 . 2  42 83) GO TO 64
I F t  CHISQ . L T . 1  1 . 3 8 8 8 ) GO TO 65
I U = 4
GO TO 36

63 I U=1
GO TO 36

64 I U - 2
GO TO 36

65 I U = 3
36 C A P F J { IU) = C A P F J ( I U ) + 1 .

CALCULATING C H I - S Q U A R E l 2)  AND C H I - S QU A RE { 2 )  MINUS 
C H I - S Q J A R E t  I ) # x* x» ❖ *
D077 IS= 1, IRHO 
S U M ! I S ) = 0 .

77 CONTINUE
D076  I S = 1 1 IRHO 
D 0 3 2 L J  = I t  INTR 
D 032LK =  1, INTR
D I F F J K t  IS ) = ( F J K  ( IS . LJ , LK)  -  (AN-1  S) / X  I NTR#*2  ) * * 2  
SUM( I S ) = S U M ( I S ) + D I F F J K I I S )

32 CONTINUE 
TCH ISQl  I S ) = ( t X I N T f t * * 2 ) / ( A N - 1 S ) ) * S U M ( I S )
D I C H K  I S ) = T C H I S O t  I S J - C H I S QC P O S I T I O N I N G  EACH C H I —SQUARE( 2 )  MINUS C H I - S Q U A R E ( 1 )

C VALUE INTO INTERVALS *  *  *  ####>;
I F ( DIC H I  ( I S )  . L T . 0 0 . 6 2 4 7  )GO TO 33
I F l D I C H I t  I S )  . L T . 8 9 . 3 3 4 2  )GO TO 34
I F I O I C H K I S J  . L T . 9 8 . 6 4 9 9  ) GO TO 35
I U = 4
GO TO 67

33 IU=  1
GO TO 6 7

34 I U = 2
GO TO 67

35 I U = 3
67 S( I .ST I U ) = S (  I S t l U J  + L.
76 CONTINUE
68 I F ( K K . L T . M )  GO TO 86

C CALCULATING OVERALL CHI -SQUARE VALUE ON RUN STZES FORC ALL SETS X«)StX«iitXtJi‘ 1}:>!t3it>!t5{i>!s!{tXtXtX'ii‘ XtXE>!tXtXtJiC3Ct>!sXt XtXtXtJ!tXiJJ£1frX‘ Xc’r{XcX«=(‘ =>:>St!|!<X‘X'X<
D 0 1 5 7 I  = l f 2 
S D I ( I ) = 0 •

157  CONTINUE 
DO 1 5 6 1 = 1 , 2



on
 

on

85

D 0 1 5 5 J = l ,  T IU
D I ( I ) ={ C H I K U T ( I , J ) - A M / U l * # 2  
SOI  ( I ) = SD I t  I )+D I ( I )

155 CONTINUE
K U C H I ( I ) = ( U / A M ) * S D I ( I )

156 CONTINUE
CALCULATING OVERALL CHI -SQUARE VALUE ON 1 S T ,  2 NC, AND 
3RD ORDER SERIAL  CORRELATION * # « # # # # *  $$#!(<#$##»(<
□ 0 8 2  I S = 1, IRHO 
SUD I ( I S )  = 0 .

82 CONTINUE
0 0 8  1 I S = 1, IRHO 
D 037J  = 1 , I I U
S D I F F ( I S ) = I S ( I S , J ) - A M / U ) * * 2  
S U D I ( IS > = S U D I ( I S ) + S D I F F  I I  S)

37  CONTINUE
S C H I ( I S ) = ( U / A M ) * S U O I ( I S )

81 CONTINUE
CALCULATING OVERALL CHI -SQUARE VALUE CN UNIFORM 
F REUUENCY TEST * *
SUCADF=0. 0  
D06 9 J = 1 , I I U
C A D I F = ! C A P F J ! J ) - A M / U ) * * 2  
SUCADF=SUCADF+CADIF 

69  CONTINUE
FCHI SQ=(  U / A M ) #SUCADF 
I F ( I Q Q . N E . 1 )  GO TO 1111 
W R I T E U ,  1C00)

1000  F O R M A T ! / 4 7 X , ' TABLE I * )
WR I T E ( 6 , 1 0 0 1 )

1001 F O R M A T ! / 3 1 X , ' T E S T  RESULTS ON RANDOM NUMBER GENERATOR*)  
W R I T E { 6 , 1 0 0 2 )

1002 F O R M A T ! 2 1 X , '
1 ' )

W R I T E ( 6 , 1 0 0 2 )
W R I T E ( 6 , 1 0 0 3 )

1003 FORMAT! / 2 2 X , ' »  SEQUENCE 1 , 3 X  , ' U N I  F O R - '  , 7 X , * CORRELATI  ON' ,
1 1 2 X , 1 RUNS 1 )

W R I T E ! 6 , 1 0 0 4 )
1004  F O R M A T ! 2 3 X , * N U M B E R ' , 5 X , ' M I T Y ' , 2 X , *

1 ' )
W R I T E ( 6 » 1 C 0 5 )

100 5 F O R M A T ! / 4 2 X , »F I R S T *  , 2 X , 4 SECOND 1 , 3 X ,  • THIRD*  , 2 X ,  ' AB OVE- 1 
1 , 4 X , ' U P - '  )

W R I T E ! 6 , 1C06)
100 6 F O R M A T ! 4 2 X , 1 O R D E R * , 3 X , * CRDER * , 3 X , ' O R D E R * , 2 X , ' BELOW , 4 X  

1 , ' D OW N* )
WRI I E ! 6 , 1 0 0 2  )

1111 W R I T E ! 6 , 1 0 0 7 ) F C H I S Q , S C H I ! 1 ) , S C H I ( 2 ) , S C H I 1 3 ) , R U C H I ! 2 ) , 
1 R U C H I ! 1)

10 0 7  F U R M A T ( / / 3 3 X , 6 ( F 6 . 4 , 2 X ) )
I F ! I Q Q . N E . 1 2 )  GO TO 200C 
W R I T E ( 6 , 1 0 0 2 )
W R I T E ! 6 , 1 0 0 8 )
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1008 FORMATt II HX, 1 THE C R I T I C A L  VALUE UF CHI -SQUARE A R E ' )  
WRITEI  6 t 1 0 0 9 )

1009 F O R M A T t 5 7 X , ' F O R  = . 0 5  IS  7 . 8 1 4 7 3 ' )
W R I T E < 6 , 1 0 1 0 )

1010 F O R M A T t 5 7 X , • FOR = . 0 1  I S  1 1 . 3 4 4 9 ' )
2 0 0 0  CONTINUE

STOP
END
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TAt iLR 1

TEST RFSULTS UN KANOUK NIJMHUP GENERAI OK

SEQUENCE
NUMBER

UNI FOR-  
MI TY

i

F TRST 
ORDER

CORRELATION

SECOND THIRD 
GKOt-R ORDER

RUNS

A 6DVE-  U P -  
BELUw DOWN

1
-  12 0 00 5 . 4 6 6 7 2 . 2 6 6 7 2 . 5 3 3 3 C .  6 6 6 7 0 . 6 6 6 7 6 . 8 0 0 0

12001
-  2 4 0 0 0 2 . 8 0 0 0 0 . 6 6 6 7 1.2GCC 3 . 6 0 0 0 C . 4 0 0 0 6 . OOOC

24001
-  3 6 0 0 0 1 . 7  333 1 . 4 6 6 7 2 . 2 6 6 7 3 . 3 3 3 3 2 . 2 6 6 7 1 . 2 0 0 0

360 Cl
-  4 8 0 0 0 4 . 6 6 6 7 2 . 2 6 6 7 4 . 9 3 3 3 2 . 2 6 6 7 4 . 9 3 3 3 6 . 5 3 3 3

4 8 0 0 1
-  600  00 6 . 0 0 0 0 3 . 6 0 0 0 2 . 2 6 6  7 5 . 7 3 3 3 2 . 5 3 3 3 1 . 4 6 6 7

6 0 0 C1
-  7 2 0 0 0 2 . 2 6 6 7 2 . 5 3 3 3 7 . 0 6 6 7 2 . 8 C 0 0 2 . 5  333 4 . 6 6 6 7

72001
-  8 4 0 0 0 6 . 0 0 0 0 0 . 6 6 6 7 1 . 2 0 0 0 5 . 4 6 6 7 0 . 1 3 3 3 3 . 6 0 0 0

840 Cl
-  9 6 0 0 0 0 . 6 6 6 7 0 .  1333 2 . 8 C 0 0 3 . 6 0 0 0 1 . 4 6 o 7 3 . 6 0 0 0

9 6 0 0 1
- 1 C 8 0 0 0 1 . 2 0 0 0 4 . 4 0 0 0 1 . 2 0 0 0 3 . 8 6 6 7 2 . 8 0 0 0 2 . 5 8 3 3

0 8 0 0 1
- 1 2 0 0 0 0 2 . 2 6 6 7 6 . 8 0 0 0 3 . 6 6 6 7 0 .  133 3 5 . 7 3 3 3 2 . 2 6 6 7

2 0 0 0 1
- 1 3 2 0 0 0 0 . 6 6 6 7 8 . 1 3 3 3 4 . 9 3 3 3 2 . 2 6 6 7 2 . 5 3 3 3 6 . 3 0 0 0

3 2 0 0 1
- 1 4 4 0 0 0 0 . 6 6 6 7 2 . 8 0 0 0 0 . 6 6 6 7 1 . 2 0 0 0 9 . 2 0 0 0 C.4GC0

THE C R I T I C A L  VALUE OF CHI -SQUARE .
FOR a = . 0 5  IS 7 . 8 X 4 7 3  
FOR a  = . 0 1  IS 1 1 . 3 4 4 9

>



CHAPTER IV

A STATEMENT OF THE EXPERIMENTAL PROCEDURE

Introduction 
The simulation model constructed for this study 

included three alternative deterministic equivalents to
ithe stochastic programming model. These deterministic 

equivalents were Cl) the two-stage slack approach to 
programming under uncertainty, (2) the active approach 
to stochastic linear programming under risk, and C3) the 
one-stage expected value approach. The experimental 
model evaluated an empirical linear programming problem 
with stochastic parameters in terms of each deterministic 
equivalent stated above. A Monte Carlo, simulation of 
this empirical problem was then performed. The results 
of this simulation were used as a standard with which to 
evaluate the results of each deterministic equivalent.

The objective of this chapter is to specify the 
characteristics of the experimental model. Initially 
the specific empirical problem used to generate the 
experimental results is stated. Next, the experimental 
design is reviewed. Emphasis is placed upon the selection 
of the various initial stochastic formulations of the 
empirical problem that were analyzed by the experimental

88



model. The three deterministic equivalents are then 
presented. Special attention here is placed upon the 
procedure used to include these deterministic equivalents 
in the experimental model. The chapter concludes with 
an appendix which contains the flow chart for computation 
of each deterministic equivalent and the flow chart and 
FORTRAN program of the entire experimental model.

The Problem Used in the Experimental Model
The empirical problem used in this study to 

generate the experimental results is a modification of 
an agricultural production problem which has appeared 
in the literature concerning stochastic linear programming. 
The problem, as it appears in the literature, contains 
five variables and five constraints. Because of the 
numerous ways in which uncertainty can be introduced into 
the parameters of the problem, the dimensions of the 
problem are reduced for present purposes. The modified 
problem contains three variables and three constraints.
With a (3 x 3) problem there are sixty-three initial 
formulations of the problem which can be developed, in 
terms of combinations of parameters which are taken to 
be stochastic.

^M. M. Babbar, "Distributions of Solutions of a 
Set of Linear Equations (With an Application to Linear 
Programming)," Journal of the American Statistical 
Association, L (September, 1955), -854-86 9 ; and, J . K. 
Sengupta and J. H. Partiilo-Campbell, "A Fractile Approach 
to Linear Programming Under Risk," Management Science,
XVI (January, 1970), 298-308.
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The empirical problem used in this study can be 
stated as

Maximize: Z - C'X
subject to: AX ^ B and

X > 0 El]
where the expected values of the parameters in [13 are:

A =
0.31772
0.02274
0.02555

0.96956 
0.92490 
0.21186

0.27870
0.02770
0.07523

180 O' 1.56'
B = 148 , and C = 3.81

234V * 0.84V. J

[23

The variables of the problem are the quantities (in- 
bushels) of the agricultural products corn, flax, and 
oats which are to be produced subject to the available 
resources of capital, land, and labor. These resources 
are respectively expressed in dollars, acres, and man-hours 

This particular (3 x 3) problem was selected 
from the original (5 x 5) problem after an evaluation 
of the optimum solutions of the various (3 x 3) problems 
that can be formed from the original problem. In [2 3 
above the C vector contains the expected values of the 
profit margin of the more important variables from the 
original problem, while the B vector contains the expected 
values of the more important resources available. . The A 
matrix contains the technological coefficients relating 
the 'amount of any particular resource required to produce
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any product. These, values were assumed to be constant 
throughout the entire experiment.

Significance of the expected 
value solution

In addition to being one of the deterministic 
equivalents evaluated, the expected value solution was used 
in a number of ways in the experimental model. Initially 
the expected value solution was used to aid in the design 
of the experiment. The optimum solution vector of the 
problem described in [1] and [2], when all the parameters 
are assumed constant and equal to their expected values, 
contains non-zero values for the variables X^, Xg, Xg.
The variable X^ refers to the first product, while the 
variables Xg and Xg are slack variables found in the 
second and third constraints respectively. The amount of 
slack, Xg, in the second constraint was found to be 
proportionally less than the amount of slack, Xg, in the 
third constraint.

Based on this expected value solution, it was 
decided that X^ is the most important variable in the 
problem since it is the only non-zero decision variable 
which appears in the optimum solution vector of the 
expected value model. Since the first constraint is the 
only constraint which has no slack in the optimum solution, 
then b^ was viewed as the most important resource in the 
problem. Of the remaining, variables X^ has the larger



profit margin. This factor placed it as the next most 
important, variable in the problem. Correspondingly, b  ̂

was the next most important .resource since the second 
constraint has relatively less slack than the third 
constraint.

The ranking of the variables and the resources 
of the problem was important when one considers that not 
all the initial formulations of the problem were to be 
analyzed. There are seven ways in which uncertainty 
can be introduced into either the b or the c vectors 
and forty-nine ways in which uncertainty can be introduced 
into both vectors simultaneously. This is a total of 
sixty-three initial formulations that can be analyzed.
Each formulation may also be considered under different 
assumptions concerning the standard deviation of the 
stochastic parameters which appear. Specifically in this 
study each initial formulation was analyzed under six 
different values of the standard deviation of the stochastic 
parameters. In view of this fact there are then 378 
(63 x 6) initial formulations which can be analyzed.

The expected value solution, by providing a means 
for ranking the variables and the resources of the problem, 
was used to determine which of the 378 initial formulations 
are significant enough to. be analyzed, and thus, to omit 
from analysis those judged to be insignificant. The 
significant formulations were considered to be those which
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contain as stochastic parameters either the amount available 
of the most significant resource or the profit margin of 
the most significant, variable.

An alternative experimental 
problem

The experimental problem as it is stated in [1] 
and [2] is not a tightly constrained problem. This can 
be determined from a consideration of the optimum solution 
vector of the problem when the expected values of the 
parameters are used to determine a solution. The solution 
vector, 'the expected value approach indicates that
5665.4 units of are to be produced, that 19.2 units of 
slack are present in the second constraint, and that 89-2 
units of slack are present in the third constraint.

It is highly probable, with these large amounts 
of slack in the last two constraints of the problem, that 
the optimum solutions generated assuming either a stochas
tic b2 or b 3 are insensitive to the changing values of 
these parameters. Consider the third constraint where 
89.2 units of slack are available. If the coefficient 
of variation of b^ Is as large as .30 then the standard
deviation,, of b^ is 70.2. A value of b^ which

3
would eliminate all the slack in this third constraint
must be at least 1.270^ . units less than the mean of b^.

3
Since b 3 is normally distributed, then the probability of 
generating a value of b^ which would satisfy this condi
tion is .1120. When the coefficient of variation of b^



is smaller than .30, then this probability decreases.
For small values of the coefficient of variation (say ,05 
or .10) it is highly improbable that this constraint 
would ever be a binding constraint. A similar argument 
can be presented concerning the second constraint, although 
the amount of slack in this case is much less and, 
therefore, the probability of generating a value of bg 
which would cause this constraint to be binding is 
somewhat greater.

Due to the slack present in the experimental 
problem stated in [1 ] and [2 ], an alteration of the 
problem is desirable so that less slack is present in 
the expected value solution. In order to make the first 
experimental problem a tightly constrained problem the 
following changes were made in the expected values of 
the parameters given in [2]. The profit margin, c^, was 
increased to 1.50. This change made the production of 
Xg more desirable and increased the possibility of Xg 
entering the optimum solution vector of the expected value 
approach. In addition a ^  was changed from 0.96956 to 
0.66956 and-a£2 was changed from 0.9249 to 0.0549. In 
the first formulation of the experimental problem Xg ■ 
required the use of relatively more resources than was 
justified by its profit margin. These changes in the A 
matrix made the production of Xg more desirable and 
caused this variable to enter the optimum solution vector 
which was derived from the expected value approach.
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The optimum solution vector of the expected value 
approach to the modified experimental problem indicates 
that 4475.1 units of X^ and 564.8 units of are to be 
produced. In addition there are 15.2 units of slack 
in the second constraint, while the first and the third 
constraints contain no slack units.

This modified experimental problem is more tightly 
constrained than the initial experimental problem. Two 
sets of experimental results were generated by the 
experimental model, one set for the slightly constrained 
initial problem and the other set for the more tightly 
constrained modified problem. These problems are referred 
to respectively as experimental problem A and experimental 
problem B.

The Experimental Design
The experimental procedure was divided into three 

phases. In the first phase only the B vector was considered 
to be stochastic, in the second phase only the C vector 
was stochastic, and in the third phase uncertainty was 
introduced into both vectors simultaneously. In the first 
and the second phases, where seven initial formulations 
are each possible, only four formulations each were 
considered; while in the third phase only nine of the 
forty-nine possible formulations were analyzed. This is 
a total of seventeen formulations which were analyzed 
under different conditions.

i



With regard to the first phase, the first formu
lation treated the most significant resource (b^) as 
stochastic; the second formulation considered the two most 
significant resources Cb^, b2) as stochastic; the third 
formulation assumed the most and the least significant 
resources Cb-̂ , b^) to be stochastic; and the fourth 
formulation treated all resources (b-̂ , £>2 5 ^ 3 ) as stochastic. 
The reader should observe that each formulation contains 
b^ as a stochastic element. The other resource values, 
since they are of lesser importance, were included as 
stochastic parameters only in combination with a stochastic

Each of these four formulations was in turn 
analyzed under six different assumptions concerning the 
standard deviations of the stochastic parameters which 
appeared in the formulations. The four formulations 
described above, with the coefficient of variation (a/p) 
of each stochastic parameter equal to 0.5, comprised the 
first four experiments that were run. The next four 
experiments (numbers 5 to 8) combined the same four 
formulations with the coefficients of variation of the 
stochastic parameters equal to .10. To complete all the 
experiments in the first phase, the coefficients of 
variation of the stochastic parameters which appear were 
allowed, in turn, to equal .15, .20, .25, and .30. There 
were, then, twenty-four experiments (numbers 1 to 24) 
in this first phase.



The twenty-four experiments of the next phase 
(experiment numbers 25 to 48) were analogous to the 
corresponding set of experiments in the first phase. The 
first formulation in this phase treated the profit margin 

of the most significant variable as stochastic; the 
second formulation considered c^ and c2 as stochastic 
parameters, the third formulation considered c^ and c^ as 
stochastic parameters, and the fourth formulation treated 
all the profit margins c ^ , c2 , and c3 as stochastic. The 
coefficients of variation for each of the first four 
experiments (number 2 5 to 28) was .05. The coefficients 
of variation of the stochastic parameters were allowed, in 
turn, to equal .05, .10, .15, .20, .25, and .30, and each 
formulation described above was repeated six times.

When both the B and the C vectors contain 
stochastic parameters there are forty-nine formulations 
which can be analyzed. Nine representative formulations 
were selected to be included in this phase of the experi
ment. Again each of the nine formulations was analyzed 
with the six different values assumed by the coefficients 
of variation of the stochastic parameters which appeared 
in any formulation. In effect there were fifty-four 
experiments (numbers 49 to 1 0 2 ) included in phase three 
of the experiment. The parameters which were stochastic 
in these nine formulations are as follows.



Formulation Stochastic Parameters
1
2

3

5
6
7
8
9

In the first nine experiments (numbers 49-57) of this 
phase the coefficients of variation of the stochastic 
parameters were .05. These nine formulations in C3 3 were 
repeated with the coefficient of variation varying up to 
.30 as was the case in the first two phases.

phases. The first phase and the second phase each con
tained four different formulations, while the third phase 
contained nine different formulations. Each of these 
seventeen formulations was analyzed under six different 
assumptions concerning the magnitude of the standard 
deviation of the stochastic parameters which appeared in 
the different formulations. This provided a total of 
102 experiments which were analyzed by the simulation 
model.

In summary this experiment was divided into three



9The Experimental Procedure
The simulation model is programmed in three parts. 

In the main program the definitions and assumptions 
pertaining to the study are presented; the input and 
output of data is controlled; and each deterministic 
equivalent is programmed. The first subroutine in the 
program (RAND) contains the pseudorandom number generator 
which has been adjusted to produce a normally distributed 
variable with a mean of zero and a standard deviation of 
one. The second subroutine (SIMPLX) is a simplex program 
which is designed to determine the optimum value of the 
objective function of any linear programming model. These 
different subroutines were called by the main program 
whenever their use was required.

The data pertaining to each of the experiments 
explained in the last section were read into the main 
program. For any particular experiment these data include
(1 ) the number of stochastic parameters in the experiment,
(2 ) the expected values of the stochastic parameters 
(this identifies which parameters are stochastic in the 
experiment), and (3) the coefficients of variation of 
each stochastic parameter.

2In the discussion of the experimental procedure 
the. variable names used■in the FORTRAN program of the 
model are included where it would be beneficial to the 
reader to. do so.
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Each experiment was iterated 100 times. At the 
start of each iteration a value was determined for each 
stochastic parameter which appeared in the particular 
experiment. Since each stochastic parameter is assumed 
to be normally and independently distributed, these 
values were obtained by utilizing the subroutine RAND 
and the given mean and standard deviation of each of 
the parameters. The parameters in the model which were 
not assumed to be stochastic in any particular experiment 
were treated as constant at their expected values.

On each iteration, once the value of each 
parameter was determined, the problem was then adjusted, 
in turn, to conform to the specifications of the respective 
deterministic equivalents. The optimum value of the 
objective function of the problem was then determined, 
in turn, by utilizing each of the deterministic equivalents. 
The specific procedure involved in obtaining these optimum 
objective function values is explained in the remainder 
of this chapter.

The one-stage expected 
value approach CZEXPC)

The one-stage expected value approach utilized in
this experiment can be represented in .the following way

Maximize: Z = E[C]X
subject to: AX _< E[B] , and

X > 0 D O

i
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This deterministic equivalent replaces each stochastic 
parameter with its expected value. The optimum value 
of the objective function of the model in [4], assuming 
the expected values* is called 2EXPC. Since all the 
parameters were assumed to be constant with this approach, 
the ZEXPC value was constant for all the 10 2 experiments 
which were performed.

The simulation approach (ZSIM)
The simulation approach was next performed on each 

of the experimental formulations. Each formulation was 
iterated 100 times. The procedure involves: (1) a
determination of which parameters are stochastic and 
the properties of those parameters; (2) for each stochastic 
parameter, subroutine RAND is used to determine a specific 
value of the parameter to use for each iteration; and
(3) given the values of all the parameters as generated 
in (2), the subroutine SIMPLX is called and the conditional 
optimum value of the objective function is determined.
The optimum value of the objective function on the ith 
iteration is ZSIM^. Once all the iterations were completed, 
then the mean (ZSIHBR) and standard deviation (SDZSIM) of 
these optimum objective function values were computed.

The two-stage slack approach (ZTWS )
.The two-stage slack approach used in this study 

can be represented in the following form
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Maximize: C'X - ECF'Y]
subject to; AX +■ (Y+ - Y~) < B,

X,Y > 0 [S]
where the second term in the objective function refers 
to the additional cost which may result from either 
excess slack or infeasibility in the final solution. In 
the set of constraints above when B < AX then Y = B - AX 
and Y” = 0. This is the case of excess slack. The 
infeasible situation arises when B < AX, then Y+ - 0 and 
Y" = AX - B.

This two-stage approach is based upon the premise 
that the investigator first solves the stochastic linear 
programming problem substituting an estimate for each 
of the stochastic parameters in the model. Once this 
initial solution is obtained, then the value of each of 
the stochastic parameters is observed and an adjustment 
made in the final solution reflecting any cost which may 
result from the development of either excess slack or 
infeasibility.

This procedure was reflected in the experimental 
model in the following way. The first stage solution 
was assumed to be the same as the expected value solution 
ZEXPC. It is assumed that the expected value of each, 
stochastic parameter is the most reliable estimate the 
investigator has of that parameter. In accordance with 
this assumption the expected value solution is an

i
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appropriate initial solution. Each iteration of each 
experiment, therefore, began with ZEXPC as the optimum, 
value of the objective function.

The adjustments made in the second stage depended 
upon which parameters were stochastic. In the FORTRAN 
program of the model this two-stage approach followed 
after the simulation approach. The stochastic parameters 
had been identified and a specific value for each had 
been obtained. The first step in the two-stage approach 
was to make an adjustment in ZEXPC if any of the parameters 
in the C vector were stochastic. This was required since 
ZEXPC had been determined by utilizing the expected values 
of the elements in the C vector. If some of the elements 
in the C vector were stochastic then the profit realized 
would depend upon the actual observed values of these 
stochastic elements. In the case where the stochastic 
elements were confined only to the B vector, then the 
profit realized, which was as yet unadjusted for any 
additional cost of excess slack or infeasibility, was the 
same as the expected profit ZEXPC.

Having adjusted ZEXPC for the effects produced 
by the stochastic elements in the C. vector, the next 
step involved adjusting for the effects produced by any 
stochastic elements which may be present in the B. vector.
Only constraints which contained a stochastic b̂ . value had 
to be analyzed. If the solution vector of the expected
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value solution, XEy, is premultiplied by A, the matrix 
of fixed technological coefficients, then this product 
AX^,y is a (3 x 1). vector which indicates the amount of 
the resources available which are accounted for in the 
expected value solution. In the quantity AXEy an expected 
amount of slack associated with the different constraints 
is also accounted for. For each constraint which was 
stochastic the corresponding rows of AX^y and B had to 
be compared. For example if the ith constraint is

3
stochastic, then ■ £ must be compared with b. ,

j=l J J
where b^ is the observed value of the stochastic parameter
which was determined at the beginning of the current
iteration. Infeasibility resulted when the summation
above was greater than b^ while excess slack resulted
when the summation was less than b.. Excess slack forx
any stochastic constraint is defined as the slack in the 
constraint over and above the expected slack which was 
indicated in the expected value solution. In the case 
where both quantities were equal then there was no 
additional cost to be deleted from the ZEXPC value.

The cost of infeasibility and the cost of excess 
slack for the constraints are exogenous parameters which 
must be defined in the experimental model. The constraints 
of the problem used in this study assume the resources to 
be capital, land, and labor. In the case of. excess slack
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the interpretation is that interest, rent, and wages 
were contracted for but were hot required. When infeasi
bility results the interpretation is that additional 
amounts of these resources' must be contracted for. In 
the latter case the unit costs of the different resources 
are assumed to be two times their regular unit costs.

The optimum value of the objective function 
determined with the two-stage slack approach is directly 
dependent upon the cost parameters which are used in the 
second stage of the approach to adjust the initial solution. 
This factor required an adjustment of the experimental 
model such that the two-stage slack approach was analyzed 
under alternative assumptions concerning the values of 
these cost parameters.

Three different sets of adjustment cost coefficients 
were used in the experimental model. The initial set of 
cost coefficients are

' .03’ ' .06'
COSLK = 20.00 and COINF = 40.0.0

1.50W *
3.00I /

The second and third sets are obtained by multiplying the 
set in [6] first by two and then by four. The vector 
COSLK in [6] is the vector of cost coefficients relating 
to excess slack which may result in each of the constraints. 
The cost coefficients relating to infeasibility in the 
constraints are contained in the vector COINF.

. The optimum value of the objective function for 
the two-stage approach is called ZTWS. As is the case with
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the simulation approach, each experiment was repeated 
100. times with the mean CZTWSBR) and the standard deviation 
(SDZTWS) of the optimum objective function values computed 
for each experiment.

The active approach CZACT)
The active approach to stochastic linear program

ming is specifically designed to deal with stochastic 
elements which appear only in the constraints of the 
problem. Whenever stochastic elements appear only in 
the C vector, then the active approach must be applied 
to the dual problem which can be formed from the stochastic 
primal problem. In practice, when both the B and the C 
vectors contain stochastic elements, the active approach 
is applied to the problem after first substituting for 
each stochastic element in the C vector its expected 
value. If this procedure were carried out in the experi
mental model, then phase three of the experiment would 
be the same as phase one. Due to this fact, the active 
approach was only analyzed for the first two phases of 
the experiment.

The model of the active approach to linear 
programming under risk can be stated as 

Maximize: Z = C'X.
subject to: . AX ^ BU ,

X > 0 [7]
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where in the constraints X is a n-dimensional diagonal 
matrix, B is a m-dimensional diagonal matrix, and U is 
a Cm x n) matrix. The allocation matrix U is such that 
u-. is the proportion of the ith resource to be allocatedJ
to the production of the j.th product. The active approach 
in this form assumes that all m constraints in the model 
contain stochastic elements, When some subset of the 
constraints of a problem contain stochastic elements, then 
the dimensions of the A, B, and U matrices are reduced.
For example when r constraints contain stochastic elements, 
where r < m, then the dimensions of A are Cr x n), the 
dimensions of B areCr x r), and the dimensions of U are 
(r x n). The (m - r) non-stochastic constraints are then 
added to the model in the same form as they would appear 
in a deterministic linear programming problem. For 
example in the ( 3 x 3 )  problem of this study if only b^ 
is stochastic, then the constraints in the model of the 
active approach can be stated as

Calla12a13)
•X1 0 0 
0 X? 0 .

Q 0 X*
< b1 Cu11u12ul3)

a21Xl + a22X2 + a23X3 =  b2 

a31Xl + a32X2 + a33X3* =  b3

Xl> X2» X3 “  0 * ^
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This set of. constraints can be reduced to

allXl < bn u'lull

a13X3 = blu13

a31Xl + a32X2 + a33X3 = b3 [9]
The number of constraints in the final formulation of 
the active approach increases as the number of stochastic 
constraints increases. When there are two stochastic 
constraints the final formulation contains seven con
straints; while with three stochastic constraints there 
are nine constraints in the final formulation.

When the stochastic elements are limited to the 
C vector then the dual model can be stated as

where W is a m-dimensional diagonal matrix, C is a 
n-dimensional diagonal matrix, and V is a (n x m) matrix 
analogous to the allocation matrix U. The general state
ment of the active approach in [10] assumes that all n 
elements of C are stochastic. In the case where only some 
subset of the elements of the C vector are stochastic, 
then the dimensions of the matrices A' , C,' and V can be 
reduced. The procedure involved in arriving at the final

Minimize Z = B'W
subject to: A'W £ CV

W > 0 [10]
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formulation of the constraints in this dual case is 
analogous to the procedure described in the primal case.
The only exception to the procedure is that in the dual 
model the sense of the constraints in the final formula
tion is "greater than or equal to" rather than "less 
than or equal t o ."

The programming of the active approach in the 
experimental model required that an assumption be made 
concerning the allocation ratios in U and V. These 
ratios are exogenous values which must be read into the 
program. The expected value solution to the experimental 
problem was again used to determine the values of these 
exogenous parameters. The expected value solution indi
cated that X^ was the most significant variable in the 
problem. In fact is the only non-zero decision 
variable included in the optimum solution of the expected 
value approach. The importance of this variable can be 
reflected in the U matrix by placing increased weight 
upon the allocation ratios in the first column of the 
matrix. Even though increased weight is placed upon the 
allocation ratios related to. the production of X^, the - 
production of the other products CX2 , Xg) must not be 
prohibited. The allocation ratios relating to all products 
must be greater than zero, so that the model allows; for 
the possible production of all products.
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Since the experimental results were dependent 
upon the specific values of the various allocation ratios 
which were used, the active approach was analyzed under 
two different sets of values for the allocation ratios 
of the U matrix. The allocation matrix U which was 
used in the first run of the experimental model is

.90 .05 -.05

.90 .05 .05

.90 .05 .05 [113

The ratios in this matrix are designed to allocate 
9 0 per cent of each resource to the production of X ^ , 
while at the same time allowing lesser amounts of the 
different resources for the production of the remaining 
products.

The allocation matrix used in the second run 
of the experimental model was obtained by replacing each 
element of the first column of U in [113 with1.75 and 
replacing each of the elements of the second and third 
columns with .125. In this second allocation matrix only 
75 per cent of each resource is to be allocated to the 
producted of X-̂ . The sum of the ratios for each row in 
U must be one since each resource is. to be fully allocated 
to the production of the different products.

When the C. vector contained stochastic elements 
and the dual problem was dealt with by the active approach, 
then the determination of the ratios in the matrix V 
depended upon the importance of. the constraints, in the
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original primal problem. . From the expected value solution 
of the specific example problem used it was determined 
that the first constraint is the most significant. The 
other two constraints each possessed some slack in the 
optimum solution. The importance of the first constraint 
in the primal problem was reflected in the dual problem 
by placing the importance upon the first dual variable 
W-̂ . As was the case with the primal problem, the experi
mental results were dependent upon the specific values 
assigned to the allocation ratios of the V matrix. Two 
different sets of values for the allocation ratios of the 
V matrix were used. In the first run of the experimental 
model the allocation matrix used for the dual problem is

.90 .05 .05

.90 .05 .05

.90 .05 .05
[12]

The changes made in the allocation matrix V in the second 
run of the model were similar to the changes made in the 
allocation matrix U. Again, as was the case with the U 
matrix, all the allocation ratios in the V matrix must be 
greater than zero and the sum of the ratios for each row 
must equal one.

The FORTRAN program of the active approach followed 
the program of the two-stage approach in the experimental 
model. Initially the routine embodied in the program 
determined which parameters in the experimental problem 
were stochastic. When the stochastic parameters were
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confined to the C. vector* the program converted the 
problem to its. dual before the final formulation of the 
constraints was'determined. The program proceeded 
directly to the final formulation of the constraints in 
phase one where the stochastic parameters appeared only 
in the B vector. When both vectors were 'stochastic 
the program omitted this section.

In phases one and two of the experiment the 
number of constraints in the final formulation ranged 
from five to nine depending upon the number of stochastic 
parameters in the particular experiment. In the second 
phase, when the problem was converted to its dual and 
the sense of the constraints was reversed, both a slack 
and an artificial variable had to be added to each 
constraint before using the simplex procedure. Since as 
many as nine constraints may be involved in any given 
application of the simplex routine, the number of vari
ables in the simplex tableau can range up to twenty-one.
In phase one the maximum number of variables encountered 
in the simplex procedure was twelve.

Having adapted the particular experimental 
problem to the requirements of the active approach the 
program then called the simplex subroutine (SIMPLX) 
and determined the optimum value of the objective 
function (ZACT), given that deterministic equivalent.
Each experiment was repeated 100 times. The mean CZACTBR)

i
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and the standard deviation (SDZACT) of the optimum 
objective 'function values were then determined.

Summary of the Experimental Model 
The experimental model developed in this study 

analyzed 102 different initial formulations of the 
specific problem used in the experiment. Each formulation 
was analyzed using a simulation approach CZSIM), a 
two-stage approach (ZTWS), an active approach CZACT), 
and an expected value approach (ZEXPC). One hundred 
iterations were performed for each initial formulation 
with the optimum objective function values recorded for 
each of the approaches, The differences between the 
results of the simulation approach and the results of 
each deterministic equivalent were also determined.
The mean and the variance of these differences were 
then calculated for each deterministic equivalent. These 
respective means and variances were then used to evaluate 
the relative efficiency of each of the different determinis
tic equivalents.

I
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FLOW CHART OF THE TWO-STAGE APPROACH

START
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YES
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FORTRAN PROGRAM OF THF EXPEKI MFNTAL MODEL

DUUBLE PR ECI S I UN VAOHFUt A , B , C , A I J , t  J , DAP S , X , B H l  , B I  
DOUBLE PRECI S I ON XRAR, P C I , XEV, S A X , A X , S T D D , ZSTD ,CCJ 
DOUBLE PR EC IS ION / S I M , Z T W S , ZEXPC r PROF, SPROF, CCS INF 
DOUBLE PRECI S I ON COS SL K , 'SUMZ , SOZ , KKOlJfJT , AL , K L , C L , U , V  

X L V I 6  ) , XriAR ( 6 )  , STDDI 6 ) , A X ( 3}  , YPLOS t 0 ) , Y( 4  ) 
X ( 4 ) , SwZ ( 3 } , SUMZ ( 3 J , /. t A J , C S L (3 ) , C I F ( 3 )
ZSI M(  I O O ) , ZTWS!  100 ) , I X { I I  ) , 0 b  I ( 2  I )  , C C J ( 2 1 )  
SENSE ( 2 1 ) , A ( 2 1 , 2 1 )  , R { 2 I  ) , C ( 2 1 )  . B A S I S ( 2 1 )  
A I J ! 2 L , 2 1 ) » B I { 2 1 ) , C J ( 2 l ) , B A R X I 6 ) , S T 0 ( 6 )
I I M ( 100)  ,ZWS( 1 0 0 )  , Z A C T ! 100 )  , ZCT(  I CO)
IIWAl 3) ,!J( 3, 3 ) ,V{3, 3)

D IMFfNSI ON 
D I MENS ION 
01 MENS U N  
DI MENSI ON 
DI MENSION 
DI  MENS ION 
D I MENS ION DIMENSION 
DI  MENS ION

D( 1 0 0 , 3 )  , D S O ( 1 0 0 , 3 )  , S LJ D X ! 3)  , SUDSGX{ 3 )
DV AK( 102 , 3) , 0  B A R ( 1 0 2 , 3 )

COMMON A,  A I J , B,  FI I , C , C  J ,  VACHFU f Z STD , BA SI  S, SENSE , I X ,  M I N ,  
1 M, N , NN, ICRSWT 

C I N I  T I L  I Z I NG VARI AULES
Q J|: *r»I< ^ * >l! lit i(i # 'i'f j|< Sit $ 3(i >Je ;;cij: # * :;c j(t jjojt s;-. if 3;: i/i j't if if ;|t if. s|i $ if

0 0 1 0 0 1 = 1 , 2 1  
SENSE!  I ) = 0 . 0  
B(  I 1 = 0 . 0  
B K I)=0 ,0 
B B I ( I ) = 0 . 0  
Cl  I 1 = 0 . 0  
C J ( I ) = 0 . 0  

100 CONTINUE
0 0 1 0 1 1 = 1 , 2 1  
0 0 1 0 1 J = 1 , 21 
A!  I , J  ) = 0 . C  
A I J  £ I , J > = 0 . 0

101 CONTINUE 
I F R S W T = 1
READI NG I N DATA PE RTA I N I NG TO THE PROGRAMMING MODEL
* j(< if if if j|t if #$ $$ ## 5(e if if if if if if if * if if if if if if if if if if  if  if i{! tf Xt >{t * *i: # # # if £ ❖ ̂  Xt '4= if
KCf I UNT=100 
D02 1 = 1 , 1 1
i x m = o
R EADt  5 , 9 0  ) I X I I J  

90  FORMAT!  I 10)
2 CONTINUE

R E A D ( 5 , 1 0 1 C )  MIN 
1010  FORMAT ( I I )

R E A D ! 5 , 1 0 C0 ) M, N
1000  FORMAT! 21 3 )

D 0 1 C 2 1 = 1 , M
R E A C ! 5 , 1 0 0 1  ) SENSE( I )

1001 F O R M A T ! F 2 . 0 )
102 CONTINUE
103 R E A D 1 5 , 1 0 0 2 ) 1 , J , X X
1002  FORMAT! 2 1 5 , 0 1 5 . 7 )

I F !  I . E Q . 9 9 9 9 9  JGOT0104 
A!  I , J ) =XX



r> 
n

104
1003

105

1 99 
1012

200
1020

201

1199

1198

1013

1409

12 0

AIJ( 1,J > —AC I ,J )
GOTO 103
REA D( 5 , 1 0  C 3 ) I , XX 
FORMATt  1 5 , 0 1 5 - 7  )
I F ( I . G T . M ) GOTO 105 
R( I )=XX 
IVI ( I ) = B ( 1 )
Fi BU I ) =B l  I )
G 0 T 0 1 04
REALM 5 ,  10 0 3 ) J , X X  
I Ft  J . G T . N ) GOTO 199 
Ct  J ) = XX 
CJtJ J =C[J )
GOTO 10 5
REALM 5 , 1 0 1 2 ) I , J , XX,YY 
FORM A T ( 2 1 5 , 2 0 1 0 . 9 )
1 Ft  I . E Q . 9 9 9 9 9  ) GO TO 200  
U ( I , J ) = xx 
V ( I , J I = YY 
GO TO 199
REALM 5 ,  10 2 0  I , X X , Y Y  
FORM AT ( 15 , 2 F 1 0 . 4)
I F  t I . E O . 9 9 9 9 9 )  GO TO 201 
CSL t I 1=XX 
C IF { I ) = YY 
GO TO 2C0
CA L L I NG SI MPLEX ROUTINE FOR EXPECTED VALUE SOLUTION
# # sjt sjt !{£ # #>;: # a[: si£J|t i: ĵ c jfijj; )J: ^ # )(c >Jt # ijc %■
CALL SI MPLX 
DO1 1 9 9 1 = 1 ,NN 
X E V t I  ) = 0 . 0  
CONTINUE 
D 0 1 1 9 8  K= 1 , NN 
AK = K
D01 1981 = 1 ,M
1 F ( BAS I S ( I J . N E . A K J G O  TO 1198  
X E V ( K ) =DI  I I )
CONTINUE
2 EXPC = VAOBFU 
D 0 1 4 0 0 I E X P 1 = 1 , 1 0 2  
BSWIT = 0 .
C S W I T = 0 .
MIN = 0 
M = 3 
N = 3
D010  131 = 1 , 3  
I B V A t I ) = 0  
CONTINUE
DG14C9 1 = 1 , KCOUNT 
2 S I M ( I ) =0 .
ZTWS( I ) = 0 .
Z AC T ( I ) =0 
CONTI NUE 
D 0 1 1 1 8 1 = 1 , 6
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no
 

no
1118

1100

1101

1200

1 2 1 5

1 2 1 6

1218

1201

1202

1 20 3

1220
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X b A K ( I ) =0  .
STUDl 1 J =0.
IHW ( I ) =B(  I )
C C J ( I ) = C ( I )
CONTINUE
READING DATA PERTAI N I NG TO THE VARIOUS EXPERI MENTS
Jis if if i< # $ if # ifif sf: if # jJc ifti ft# =(I if if ftftft ftftft ft ft ftft ftft ft ftft ft ft ft ft ft ft ft ftft ftft ftft ft
R E A C ( 5,  11 CO IKX 
FORMAT( I I )
0 0 1 2 0 0 1 1 = 1 , KX
R L A D ( 5 , 1 1 C 1 I X  R A R ( I I } , P C T
FORMAT!  L)1 5 . 7 ,  D5 . 3 )
STDOt  I I ) = P C T * X t ) A R ( I I )
CONTINUE
STARTI NG THE I TERATI ONS FDR THE SI MULATI ON .MODEL
ft ft ft ft ft * >1' ft ft ft ft ft ft ft ft ft ft ft ft ft ft & ft ft ft ftft £ ft if if ft ft ft ft ft if ft ft if if if if ft if ft ft if if ft ft ftft ft
DO 1300  I S I M =  1 , KCOUNT 
0 0 1 2 1 5 1 = 1 , 2 1  
D O 1 2 1 5 J = 1 , 2 1  
A I J I T , J  ) = A( I , J )
CONTINUE 
DO 1216  1 = 1 , 2 1  
B i t  I > = fi ( I )
C J ( I ) = C ( I )
CONTI NUE 
R S ̂  I T = 0 •
C S W I T = 0 .
M IN = 0 
M = 3 
N = 3
DO 1 2 1 8 1 = 1 , 2 1  
SENSEt  I )= 1.
CONTINUE
DETERMI NI NG THE STOCHASTI C ELEMENTS FOR EACH 
E X P E8 I M EN T ^ ftft ft ft ft ft ft ft *  ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft if ft ft J? ftft ft if if if if 
DO I  220  1 1 = 1 , KX 
D0 1 2 0 1  1 = 1 , 3
I F t ( O A R S t  XBAR ( I I > — B ( I ) ) ) . L T .  1 . }  GO TO 1202
IF< ( OARS( XBAR( I I ) — C ( I } ) J . L T .  . 0 1 }  GO TO 1203
CONTINUE
I ERSRIT= 7
CO TO 1 AO 1
BSW I T = 1 .
I l iV A ( I )  =1 
CALL RAND
B I ( I ) = B ( I ) + ZSTD^ STDD( I I )
B B I ( I ) = f i I ( I }
GO TO 1220  
C S W I T  = 1 .
IBVA(I)=1 
CALL RAND
CJt  I ) = C (  I ) + Z S T D # S T D D( I  I )
C C J ( I ) = C J ( I )
CONTINUE
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C CALL I NG ThF SI MPLEX ROUTINE FOP THC S I MU I: A T J ON
C SOLUT I UN— L SI M * *  * -'<■ ** v  ̂* >:• ■?■ * >;* 4 * >;-■ 3,1 # * * * * * # #

CALL SI MPLX
I F (  IERSWT , G T .  1 )ZS IM(  I S I M ) = G . O  
i n  I E K S W T . G T . L ) GO TO l ^ O I  
Z S I M l  I S I M ) = V A 0 B E U 

C DETERMI NI NG THE TWO-STAGE SOLUTI ON— ZTWS
c  V V * v»J‘ Jjê t #  >|< *  >|t ^ *  :£ #  a,H Jj; s'; ̂  s(t #  aft j}( $  # if. a(r #  jjt

I F I C S W I T . E Q . l . )  GO TO 1204 
PROE=Z EXP C 
GO TO 120 6

1 20 4  PROF=0«
D 01 2 0 5 K = 1 i NN 
SPROF = CJ(  K ) * X E V ( K  )
PROF = PRUF +SPROE

1205 CONTINUE
1206  I E { f t SWI T . EQ.  1 . )  GO TO 120 7  

ZTWSt  I S I M ) = PRQF
GO TO 150 0

1207 D012 1 0 1 = 1 f M 
A X ( I ) = 0 .

1210  CONTINUE 
0 0 1 2 0 0 1 = 1 ,  M 
DO 1209J  = 1 , N
SAX = AI  I , J > * X E V ( J )
A X ( I ) = A X( I J+SAX 

1209  CONTINUE 
C US LK = 0 •
C 0 I N F = 0 .
DG1211 1 = 1 iM
I F ( AX( I ) - B U  I (  I ) ) 12 12.  1 2 1 3 , 1 2  14

1212 YPLUS I I ) = HBI  I I J - A X { I J - X E V { 1+M)
I F < YPL US(  I ) . L T . C .  1 YP LU St  I  1 — 0 •
C0 S= CSL( I ) * YPLUS( I )
CUSLK=CCSLK+COS
GO TO 1211

1213 Y PL US( I 1 = 0 -  
GO TO 1211

1 2 1 4  Y P L U S U )  = AXl  n - B e i m  
COS = C I F ( I ) * YPLUS(  I J  
COI NF=COI NF+COS

1211 CONTINUE 
COS I NF*CO INF 
COSSLK=COSLK
Z T W S I I S I M  J =PROF- COSSLK- COSI NF 

C DETERMI NI NG THE A C T I VE  RESULT— ZACT
C t̂sCsatEjJsjfcjjcjJeî sysfcjfcXt#̂  ajsafc ##>:«##:(; <tljt J{e # *  ifc X* ̂  & *  Sic $  >{(* 5<e sjs ̂

1500  0 0 1 5 2 0 1 = 1 »21 
B 11 I ) = B ( I )
DO 1 520 J  = 1 , 2 1  
CJ I  J ) = C U  >
A I J  C I , J ) = A ( 1,  J )

1520  CONTINUE 
I L 0 0 P = 0
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I F (  tCSW I T * USWI T  ) . EG.  1.  ] GO TO 1411 
I F ( K X - 2 ) 1 5 0 1 ,  1 5 G 2 , l b 0 3

1501 I P = 0
GO TO 1503

1502 I P = 3
1503 I F ( BSWI T . FQ . 1 . ) GO TO 1510 

I F ( M I N . E Q . C )  GO TO 1511
M IN = 0 
GO T0 1 5 1 2

1511 M IN = 1
1512 DO 15141 = 1 , M

T F(SENSF.(  I )  . E G .  1.  i GO TO 1513  
S EN S E( I ) = 1 .
GO TO 1514

1513 S CNS E{ I ) = 2 .
1514  CONTINUE 

0 0 1 5 1 6 1  = 1,  M 
C J ( I ) = B { I )

151 6  CONTINUE 
F = N 
N=M 
M = F

151 0  0 0 1 5 0 4 1 = 1 , 3
I F { I 8VA { 1 ) . CO . 1 ) CiJ TO 15G6 
1 P = I P+ 1  
MM=M+IP 
D 0 1 5 0 5 J = 1 , 3
I F (  C S / M T . E Q . l .  ) GO TO 152 3 
A I J ( M M , J ) = A (  T, J )
GO TO 150 5 

1523 A I J ( MM, J 1= A ( J , I )
1505  CONTINUE 

I F t C S K l T . E Q . l . } GO TO 152 4 
8 I ( MM) = R{ I )
S E N S E ( M M ) = S t N S E ( I >
GO TO 150 4 

15 24 8 I ( MM) = C ( I )
SENSE( MM) =SENSE( I 1 
GO TO 1504

15 0 6  D015071  I = 1 , N
I F ( I L O O P . E G . 0 )  10=0
I F (  I L O O P . E G . 1)  IQ = M ’
I F (  l L 0 0 P . E 0 . 2 i  I « = 2 * M  
IM= IO + I I
I F t C S W I T . E O . l . ) GO TO 1521 
B K I M  ) = 8 B I  ( I ) * U (  I , I I  )
GO TO 152 2

1521  B K I M  ) =CCJ(  I ) * V (  1 , 11 )
1522  SENSE!  IM ) = SENSE( I )

DO 1507J  = 1 , N
I F (  1 1 . E G . J  ) GO TO 1508  
A I J ( IM , J  1=0 .
GO TO 1 5 0 7  

150 8  I F ( C S W I T . E Q .  1 . )  GO TO 1525
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A I J (  IM , J ) = A < I , J )
GO TO 150 7 

l b ? 5 A I J I  I M , J  ) = A { J , I )
150  7 C O N T I N U t

I L 0 U P = I L 0 0 P + 1  
1 5 0 4  CONTI NUE

I F ! K X . E Q . 3 ) M M = 9 
M = M M
CALL S I MP L X  
7. ACT ( IS IM ) = VAOB FU 
I F { IERSWT . G T .  I )I ACT 1 I S I M ) = C . C  

1 4 1 1  I F !  IERSWT .EC) .  1) G(‘J TO 1300
E X I T S  TO RE TAKEN WHEN AM EKP.OR RESULTS I N THE SI MPLEX 
KC1UT I N E s‘: ^  j;: 5-: * A ’I1 y'; =!* ❖ # *  :r # *  *  >!< V =v # >',■ # *  V A' >(< *  *  *  # A' # v >J< V j;: ^  a;: jjc #

1 4 0 1  GO TO I 14 10 ,  140 3,  1 4 0 4 ,  1 4 0 3 ,  1 4 C6,  1 40 7,  14 0 8 ,  1 4 0 2 )  . I FRSWT
1 4 0 2  W R I T E { 6 , 1 0 0 * 1
1 0 0 4  FGRMAT( I X , 1 ERROR IN I N I T I A L  TABLEAU C NO P O S I T I V E  ONE* 

1 , ’ APPEARS IN T H I S  R O W )
GO TO 130 0 

140  3 W R I T E ( 6 , 1  CO5)
1 0 0 5  FORMAT!  IX , '  ERROR IN I N I T I A L  TABLEAU 0 T H I S  COLUMN ( S L 1 , 

l ' A C K  OK A R T I F I C I A L )  HAS MORE THAN ONE UN I T  CL EMENT1 )
GO TO ] 3 0 0  

1 4 0 4  W R I T E ( 6 , 1 1 0 2 )
1 1 0 2  F O R M A T ! I X , ' ERROR 0 MORE V A R I A B L E S  ARE I N  B A S I S  T H A N* ,

1 * THERE ARF CONSTRA I N T S * )
GO TO 130  0 

140  5 W R I T E ! 6 , 5  0 2 0 )
5 0 2 0  FORMAT( I X S O L U T I O N  I S  UNBOUNDED 0 NO A I J ( I , J K )  I S ' ,

1 * P O S I T I V E  ' >
GO TO 130 0 

1 4 0  6 W R I T E ( 6 , 5 0 3 2 )
5 0 3 2  FURMAT( I X , 1 PERTUR BED CONSTRAI NTS ARE S T I L L  T I E D . . . * ,

1 * CONSTRAI NTS ARE L I N E A R L Y  D E P E N D E N T ' )
GO TO 130 0 

1 4 0 7  W R I T E ! 6 , 5 0 4 0 )
5 0 4 0  FORMAT( I X , ' PROGRAM MAY BE CYCL I NG V A R I A B L E  HAS ENTERED 

1 10 T I MES ' )
GO TO 1 3 C 0  

1 4 0 H WRI T E ( 6 . ,  1 0 0 6 )
1 0 0 6  FORMAT!  / I X ,  * ERROR NO PARAMETERS ARE S T O C H A S T I C )

GO TO 1 3 0 0
1 4 1 0  W R I T E ! A , 1 C 0 9  )
1 0 0 9  F O R M A T ! / I X , ' ERROR.  SWI TCH SHOULD MOT BRANCH TO 1401  

1 WHEN I ER SW T= 1 • )
1 3 0 0  CONTI NUE

D E T E R MI N I NG  THE MEAN AND THE VARI ANCES GF THE 
D I F FE RFNC ES ^  #
DO 190 31  = 1 , 3  
SUDX!  I ) = 0  . 0  
S U D S O X ! I ) = 0 . 0  

1 9 0 3  CONTI NUE
1) 019001 = 1 , KCOUN T
D l I , 1 ) = Z S I M !  I ) - Z T W S ( I  )
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P ( Ii2 ) = ZS IM( 1 )-/.ACT{I )
D { I  , 3 ) =  ZS I M( I J - ZFXPC 
0Sf3(  I i l ) - t 3 (  I *
DSQ( I , 2 ) = D( 1 . 2 )  * * 2
DSQ( I , 3 ] = U ( I , 3 > * * 2
CONTINUE
n U 1 9 0 l J  = l  , 3
D0 1 9 0  1 1 = 1 ,KCUUNT
SUO X ( J ) =S UDX ( J ) +D(  I , J }
S U D S Q X I J ) =SUOSQXl J  ) +DSQ ( I , J )
CONTINUE 
D 0 1 9 0 2 J  = 1t  3
0 H A R ( I E X P I , J J = S U D X t J J / 1 0 0 .
DVAKt  I EXP I , J } =  ( 1 0 0 . * SUUSGX{ J ) - S U D X ( J ) * * 2 ) / { 1  CO. * 9 9 . )  
CONTI NUE
DETERMI NI NG THE MEAN,  VARI ANCE,  AND STANDARD DEVI AT I ON 
0 F Z S I M ,  Z T W S , AND ZACT ^  ̂  ̂  ̂  ̂  ̂  ^ ̂  4 4 ̂ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
0 0 1 3  01 1 = 1 , 3  
S Q 7 ( I ) = 0 .
SUM/. ( I ) = 0 .
CONTINUE
1)01302 1 = 1 , KCGIJN T 
S U M Z ( 1 )=SUMZ(  1 ) + / S I M I  I )
SUNI Z( 2>=SUMZ( 2) +ZTWS(  I )
S U M Z l3)=SUMZ(3)+ ZAC T{ I)
S Q Z ( 1 ) = S O / ( 1 ) +Z S1M( I ) * * 2
SOZ( 2 ) = S Q Z ( 2 > + Z T w S f I ) * * 2
S 0 Z ( 3 ) = S Q 7 ( 3 )  + Z A C T U  ) 4 * 2
CONTINUE
KKQUNT=KC OUMT
ZSI M BK = SU MZ ( 1 ) /  KK LlUNT
Z T W S 0 R = SU M Z ( 2 J / KKOUNT
Z ACT BR = SUMZ ( 3 J / KKt i UNT
VRZSI M=( KKUl JNT4S0Z ( 1J- SUMZ ( 1 ) 4 * 2 )  / KKCUNT * 4 2  
VRZTWS=( KKOUNT* SQZ< 2 J - S U M Z ( 2 ) * * 2 ) / K K 0 U N T » - 2  
VRZACT = ( K KOUNT * SOZ ( 3 i - S U M Z ( 3 ) # * 2 ) / K K 0 U N T * * 2  
SDZSI M=SQRT( VRZ SI M)
SDZTWS = SQRT(VRZTwS )
5 DZ ACT = SO RT ( VRZ AC T 1
THE CHI - SQUARE TEST (JF NORMALITY GN ZSIM
6 * * * lit X! ** ** * * * * ^ * j;c ajt X! * -f * * * ** V * * * s|c * * * *c >;.• i>r j|; i|; tf.
A L = Z S I M H R - . 6  7 4 5 * S D Z S I M  
BL = ZS IMBK
CL = ZSIMRR + . 6 7 4  5#SUZSI M 
DO 1 3 0 9 1 = 1 , A 
Y ( I ) = 0  .
CONTINUE
DO L3 0 7  I = 1 , KCOUN T 
I F ( Z S I M ( I ) . L T . A L )  GO TO 1 3 0 3
I H Z S I M  { I )  . L T . B L  ) GO TO 1 3 0 4
I F ( Z S  IM ( I ) . L T . C L  ) GO TO 1 3 0 5
J =4
GO TO 1306  
J = 1
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1306

1305 
130 6
1 30 7

1300

1310

1312

1313

1 31 6
1 31 5  
1311

1 31 6

1 31 7

1 31 9

1320

GU TO 1 3 0 6  
J = 2
CO TO 130 6 
J =3
Y ( J ) =Y ( J ) + 1 .
CONTINUE .
CHI SUM=C•
DO 130 01 = 1 , 6
C HI  SIJ M = C H I SUM + ( Y{ I ) - 2 5 .  ) * * 2  
CONTINUE
C H I S IM = . 0 4 *  C H IS UM
THE CHI - SQUARE TEST OF NORMALITY ON ZTWS
4 4 4  44 4 4 4 4  4 4 44 44 4a;s * aft 4 4 4 aft j;:jV âa|< a’x 4 a|- 4 j|t 4 a|t if; i'f a|t 4 a|c a;t sfe 4 f,-. 4 a1.: aX a* 4 >X 4 4 4 4 4
A L = Z T WS RR - . 6 7 6 5 * S 0 Z T WS
BLsZTWSRR
CL = Z TWSRK + .  6 7 4 5 * S 02 TW S 
0 0 1 3 1 0 1 = 1 , 4  
X I I ) = 0 .
CONTINUE
DO 1 311 1 = 1 f KCriUNT 
I F I Z T W S I I I . L T . A L )  CO TO 1312 
I FtZTWS I I  ) . L T . 3 L )  GO TO 1313 
I F t Z T W S t I ) . L T . C L )  GO TO 1316 
J =6
GO TO 1315  
J = 1
GO TO 1 3 1 5  
J =2
GO TO 131 5  
J =3
X ( J ) = X ( J J + l .
CONTINUE 
CHI SUM=0-  
0 0 1 3 1 6 1  = 1 ,6
CHISlJM = CH I SUM + 1 x m - 2  5 .  1 # * 2  
CONTINUE
C H I T WS = . 0 4 * C H I S U M
CHI -SQUAP.E TEST OF NORMALI TY ON ZACT
44 4 4444 4 4 444 4 44 >1:4 4 a|t 4>|:a|c 4 44 44 4 4 444 444 4 4 4 4 4 4  4 4 4 4  44 44 4 4 4 4 4
AL = 7 . ACT3 R- . 6 7  4 5 * S0ZACT 
BL = ZACTI1R
C L = Z ACT UR + . 6 765* 507.  ACT 
0 0 1 3 1 7 1 = 1 , 6  
Z ( I ) =0  .
CONTINUE
DO 13131 = 1 ,KCOUNT 
I F ( Z A C T { I ) . L T . A L )
I F ( Z A C T ( I ) . L T . B L )
I F ( Z A C T ( I ) . L T . C L )
J =6
GO TO 1322  
J =1
GO TO 1322  
J = 2

GO TO 1319
GO TO 13 20
GO TO 1321
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go ro 
1 3 2 1  J =3
1 3 2  2 I ( J J = 2 ( J ) + 1  
1 3 1 8  C O N T I N U E  

CM I SUM = 0 .
0 0 1 3 2  3 1 = 1 , A
Cl 11 SUM=CH I SUM f (  7. ( I ) -  2 5 .  I >' *  2 

1 3 2  3 C O N T I N U E
Cl 11 ACT = . 0  A * C H I S  UM 
P R I N T  OUT ST AT EMENT S
A >,":>!« >!'.* -f>'f >\ J * *  Ilf* *  ifif. >(:# /c## Jjt £ # a!:# aja Xe # fyifi # #  Jjt
WR I T E ! 6 , 1 0 C 7 ) I E X P I , K X

1 0 0 7  F O R M A T ! / 1 9 X ,  * F X P E k  I MENT NUMBER*  , 3 X , 1 3 *  1 7 X , 1 N U M 8 F R O F * ,  
1*  S T O C H A S T I C  P A R A M E T E R S ' , 3X , 1 2 )

W K I T E ( 6  , 1 1 0 3 )
1 1 0 3  F O R M A T ! / / / 1 3 X i * P R O P E R T I E S  OF S T O C H A S T I C  P A r< AME I E R S ' ) 

W R I T E ! 6 , 1 1 0  A )
1 1 0 A F ORMAT !  / 2  5 X ,  ‘ P A R A ME T E R *  , 5 X , * M C A N '  . 7 X ,  ‘ STANDARD*  ,

1 '  DEV I AT I O N ' )
DO 1 0 0 8  1 = 1 , KX 
» ARXC I ) = XI3AR{ I )
S T D !  I ) = ST C D ( I )

1 0 0 8  C O N T I N U E
W R I T E  ( 6 , 1 10 5)  ( I 1ARX!  I > , STD (.1 ) , I =1  , K X )

1 1 0 5  F O R M A T ( / 3 7 X , F 1 2 . 4 f 7 X , F 1 2 . 4 >
W R I T F ( 6 , 1 1 1 0  )

1 1 1 0  F O R M A T ! / / / 2 3 X , « P R O P E R T I E S  OF THE A L T E R N A T I V E * ,
1 *  D E T E R M I N I S T I C  E Q U I V A L E N T S ' )

W R I T E ! 6 , 1  1 1 1  )
1 L 1 1  F O R M A T ! / 3 0 X , ' S I M U L A T I O N  ' , 6 X *  ' T W O - S T A G E ’ , 1 0 X , • A C T I V E *  ,

1 6 X , *  E X P E C T E D  V A L U E ' )
W R I T E ! * , I  1 1 2  )

1 1 1 2  FORMAT!  3 1 X , ' A P P R O A C H '  , 8 X , ' A P P R O A C H *  , 9 X , ' A P P R O A C H *  , 9 X  ,
1 ' APPROACH «)

Z EXC = ZEXPC
W R I T E !  A ,  1 1 1 3 )  ZS I M B R , Z T W S B R  ,ZACTP. R , ZEXC

1 1 1 3  F O R M A T ! / 1 7 X , ' ME A N ' , 9 X , F 1 0 . A , 6 X , F 1 0 . 4 , 6 X , F 1 0 . 4 , 6 X ,
I F  1 0 . A I

WRI  T E(  6 ,  1 1 1 9  J V R Z S I M ,  VRZTVJS,  VRZACT
1 1 1 4  FORMAT!  / 1  7 X , ' VAR I ANC E ' , 4X , F 1 1 . 3  , 5X , F 11 . 3  , 5 X , F 1 1 . 3  , 1 0  X , 

1 ' N A ' )
W R I T E ( 6 ,  1 1 1 5  ) S D Z S I M , S D Z T W S , S D Z A C T

1 1 1 5  F O R M A T ! / 1 7 X , * S T D .  D E V ' , 5 X , F 1 0 . 3 , 6 X , F 1 0 . 3 , 6 X , F 1 0 . 3 , 1 C X , 
1 '  N A '  )

W R I T E ( 6 , 1 1  l b )  C H I  S I M , C H I T W S , C H I  ACT
1 1 1 6  F O R M A T ! / 1 7 X , ' C H I  SQ T E S T 1 , 2X , F 1 0 . 5 , 6 X , F 1 0 . 5 , 6 X  , F 1 0 . 5 ,  

1 1 0 X , ' N A ' )
W R I T E ( 6 , 1  1 1 7 )

1 1 1 7  F O R M A T ! / 1 7 X , ' A L P H A  = . C 5  7 . 8 1 4 7 3  A L = . 0 1  1 1 . 3 4 4 9 * )
W R I T E ( 6 , 1 1 0 6 )

1 1 0 6  F O R M A T ! ' j|; ij: a;: :£ ;|t a|; a|( j|t if if a;: a): a|t â  ̂ #*e>;e af|t # & ?lej(s if if aft a|: â >;< a;t aft aft a|: I
]_ I âajc aft aft aft ifif. fraft # #  a(t aft aft aft iJeî îŝ ŝ jlcateSttsfcsSe aft ift aft *  aft aft aft aft £  aft if: aft â aft aft aft af: * )

W R I T E ( 6 ,  1 9 2 0 J D H A R !  I  EXP I  , 1)  , D B A R ( I EXP I , 2 ) , D B A R ( I E X P I , 3 )  
1 9 2 0  F O R M A T ! 2 2 X , F 1 1 . 2 » l l X , F 1 1 . 2 f l l X , F 1 1 . 2 )
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WRI TE ( 7,  1 92 C ) Ui iAR ( I EXP I , 1 ) , 1)13 A R ( IE XPI  , 2)  , DBAR( T KXPI  , 3 » 
WRI TE!  6 ,  1 9 2 0 I D V A R !  I L X P I  , 1 ) ,UVAR ( IE X PI  , 2 ) , D VAR ( I EXP I t 3 > 
WR I T E ( 7,102G )T)VAR! I EXP I T 1 ) , DVAR( I EXP I , 2 )  , OVAP{  I b X P I , 3 )  

1400 CONTINUE 
STOP 
END

THE RANDOM NUMBER GENERATOR SUMP OUT I NR PRODUCING A 
STANDARD NORMAL DEVI ATE * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
SUBROUTINE RAND
DOUBLE PRECI S I ON ZS7 D t A r A I J , ft, B I TC , C J , VAORFU 
DI MFNSI ON I X [ 1 1 J , R ( 2 )  , A I J ( 2 1 , 2  1 ) , B I ( 2 1 1 , C J ( 2 1 )
DI  MENS ION S E N S E ( 2 1 > , A ( 2 1 , 2 n , B ! 2 1 ) , C ( 2 1 ) , D A S I S < 2 1 )  
COMMON A , A I J , B . H I , C , C J , VAOBEU»ZSTD, BA S I S , SE N5 E , I X , M I N ,  

I M , N , N N , I E R S W T  
D022 1 1 = 1 , 2  
1 = 11 

20 I I X = 1 X ( I )
I Y = I I X»:■= 4 6 3 3 1  
I F ( I Y ) 5 , 6 , 6

5 I Y = I Y  + 2 1 4 7 4 8 3 6 4  7 +1
6 YFL= IY 

I X !  I ) = I Y
Y E L = Y F L SI! . 4 6 5 6 6 1  3 E - 9
I F !  I • N E - 1 1)GU TO 21
I F ! Y F L • L T . . 1 ) GO TO : i
I E !  Y F L . L T . . 2 ) GO TO 12
I F ! Y E L . L T . . 3  ) GO TO 13
I F ( YFL » L T . *  4) GO TO 1 4
I F !  Y F L . L T . . 5 ) GO TO 15
I Ft  Y F L . L T . . 6  ) GO TO 16
I F !  Y F L . L T . . 7 ) GO TO 17
I F ! Y F L . L T . . 8 1 GO TO 18
I F t Y F L . L T  . . 9 ) GO TO 19
I =10
GO TO 20

11 1 = 1
GO TO 20 

12 1 =  2
GO TO 20

13 1=3
GO TO 20

14 1=4
CO TO 20

15 1 = 5
GO TO 20

16 1=6
GO TO 20 

17 1=7
GO TO 20 

1(3 1 = 8
GO TO 20 

19 1=9
GO TO 20
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21 R ( I I ) = Y f-L
22 CONTINUE

ZSTD=SQRT ( - 2 . * A L U G ( R  ( I I I  I *CO S ( 2 .  * 3  . l ' , 2 8 & 7 # k ( 2 »  I 
RETURN 
END

THE SI MPLEX SUBROUTINE 1 OK SOLVING A L I NEAR PRCGRAMMING MODEL 3'f =f:>!: ******* ** * ** * *** *** * ** * * * * * * ****** *
SUBROUTINE SI MPLX
DOUBLE PRECI S I ON VAnBI - l J , ENTR , B 1 PYM , P A I J , SUPA I J , PU I 
DOUBLE PRECI S I ON A , A 1J , B , B I , C , C J , BA S C J , IJ CJ  , IJ , SIJMZJ 
DOUBLE PRECI S I ON A I J P I , G I P I , SUBENTt ALARGE, SMALL ,OABS 
DOUBLE PRECI S I ON 7. STD , P IVUT , VALU r SUVAL IJ , X 
D I MENS ION SEN St - ( 2 1 ) ,  A ( 2 1 , 2 1 )  » B ( 2 1 ) j C ( 2 1 )  , 3 A SI  S ( 21 ) 
DI MENSI ON Z J C J ( 21 } , Z J ( 2 1) » SUM /  J ( 2 1) , E N T R ( 2 1 ) , B I P Y M ( 2 1 )  
DI MENSI ON PA I J{  21 ) , SL J P A I J ( 2 1  ) , PB I  ( 2 1 )  , CYCLE ( 21 )
DIMENS ION A I J P I  ( 2 1 , 2 1 1 , R I P I ( 2 1 ) , A I J ( 2 1 , 2 L )  , B I ( 2 1 )
D 1 MENSION B A SCJ ( 2 1 ) , C J ( 2 1 J , I X ( 111
COMMON A i ATJ,  R, 31 T C ,C J f VAOUFU ,7. STD , HASI  S , SENSE , I X ,  MI N,

1M, N , N N , IERSWT
C I N I T I A L I Z  IN o V A R1 AB L E ^ ^  ̂  ^  ^ ^ ^ ^  !<f *  *  * *  * *  * * * * *

DOI OO1 = 1 , 2 1  
BAS I S ( I 1 = 0 . 0  
BASCJ ( I 1 = 0 . 0  
Z J C J ( I ) =0  . 0  
IJ ( I I =0 . 0  
SUMZJ ( I } = C. 0  

. B I P Y M ( I  ) = 0 . 0  
P A I J t  I I =0 . 0 
SUPA I J ( I ) = 0 . 0  
P B I { I ) = 0 . 0  
CYCLE( I 1 = 0 . 0  

100 CONTINUE 
I ERSWT=1 
NS = 0 
NA=0

C EXPANDING I N I T I A L  TABLEAU * * * * * * * * * * * * * * * * * * * * * * * * * * * *
199 D02 10 I = 1 , M

K = 1
I E { S E N S E ( 1 1 - 2 . 1 2 0 0 , 2 0 1 , 2 0 2

200 N5 = NS +1
A I J  ( 1 , N+NS + N A 1 = 1 . G
C J ( N + N S + N A ) = 0 . 0
GUT0209

201  NS=NS+1
A I J ( I , N + N S + N A } = - 1 . 0  
C J ( N + N S + N A i = 0 . 0  
NA=NA+1
I F ( M I N . E O . l )  GO TO 72 0 
A I J { I , N +N S+ NA)= 1 . 0  
CJ(  N + N A + N S ) = - 9 9 9 9 .
GOT0 2 0 9  

72 0  A I J  ( I , N +N S+N A 1 = 1 . 0  
C J ( N + N S + N A ) = 9 9 9 9 ,
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130

2 0 2

721

209
210 
300

C

301

302 

311

303
304

305 

308

312
320

C
400

401 

603

G(J TO 2 09  
NA=NA+]
I F t M I N . L O  . 1 ) 0(1 TfJ 721 
AIJ( I,N+NS+NA }= 1.0 
CJ t N +NA+N S ) =— 99 9 9 .
0 0  TO 2C9
A 1J { I TN+NS + NA )= 1 . 0  
C J ( N + N S + N A ) = 9 9 9 9 .
I F t I . G E  .M ) GO TO 3 00 
CONT I N U t  
N N = N + N S+N A
F I N D I N G  THE I N I T I A L  HAS IS 
J J  = 1
D0 320L  = 11M
1 =L
J = N + 1
I F ( A ] J ( I , J ) . E Q . l .  ) G0T03C2 
J = J  + 1
I F ( J . L f c . N N )  GO TO 301.
IERSWT=B 
GO TO 998 
I F ( I  . E Q . l ) GOT0303 
KK = I 
1=0 
1 = 1 + 1
I F [ I . N t . K K ) GOTO 304 
GOT0305 
1 = 1 + 1
I F ( A ( I T J ) . EQ• C • GI GO TO 305
IERSWT=2
GO TO 9 98
I Ft  I . GE «M JGOT030P
I Ft  L . E O .  1 ) G0T03 03
G0T0311
A J = J
I F  t J J . G T . M  ) G0 T 0 3 1 2
HAS I S l J J ) =AJ
J J = J J + 1
GUT0320
I ERSWT=3
GO TO 998
CONTINUE
F I N D I N G  COST VECTOR FOR OASIS VARIABLES f t # * # * * * * * # # * # *  
D 0 4 0 1 J J = 1 , M  
J J K = B A S I S ( J J )
H A S C J t J J ) = C J ( J J K )
CONTINUE
F I N D I N G  Z J C J t J ) . INDICATOR ROW AND VALUE OF OBJECTIVE
F UN C T I 0 N >!<# # sjt *  Jfc jJc# if * # if <t ajt i}etCc £
00  6 0 4  J = 1 , N N
ENTR( J ) = 0  . 0
Z J t J )  = 0 . 0
S U N Z J ( J )  = 0 . 0
Z J C J ( J )  = 0 . 0
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604 CONTINUE
007401 = 1 ,M 
RIPYMI  I ) = 5 9 9 9 9 9 .
PAIJI 1 1=0.0 
SIJPA IJ I I) = C . 0 
PR I( I 1=0.0 
BIP M I 1=0 .0

740 CONTINUE 
KMARK = 0 
00741 I = lf M 
DG741J=1,NN
A IJP I( I,J 1=0.0

741 CONT INUE 
D040?J =1f NN 
D0402I = 1» M
Z J ( J ) = A I J { Tt J  ) *BASCJ(  I )
SUM2J(J} = SUMZJ(J)+7 J(J }

402 CONTINUE 
D0403J=If NN
ZJCJ(J 1= SUMZJ(J1-CJ(J 1

403 CONTINUE 
VAOBFU = 0.0 
004201=lf M
V ALU = BItI )*RASCJ( I )
VAOBFU = VAOBFU + VALU 

420 CONTINUE 
C TESTING FOR OPTIMAL SOLUTION

IF(M IN .EQ.l) GO TO 730 
n04G4J=I,NN
IF(ZJCJIJ ) .LT .0 .0 1 E N T R (J) = Z J C J ( J )

404 CONTINUE 
GO TO 732

730 DO 73 1 J = 11NN
I F  ( ZJCJ(  J 1 . GT . C . O  ) ENTP.I J J = Z JC J ( J)

731 CONTINUE
732 DO 405 J=lrNN

I F ( ENTR(J 1.NE.0.0)GO TO406
405 CONTINUE 

IER SWT=1
998 RETURN 
406 ALARGE = 0.0 

C TESTING FOR ENTERING VARIABLE
D0407J=li NN 
SUBENT = ENTR{J )
IF(DABS(ALAR G11 .GE . DABS(SUB ENT 1) GO TO 407 
ALARGE =DABS(SUBENT)
JK =J 

407 CONTINUE 
C FINDING VARIABLE TO LEAVE SOLUTION

M ARK ER=0 
DOS03 I = 1» M
IFUIJt I, JK) ,GT .0 .0) G0T0501 
BIP Y M( I 1 = 599999.
GOTO503
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501 M A R K F R = 1
BIPYMI I ) = B I ( I } / A [ J { I , JK )

503 CONTINUF
IFIMARKER• F Ij. 1 ) GO TO 50A 
IFRSWT=4 
GO TO 998 

504 SMAL L = li IP YMI L )
I P. = 1
005Of) 1 = 2, M
I f1 ( SMALL . L E . R IP YM! I ) 1GUT0506 
SMALL=HI PYM( I )
I R= I 

506 CONTINUE
DQ5051=1,M
IMI.cO.lK) GU TO 5C5
IFI (DAGS( SMAL L-HIPYM( I) ) ) . .CGC00C9) KMARK=1

505 CONTINUE
11- ( KMARK .NE . 1 1 GOTO 5 10 
IRK = I R 
005091=1,M
IF( I.Eli.IRK) GO TO 509
I FtIDABS!SMALL-BIPYMII) )) .GT. .C00CC09) GO TO 509 
k R I T G ( 6 , 5 0 3 G )

5030 FORMAT!IX,* SOLUTION IS DEGENERATE')
C PER TUR BING THF TIED G I PYM (I) VECTOR

E =. 01
00 750 K =1,M 
PAIJ(K)=0 .0 
SUPA IJ ( K )=0.0 
PBI(K1=0.0

750 CONTINUE
DU5Q8J = 1,NN
PAI Jl IR ) = E**J#A IJ ( IR, J )
SUPAIJ(IP ) = SUPA IJ I IP)+PAIJ(IR)
P A IJ( I ) = F**J*AIJ( 1,J)
SUPA IJ( I)=SUPAIJ[ IJ + PAIJ( I )

508 CONTINUE
PBI!IR)=B It IR )+SUPAIJ( IK)
PHI(1) = 0I{ I ) + SUPAIJ( I )
BIPYMI I I = PBI( I J/A I J ( I , J KI 
RIPYMIIR) = PBI(IR)/AIJ(IR,JK)
TF( (DABStBIPYMI I)-BIPYM(IR) )).LT.l.CD-17) GO TO 511 
IF(BIPYMI I ) .LT.BIPYMI IR)) GO TO 760 
KKK= I 
GO TO 509 

■ 760 KKK = IR
1 R= I

509 CONTINUE 
GfJ TO 510

511 IER 5WT = 5 
GO TO 9 98 

510 BASISIIR)=JK
BASCJI IK)=CJ(JK )
CYCLE!JK)=CYCLE(JK)+1 .0
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IFtCYCLCt JK ) .LB .10. )GUTL)600
IEKSWr = 6 
GO ru

C TRANSFORMING THF SIMPLEX TABLEAU * X: i,’« # i;- >1< Si= * -if if. ■>{. if. # * £J(: * $ V # %
600 PIVOT = A IJ( IK,JK)

D0A01J=l,NN
AIJP1{ iKrJ )=AIJ{IH,J)/PIVOT

601 CONTINUE
(HP It IR ) = B I ( IK)/PIVOT 
DO 700 I= 1» M 
I Ft I .EQ. IR»GO TO 700
B IP I { I ) = B I ( I > — ( A I J ( I , J K ) I P I { I R ) )

700 CONTINUE
IF(KMARK.EQ. 1 ) 0 IPI tKKK ) =0.0 
D0602 I=1» M 
IF t I .EQ . IR ) GO TO 602 
nn 701 J= 1,NN
AIJPI t I ,J ) = A I Jt 1 , J )-<AI J( I ,JK)*AIJPI ( IP.,J) )

701 CONTINUE
602 CONTINUE

DO 705 J= 11 NN
DO 705 I = 1,M
A I J ( I , J) = A IJPIt I,J)

705 CONTINUE
DO 7C6 1=1,M 
B1 ( I ) = B IP It I )

706 CONTINUE 
GOT0603 
END



CHAPTER V

ANALYSIS OF THE EXPERIMENTAL RESULTS

Introduction
The objective of this study, as it is stated in 

the first chapter, has been to determine the efficiency of 
using various alternative deterministic equivalents in 
order to solve a stochastic programming model. To 
achieve this objective a simulation of the stochastic 
model was used as a standard for comparison. For each set 
of initial conditions the expectations of the optimum 
objective function values which have been determined 
by utilizing each deterministic equivalent were compared 
to the optimum objective function values determined 
from a simulation of the model.

This chapter presents an analysis of the results 
generated by the experimental model used in this study. 
These results are separated into two parts, reflecting 
the two sets of results obtained for the two problems 
used.

The next section of this chapter includes a 
statement of the statistical test which has been performed 
on the results of the study. In this section special 
emphasis is placed upon the organization of. the results

134
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of the experiments,. the statement of the hypotheses 
which are tested, and the assumptions: upon which the 
statistical tests are hased. The following section 
presents analyses of the results of the statistical tests, 
given the various assumptions made concerning the initial 
formulations of the model. Each deterministic equivalent 
of the stochastic programming model was tested in each 
phase of the experiment as the coefficients of. variation 
of the stochastic parameters changed. . The final section 
of this chapter states the conclusions which have been 
drawn from this study and indicates some aspects of the 
problem which require further experimentation.

In the appendix to the chapter the experimental 
results are presented in tabular form. Tables 2 through 
4 present, for problem A, the sample means of the dis
tributions of the optimum objective function values for 
each deterministic equivalent as well as for the simulation 
approach. Tables 5 through 7, present a similar set of 
results for problem B. In Table 8 and Table 9 the results 
from the application of the statistical tests are 
presented for problems A and B respectively. Tables 10 
through 12 summarize, for each deterministic equivalent, 
and for each phase of the experiment, the findings relevant 
to the cases when Cl) the solutions generated by each of 
the deterministic equivalents were bn the .average feasible 
and C2) when the results -led to an acceptance of. the
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hypothesis of no difference between the simulation approach 
and the particular, deterministic equivalent. .

The Statistical Tests
The characteristics of 
the experimental results

In each phase of the experiment each initial 
formulation of the empirical problem has been used to 
generate a series of optimum objective function values 
for the simulation approach and for each deterministic 
equivalent. For each of the 102 initial formulations of 
the problem 100 iterations were performed. Thus 10 0 values 
of ZSIM, ZTWS(2 0), ZTWS(4 0), ZTWS(80), ZACTC.90), and 
ZACTC.75) were generated.1 For each of the 102 experiments 
the mean values ZSIMBR, ZTWSBRC20), ZTWSBRC40), ZTWSBR(80), 
ZACTBRC.90), and ZACTBRC.75) which were determined are 
presented in Tables 2 through 7 in the appendix. The 
optimum value of the objective function, ZEXPC, determined 
from the expected value approach is also included in the 
tables mentioned above.

For any given initial formulation of the problem, 
the sample of the optimum objective function values

1The term ZTWS(20) refers to the two-stage approach 
utilizing the set of cost vectors, which includes 20 as 
the first cost coefficient in the. vector COSLK. The 
terms ZTWS(40) and ZTWS(80) respectively refer to. the 
two-stage approach utilizing the second and third sets 
of cost: .vectors COSLK and .COINF. Similarly, ZACT(.9Q) 
and ZACT (..7.-5) refer to the active approach utilizing the 
different sets of allocation ratios indicated.



generated for each deterministic equivalent is not 
necessarily independent of the .corresponding sample 
generated by the simulation approach for this initial 
formulation. , This statement is supported by the fact 
that on each iteration of the experiment, once the values 
for the stochastic parameters were determined, then those 
values were used to generate an optimum solution for each 
deterministic equivalent and for the simulation approach. 
In effect, then, dependent samples were used in the 
statistical tests performed in this study.

A statement of the hypothesis 
and the statistical test^

The statistical test performed in this study is 
designed to test the hypothesis of the equality of two 
population means under the conditions that the populations 
from which the samples were taken are normally distributed 
and that the individual samples are not independent.

For each deterministic equivalent tested in the 
experiments, d^j is defined as

d.• = ZSIM. - x . . . Ill30 1 ID
The value, j» is "the optimum objective function value 
determined on the jth iteration by using the ith

"2John E. Freund, Paul E. Livermore, and Irwin 
Miller,- Manual of Experimental Statistics CEnglewood 
Cliffs, N. J. ; Prentiae-Hall, IncV, I960), pp.- 19-21; 
and I. M. Chakravarti, R.- G.' Laha, and J. Roy, Handbook 
of Methods of Applied- Statistics CNew; York; John Wiley 
and Sons, Inc., 1967), pp.. 325-326.
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deterministic equivalent, while ZSIM^ is the optimum 
objective function value determined on this iteration 
by using the simulation approach. Since six variations 
of the different deterministic equivalents were considered 
the i subscript ranged from 1 to 6. The j subscript 
which referred to the number of iterations ranged from 
1 to 100. A value of d^j was determined for all determin
istic equivalents on each iteration of the experiments.

For each experiment the mean and the variance of 
the d ^ ' s  were defined as

100
■I d . .

' j=l 13 d ., = -3----------  and
10 0

100 9 9100 - I d ?, - (Ed.,)2o •LJs‘ = -------   . [2]
ih 100 • 9 9

In the equations in [2] i refers to the different 
deterministic equivalents, h refers to the different 
experiments which were performed, and j refers to the 
number of iterations of each experiment.

The statistical tests were performed on the 
values, which are the means of the differences between 
the paired sample results. These mean values were 
determined by averaging the differences between the 
optimum objective function values generated by the ' 
simulation approach'.‘and by. each deterministic equivalent.
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These optimum objective function values are assumed to be 
dependent since on any iteration the same values of the 
stochastic parameters were used to generate a solution 
for each approach.

The distributions of these different mean values 
are normal. The reader should recall that through an 
application of the Central Limit Theorem it can be 
assumed that, as the size of the sample increases, the 
distribution of the means of a set of samples randomly 
and independently drawn from a given population will 
approach a normal distribution regardless of the shape 
of the parent population.

The general model of the statistical test can be 
stated as

d5 = xlj - x 2j = “l ■ “ 2 + ej m

where is a normally distributed error term with a 
mean equal to zero and a standard deviation equal to the
standard deviation of the population of the d^'s.

3The Z-statistic can be defined as
d . /n

zi - S T -  
dt

3When the expected value approach is tested then 
x .. in equation [13 is constant for all values of j. In

a! Ithis case the'statistic Z in equation [4] is equivalent to
-7 - (x " a)/n 

s, 
di

where a is. the constant value, ZEXPC, x is the mean of the



* dih - _ h-1 inwhere   ,

2 ^ 2
s a “ 1 where [5]
dt h=l ih

—  2dih sd are given in the equations in [2 3. The second
ih 2

equation in [5] indicates that s^ is a pooled variance
which is determined from the sample variances of the d..’s. 
Although the population variance is unknown, a Z test is 
appropriate due to the large sample sizes resulting from 
each experiment.

In the first two phases of the experimental procedure 
four initial formulations of the experimental problems 
were evaluated as the coefficients of variation of the 
stochastic parameters changed. In the third phase nine 
initial formulations were tested. In the first two phases, 
the value of h in equation [5] ranged from one to four 
and n = 40 0; while in the third phase, the value of h 
ranged from one to nine and n = 9 00. For each experimental 
problem considered, six statistical tests were performed 
in each phase on the different variations of the deter
ministic equivalents which were evaluated.

h values of ZSIMBR and s ^  is the sample standard deviation
of all n ZSIM values included. In this case the null 
hypothesis states that the mean of the population from 
which' the samples' of . ZSIMBR values are taken is equal to the 
constant'value ZEXPC. When this null hypothesis cannot be 
rejected the conclusion is that the expected value approach 
yields a result which is .statistically the same as. the 
simulation approach.



The null hypothesis which was tested in each case 
is that the means of. the two populations from which the 
samples were drawn are equal. . The alternative hypothesis 
is that they are unequal. When the null hypothesis is 
accepted, the conclusion to be drawn is that, given these 
conditions, the deterministic equivalent yields a result 
which is not statistically different from the result 
determined by the simulation approach.

Analysis of the Experimental Results 
For purposes of analysis the experimental results 

are summarized in Tables 10 through 12 of the appendix. 
Each table refers to a different phase of the experiment. 
Within each table the performances of the different 
deterministic equivalents are summarized for each experi
mental problem which was used.

The two-stage approach is presented under three 
different assumptions concerning the cost coefficients 
in the vectors COSLK and COINF, while the active approach 
is presented in terms of the two different assumptions 
concerning the values of the allocation ratios in the U 
and V matrices.

For each value of the coefficient of. variation 
of the stochastic parameters, an KX!t is placed in the 
appropriate columns of the table if the deterministic 
equivalent on the '.average yielded a feasible solution 
and if the null hypothesis' cannot be rejected at either
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the ,.05 or the ..01 levels of significance. The ith 
deterministic equivalent is considered to yield a feasible 
solution "on the average" if. the value of Z^ in equation 
[43 is positive. The value Z^ is positive when d^ is 
positive. The reader should realize that even though d^ 
is positive this does not exclude the possibility of an 
infeasible solution for the ith deterministic equivalent 
resulting on any particular iteration. The d- value is 
determined in the first two phases of the experiment by 
averaging 40 0 d..’s and in the third phase by averagingJ-J
900 d^*s. These d^- values can be positive or negative.
The conditional probability of a feasible solution resulting 
on any iteration increases as the value of Z^ increases 
from zero. As the value of Z- decreases from zero, thei *
probability of an infeasible solution on any iteration 
is increased.

Consider, in Table 10, the data which resulted 
from using the expected value approach in phase one of 
the experiment. From the table it can be seen that, given 
experimental problem A, for a coefficient of variation 
equal to .05 the expected value approach yielded an 
infeasible solution on the average which is not statis
tically different from the solution yielded by the 
simulation approach at either the .05 or the .01 levels 
of significance. For experimental problem B the 'inter
pretation is. the same.



Phase one
The results from phase I of the experiment are 

summarized in Table 10. The three deterministic equiva
lents are referred to as ZEXPC, ZTWS, and ZACT. The 
last two deterministic equivalents mentioned above are 
presented under multiple assumptions concerning the 
exogenous parameters used in those approaches.

The expected value approach
In phase one the expected value approach yielded 

infeasible solutions, on the average, for all values of V 
considered regardless of the experimental problem used. 
The results of the Z-test are also similar for both 
problems, with the only exception occurring when V = .20 
and a = .01. At both the .05 and the .01 levels of 
significance, the null hypothesis was rejected in all 
cases except where V had small values. This is true for 
both experimental problems considered.

In summary the expected value approach in phase 
one yielded infeasible solutions which led to rejection 
of the hypothesis of no difference at both levels of 
significance for. the larger, values of V. In addition 
this approach was consistent in its results for both 
experimental problems.

The two-.stage approach
. The two-stage approach was considered under three 

different sets of exogenous* cost coefficients. In phase



one where only the B vector is stochastic the optimum 
value of the objective function in the two-stage approach 
is initially the same as the optimum value of the objective 
function for the expected value approach. . The costs 
resulting from either excess slack or infeasibility in 
the constraints are then deducted from this initial 
objective function value. This factor is represented in 
the table by the fact that the two-stage approach yielded 
feasible solutions for both problems for the smaller values 
of V while the expected value approach did not. As the 
cost coefficients were increased , feasible solutions for 
both experimental problems resulted for the high values 
of V.

For the smallest set of cost coefficients the null 
hypothesis was not rejected at either level of significance 
for the smaller values of V. For the values of V greater 
than or equal to .25 the null hypothesis was accepted only 
at a level of significance of a = .01. When the adjustment 
cost coefficients were increased the results were feasible 
on the average for the higher level of V. However, as 
these adjustment cost coefficients were increased, this 
approach yielded inconsistent results with respect to the 
tests of the null hypotheses. For example, for the second 
set of adjustment cost coefficients considered,, the hull 
hypothesis was accepted .at both levels of significance for 
all values' of V. When the largest set of adjustment cost
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coefficients were used, the null hypothesis was rejected 
in all cases except where V =■ .05 and a = .01. . These 
results were consistent with respect to both of the 
experimental problems analyzed.

In phase one when the two smallest sets of. cost 
coefficients were used the two-stage approach can be 
summarized as yielding results which were feasible on 
the average and not significantly different from the 
simulation results at the .01 level of significance for 
all values of V. For the largest set of cost coefficients 
used the results were significantly different from the 
simulation results at both of the levels of significance. 
This approach also yielded very consistent results over 
both experimental problems considered.

The active approach
The active approach was evaluated under two 

different sets of allocation ratios. For each experimental 
problem and for each set of the allocation ratios the 
solutions using the active approach were feasible on the 
average for all values of V.. For both of the problems 
analyzed all the tests led to a rejection of the null 
hypothesis of no difference from the simulation approach 
for all values of V.

Summary of phase one
In phase one the expected value approach yielded 

only infeasible solutions on the average.' The two-stage
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approach did yield feasible solutions on the average for 
the smaller, values, of V; and as the adjustment cost 
coefficients increased,, feasible solutions resulted for 
the higher values of V. The active approach always 
yielded feasible solutions on the average. Each deter
ministic equivalent yielded consistent results in terms 
of the feasibility or infeasibility of the results 
generated for both experimental problems used.

The expected value approach yielded results which 
were not significantly different from the simulation 
approach at either level of significance for the smaller 
values of V. The two-stage approach, utilizing the second 
set of cost coefficients, yielded results which were not 
significantly different from the simulation approach at 
either level of significance for all values of V. For 
the smallest set of cost coefficients the null hypothesis 
was rejected at both levels of significance only for the 
larger values of V, while for the largest set of cost 
coefficients used, the null hypothesis was rejected at 
both levels of significance,.for all values of V. The 
active approach yielded results which were significantly 
different from the simulation approach at both levels of 
significance for all the values of. V considered.

Phase two
In phase two of the experiment the stochastic 

parameter's wefe confined' to. .the C vector. The' 'results
i
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of this part of the experiment are presented in Table 11 
of the appendix.

The expected value approach
In the second phase of the experiment the expected 

value approach yielded feasible results on the average in 
all except the cases dealing with problem A for V = .05 
and V = .10. Only in two cases did this approach yield 
results leading to a rejection of the hypothesis. These 
exceptions occurred when dealing with problem B for V 
equal to .25 and a equal to either .05 or .01. As was 
the case in phase one the results from this approach 
were consistent over both experimental problems considered.

The two-stage approach
The adjustment cost coefficients of the two-stage 

approach are related to the constraints of the problem 
under investigation. Since the stochastic parameters were 
present only in the C vector in this phase, these adjust
ment costs do not affect the optimum objective function 
value which is initially determined. This initial value 
is determined by postmultiplying the C vector, the elements 
of which have been randomly determined, by the optimum 
solution vector of the expected value approach. .It was 
assumed in the experimental model that the investigator, 
in using this approach', based his planning upon the 
expected values' .of the stochastic parameters involved and

l
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then later adjusted these plans at an additional cost.
As was the case in phase one three sets of adjustment 
cost coefficients were used in the experimental' model.

Since the adjustment cost coefficients are related 
■ directly to the constraints and since these constraints 
are deterministic, then it is expected that the experi
mental results should be independent of these adjustment 
costs. Table 11 indicates that this conclusion is correct. 
There was no change in the experimental results as the 
adjustment cost coefficients increased.

For any set of adjustment cost coefficients the 
results of the two-stage approach were feasible on the 
average for both of the experimental problems analyzed.
The tests of the null hypothesis led to a distinct set 
of conclusions for the two problems considered. In dealing 
with the slightly constrained problem, the results of the 
two-stage approach led to a rejection of the null hypothesis 
at the ,05 level of significance for values of V greater 
than or equal to ,20, while at a level of significance of 
.01 the results led to a rejection of the null hypothesis 
only when V = .30. The null hypothesis was rejected in 
all cases at both levels of significance when the tightly 
constrained problem was analyzed.

The' active approach '
The' active approach in this phase was performed 

by first converting the' experimental problem to its dual
i



problem and then expanding the set of constraints of the 
dual according to the number of stochastic parameters 
involved in the formulation. As was the case in phase one 
the active approach was analyzed under two assumptions 
concerning the allocation ratios used in the' model.

The results of the active approach were consistent 
with respect to the two sets of allocation ratios used and 
with respect to the two experimental problems analyzed.
For all cases in this phase the results from the active 
approach were infeasible and led to a rejection of the 
null hypothesis at both the .05 and the .01 levels of 
significance.

Summary of phase two
In phase two the expected value approach yielded 

results which were generally consistent for both types of 
experimental problems considered. This approach yielded 
results which were also generally feasible on the average 
and not significantly different from the simulation 
results at either level of significance. The two-stage 
approach yielded feasible results on the average in all 
cases. These results were significantly different from 
the simulation results at both levels of significance 
when dealing with the tightly constrained problem. With 
the slightly constrained problem the results of .this 
approach were significantly different from the simulation 
approach only, for the higher values of. V considered. The
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active approach yielded results which were consistent for 
the two experimental problems analyzed. These results 
were always infeasible on the average and significantly 
different from the simulation results at both levels of 
significance for all the values of V considered.

The table also indicates that the results of the 
two-stage approach were consistent with respect to the 
different adjustment cost coefficients that were used 
and that the results of the active approach were consis
tent with respect to the different allocation ratios used.

Phase three
In phase three of the experimental procedure 

only the expected value approach and the two-stage 
approach were evaluated. The two-stage approach was 
analyzed for each of the three sets of adjustment cost 
coefficients. In Table 12 the results of the third phase 
are summarized.

The expected value approach
The results generated by the expected value approach 

were feasible on the average for both experimental problems, 
only when V = .05. For higher values of V the results were 
not feasible. For both problems considered the experi
mental results led to a rejection of the hypothesis' at the 
.05 level of significance only when V equaled ...25 or .30.
At. the level of significance of a = .01 the results for
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the tightly constrained problem. B were not significantly 
different, from the results of the simulation approach for 
any value of V, whereas for the slightly constrained 
problem the results were not significantly different for 
values of V less than or. equal to .20. The expected value 
approach was consistent in its results over the two 
experimental problems with the only exceptions resulting ' 
when V = .25 or .30.

The two-stage approach
The solutions resulting from the two-stage approach 

in phase three were always feasible on the average for both 
experimental problems when the two largest sets of adjust
ment cost coefficients were used. For the smallest set of 
adjustment cost coefficients the feasibility of the 
results differed for the two experimental problems. In 
the slightly constrained problem A the solutions were 
feasible on the average only for V = .05, while in the 
tightly constrained problem the solutions were feasible 
on the average for all V values except V = .30.

The two-stage model utilizing the smallest set of 
adjustment cost coefficients was consistent for each 
experimental problem with respect to the rejection of the 
null hypothesis at both levels of significance tested.
The hull hypothesis, when problem B was used, was not 
rejected at either .level 'of significance for any. value 
of V considered. The results when problem A was. used
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led to a rejection of the null hypothesis at the .0 5 level 
of significance only when V equaled .30.

As the adjustment cost coefficients increased 
in this phase, the two-stage approach yielded inconsistent 
results. For example, when the second set of adjustment 
cost coefficients were used with problem A, the null 
hypothesis was accepted at both levels of significance for 
all the values of V except .05; but when the largest set 
of adjustment cost coefficients were used with the same 
problem, the null hypothesis was rejected at both of the 
levels of significance for all the values of V. Correspon
dingly the results also differed when the adjustment cost 
coefficients were increased in dealing with the tightly 
constrained problem. In this phase it appeared that the 
adjustment cost coefficients had a direct bearing upon the 
acceptance or the rejection of the null hypothesis for 
both of the types of problems considered.

Summary of phase three
In this phase the expected value approach generally 

yielded results which were not feasible on the average.
In addition, these results generally led to acceptance 
of the null hypothesis of no difference from the simulation 
results at both levels of significance for all values of 
V except for V greater than or equal to .25.

For the' 'smallest set' of adjustment cost .coefficients 
the two-stage approach yielded results which generally led
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to an acceptance of the null hypothesis at both level 
of significance for both problems considered. Only 
when dealing with the tightly constrained problem were 
the results generally feasible on the average for this 
set of cost coefficients. As the adjustment cost coeffi
cients were increased the results became feasible on the 
average for both problems considered and the results 
generally led to a rejection of the null hypothesis in 
all cases except those dealing with the second set of 
cost coefficients with the slightly constrained problem.

Conclusions
The development of an experimental model which 

can be used to evaluate proposed deterministic equivalents 
to the stochastic programming model was an important 
result of this study. The model as it was used in the 
study evaluated some of the linear deterministic equiva
lents to the stochastic programming model.

Before a statement of the findings from this 
study is presented it is necessary to briefly review 
the assumptions upon which the experimental model has 
been built. These major assumptions are as follows.
Cl) The stochastic parameters which appear in each formu
lation are assumed to be normally and independently 
distributed with known means and variances. C2) A 
specific empirical problem .is used as a means of generating 
the results, ;o£ each deterministic equivalent and of the
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simulation approach. This initial problem, is a slightly 
constrained problem. .(3) A modified form of the initial 
problem is used as an example of a tightly constrained 
problem and another set of results are generated. (4) The 
expected value solution is used to determine a ranking 
of the constraints and of the variables of the experimental 
problem. These rankings are used to select appropriate 
formulations of the two experimental problems which are 
analyzed in the experimental model. (5) Each deterministic 
equivalent is evaluated as the positions of the stochastic 
parameters change and as the variances of the stochastic 
parameters change.

Major findings
The major findings are summarized for each phase 

of the experiment. In the first phase the stochastic 
parameters are limited to the B vector; in the second 
phase they are limited to the C vector; and in the third 
phase the stochastic parameters appear in both vectors.

Phase one
The results indicate that the two-stage approach 

is the best deterministic equivalent to use in phase one.
This approach is only slightly affected as the variances 
of the stochastic parameters increase. The results, of 
this approach are also consistent for the two types' of 
problems considered.

i



It should be pointed out that these conclusions 
are dependent upon the adjustment cost coefficients which 
are used. The results of the two-stage approach are 
affected by changes in the values of the adjustment cost 
coefficients.

The expected value approach does not on the 
average yield feasible solutions and becomes unreliable 
as the variances of the stochastic parameters increase.
As a first approximation, however, the expected value 
approach does have some advantages, particularly when it 
is used to generate an initial solution in the two-stage 
approach.

The least desirable approach in this phase is 
the active approach. In all cases this approach yields 
feasible results on the averagej however, these results 
are statistically different from the results generated 
by the simulation approach. This approach is conservative 
in that it limits the optimum value of the objective 
function by restricting the use of the resources through 
the allocation ratios. In addition the results of the 
active approach are consistent for each problem analyzed 
and for each set of allocation ratios used.

Phase two
. The expected value approach is the best approach 

to use when'-the stochastic ■parameters appear only in the 
C vector. . This approach yields feasible solutions on the
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average which are. very reliable regardless of the type of 
problem analyzed. In addition the approach is not 
affected by increases in the. variances of the stochastic 
parameters.

The two-stage approach is the next best approach 
in this phase. From the results it' can be seen that the 
adjustment costs have no affect in this phase. This 
is to be expected since these costs are associated only 
with the constraints which are deterministic. The two- 
stage approach always yields a feasible solution on the 
average and is more reliable when dealing with the slightly 
constrained problem than when dealing with the tightly 
constrained problem. When dealing with the tightly con
strained problem this approach was affected somewhat by 
increasing the variances of the stochastic parameters.

The active approach is the least desirable approach 
in this phase since it always yields infeasible solutions 
on the average which are very unreliable regardless of 
the type of experimental problem considered.

Phase three
In the third phase, of the two deterministic 

equivalents evaluated, the two-stage approach is considered 
the better since it yields, feasible solutions on the . 
average in more cases, than does the expected value approach. 
The results, of this approach are generally statistically 
the same as the results of. the simulation approach. However

I
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these results are affected by the different values of the 
adjustment cost coefficients which are used. As the cost 
coefficients increase the results tend to become feasible 
on the average but also .tend to become significantly 
different from the results of the simulation approach.

The results of the expected value approach are 
affected by increasing the variances of the stochastic 
parameters. For only the smallest set of values of the 
variances does this approach yield results which are 
feasible on the average. The results of this approach 
are generally the same as the results of the simulation 
approach except for the two largest sets of values of 
the variances of the stochastic parameters. In addition 
the approach is consistent with respect to the two problems 
considered.

Areas of Further Research
During the development of the experimental model 

and the analysis of the results from the experiment a 
number of questions arose which can serve as the basis 
upon which additional experimentation can be performed.
Some of the more important areas for further research

iare as follows. Cl) The deterministic equivalents can 
be studied assuming nonnormal distribution for the 
stochastic parameters. In addition formulations of an 
experimental problem can be studied where the different 
parameters are distributed according to different types
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of distributions. (2) The distributions of the optimum 
objective function, values which result from the application 
of the different deterministic equivalents can be analyzed 
to determine the properties of these distributions and 
the effects that the properties of the stochastic parameters 
have upon these distributions. (3) Additional determinis
tic equivalents, some of which are presented in the second 
chapter, can be analyzed by the experimental model to 
determine the effects that the positions and the properties 
of the stochastic parameters have upon the performance 
of these equivalents. (4) The possibility of combining 
different deterministic equivalents into one model in 
order to utilize the advantages of each can be investi
gated. For example the expected value approach is used 
in this way with the two-stage deterministic equivalent. 
Since the expected value approach appears to be a good 
first approximation, the possibility of combining it 
with other deterministic equivalents can be studied.
(5) The results of the active approach are dependent upon 
the specific values of the allocation ratios used in the 
model. The effects that these ratios have upon the results 
generated by this deterministic equivalent can be analyzed. 
For example, the use of different sets of allocation ratios 
for a tightly constrained problem and a slightly con
strained problem can be studied. (.6) The adjustment cost 
coefficients' have 'an effect upon the results of. the



two-stage approach. The effects that these coefficients 
have can be studied. . For example in the. first and the 
third phases of the experiment the results of the two- 
stage approach varied significantly as the cost coeffi
cients changed.
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TABLE 2
THE SAMPLE MEANS OF THE OPTIMUM OBJECTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE I PROBLEM A
V EXP. ZSIMBR ZEXPC ZTWSHR ZTWSBR ZThSBR ZACTBR ZACTOR

CT/U ) NO. (20 (40 ) ( 80) ( .90) ( .75 )
.05 1 8842.14 3837.96 8834.97 8831.98 8825.98 8324.25 7429.36

2 8896.48 8837.96 8777.25 8716.54 8595.11 3261.65 7309.39
3 8708.Cl 8837.96 8826.90 8815.83 8793.70 80 8 9.38 70 32. 54
4 8845. 02 8837.96 8774 .53 8711.09 8584.20 8120.71 70 34.2 6

. 10 5 8820.29 8837. 96 S331.99 8826.01 3814.C6 8316.63 7422.90
6 8756. 02 8837.96 8677.09 8516.21 8194.45 8132.05 7196.11
7 8689.84 8837.96 8313.01 8780.05 8738.14 8092.89 7C40.04
8 8791.73 8837.96 8 662.68 8487.38 8136.80 8074. 16 6557.82

. 15 9 87C2.29 8837.96 8827.45 8 816.92 8 79 5.8 8 8266.22 7397.07
10 8700.42 8 83 7.96 8552.79 8267.61 7697.25 908 9.03 7172.07
11 8703.57 R837.96 R090 .89 8763,02 8689.67 8147.72 7101.84
12 8 704.0 7 8837.96 8537.06 8236.16 7634.36 7995.77 6933.33orvl• 13 8702.75 8837.96 8824 .16 881C.35 8782.73 8355.50 7547.66
14 8294.43 Q837.96 0450 .2 1 8062.45 7266.94 7709.13 6331.32
15 8608.89 8837.96 8793 .20 8 748.44 6653.91 8122.90 7090.32
16 8 33 2. 2 8 3837.96 8361.82 7885.67 6933.38 7659.73 6650.91

.25 17 8608. C 8 8 83 7.96 8823.72 8808.47 878C.97 92 5 8.96 7456.8C
13 7675.27 8837.96 8198.45 7558.94 6279.92 7141.65 t>3'*l.?l
19 8141.15 8837.96 87 79.66 87 21.36 8 6G4.7 7 7680.37 67 75.84
20 7993.59 3837.96 8226.90 7616.83 6393.70 7358.46 6405.76

.30 21 8323. 71 3837.96 8 819.35 880C.73 8763.50 8016.16 7275.83
22 7 78 5. 91 8837.96 8123.21 74 08.4 5 5978.93 7239.64 6419.97
23 8162.20 8 837.96 8753.96 8679.95 6521.93 7728.00 6849.71
24 7 342.79 8337.96 7961.36 7 084.75 5331.54 676 1.4 5 5 88 9.44



TABLE 3
THE SAMPLE MEANS GF THE OPTIMUM OBJECTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE II PROBLEM A
V . EXP. ZSIMBR ZEXPC ZTWSBR ZTL-.SBR ZTkSBR ZACTBR ZACTBR

(cr/ p) NO. (20) (40) ( 80) { .90 ) { .75)
.05 25 8908.52 8837. 96 8908.52 8908.52 8908.52 9249.44 9760.32

26 8837. 66 8837.96 8837.66 8837.66 8837.66 9175.87 96 3 3. 18
27 8782.91 8837.96 8782.91 8782.91 8782.91 9119.02 9623.19
28 8809.51 8837.96 8809.51 8809.51 8809.51 9146.63 9652.33

. 10 25 8812.71 8837.96 8812.70 8812.70 8612.70 9149.95 9655.82
30 8726. 16 8837.96 8726.05 8726.05 8726.05 9063.64 9568.10
31 8881.23 8837.96 8381 .18 8381.18 8881.18 9221.05 9730.86
32 8822.34 8837.96 8322.15 88 22.15 8822.15 9173.95 9678.00

.15 33 8783.38 8837.96 8782.64 8782.64 8 782.64 9113.74 9622.89
34 8853.25 8837.96 8852 .C-4 8852.04 8852.04 9281.65 9774.64
35 9027.44 8837.96 9022.17 9022.17 9C2 2.17 9385.21 9900.14
36 8816.38 8837.96 8807.80 8307.60 8807.30 9260.2 2 9746.59

.20 37 8858.18 8837.96 8854 .63 88 54.63 8854.63 9194.66 9701.77
38 8933. 1 1 8837.96 8929.59 8929.59 8929.59 9440 .33 9924.75
39 8686.31 8837.96 6677.31 8677.31 3677.31 9035.24 9529.04
40 9141.80 8837.96 9131.8 5 9131.65 9131.85 9749.32 10228.85

.25 41 9292.91 8837.96 9273 .13 9278.13 9278.13 9647.19 10169.52
42 9471.45 8837.96 9469.24 9469.24 9469.24 9986.00 10 50 3. 84
43 8756.77 8837.96 8 714.73 8714.73 8 714.73 9137.9 8 9664.88
44 9017. 10 8 83 7.56 9002.54 9002.54 9CC2.54 9623.71 10094.64

. 30 4 5 839 8. 55 8837.96 8855 .91 83 5 5.91 8 85 5.91 9251.43 9742.54
4 6 8952.70 8 83 7.96 8924.36 8924.36 89 24.36 9682 .74 10125.79
4 7 8 5C7.64 8837.96 6429.0 2 8429.02 8429.02 9002.52 9453.71
48 9 34 4,4 3 8837.96 9285.29 92 85.29 9285.29 102C4.07 1G645.10
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TABLE 4
THE SAMPLE MEANS OF THE OPTIMUM OBJFCTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE III PROBLEM A
V

( cr/ y)
EXP.
NO.

ZSIMBR ZEXPC ZTWSBR
(20

ZTWSRR
(40)

ZTWSBR 
( 8CI

.05 49 8873.26 3837.96 8824.28 8820.44 8812.77
50 8906.91 8837.96 8795.74 8793.03 8787.61
51 8845.32 8837.96 8743.13 8682.32 8550.71
52 8853. 83 8837.96 8876.89 8873.65 8867.17
53 8817. 57 8837.96 8821.83 8754.07 861.8. 54
54 8 865.68 8837.96 8767.53 8712.57 8602.66
55 8866.89 9 83 7.96 8338.43 8774.58 8646.88
56 8942.45 8837,96 8780.13 37C5.55 8556.4C
57 8894.40 6837.96 8303 .21 8744.73 8627.76

. 10 5 8 SRC 5. 82 8837.96 8802.38 8 796.05 8783.38
59 361 3. 24 8837.96 6802 .64 8795.65 8781.66
60 8837. 61 S837.96 8740 .24 8606.73 8339.71
61 891 3.39 8837.96 8938.15 8931.93 8919.50
62 8475.67 S837.96 8405.83 8 3 C 4. 9 5 7943.20
63 8629.26 8837.96 8620.13 8456.69 8129.81
64 8750.25 8837.96 8 7 09.48 8 564.83 8275.52
6 5 8758. 57 B837.96 8772.66 8590.67 8226.70
66 8619.03 8837.96 8563.73 8339.09 8 039.80

. 15 67 8879.04 8 83 7.96 8923.76 8914 .93 8897.27
66 6853,4 9 8 83 7.96 8302.43 8792.95 8773.88
65 8699.75 BG37.96 8630 .3 6 8372,74 7857.50
7 C 8366.36 8E37.96 8344.88 8 8 36.16 8818.74
71 8364.64 BP37.96 05 85.9 5 8 311.07 7761.29
72 8648.34 8837.96 37 60 .60 84 94.27 7981.60
73 8582.41 3837.96 3471 ,2 1 8 179.49 7596.06
74 853 S.84 8837.96 86 73.26 84 00.8 5 7846.04
75 8349.65 8837.96 

{ CONTINUE01
8399.7 7 8095.27 7486,27
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TABLE 4-CGMTINUED
V

to/p)
EXP.
NO.

ZSIMBR ZEXPC ZTWSBR
(20

ZTWSBR
(40)

ZTWSBR
(80)

.20 76 8313.55 8P37.96 87C6.69 8693.45 8666.97
77 8477.64 5837.96 8721.25 87C6.84 8673.02
78 8097. CO 8837.96 8474.01 8044.57 7185,69
79 831 1. 57 8837.96 8803.37 8787.55 8755.92
80 8695. 24 8837.96 8701.91 8168.57 7101.38
81 8777. 83 8837.96 8724.51 8232.38 7248.13
82 8041.31 8837.96 7965.73 7442.17 6395.04
93 8414.81 883 7.96 8564.41 8124.58 7244.92
84 8556.81 8837.96 8580.57 8079.46 7077.23

.25 85 8547. 16 8837.96 8764.19 8747.14 8713.03
86 8501.03 8837.96 8820.74 6305.32 8774.47
87 7554.36 8837.96 8047.45 7487.96 6368.99
88 8075.09 8837.96 8647.65 8630.70 8596.79
•89 7585.52 8 837.96 7727.73 7009.38 5572.67
90 8582.09 8837.96 8510.31 7879.52 6617.92

l 91 8057.27 8837.96 5084.69 7526.49 6410.09j 92 7929.35 3837.96 8075.74 7530.52 6590.09
93 7 681.0 5 8837.96 7923 .52 7299.07 6050,16

. 30 94 8691.92 8837.96 8925.32 8905.86 8866.93
95 866 0, 93 8837.96 8689.29 8871.97 8837.35
96 7236.34 8837.96 8195.89 7372.68 5726.35
97 8596.45 8837.96 8903.33 8886.00 8851.32
98 7362. 34 3837.96 7 815.34 7 006.Cl 5387.36
99 7664.05 8837.96 8098.05 731 7. 56 5756.53

100 7489.18 8 837.96 7837.97 7218.98 5880.99
101 7392.61 H 8 3 7, 96 7735.71 6905.35 5244.63
102 7591.15 8837.96 8G42 .77 73 54.28 5977.30

fl9
T



TABLE 5
THE SAMPLE MEANS CF THE OPTIMUM OBJECTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE 1 PROBLEM B
V EXP. ZSIMRR ZEXPC ZTWSBK ZTNSBR ZTWS8R ZACT3R ZACTBR

cf / y) NO. 120) (40) ( 80) ( .90) ( .75)
.05 1 9137.01 9133.C7 9130.07 9127.07 9121.09 8954.73 8972.04

2 9176.50 9133.07 90 70.7 7 9008.48 8883.90 8907.00 8889.64
3 9013.87 9133.07 9111 .93 9090.80 9048.53 8283.73 7647.32
4 9112.39 9133.07 9048.32 8963.58 ' 8794.09 8401.48 7736.17

. 10 5 9098.79 9133.07 9127.0 9 9121.11 9109.16 8916.21 8894.00
6 8999.96 9133.C7 8949.02 8764.97 8396.88 8759.00 37C3.21
7 8983.73 9133.07 9082.34 9031.60 8930.14 8286.31 7661.09
8 9044,78 9133.07 8916.13 8699.19 8265.32 8356.72 77C4.21

. 15 9 8963.83 9133.07 9122 .54 91 12.C2 9C90.98 8780.91 8738.62
10 8944. 93 9133.07 8820.18 8507.29 7681.52 8719.43 8628.79
11 8993.25 9133.07 9058.59 8984.11 8835.14 8340.93 7732.50
12 8947. 76 9133.07 8766.03 8399.00 7664.93 8278.11 7639.16

. 20 13 8936. 61 5133.07 9119.26 9105.45 9G77.83 8766.54 8755.55
14 8547.74 9133.07 8705.19 8277.32 7421.57 8304.46 8201.88
15 8684.92 9133.07 9047.69 8962.32 8791.57 8291 .51 7723.92
16 8582.68 5133.07 8 564.27 7995.46 6857.B6 7940.37 7352.51

. 25 17 8854.46 9133.07 9118.82 9104.57 9076.07 8676. 13 86 63.84
18 7933.91 9133.07 844 6.64 7760.21 638 7.36 7693.04 7611.92
19 8408.93 9133.07 8997.26 8861.46 8589.85 7838.19 7317.58
20 8236.90 9133.07 8421 .19 7709.31 6285.56 7651.61 7133.63

. 30 21 6578.07 5133.07 9114.45 9095.83 9058.59 8390.9 3 8379.73
22 8023.11 9133.07 8367.60 7602.13 6071.19 7774.50 7557.19
23 8486,41 9133.07 8998.17 8863.27 8593.49 7899.69 7458.08
24 7609.27 913 3.07 81 17 .0 4 7101.02 5C bS.96 7030.23 6561.40

165



TABLE 6
THE SAMPLE MEANS OF THE OPTIMUM OBJECTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE II PROBLEM B
V EXP. ZSIMBR ZEXPC ZTWS8R ZTWS3R ZTW5BR ZACTBR ZACTBR

( 0/y) NO. (20) ( 40) < 80) ( .90) ( .75)
.05 25 9188,80 9133.07 9183.60 9188.80 9188.80 9326.36 9760.82

26 9141.62 9133.07 9123 .65 9123.65 9123.65 10422.34 10749.05
27 9110.64 9133.07 9089.58 9089.58 9CR9,53 9958.81 10319.91
28 9142.28 9133.07 9090.44 9090.44 9090.44 10490.00 10799.63

.10 29 9120,75 9133.07 91 13.11 9113. 11 9113.11 9345.34 9660.70
30 9083.36 9133.C7 9006.10 9006,10 9006.10 10389.07 10713.46
31 924 1. 83 9133.07 9167.20 9167.20 9167.20 10182.07 10513.32
32 9232.64 9133.07 9086.87 9086.87 9066.87 10782.33 1 1063.26

. 15 33 9112.01 9133.07 9089,36 9089.36 903 9.3 6 9384.96 9673.C2
34 9255,62 9133.07 9118.35 9116.85 9110.35 10709.12 1 1023. 52
35 9464.68 9133.07 9278.57 9278.57 9278.57 10666.33 10966.76
36 9270.64 9133.07 9060 .18 9060.13 90 60.13 11003.03 1 1279.23

.20 37 9198.57 9133.07 9146.23 914 6.23 9146.23 9522.59 9803.45
38 9413.37 9133.07 9220.42 92 20.42 9220.42 11070.96 1 1333.70
39 922C.60 9133.07 9006.16 9006,16 9006.16 10643.74 10352.49
40 9670. 14 9133.07 9409.00 9409.00 9409.00 11655.76 11913.40

. 25' 41 ,9590. 25 9133.07 9430.75 9480.75 9430.75 9942.71 10305.32
42 986C. 71 9133.C7 95 60 .4 9 9 5 6C.49 9 5 60.49 11258.05 1 1620.91
43 9 39 2.41 9133.07 9035.72 9035.72 9C35.72 11159.91 11300.53
44 9636. 59 9133.07 9205.24 9205.24 9205.24 11824.93 12040.11

. 30 45 9313. 63 9133.07 9147.24 9147.24 9147.24 9767. 11 1CC3G.36
46 9475.66 9133.07 9193.78 9198.73 9198.78 11282.43 1 1522.05
47 9173.41 9133.07 3 8 10.04 88 1C.04 3 810.04 10941.03 11C43.11
48 9534.57 9133.07 94 62,«6 9462.86 9462.66 12214.27 12457.L4
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TABLE 7
THE SAMPLE MEANS OF THE OPTIMUM CBJECTIVE FUNCTION VALUES

FOR ALL EXPERIMENTS IN PHASE III PROBLEM B
V

t a/u)
EXP.
NG.

ZSIMRR ZEXPC ZTWSBR
120)

ZTWSBR
(40)

ZTWSBR 
( 80)

.05 49 9166.49 9133.07 9121 .45 9117.61 9109.95
5C 9220.23 9133.07 9097.92 9095.21 9089.79
51 9128.91 9133.C7 9043.54 8973.00 3831.91
52 9163,41 9133.07 9160.24 9157.00 9150.52
53 9100. 19 9133.07 9091.92 9010.00 8846.14
54 9167.70 9133.07 9067.79 9008,59 8390.20
55 9173.93 9133.07 9108 .33 9043.99 8915.32
56 9241. 1 9 9133.07 9065 .21 8976.55 8799.23
57 9201. 83 9133.07 9079 .13 9005.14 8857.13

. 10 56 9C99.20 9133.07 9103.63 9097.30 9084.63
59 8989.88 9133.07 9123.36 91 16.36 9102.33
60 9077.90 9133.07 8999.91 8838.49 8515.64
61 9256.27 9133.07 9197.97 9191.75 9179,32
62 8 78 8. 94 9133.07 8777.92 8558.05 8118,31
63 8971.65 9133,07 8923 .23 8731.84 8 349,04
64 9096.97 9133.07 8970.41 83C0.50 8460,68
65 9074.93 9133.07 9003.05 8730.73 3336. 11
66 8939.19 9133.07 8BC3 .44 8561.46 8077.50

.15 67 9167.5 6 9133.07 9195.98 9 190. 15 9172.49
68 9251.32 913 3.07 9115.15 9105.61 90B6.55
69 8963.14 9133.07 8687.13 86 C1.6 8 8030.HC
70 9302, 17 9133.07 9166.5 7 9157.66 914C.43
71 8683.69 9133.07 6603.20 8465.27 7779.4C
72 8 98 4.22 9133.07 893 7.81 8651.36 8C78.5 1
73 8985.64 9133.C-7 8 7 4 8 .63 8421.71 7767.88
74 8945.23 9133.07 8912.18 8572.00 7891.64
75 6 772. C'2 9133.07 

( CONTINUE!))
6619.57 8221.54 7425.46
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TABLE 7—CONTINUED
V

la/y)
EXP.
NO.

ZSIMBR ZEXPC ZTWSBR
(2C)

ZTWSBR 
(40 )

ZTWSBR 
( 80)

.20 76 8678.95 9133.07 9026.59 9013.35 8986.38
77 8937.75 9133.07 9063.11 9048.70 5019.88
78 8425.00 9133.07 8716.59 8248.40 7312.02
79 8919.55 9133.07 9137.48 9121.66 9090.03
•80 8579,48 9133.07 8817.58 8188.28 6929.68
81 i‘ 9153.12 9133.C7 8901 .58 8366.95 7297.67
82 8623.34 9133.07 8258.45 7698.61 6578.94
83 8865.39 9133.07 8795.91 8258.57 7133.89
34 8568.09 9133.07 8716.42 8112.73 69C5.34

. 25 85 8931. 69 9133.07 9071.21 9054.15 9020.05
86 9027.52 9133.C7 9159.36 9143.94 9113.09
87 7577. 75 9133.07 8332.95 7715.33 6430.03
88 8792.13 9133.07 8961 .73 8944.78 3910.87
89 7975.56 9133.07 7994.39 7165.26 5507.00
90 9077. 77 9133.07 8713.45 8032.23 6669.79
91 8672,02 9133.07 8367.05 7 751.40 6520.11
92 8478.36 9133.07 8294 .60 7676.04 643 3.92
93 8344.67 9133.07 8170.89 7420.36 5919.27

.30 94 9048.3 5 9133.07 9197.98 9178.52 9139.59
95 9116.69 9133.07 9134.80 9117.49 9082.87
96 7631.4 5 9133.07 8394.65 7513.30 5750.61
97 9244.91 9133.07 9227.49 921C. 16 9175.43
98 7882.11 9133.07 8036.72 7108.86 5253.14
99 8237.15 9133.C7 8282.29 744C.78 5757.76
100 8291.58 5133.07 8227 .70 7501.31 604 e.5 2
101 801C.80 9133.07 79 39.69 6993.68 5101.64
102 0251.77 9133 .07 82 39.6 4 744 5.2 9 5856.59
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TABLE 8
TEST RESULTS ON THE VARIOUS DETERMI NI ST IC 

EQUIVALENTS PROBLEM A

V
( CT/U)

EXPECTED
VALUE

TWO-STAGE 
(20)

TWO-STAGE 
(40)

TWO-STAGE 
( 80)

ACT IVE 
{ .90)

ACT IVE 
( .75)

PHASE
I

.05 -0.332 0. 43 C 1. 173 2 .4 74 112.202 136.565

. 10 -C. 899 0.226 1.340 3.212 60.5 83 77.799

. 16 -1.172 0. 196 1.469 3. 439 39.390 54.986

. 20 -2.405 -0.352 0.730 3.3 09 28.383 40.511

. 25 -4,005 -2.327 -0.4]C 2.765 24.940 3^.306

. 30 -4.244 -2.419 -C.4 08 2. 8 46 21,279 25.930
PHASE

II
.05 -0.073 O.C c.o 0.0 195.7&3 -195.5G5
. 10 -0.324 1. 36C 1 .360 1. 3 60 -64.931 —1C1.656
. 15 0. 251 1.462 ] .462 1.462 -18.924 -4 8.486
. 20 0. 379 2.476 2.4 75 2.475 -11.980 -30.546
. 25 1. 395 2. 269 2. 269 2.2 69 -10.310 -2 4.94 3
. 30 0.3 37 2. 305 2.89 5 2.805 -7.4 0 6 -16.947

PHASE 
I II 
. 06 0. 5 85 1. 501 2. 3 67 3.707 NA NA
. 10 - 1.067 -0.044 1.2 56 3.255 NA NA
. 15 -1.0 9fl -0.2R] 1. 239 3.657 NA NA
. 20 - 1. 3 P R -1. 105 0. 967 4. 155 NA NA
.75 -2.R34 -1.259 C. 902 4. 2 06 NA NA
. 30 - 3. 099 -1.979 C. 42 5 4.009 NA NA

CM T TICAL va lu es or 7. FC!R a = 
FOR a =

.05 ARE 

.01 ADE
±1
±2

.96

.53 169



TABLE 9
TEST RESULTS DM THE VARIOUS DETERMI NI ST IC 

EQUIVALENTS PRDBLFM B

V
(cr/y >

EXPECTED
VALUE

TWO-STAGE 
( 20)

TWO-STAGE 
(40)

TWO-STAGE 
(80)

ACTIVE 
( .90)

ACTIVE 
t .75)

PHASE
I

.05 -0. 548 0.465 1.44 3 3. 103 109.216 74,072

. 10 -1,339 0. 179 1.708 4.1 84 50.418 47. 920

. 15 -1.595 0. 199 1. 849 4,333 31.488 33.072

. 20 -2.994 -0.917 1. 129 4.311 24.299 25.297

. 25 -4.430 -2.398 -0.002 3.7 37 2 1.4C4 2 0.00 8

. 30 -4.541 -2.387 0.04 2 3. 300 20.469 IS.239
PHASE

II
.05 0.359 4. 083 4.088 4.083 -22•6 CQ -33.346
. 10 C. 539 5.4 01 '5.401 5.401 -15 .582 -24.349
. 15 1.3 75 5.691 5.691 5.691 -11.766 -17.34 7
. 20 1.645 6. 123 6.123 6,1 23 -I 1.5 38 -16.372
. 25 2.6 77 7,609 7.6.09 7.609 -10.835 -15.395
. 30 1. 535 7. 310 7.31C 7.310 -9.77S -13.082

PHASE 
I II 
. C 5 0. 757 1. 694 2.910 4.417 NA NA
. 10 -C.969 0. 570 2.248 4.6 82 N A NA. 15 -0.3C5 0. 64 6 2. 521. 5.247 N A NA
. 20 -1.4 54 0.090 2.537 6. 0 36 NA N A
. 25 -2.223 0. 135 2. 6 73 6. 165 NA NA
. 30 -2.515 -0.51H 2.1 70 5.743 NA NA

crit ic al VALUES OF 7 FDR a = 
FOR a =

.05 ARE 

.01 A RF
±1
±2

.96

.58 170
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TABLE 10
SUMMARY OF THE EXPERIMENTAL

RESULTS - PHASE I

PROBLEM A PROBLEM B

MODEL
V FEASI- 

(o/y) BLE
ACCEPT H0 
.05 .01

FEASI
BLE

ACCEPT H0 
.05 .01

ZEXPC .05
.10
.15
.20
.25
.30

X
X
X

X
X
X
X

X
X
X

X
X
X

ZTWSC20) .05 X X X X X X
.10 X X X X X X
.15 X X X X X X
.20 X X X X
.25 X X
.30 X X

Z T W S C W .05 X X X X X X
.10 X X X X X X
.15 X X X X X X
.20 X X X X X X
.25 X X X X
. 30 X X X X X

ZTWSC80) .05 X X X
.10 X X
.15 X X
.20 X X
.25 X X
.30 X X

ZACT(.90) .05 X X
.10 X X
.15 X X
. 20 X X
.25 X X
.30 X X

ZACTC.75) .05
.10
.15
.20
.25
.30

X
X
X
X
X
X

X
X
X
X
X
X
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TABLE 11
SUMMARY OF THE EXPERIMENTAL

RESULTS - PHASE II

PROBLEM A PROBLEM B
V FEASI ACCEPT H0 FEASI ACCEPT H0

MODEL Ccr/y) BLE .05 .01 BLE .05 .01
ZEXPC .05 X X X X X

.10 X X X X X

.15 X X X X X X

.20 X X X X X X

.25 X X X X

. 30 X X X X X X
ZTWSC20) .05 X X X X

.10 X X X X

.15 X X X X

.20 X X X

.25 X X X

.30 X X
ZTWSC40) .05 X X X X

.10 X X X X

.15 X X X X

.20 X X X

.25 X X X

.30 X X
ZTWSC80) .05 X X X X

.10 X X X X

.15 X X X X

.20 X X X

.25 X X X

.30 X X
2ACTC.90) .05

.10 

.15 

.20 

.25 

. 30
ZACTC.75) .05 

.10 

.15 

.20 

.25 

.30
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TABLE 12
SUMMARY OF THE EXPERIMENTAL

RESULTS - PHASE III

MODEL

PROBLEM A PROBLEM B
V

(a/y)
FEASI
BLE

ACCEPT
.05 H0.01

FEASI
BLE

ACCEPT
.05

H0
.01

ZEXPC .05 X X X X X X
.10 X X X X
.15 X X X X
.20 X X X X
.25 X
. 30 X

ZTWS(20 ) .05 X X X X X X
.10 X X X X X
.15 X X X X X
.20 X X X X X
.25 X X X X X
. 30 X X X

ZTWS(40) .05 X X X
.10 X X X X X
.15 X X X X X
.20 X X X X
.25 X X X X
. 30 X X X X X

ZTWS(80) .05 X X
.10 X X
.15 X X
.20 X X
.25 X X
.30 X X
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