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An Approach Based on Fuzzy Sets to Selecting and

Ranking Business Processes

Katia Abbaci, Fernando Lemos, Allel Hadjali, Daniela Grigori, Ludovic Liétard, Daniel Rocacher, Mokrane Bouzeghoub

Abstract—Current approaches for service discovery are based
on semantic knowledge, such as ontologies and service behavior
(described as a process model). However, these approaches have
high selectivity rate, resulting in a large number of services
offering similar functionalities and behavior. One way to improve
the selectivity rate is to cope with user preferences defined on
quality attributes. In this paper, we propose a novel approach
for service retrieval that takes into account the service process
model and relies both on preference satisfiability and structural
similarity. User query and target process models are represented
as annotated graphs, where user preferences on QoS attributes
are modelled by means of fuzzy sets. A flexible evaluation
strategy based on fuzzy linguistic quantifiers is introduced.
Finally, different ranking methods are discussed.

Index Terms—web service retrieval, quality of services, pref-
erences, fuzzy set theory, linguistic quantifier

I. INTRODUCTION

Searching for a specific service within service repositories

become a critical issue for the success of service oriented

and model-driven architectures and for service computing in

general. This issue has recently received considerable attention

and many approaches have been proposed. Most of them

are based on the matchmaking of process input/outputs [1],

service behavior (described as process model) [2], [3] or

ontological knowledge [3]. However, these approaches have

high selectivity rate, resulting in a large number of services

offering similar functionalities and behavior [3].

One way to discriminate between similar services is to

consider non-functional requirements such as quality prefer-

ences (response time, availability, etc.). A recent trend towards

quality-aware approaches has been initiated [4], [5], but it is

limited to atomic services. Our goal is to go further these

approaches into a unique integrated approach dealing with

functional and non-functional requirements in service retrieval.

Targeting this goal poses the following two challenges: (i)

At the description level, provide a model allowing to specify

non-functional requirements at different granularity levels of

the service functional description; (ii) At the discovery level,

define an evaluation method that efficiently computes the

satisfiability of a target service w.r.t. the functional and non-

functional requirements of a user query.

More specific challenges related to non-functional char-

acteristics should also be taken into account: (i) Users are

not always able to precisely specify their non-functional con-

straints; (ii) Users have different points of view over what is a

satisfactory service according to the same set of non-functional

constraints; (iii) The service retrieval should avoid empty or

overloaded answers due to the imprecision of the user’s query.

Preferences are a natural way to facilitate the definition

of non-functional constraints in user query. They are flexible

enough, on the one hand, to avoid empty returns caused by

very strict user constrains and, on the other hand, to provide

an adequate set of relevant results even when user specifies

too general constraints. In addition, fuzzy logic has been used

as a key technique to take into account human point of view

in preference modelling and evaluations [6].

In [7], a QoS-aware process discovery method is proposed

whereas user query is a graph annotated with QoS factors.

Starting from [7], this paper investigates a novel approach

for services selection and ranking taking into account both

behavior specification and QoS preferences. User query and

target process models are represented as graphs, where queries

are annotated with preferences on QoS properties and targets

are annotated with QoS attributes. Preferences are represented

by means of fuzzy sets as they are more suitable to the

interpretation of linguistic terms (such as high or fast) that con-

stitute a convenient way for users to express their preferences.

To avoid empty answers for a query, an appropriate flexible

evaluation strategy based on fuzzy linguistic quantifiers (such

as almost all) is introduced.

In the remainder of this paper, Section II provides some

basic background. Section III describes process model specifi-

cation with preferences. Section IV addresses fuzzy preference

modelling and evaluation. Section V presents our interpretation

of process models similarity based on linguistic quantifiers. In

Section VI, service ranking methods are discussed. Section

VII proposes an illustrative example.

II. BACKGROUND AND RELATED WORK

In this section, we first recall some necessary notions

on preference modelling. Next, we review preference-based

service discovery approaches.

A. Preference Modelling

The semantics of preferences assumed in this work is the

one provided by the databases area: preferences are used

to reduce the amount of information returned as response

to user queries and to avoid the empty answers. Generally,

two families of approaches can be distinguished to model

preferences. The first family gathers approaches that rely on

commensurability assumption which leads to a total pre-order



[8]. The second one comprises approaches that assume that

commensurability does not hold, in this case no compensation

on is allowed between criteria and only a partial order is

obtained [9].

Fuzzy sets were introduced by Zadeh [10] for dealing with

the representation of classes or sets whose boundaries are

not well defined. Then, there is a gradual rather than crisp

transition between the full membership and the full mismatch.

Typical examples of such fuzzy classes are those described

using adjectives of the natural language, such as cheap, fast,

etc. Formally, a fuzzy set F on the universe X is described

by a membership function µF : X → [0, 1], where µF (x)
represents the membership degree of x in F . By definition,

if µF (x) = 0 then the element x does not belong at all to

the fuzzy set F , if µF (x) = 1 then x fully belongs to F .

When 0 < µF (x) < 1, one speaks of partial membership.

The set {x ∈ F |µF (x) > 0} represents the support of F and

the set {x ∈ F |µF (x) = 1} represents its core.

The membership function associated to F is often rep-

resented by a trapezoid (α, β, ϕ, ψ)1, where [α,ψ] is its

support and [β, ϕ] is its core. Among other forms (Gaussian,

sigmoidal, ...), this one is easy to be defined and to manipulate.

B. Preference-based Service Discovery

Most of the first approaches for service discovery using

preferences were based on crisp logic solution and considered

the services as black boxes [5]. With regard to the specification

model, some of them do not deal with preferences [11].

The other approaches does not propose or use preference

constructors to help user better define his/her preferences or

interpret the results [5], [12].

The existing fuzzy approaches [13], [4] take into account

only the satisfiability of preferences whereas they ignore the

structural similarity of web services. In addition, most of them

do not verify the subjectivity property, which considers the

user point of view when defining the membership functions.

Moreover, these works deal only with services as black boxes.

In this paper, user can also define preferences over the activi-

ties of the service behavior specification. We also propose an

approach for service selection where both structural similarity

and preference satisfiability are considered.

III. PREFERENCES IN PROCESS MODEL SPECIFICATION

Many languages are available to describe service process

models, e.g., BPEL4WS and OWL-S. They represent a process

model as a set of atomic activities combined using control

flow structures. As a consequence, these languages can be

abstracted as a direct graph G = (V,E), where the vertices

represent activities (e.g., hotel reservation, shipping user pref-

erences, payment) or control flow nodes (e.g., and, or, etc.),

while the edges represent the flow of execution (e.g, the edge

between the two activity nodes, hotel reservation and payment,

means that these two activities run in a sequential order).

In this work, services are specified as graphs annotated

with QoS properties and user queries are specified as graphs

1In our case, (α, β, ϕ, ψ) is user-defined to ensure the subjectivity.

annotated with preferences. Figure 1 shows an example of a

process model annotated with QoS attributes. The example

presents a global annotation indicating the security of the

process model and activity annotations indicating the response

time, reliability and cost of some activities. Figure 2 shows a

sample user query annotated with a global preference indicat-

ing user prefers services providing RSA encryption and some

activity preferences over reliability, response time and cost.

We do not discuss here the techniques to obtain the QoS

information of a process model. For this, consider the work

in [14]. Next, we present the formal definitions of our model.
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Figure 1. Target Graph t1
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Figure 2. Query Graph q1

Definition 1. An annotation is a pair (m, r), where m is a

QoS attribute obtained from an ontology O and r is a value

for m2. It can be specified over a process model graph (global

annotation) or over an atomic activity (activity annotation).

Definition 2. A preference is an expression that represents a

desire of the user over the QoS attributes of a process model

or activity. It can be of one the following forms3:

2We abstract from the different units in which a value can be described.
3Based on a subset of preferences defined in [15].



• atomic preferences:

– around (m, rdesired, µaround): for attribute m, this ex-

pression favors the value rdesired; otherwise, it favors

those close to rdesired.

– between (m, rlow, rup, µbetween): for attribute m, it

favors the values inside the interval [rlow, rup]; oth-

erwise, it favors the values close to the limits.

– max (m,µmax): for attribute m, it favors the highest

value; otherwise, the closest value to the maximum is

favored. For example, the maximum of availability is

equal by default to 100%.

– min (m,µmin): for attribute m, it favors the lowest

value; otherwise, the closest value to the minimum is

favored, as example: the minimum of response time or

cost is equal by default to 0.

– likes (m, rdesired): for attribute m, it favors the value

rdesired; otherwise, any other value is accepted;

– dislikes (m, rundesired): for attribute m, it favors the

values that are not equal to rundesired; otherwise,

rundesired is accepted;

• complex preferences:

– Pareto preference ⊗ (pi, pj): this expression states that

the two soft preference expressions pi and pj are

equally important;

– Prioritized preference & (pi, pj): this expression states

that the soft preference expression pi is more important

than the soft preference expression pj .

It can be specified over a process model graph (global

preference) or over an atomic activity (activity preference).

IV. A FUZZY MODEL TO EVALUATE PREFERENCES

In this section, we introduce a fuzzy semantics of the atomic

preferences discussed in the previous section, and show how

they can be evaluated. In particular, we propose a metric,

called satisfiability degree (δ), that measures how well a set

of annotations of a target process model satisfies a set of pref-

erences present in the query. As follows, the computation of

this degree is done both for atomic and complex preferences.

A. Atomic Preferences

For numerical atomic preferences (i.e. around, between,

max, min), the satisfiability degree is obtained using the

user-specific membership functions. Table I summarizes the

fuzzy modelling of numerical preferences of interest. Given a

preference p and an annotation a : (m, r), one is interested in

computing the degree to which the annotation a satisfies the

fuzzy characterization underlying p.

For example, consider the constructor between: a fuzzy

preference p : between(m, rlow, rup) is characterized by the

membership function (α, β, ϕ, ψ), where β = rlow; ϕ = rup;

α and ψ are two values from the universe X . Let a : (m, r)
be an annotation of a target graph, the satisfiability degree of

preference p according to a is given by:

• p is completely satisfied iff r ∈ [rlow, rup]: δ (p, a) = 1;

• more r is lower than rlow or higher than rup, less p is

satisfied: 0 < δ (p, a) < 1;

• for r ∈ ]−∞, α]∪[ψ,+∞[, p is not satisfied: δ (p, a) = 0.

For non-numerical atomic preferences (i.e. likes, dislikes),
the satisfiability degree is based on the semantic similarity

between concepts. We applied the widely known semantic

similarity proposed in [16], which states that given an ontology

O and two concepts c1 and c2, the semantic similarity wp be-

tween c1 and c2 is given by wp (O, c1, c2) = 2N3/N1+N2+2N3,

where c3 is the least common super-concept of c1 and c2, N1 is

the length of the path from c1 to c3, N2 is the length of the path

from c2 to c3, and N3 is the length of the path from c3 to the

root of the ontology. Given a non-numerical atomic preference

p and an annotation a, the satisfiability degree δ (p, a) is given

by:

• If p = likes (m, rdesired), then

δ (p, a) =

{

1, rdesired = r

wp(O, rdesired, r), otherwise
• If p = dislikes (m, rundesired), then

δ (p, a) = 1 − δ (likes (m, rundesired) , a)

B. Complex Preferences

To compute the satisfiability degree of complex preferences,

we first construct a preference tree tp that represents the

semantics of a set of complex preferences Sp. In that pref-

erence tree, the nodes represent atomic preferences and the

edges represent a more important than relation (prioritized

preference, denoted by &) from parent to child. Preferences

belonging to the same level and having the same parent express

Pareto preference, denoted by ⊗. Each level i of the tree is

associated with a weight ωi = 1/i except the level 0.

For example, consider the preference tree of q1 in Figure 3.

Preferences p11 is an atomic preference that is not component

of any complex preference. p5 : & (p2, p3) is a complex

preference composed of atomic preferences p2 and p3; it

means that p2 is more important than p3. p7 : ⊗ (p3, p4) is

a complex preference composed of atomic preferences p3 and

p4; it means that p3 and p4 are equally important.

    
             

     
                 

                            

                 

Figure 3. Sample preference tree

Considering that each atomic preference pi has a satisfiabil-

ity degree δi, a new satisfiability degree δ′i is computed taking

into account the weight ωi underlying pi in the spirit of [6].

δ′i is defined4 using the formula (1).

δ′i = max (δi, 1 − ωi) (1)

This new interpretation of pi considers as acceptable any

value outside of its support with the degree 1 − ωi. It means

4We assume here that maxi=1,n wi = 1
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that the larger ωi (i.e., pi is important), the smaller the degree

of acceptability of a value outside the support of pi. At the

end, we have calculated the satisfiability degree of user atomic

preferences considering their constructors and the complex

preferences composing them.

V. PROCESS MODEL SIMILARITY: A LINGUISTIC

QUANTIFIER-BASED METHOD

We describe here a method to compute preference satisfia-

bility between process model graphs. We also discuss a method

to assess the structural similarity between two process model

graphs. Both degrees will be used to rank potential targets

(see Section VI). We precise that this work is not interested

in discovering a mapping between two process models; we

suppose a mapping already exists such that we can compare

matched activities annotations against user preferences. In this

issue, please consider the work in [3] for an algorithm that

returns a mapping between two process models.

To evaluate the structural similarity of two graphs q and t,
we propose to use a graph matching algorithm like in [3]. This

algorithm returns a mapping M and a set E of edit operations

necessary to transform q into t. A mapping between q and t is

a set of pairs (v, w), such that v is an activity of q and w is an

activity of t. The edit operations considered are simple graph

edit operations: node/edge deletion, addition and substitution.

Figure 4 illustrates a mapping between query graph q1 and

target graph t1. Let SS (v, w) denotes the structural similarity

between activities v and w; we use the metric proposed in [3].

Let δ (q1.Sp, t1.Sa) be the satisfiability degree between global

preferences and annotations and let δ (v, w) be the satisfiability

degree between activities v and w (see Section IV).

Set 𝑞1. 𝑆𝑝 of global 

preferences 

Set 𝑡1. 𝑆𝑎  of global 

annotations 

Query graph 𝑞1 Target graph 𝑡1 
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Figure 4. Sample mapping M between query graph q1 and target graph t1

Next, we rely on the linguistic quantifier “almost all” for

the similarity evaluation process. This quantifier is a relaxation

of the universal quantifier “all” and constitutes an appropriate

tool to avoid empty answers since it retrieves elements that

would not be selected when using the quantifier “all”.

A. Preference Satisfiability between Process Models

A natural user interpretation of the similarity between query

and target process models according to user preferences is

given by the truth degree of the following proposition:

γ1: Almost all preferences of q are satisfied by t



The above statement is a fuzzy quantified proposition of the

form “Q X are P ”, where (i) Q is a relative quantifier (e.g.,

almost all, around half, etc.) which is defined by a function

µQ such as µQ (̟) is the degree of truth of “Q X are P ”

when a proportion ̟ of elements of X fully satisfy A and the

other elements being not satisfied; (ii) X is a set of elements;

(iii) P is a fuzzy predicate. In [17], a decomposition method

to compute the truth degree δγ of γ : QX areP is proposed.

The method is a two-step procedure:

• Let Ω = {µ1, . . . , µn} be a set of degrees of elements of

X w.r.t. P , in decreasing order; i.e. µ1 ≥ . . . ≥ µn;

• The truth degree δγ is given by the equation (2), where

µQ (i/n) is a membership degree of the element i/n to Q.

δγ = max
1≤i≤n

min (µi, µQ (i/n)) (2)

In our case, Ω =
{

µ1 : δ
′

1, . . . , µn : δ
′

n

}

is the set of

satisfiability degrees of all atomic preferences (i.e. global

and activity atomic preferences) of query q, where δ
′

i is the

satisfiability degree of atomic preference pi computed by (1).

B. Structural Similarity between Process Models

Similarly, we can apply the technique of fuzzy quantifiers

to obtain a structural similarity degree between two process

models. The structural similarity between a query and target

process models can be given by the truth degree of the

following propositions:

γ2: Almost all the activities of q are mapped with activities

of t, and
γ3: Almost no edit operation is necessary to transform q

into t

The truth degree of proposition γ2 is obtained from the

formula (2), where Ω = {µ1 : SS1, . . . , µn : SSn} is the set

of semantic similarity degrees of all mapped activities of q,

and SSi is the semantic similarity degree of a query activity v
mapped with a target activity w. In the case of the proposition

γ3, the expression "almost no edit operation is necessary to

transform q into t" is equivalent to the expression "almost

all edit operations are not necessary to transform q into t".

Therefore, its truth degree is computed as follows:

δγ = max
1≤i≤n

min (1 − µi, 1 − µQ (i/n)) (3)

In this case, Ω = {µ1 : C1, ..., µn : Cn} is the set of

transformation costs of mapped target activities with the

corresponding activities of q, and Ci is the transformation cost

of a target activity w into a query activity v. So, the structural

similarity between q and t is evaluated as follows:

SS = min (δγ2
, δγ3

) (4)

In our approach, we consider particularly the formulae (2)

and (3), where µQ (i/n) = i/n. Thus, the meaning of delivered

degrees has a simple and clear semantics for the user [18]. For

instance, the evaluation of γ1, γ2 and γ3 means that:

"At least δ∗γ1
% of preferences of q are satisfied by t to at least

a degree of δγ1
, at least δ∗γ2

% of the activities of q are mapped

with t to at least a degree of δγ2
, and at least δ∗γ3

% of q’s

structure does not need edit operation to transform q into t to

at least a degree of δγ3
" (where δ∗γi

= 100 × δγi
).

VI. PROCESS MODEL RANKING

Previous section presented a fuzzy set-based approach to

compute the similarity between one query and one target

graph. In this section, given a set of target graphs that are

relevant to the query, we discuss some methods to rank-

order these graphs according to their structural and preference

similarities. Let δ (q, t,M) be the satisfiability degree between

query graph q and target graph t according to a mapping

M . Similarly, let SS (q, t,M,E) be the structural similarity

between q and t according to a mapping M and a set E of edit

operations. We classify ranking methods into two categories:

Ranking Methods based on Aggregation : In this first

category, ranking methods aggregate both structural and pref-

erence similarities into a unique degree used to rank-order the

target graphs. Two kind of aggregations are considered:

Weighted Average-Based Aggregation:

rank (q, t) = ωSS ×SS (q, t,M,E)+(1 − ωSS)×δ (q, t,M)
where 0 < ωSS < 1 is a weight assigned to the structural

similarity criterion.

Min-Combination Based Aggregation:

rank (q, t) = min (SS (q, t,M,E) , δ (q, t,M))
Ranking Method without Aggregation : The answers are

ranked by using the lexicographic order. A priority is given

to the structural similarity while the preference similarity is

only used to break ties.

VII. ILLUSTRATIVE EXAMPLE

We give here an example of service discovery for query q1
of Figure 2. We consider a set {t1, . . . , t5} of five potential an-

swers to q1 retrieved by a matchmaking algorithm as discussed

in Section V. First, we compute the preference satisfiability

between q1 and the potential target graphs (see Section V-A).

Next, we compute the structural similarity between q1 and the

potential targets (see Section V-B). Then, we apply the ranking

methods described in Section VI. To illustrate, we evaluate the

preference satisfiability and structural similarity between q1
and target t1 of Figure 1. We consider the mapping between

them as depicted in Figure 4.

Preferences Satisfiability. First, the satisfiability degree δ′i
of each preference pi of q1 is calculated. For instance, the

satisfiability degree δ2 = δ (p2, a2) between preference p2

and annotation a2 is obtained by function µmax [reliability].
According to equation (1) and the generated preference tree

(Figure 3), the new interpretation of the satisfiability degrees

is presented as δ′i. Depending on the membership function

defined for each preference of q1 and its weight providing

by preference tree of Figure 3, satisfiability degrees between

query preferences and target annotations are as follows:

δ′1 = δ′2 = δ′8 = δ′11 = 1, δ′3 = δ′4 = δ′13 = 0.5,

δ′9 = 0.9 and δ′12 = 0.75 . Second, we apply the truth

degree described in Section V-A to obtain the global satis-

fiability degree between q1 and t1, as follows: δγ1
(q1, t1)



Table II
STRUCTURAL SIMILARITY AND PREFERENCE SATISFIABILITY DEGREES

Table III
RANKING OF TARGET GRAPHS

= max(min(1, µQ (1/9)),...,min(0.5, µQ (9/9))) = 0.67. This

means that at least 67% of preferences of q1 are satisfied by

t1 to at least a degree 0.67.

Structural Similarity. Assume now that the structural

similarities between activities are given by SS (A,A′) = 0.72,

SS (B,B′) = 0.85 and SS (C,C ′) = 0.66, and the costs of

transformation of target activities are C (start) = C (end) =
C (A′) = 0, C (AND − split) = 0.1, C (B′) = C (C ′) =
0.2, C (D′) = 0.4, C (AND − join) = 0.1. In a similar

way, the structural similarity degree between q1 and t1 is

obtained as δγ2
(q1, t1) = 0.66 and δγ3

(q1, t1) = 0.75. Now,

SS (q, t,M,E)=min (δγ2
, δγ3

) = 0.66, which means that at

least 66% of query activities are mapped to at least a degree

0.66 and at most 66% of target activities have transformation

cost to at most 0.66.

Ranking. Consider the preference satisfiability and struc-

tural similarity degrees of each potential target presented in

Table II. Table III summarizes the results of the different

ranking methods discussed in Section VI (where ωSS = 0.75).

The lexicographic order ensures that the first in the ordered

list is that having the best structural similarity and, in case of

ties, that having the best preference satisfiability. For example

t3 is better than all the other target graphs because its structural

similarity is the greatest value. However, a drawback of this

method is that the rank can be too drastic, as for the case of

t5 : (0.78, 0.21) and t6 : (0.68, 0.72). In a such case, the idea

of a weighted average is more suitable since it allows for a

compensation. Now, with the weighted average t6 is better than

t5 but generally it does not provide a clear semantics of the

induced order. Finally, the min-combination method relies on

the worst satisfiability for each service and does not highlight

the structural similarity versus the preference satisfiability. The

weighted min-combination can overcome the above limitation.

VIII. CONCLUSION

In this paper, we have proposed an approach for web

service selection and ranking. In our approach, the evaluation

process takes into account two aspects: (i) structural simi-

larity, and (ii) preference satisfiability. User preferences are

modelled with fuzzy predicates. Both preference satisfiability

and structural similarity are interpreted thanks to linguistic

quantifiers. This makes the matchmaking process more flexible

and realistic. Some ranking methods have been proposed as

well. We are currently working on a prototype system to

evaluate our approach by conducting some experiments.
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