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Abstract 
 

Considerable developments and improvements have been made in the field of automated crack detec-
tion and classification in the last few years. Digital image processing techniques for crack extraction 
are already widely implemented on large highway maintenance projects. In these projects, automated 
digital analysis of pavement crack images is mainly applied. Obviously, no standard scenario of digi-
tal image processing algorithms for crack extraction and classification identified in the literature is 
guaranteed to obtain desired results in all crack pavement images cases. Previously, several image 
processing algorithms for crack detection suffered from various drawbacks in crack detection and 
classification. A critical shortcoming is that some extrinsic objects, such as lane markings, sidewalks, 
and railways will be falsely identified individually as crack detection regions. In addition, human 
intervention is required to some extent. Moreover, some complex types of cracks, such as block 
types, are particularly difficult to detect. The development of a four-stage approach in this thesis 
overcomes these weaknesses by developing a new approach that combines and modifies currently 
existing digital image processing techniques.  For the preparation stages, a combination of different 
morphological operation techniques is employed to correct background illumination. An automatic 
local adaptive thresholding algorithm is also realized to distinguish between extrinsic objects and 
pavement cracks.  

 
For the third crack connection stage, an automatic fusion approach is established. This fusion ap-
proach is based on a hole-filling algorithm, including the dilation process several times, as well as 
the connected component algorithm. Furthermore, a complete description is given regarding the 
different advantages of this integration approach, including filling crack holes, retrieving crack con-
nectivity, as well as reducing noise and distortion of geometrical size and shape of any remaining 
extrinsic objects. Local automatic analysis is also carried out through this fusion approach, which 
ignores several extrinsic objects and facilitates crack extraction only. 

 
For the fourth crack extraction and classification stage, an automatic integration approach is imple-
mented. This integration approach is based on the contouring algorithm, the modified binary mask 
detection algorithm, and the modified classification algorithm. Specifically, this integration approach 
can automatically extract cracks, determine their severity levels, identify their characteristics, and 
classify them into different types with a high rate of correctness. This overall fully automatic fusion 
approach significantly outperforms previous state-of-the-art algorithms. In addition, it introduces a 
new method for distinguishing block crack type that several previous algorithms have not been able 
to detect. To obtain a better understanding of the terms of mobile mapping systems theory and digital 
image processing techniques, a brief introduction is presented on these topics. 

 
Seven real case studies with various scene pavement images from different countries were tested in 
order to demonstrate the generalizability, efficiency, and improvement achieved with the automation. 
In addition, the developed algorithms are able to extract and classify cracks either from individual 
images or geo-referenced continuous images (i.e. mobile mapping data). The overall algorithm is 
used for testing real pavement crack images. Performance is checked by comparing the results with 
three well-known previous crack detection algorithms. Within the tests, four case studies contain 96, 
94, 95, and 96 images, respectively, which were obtained by LEHMANN + PARTNER GmbH 
Company in Germany. The images of these four case studies have a resolution of 1920 x 1080 pixels. 
These images contain different types of cracks, lane markings, and lighting conditions. The devel-
oped algorithm delivers an average computation time of 3.8 min and the correctness detection rate for 
the images is 98.9% to complete crack detection and classification. In addition, one case study con-
tains 336 different continuous crack images, which were captured by 3D Mapping Solutions GmbH 
Company in Germany too. The images of this case study have different resolutions with numerous 
extrinsic objects, such as railways, sidewalks, oil spots, and shadows. The developed algorithm ex-
hibits a correctness detection rate for the images of 100% in 16.2 min processing time, and detects 
and classifies the cracks on around 336 continuous mobile mapping images.  
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Another two case studies contain two images of a circular street, and 200 images of King Fahd 
Street, respectively, and were collected by Unicom-Umap Company in Saudi Arabia. The images of 
these two case studies have a resolution of 2058 x 2456 pixels. These images contain different types 
of cracks, different extrinsic objects, and other pavement textures (different from the abovemen-
tioned German case studies). The developed algorithm delivers an average computation time of 15.6 
min, and the correctness detection rate for the images is 100% to complete crack detection and classi-
fication. 
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Zusammenfassung 
 

In den letzten Jahren wurden beträchtliche Entwicklungen und Verbesserungen im Bereich der auto-
matischen Risserkennung und -klassifizierung gemacht. Digitale Bildverarbeitungsmethoden zur 
Risserkennung werden in großen Projekten zur Wartung von Fernverkehrsstraßen schon weitgehend 
eingesetzt. In diesen Projekten wird hauptsächlich eine automatische digitale Analyse von Bildern mit 
Fahrbahnrissen durchgeführt. Allerdings führt keines der in der Literatur beschriebenen Standardsze-
narien für Bildverarbeitungsalgorithmen zur Risserkennung und -klassifizierung für jegliche Art von 
Fahrbahnrissen in allen Fällen zum gewünschten Ergebnis. Bisher wiesen einige Bildverarbeitungsal-
gorithmen zur Risserkennung bei der Ermittlung und der Klassifizierung der Risse entscheidende 
Nachteile auf. Als besonders kritisch ist die Tatsache zu bewerten, dass andere Objekte auf der Fahr-
bahn, wie etwa Straßenbahnmarkierungen, Bordsteine oder Schienen, fälschlicherweise ebenfalls als 
Rissbereiche identifiziert werden. Außerdem ist bis zu einem gewissen Umfang eine manuelle Nach-
bearbeitung erforderlich. Darüber hinaus sind einige der komplexeren Rissarten (z.B. netzartige Risse) 
besonders schwer zu detektieren. Der in dieser Arbeit entwickelte vierstufige Ansatz überwindet diese 
Schwachpunkte, indem er einige der bisher für die digitale Bildverarbeitung verwendeten Methoden in 
einem neuen Ansatz modifiziert und miteinander kombiniert. 
 
In der Vorbereitungsphase werden zunächst verschiedene morphologische Bearbeitungsmethoden 
kombiniert, um die variable Hintergrundbeleuchtung zu korrigieren. Außerdem wird ein automatischer 
lokaler adaptiver Schwellwertalgorithmus eingesetzt, um zwischen Fahrbahnrissen und Fremdobjekten 
unterscheiden zu können.  
 
Im dritten Schritt, der Verknüpfung der Risse, wird ein automatischer Verbindungsansatz eingeführt. 
Dieser zusammenfügende Ansatz basiert auf einem lückenfüllenden Algorithmus, in dem neben einem 
mehrfach ausgeführten Dilatationsprozess auch ein Algorithmus zur Detektion von zusammenhängen-
den Rissflächen zum Einsatz kommt. Darüber hinaus werden die verschiedenen Vorteile dieses Inte-
grationsansatzes detailliert beschrieben, wie zum Beispiel das Füllen von Lücken in den Rissdaten, die 
Bestimmung der Konnektivität der Risse sowie die Reduktion des Rauschens und eine Verzerrung der 
geometrischen Form und Größe bei eventuell verbliebenen Fremdobjekten. Außerdem wird durch 
diesen Verbindungsansatz eine automatische lokale Analyse durchgeführt, die verschiedene Fremdob-
jekte ignoriert und lediglich die eigentliche Risserfassung unterstützt.  
 
Während des vierten Schritts, in dem die Risse erkannt und klassifiziert werden, wird ein automati-
scher Integrationsansatz ausgeführt. Dieser Integrationsansatz basiert auf dem Konturerkennungsalgo-
rithmus, einem modifiziertem Erkennungsalgorithmus mittels binärer Maske und einem modifizierten 
Klassifizierungsalgorithmus. Dieser Integrationsansatz kann automatisch Risse extrahieren, wobei der 
jeweilige Schädigungsgrad und die Charakteristika eines Risses bestimmt werden und die Risse mit 
einer hohen Korrektheitsrate in die zutreffende Typ-Kategorie eingeordnet werden. Dieser allgemein-
gültige, vollautomatische und gekoppelte Ansatz übertrifft bei Weitem die bisher angewandten Algo-
rithmen. Zudem führt er eine neue Methode ein, mit der auch Netzrisse detektiert werden können.  Das 
ist bei vielen der gegenwärtig angewendeten Algorithmen nicht möglich. Um einen genaueren Über-
blick über die im Bereich Mobile Mapping Systeme und digitale Bildverarbeitungsmethoden verwen-
deten Begriffe zu bekommen, wird dazu ein kurzer Überblick gegeben.  
 
Es wurden sieben Fallstudien mit verschiedenartigen Fahrbahnbildern aus unterschiedlichen Ländern 
untersucht, um die Allgemeingültigkeit, die Effizienz und die Verbesserung, die durch die Automati-
sierung erreicht werden, zu demonstrieren. Darüber hinaus kann die hier entwickelte Methode zur 
Extrahierung und Klassifizierung der Risse sowohl bei Einzelbildern als auch bei georeferenzierten, 
kontinuierlichen Bildfolgen (z.B. für Mobile-Mapping-Daten) angewendet werden. Der Gesamtalgo-
rithmus wird mit realen Fahrbahnriss-Bildern getestet. Die dabei erhaltenen Ergebnisse werden mit 
den Ergebnissen von drei bekannten Risserkennungsalgorithmen bezüglich Leistungsfähigkeit ver-
glichen. Zunächst werden dazu vier Fallstudien, die jeweils aus 96, 94, 95 und 96 Bildern bestehen, 
ausgewertet. Diese Bilder wurden von LEHMANN + PARTNER GmbH (Deutschland) zur Verfügung 
gestellt. Die Bilder aus diesen Fallstudien haben eine Auflösung von 1920 x 1080 Pixeln. Sie zeigen 
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verschiedene Arten von Rissen, Fahrbahnmarkierungen und unterschiedliche Beleuchtungsbedingun-
gen. Der entwickelte Ansatz erreicht für die Risserkennung und -klassifizierung eine durchschnittliche 
Verarbeitungszeit von 3,8 Minuten und eine Korrektheitsrate von 98.9%. Eine weitere Fallstudie mit 
336 kontinuierlich aufeinanderfolgenden Riss-Bildern wurde von der 3D Mapping Solutions GmbH 
(Deutschland) aufgenommen. In dieser Fallstudie haben die Bilder verschiedene Auflösungen und 
enthalten zahlreiche Fremdobjekte, wie z.B. Schienen, Bordsteine, Ölflecken und Schatten. Der neu 
entwickelte Algorithmus weist bei einer Verarbeitungszeitzeit von 16,2 Minuten für die Risserken-
nung eine Korrektheitsrate von 100 % auf und erkennt und klassifiziert die Risse auf den 336 Mobile-
Mapping-Bildern. 
 
Zwei zusätzliche Fallstudien wurden von der Unicom-Umap Company (Saudi-Arabien) zur Verfügung 
gestellt und enthalten zum einen zwei Bilder einer Ringstraße, zum anderen 200 Bilder der King Fahd 
Straße. In diesen beiden Fallstudien haben die einzelnen Bilder eine Auflösung von 2058 x 2456 Pi-
xeln. Diese Fotos enthalten ebenfalls verschiedenartige Risse, unterschiedliche Fremdobjekte und 
Fahrbahnstrukturen, wobei sich letztere von den zuvor erwähnten deutschen Fallstudien unterscheiden. 
Der neu entwickelte Algorithmus liefert bei einer Verarbeitungszeit von 15,6 Minuten eine Korrekt-
heitsrate von 100 % für die Erkennung und Klassifizierung aller Risse. 
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1 Introduction 

1.1 Motivation 

In recent years, crack extraction and classification of actual pavement sections has constituted one 
of the central subjects in highway transportation applications. Crack detection is a critical aspect of 
pavement maintenance. It enables knowledge about real pavement cracks in terms of their shapes 
and types, and informs about optimal maintenance decisions. Therefore, crack detection data ar-
chiving and recording is currently widely performed due to a huge increase in traffic volume on 
roads, differences in weather conditions, and poor asphalt materials. As the Army Construction 
Engineering Research Laboratory (USACERL), USA, notes (SHAHIN/WALTHER 1990), “More than 
560 million square yards of actual pavement sections largely require a methodical objective proce-
dure of determining existing cracks for maintenance priorities and rehabilitation (M&R) strategies”. 
It is clear that crack detection for all pavement sections of all countries should be performed and 
made easily attainable from the asset manager’s perspective. However, many challenges exist in 
crack detection and classification plans associated with executed data acquisition methodologies, 
data arrangement and archiving, data analysis, and data verification objectives. Thus, a complete 
systematic procedure for crack extraction and classification is urgently needed (SHAHIN 2002). 
 
To achieve an effective transportation system, roads have to be well maintained. However, roads in 
most countries, such as Germany, Jordan, and the Kingdom of Saudi Arabia usually exhibit cracks 
due to temperature deviations, traffic, etc. Most of these countries' streets need a systematic mainte-
nance procedure based on existing cracks. Pavement crack detection and classification is essential 
to nearly all aspects of pavement engineering. It is a critical process for roadway agencies to ac-
complish the tasks of pavement evaluation, performance measurement, maintenance, rehabilitation, 
and reconstruction of the pavement structure. Network-level pavement management systems require 
accurate crack data to support sound conclusions regarding where and when to invest in highway 
maintenance, rehabilitation, and construction. At the project level, crack data is critical to correctly 
diagnose the causes of pavement deterioration, and therefore is used to select the most appropriate 
remedial measures.  
 
There have been rapid technological advances in pavement cracking surveys for both data acquisi-
tion and data interpretation in the past few years. Although the objective advantages of automated 
data collection and processing for pavement distress surveys are attractive, many agencies are reluc-
tant to adopt these new technologies, because the data quality is perceived to be relatively low. 
However, there has been a slow, but growing trend in which more agencies are beginning to realize 
that as long as a proper balance between data quality and full automation is achieved, the level of 
error in automation is acceptable.  
 
Manual and automatic are two fundamental techniques utilized to detect pavement crack objects 
(SHAHIN/WALTER 1990). The collection of cracks and their characteristics can be performed with 
both techniques.  However, due to the specific demands of different maintenance plans and the dif-
ferent properties of both techniques, automatic crack detection technologies are preferable to manu-
al ones. The automated crack detection method is performed with an automatic mobile mapping 
system, which captures continuous images for pavement crack sections. A few novel mobile map-
ping systems (commercial systems) provide crack information, such as type, length, and width by 
using digital image processing and analysis techniques. Since the resolution and precision of the 
detected cracks are based on the image scale, the latter can be selected easily according to the appli-
cation needs. However, crack detection using digital image processing and analysis techniques is 
limited due to crack segmentation problems and limited crack classification criteria. Thus, small 
cracks might not be sufficiently detected. Therefore, by using high resolution pavement images 
acquired at a short distance in combination with durable digital image processing and analysis tech-
niques, small cracks can be correctly identified with high correctness rate. Due to the robust suitable 
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image processing approach for each crack detection stage, crack information, its severity levels, and 
its characteristics are determined, which can be beneficial for maintenance goals and rehabilitation 
(M&R) strategies. A drawback of crack detection algorithms is that they sometimes encounter prob-
lems due to the irregularities of crack shapes. Typically, these drawbacks are solved by utilizing 
robust digital image enhancement, thresholding, and crack connection stages, which typically help 
in order to omit extrinsic objects, and extract and classify different crack shapes efficiently. 
 
Automated road crack data acquisition mobile mapping systems could, thus, constitute a viable tool 
in pavement maintenance management systems to overcome some of the previously mentioned 
deficiencies. The automation of algorithms could offer numerous advantages for different countries, 
some of which may include practicality, capabilities of follow-up, easy-to-use digital functions, and 
documentation possibilities, planning, monitoring, and management. This automated system will 
identify and analyse factors that have a profound effect on pavement maintenance management 
systems. Moreover, it will be able to recommend improvements and suitable engineering guidelines 
within a particular management framework in order to achieve substantial improvement and pre-
dictability.  
 
Various state-of-the-art digital image processing algorithms are modified and integrated as tools for 
crack processes. This enables crack extraction, which is automatically recorded to the archiving 
datasets. However, there are significant limitations due to natural pavement images and the crack 
shapes themselves. These limitations are as follows. At first, no theory of crack segmentation exist-
ed, since the segmentation of cracks from pavement images is not a straightforward process. This is 
considered as a case that is dependent on the available datasets. In addition, extraction and analyz-
ing cracks for numerous kilometres of pavement sections requires an automated thresholding-
setting algorithm rather than a fixed threshold algorithm. The former must be able to set threshold 
levels for each image, separating only the cracks from the remaining image, and take variations in 
pavement textures into account. On the other hand, the latter algorithm is mainly defined by setting 
a fixed global threshold for the entire section. Moreover, in most pavement image cases, noise, such 
as black fan belts and black rubber hoses, poses another common problem. This might be caused by 
the texture of the pavement surface and the pavement surface roughness. These conditions can gen-
erate shadows and small surface holes which can collect oil and other debris. Some of these oil 
spots’ pixel regions have the same intensity values as crack pixel regions, which will increase the 
difficulty of the segmentation process. Sequentially extrinsic objects, such as lane markings, side-
walks, railways, shadows, different illumination conditions, and occlusions (e.g. buildings, trees, 
traffic loops) lead to greater post-processing efforts for pavement images. However, with the con-
stantly evolving post-processing algorithms and computation software, these extrinsic objects are 
more able to be excluded.  
 
It has become more evident that only one individual digital image processing crack detection algo-
rithm is insufficient to guarantee desired results, particularly in cases of complex compound cracks 
and different pavement textures. Many authors have already suggested several digital image pro-
cessing algorithms for crack detection and classification. As MICHAEL (1992) states: “A large num-
ber of image processing algorithms have been designed for analyzing video images. This is the 
heart of the problem: there are literally thousands of algorithms available, but many are not suited 
for one reason or the other. Algorithm selection for image processing system design is still very 
much an art and not a science. The system tends to be highly nonlinear, and so simply reversing the 
order in which two processes are applied can drastically change the outcome (the analyzed output). 
Furthermore, each algorithm tends to have a ‘magic number’ or two parameter values which must 
be set (such as gain, window size, etc.), and varying these can also change the outcome. Further-
more, varying the parameters of one processing step can change the effectiveness of the settings of 
a different processing stage (again, because of the nonlinearities involved). We are looking at the 
order of 50 such processing steps, all interacting with one another in highly nonlinear and unpre-
dictable ways. Algorithm selection is therefore a formidable obstacle". From this perspective, dif-
ferent digital image processing crack detection algorithms have been attempted. 
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It is obvious that not only one scenario of digital image processing algorithm for crack extraction 
and classification can be applied. Consequently, in order to realize results that are improved relative 
to previous algorithms, a new combination and modification approach of digital image processing 
techniques for crack extraction and classification is proposed in this thesis. Specifically, it utilizes 
an improved image created from the original image in order to simplify the extraction of cracks by 
using algorithms of preparation stages for the cracks’ extraction. In this thesis, the overall algorithm 
for crack extraction and classification is introduced in order to classify cracks into different catego-
ries. This integration approach can automatically extract cracks and their characteristics with a high 
rate of correctness. In addition, this developed algorithm achieves an increase in automation in or-
der to meet the requirements of end-users. Finally, it represents an automatic solution for different 
shortcomings in previous crack extraction and classification algorithms. 

1.2 Objectives 

The main objective of the thesis is to develop an overall digital image processing algorithm in order 
to extract and classify cracks automatically, in addition to determine severity levels from continu-
ous geo-referenced pavement images. In particular, this overall algorithm will support highway 
maintenance applications by determining crack characteristics and including location data record-
ing. This is accomplished by generating comprehensive database attribute structures for cracks’ 
distribution. Therefore, the overall method aims at complementing shortcomings in former crack 
detection algorithms. In addition to improve both the extraction and the classification of the cracks, 
this overall algorithm addresses critical areas that need to be inspected deeply, such as solving the 
automated thresholding-setting algorithm problem to avoid detection errors for many kilometres of 
pavement sections, analyzing noise regions at higher correctness rates, and generating standard 
rules based on cracks’ geometrical size and shape. This approach must be able to be successfully 
applied in real environments. To achieve this, several preparation stages have been introduced in 
order to improve the cracks’ original image. Then, an automatic fusion of digital image processing 
algorithms through certain steps can be followed. This also provides a direct solution for distin-
guishing between cracks and other extrinsic objects, such as lane markings and sidewalks, and es-
pecially in cases of images acquired in different lighting conditions or having different pavement 
textures or shadows. Furthermore, within this thesis, an implicit determination of cracks’ type and 
their severity levels is proposed. 
 
In addition, this thesis will take advantage of the availability of crack types, their severity levels, 
and characteristics in the form of dataset structures by recoding this information not only for archiv-
ing and preservation purposes, but also for maintenance, rehabilitation, restoration, and reconstruc-
tion. 
 
Given the above, the following main contributions are achieved in this thesis: 
 

• Generating improved images from original crack images by combining different morphological 
operation techniques. The advantage of this combination is that the pavement image background 
illumination is corrected and converted to standardized uniform background lighting conditions 
automatically. This operation plays a key role to provide accurate required information for the next 
thresholding stage. 
 

• Developing an automatic robust local adaptive (dynamic) thresholding algorithm for separating 
image pixels into classes based on the dynamic automatic window size selection algorithm and au-
tomatic contrast determination. The automatic window size selection algorithm takes the length and 
width of the crack object region into consideration, while the automatic contrast determination algo-
rithm is based on the quality of the pavement image foreground and the type of pavement image 
background. Thus, this leads directly to taking advantage of the determined suitable threshold re-
sults in having a suitable window size in relation to the contrast within the pavement image and 
retrieving more crack details without loss of its local properties. This holds true especially in the 
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case of existing extrinsic objects, such as lane markings, sidewalks and railways, by changing their 
pixel intensities to become background pixels during the robust automatic threshold stage. 
 

• Presenting a fully automatic fusion approach for the post-processing stage based on a hole-filling 
algorithm that includes several dilation processes and labelling a connected components algorithm 
by means of a colouring scheme. This integration approach can fill crack holes, retrieve crack con-
nectivity, reduce noise, and display a coloured indicator for each crack region. This is particularly 
useful in cases of noisy pavement images that are occupied partially by lane markings, sidewalks, 
railways, different lighting conditions, shadows, and other extrinsic objects. In addition to improv-
ing crack connectivity and hole-filling, the distortion of geometrical size and shape of any remain-
ing extrinsic objects can be successfully addressed by this fusion approach. Furthermore, any com-
mon denominators, such as linear geometrical shapes between these extrinsic object regions and 
crack regions, are removed with this integration approach. Thus, this fusion post-processing ap-
proach for crack detection applications can facilitate accurate crack extraction and classification, in 
which several linear extrinsic objects can be ignored. 
 

• Presenting and developing an automatic integration approach for the crack detection stage based on 
the contouring algorithm, the modified binary mask detection algorithm and the modified classifica-
tion algorithm. This combination approach can automatically specify the exact location of cracks in 
the original image, modify binary ellipse mask detection based on geometrical size and shape for 
cracks’ region, extract cracks, determine their severity level and characteristics, and then classify it 
them into different types. The advantage of generating a modified binary ellipse mask is that an 
implicit determination for corrected crack regions can be successfully achieved without any noise 
regions. This latter mask holds in several cases of noisy pavement images, including partial lane 
markings, sidewalks, railways, different lighting conditions, shadows, and other extrinsic objects 
that are considered as major obstacles in several previous algorithms. In addition, to improve the 
crack extraction process, the drawback of complex compound crack classification, such as the block 
crack type, can be solved by the modified classification algorithm. This latter algorithm enables 
determination of whether the available crack is the main crack or a branch of a block crack type, 
which provides very good a priori knowledge for perfect classification by means of crack orienta-
tion angle and number of crack branches. Moreover, the overall algorithm enables extracting and 
classifying cracks and their severity levels from continuous geo-referenced images. Overall, the 
algorithm significantly outperforms previous algorithms.  
 

• Introducing an overall fully automatic fusion method based on integration and modification of 
existing digital image processing techniques for crack extraction and classification, which are used 
to detect cracks under different pavement textures and different lighting conditions. 

1.3 Thesis Outline 

This dissertation is organized into seven chapters that offer a description of the overall approaches 
and the utilized tests. Chapter 1 presents the background and the motivation of this research, the 
objectives of the study, and the thesis organization. Chapter 2 briefly reviews flexible pavement 
distress types and previous algorithms’ techniques for extracting and classifying cracks and their 
corresponding shortcomings. Particularly, an overview of the most widely used algorithms and 
already obtained results are specified, with special attention being paid to the weaknesses of these 
methods. 
 
 
The fusion algorithm of the preparation stages for crack detection from pavement images is pre-
sented in Chapter 3. The aim is to create improved images with a limited amount of noise and ex-
trinsic objects. In Chapter 4, details about the modified integration algorithms are given starting 
with two algorithms for extracting crack regions exactly and deleting noise regions absolutely using 
modified binary ellipse detection masks. These provide precise crack characteristic information for 



  13 

each crack region. Then, a modified classification approach based on crack orientation angle and 
number of crack branches is described.  Furthermore, experimental results are given using an actual 
case study to prove the efficiency of the presented approaches. In addition, algorithm advantages 
and drawbacks are presented in chapter 5.  
 
Chapter 6 presents a selection of various case studies from different countries with different pave-
ment textures and different illumination conditions. In addition, this chapter presents the mobile 
mapping systems that have been used for data acquisition, the algorithm methodologies that have 
been utilized, the shortcomings that have been solved, and the obtained results that are compared 
with previous algorithms. Finally, Chapter 7 summarizes the major contributions achieved, presents 
conclusions, and proposes several directions for future research.  
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2 Crack Detection and Classification - An Overview 
The need for crack detection and classification is continuously increasing. Crack detection has become 
financially manageable in diverse fields and applications, such as pavement evaluation, performance 
measurement, maintenance, and rehabilitation. Specifically, crack detection and classification remain 
desired for network-level pavement management systems. The requirements are mainly specified for 
several applications, recording, capabilities of follow-up, highway documentation possibility, archiv-
ing, and updating. Under these requirements, the approach for crack detection and classification com-
prises some well-known steps: introduction to different types of flexible pavement distresses, data 
distress acquisition methods, and distress data analysis, including digital image processing, image 
interpretation, related algorithms, and an overview of binarization methods. In this chapter, an over-
view of the most relevant methods to solve the tasks in this thesis is given from different viewpoints.   

2.1 Introduction to Different Types of Flexible Pavement Distress 

2.1.1 Distress Types 

Generally, large structures, such as pavements or skyscrapers, are constructed with sensitive materials. 
These materials exhibit distress after construction because of loading, environmental conditions, and 
aging. The distresses are presented in the form of surface cracking in most situations. The focus of this 
thesis is on one of these structures, asphalt pavement. In this section, the leading types of pavement 
distress are described in detail. Moreover, the central typical indicators associated with each type of 
pavement distress are given. The definitions comply with those found in German regulations of the 
Road State Determination Manual (FGSV 2006). 
 

a. Cracking is defined as an individual (single) crack or a network of cracks (Block type) or 
a crack accumulation. Individual (single) cracks may be distributed in several directions as 
either vertically, horizontally, or transversely. In a network cracks are connected to one an-
other, similar to a net, with the size being diverse. A network of cracks is classified as a 
block type. Open and sealed cracks are equally considered. The indicator for crack detec-
tion is represented by the area of the cracking region. If there is a problematic distinction 
between network cracks, crack-accumulations and individual (single) cracks for the same 
feature, it will be considered an individual (single) crack. Figure 2.1 illustrates the types of 
cracking. 
 

 
 
 
 

 
 

 

 

 

 

 
Figure 2.1: Cracking (FGSV 2006). 

 
b. Patching is an area of damaged road surface that is restored by repairing. The indicator  

for patching is represented by the area of the patching region. Full-surface layer repairs 
over the entire lane width, with a total length of more than 20 m, are not considered patch-
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es. There are two types of repairs for patching, either laid-on patching or pickled patch-
ing\excavation:  

1. Laid-on patching: This is defined as an opposite part to the road surface area. It is thin, 
not flat, and higher than the surrounding road area. 
 

2. Pickled patch/excavation: This is defined as a part of the surface restored by roadway 
construction. Its surface is infinitely adjusted in height equal to the level of other road 
surfaces (be-laid layer). Figure 2.2 illustrates patching. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2: Patching (FGSV 2006). 

 
c. Out-Breaks (Potholes) are the detachment of the road surface parts due to traffic, weather, 

etc. The indicator for out-breaks is represented by the area of the pothole region. Figure 2.3 
illustrates out-breaks. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Out-breaks (potholes) (FGSV 2006) 
 

d. Open Work Seams are defined as a fine, not connected gap between two asphalt layers. 
The indicator for open work seams is represented by the sum of length [m]. The affected 
length by open labour seams is calculated. A problematic distinction exists between indi-
vidual (single) cracks, network cracks, crack accumulation and open work seams. Open 
work seams are usually straightforward. They occur in the longitudinal direction due to the 
limited width of the paver during the installation of the roads. At the same time, open work 
seams may occur in the transverse direction due to different asphalt layer installation. 
Therefore, the separation is based on the observer. Figure 2.4 illustrates open work seams. 
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Figure 2.4: Open work seams (FGSV 2006). 
 

e. Binder Enrichment is the escape of bituminous binder on the road surface. The indicator 
for binder enrichment is represented by the area of the binder enrichment region. Figure 2.5 
illustrates binder enrichment. 
 

  
   
 
      
 
 
 
 
 

 
Figure 2.5: Binder enrichment (FGSV 2006). 

 
The framework of this thesis is constrained to extract and classify cracking types, their severity levels, 
and their characteristics only. This is done due to their correspondence to the types of distress on the 
available datasets of pavement images in this thesis.  
 
2.1.2 Severity Levels 

The severity level for a distress is a ranking index that divides the condition of distress into three types 
based on different ranking criterions. The three types of severity levels can be categorized into low, 
medium and high, based on the observer. Studies in distress detection procedures (SHAHIN 2002) have 
confirmed several indicators for detection. Table 2.1 displays the overall indicator regarding each type 
of distress. The general factors that control the severity level of several cracks are (SHAHIN/WALTER 
1990):   

1. Width of cracks, 
2. The status of a crack; if it is filled or not, 
3. Presence of random cracks around the main crack region, 
4. The situation and appearance of the area around the crack itself, 
5. Depth and diameter are considered as control factors in the case of evaluating pothole severi-

ties only. 

Severity levels are evaluated based on several factors, as mentioned above. All of these factors are 
based on the observer’s evaluation (non-automatic way). There are no standard specifications and no 
standard methods for controlling the severity level. Every road authority has its own method and own 
specifications based on the country and available data sets (SHAHIN 2002). For example, in the U.S. 
there are specification guides for the severity level evaluation on pavement maintenance management, 
for roads and streets, using the PAVER System Manual (SHAHIN 2002). On the contrary, in Germany, 
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severity level assessment and evaluation is determined by state value ZG and the normalized state 
value ZW (FGSV 2006). 
 

Table 2.1: Indicators for distresses detection 

State value ZG is defined as a quantitative expression of state parameter described by state attributes 
(e.g., rut depth at 2 m bar or in % unit in the case of cracking and patching). Table 2.2 shows scaling 
parameters for motorways and federal highways outside of town-asphalt construction. Table 2.3 illus-
trates scaling parameters for federal highways inside of town-asphalt construction.  
  
The normalized state value ZW is defined as a dimensionless value ranging from 1.0 (excellent) to 5.0 
(worst). The state value is transferred via the normalization function to the normalized state value. 
Table 2.4 shows the normalization functions for the normalized state value calculation (FGSV 2006).  
  
Based on the German regulations of the Road State Determination Manual (FGSV 2006), all state val-
ues refer to a section evaluation length of 100 m. The traffic lane is divided into three lanes (FGSV 

2006). Theoretically, the normalized state value must be calculated for the asphalt tracks per metre for 
one-third of a traffic lane. The observer must give a grade value ranging from 1.0 (excellent) to 5.0 
(worst) for every 1.0 m of 100 m.  This procedure must be repeated for all section lengths. Afterwards, 
the average and standard deviation values are calculated based on the defined default of the normal-
ized state value. This procedure gives an indicator for the normalized state value. Regarding the state 
value for cracking types, it is represented by the affected cracking area ratio (%). The affected crack-
ing area ratio is calculated by dividing the number of grid covered with cracking by the total number 
of grid in the section evaluation. Then, the result must be multiplied by 100%. The traffic lane is di-
vided into three sub-lanes, with each sub-lane width being 3.0 m. The length of the each sub-lane is 
100 m (FGSV 2006). Each sub-lane is divided into equal grids. Each grid dimension is (1 x 1) m2 
(FGSV 2006). Therefore, the area of each sub-lane is 300 m2 (300 grids). Figure 2.6 displays a sketch 
of an evaluation section.  
 

 

 

 

 

Types of distress 
( ZTV ZEB-STB_1  2006 ) 

Indicators for  

detection 

Severity level 
(SHAHIN 2002) 

Severity level 
( FGSV 2006 )   

Cracking Surface area unit 
(length and width) 

Based on the observation 
either low, medium, or 

high, unrelated  to depth 

Based on the  state value and  
normalized state value 

determination 

Patching Surface area unit 
(length and width) 

Based on the observation 
either low, medium, or 

high, unrelated 
to depth 

Based on the  state value and  
normalized state value 

determination 

Outbreaks (potholes) Pothole area unit  
(diameter) 

Based on the depth of 
potholes 

- 

Open work seams Sum of length Based on the observation 
either low, medium, or 
high, unrelated to depth 

- 

Binder enrichment Surface area unit 
(length and width) 

Based on the observation 
either low, medium, or 

high, unrelated  to depth 

- 
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Figure 2.6: Sketch of the evaluation section. 
 

Table 2.2: Scaling parameters for motorways and federal highways outside of town-asphalt construction (FGSV 

2006) 

 
The measurements of the state value are transformed in the process, as shown in Table 2.4, for the 
normalized state value calculation, using the normalization functions. The normalization condition of 
the individual characteristics, or indicators, via normalization functions are currently fixed by three 
parameters on the value scale as the following (FGSV 2006):  
 

1. The normalized state value ZW=1.5 is equivalent to the tolerance of acceptance for the flatness 
characteristics; 
 

2. The normalized state value ZW=3.5 is denoted as warning value and describes the state whose 
attainment is a matter of intense scrutiny to analyse the causes of poor conditions; 
 

3. The normalized state value ZW=4.5 is denoted as threshold value and describes a condition in 
which the initiation must be examined by a structural or traffic restricting measure. 

 Normalized state value ZW   

State value 

ZG 

( FGSV 2006 ) 

ZW=1.5 Warning 

value 

ZW=3.5 

Threshold 

value 

ZW=4.5 
Cracking 

(affected area ratio) (%) 
1% 5% 10% 

Patching 
(affected area ratio) (%) 

1% 10% 15% 
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The tolerance value of 1.5, the warning value of 3.5, and the threshold value of 4.5 are determined by 
the particular requirement level of street segments and characterized by functional classes. This is 
especially important for visualization of the state assessment and evaluation, and making maintenance 
decisions. The different classes (functional portions) are defined as follows:  
 
(1): If ZG˂1.5, and ZW=1.0, this functional portion is good. The severity level of the cracking region 
is low (weak). There is no need for maintenance, 
 
(2): If 1.5≤ZG˂3.5, and ZW is calculated using the normalization function (Table 2.4). The severity 
level of the cracking region is medium. It needs maintenance to some extent, 
 
(3): If 3.5≤ZG˂4.5, and ZW is calculated using the normalization function (Table 2.4), the functional 
portion lies in the critical range between the threshold value and the warning value. The severity level 
of the cracking region is high (strong). The decision-maker must be cautious of this functional part, as 
it needs maintenance to some extent, 
 
(4): If ZG≥4.5, and ZW=5.0, this functional portion is bad (poor). The threshold value is exceeded, 
and the severity level of the cracking region is very high (very strong). This section must be repaired 
and needs maintenance. Figure 2.7 shows generalized cases of the normalization functions with the 
fixed points. 
 

Table 2.3: Scaling parameters for parameters for federal highways inside of town-asphalt construction  
(FGSV 2006) 

 Normalized state value ZW   

State value 

ZG 

( FGSV 2006 ) 

ZW=1.5 Warning value 

ZW=3.5 

Threshold 

value 

ZW=4.5 

Cracking 
(affected area ratio) (%) 

1% 15% 25% 

Patching 
( affected area ratio) (%) 

1% 15% 25% 

 
 
  

Table 2.4: Normalization functions for the normalized state value calculation (FGSV 2006) 
 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Functional portion 
( FGSV 2006 )   

State value ZG  
 

 Normalized state value 

 ZW 

(1) 
ZGІ=1.5 value 

ZG˂1.5 1.0 

(2) 
ZGІІ=3.5=warning value 

1.5≤ZG˂3.5 1.5+2.0*(ZG-ZGІ)/(ZGІІ-ZGІ) 

(3) 
ZGІІІ=4.5=threshold value 

3.5≤ZG˂4.5 3.5+(ZG-ZGІІ)/(ZGІІ-ZGІІІ) 

(4) 
ZGІІІ=4.5=threshold value  

ZG≥4.5 5.0 
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Figure 2.7: Generalized cases of the normalization functions with the fixed points (FGSV 2006) 
(Translation: 1,5 Wert/ 1.5 Value; Warnwert/ Warning Value; Schwellenwert/ Threshold Value; 
Zustandswert (ZW)/ Normalized state value (ZW); Zustandsgröße (ZG) [z.B. mm; %-Flächen-
anteil]/ State Value (ZG) size [e.g. mm, % area ratio]) 

2.2 Data Distress Acquisition Methods 

Data collection, data verification, and data analysis are considered the three major subjects for any 
ideal pavement management system. The majority of the necessary information for pavement admin-
istration is provided by effective pavement surveys. For any vital pavement project, the following are 
considered the most important requirements: a quantified condition of networks, more precise and 
attainable information, forecasting the maintenance and rehabilitation requirements, setting the reha-
bilitation and maintenance priorities, tracking interpretation treatments, prediction of the pavement 
evaluation, and assigning funding. Therefore, it is important to acquire precise pavement condition 
data, in an effective and secure way, in order to ensure a credible analysis and interpretation system 
(GONTRAN ET AL. 2003, MOHAJERI/MANNING 1991, CLNE ET AL. 2003). 
 
2.2.1 Manual Acquisition Methods 

A walking survey is considered a well-known approach for implementing manual pavement condition 
surveys. This survey approach is done by specialists who are able to extract the crack and evaluate the 
pavement severity level according to the fixed identification criteria. The specialists select roads hav-
ing distress, after which the selected roads are divided into branches, which are a single entity and 
have a distinct function. The selected branches, divided into smaller components, are called sections 
(AL-MISTAREHI ET AL. 2012). The following factors are considered when dividing branches into sec-
tions: 
 

1. Pavement structure: the structural composition (thickness and materials), 
2. Traffic: the volume and intensity of traffic, 
3. Construction history: the pavement sections should have the same construction history, 
4. Pavement rank: the functional classification (arterial, collector, local), 
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5. Drainage facilities: the drainage facilities and shoulders should be consistent throughout the  
pavement section (SHAHIN/WALTER 1990). 

The selected pavement sections are divided into sample units with an area of 233 ± 93 m2 (SHA-

HIN/WALTER 1990). The minimum number of sample units to be surveyed is determined based on the 
total number of sample units and the pavement condition index (PCI) standard deviation. This is as-
sumed to be 10 for asphalt surfaced pavements (Figure 2.8). For example, if the total number of sam-
ple units is 80 and PCI standard deviation for flexible pavement is 10, the number of sample units to 
be surveyed will be 12. Different instruments, for instance, a hand odometer or tape, are used to mea-
sure the distress length, width, and area. The distress inspection is conducted by walking over the 
sample unit, measuring the distress type and severity, according to the distress manual, and recording 
the data on the flexible pavement survey sheet. One data sheet is used for each sample unit throughout 
the field inspection procedure. Afterwards, the detailed report of the extent, amount, and severity for 
each distress existence is introduced. This approach is time-consuming and labour-intensive (AL-

MISTAREHI ET AL. 2012). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8: Selection of the minimum number of sample units (SHAHIN/WALTER 1990). 
 

2.2.2 Automatic Acquisition Methods 

2.2.2.1 General Characteristics for Different Automatic Acquisition Systems 

Automated survey methods are completed using vehicles, traveling at highway speeds, to gather data. 
These automated vehicles are called mobile mapping vehicles. Different forms of automated pavement 
survey vehicles are obtainable worldwide with various data collection techniques. Mobile mapping 
vehicles have a general structure and characteristic, according to sensors and capability. This general 
structure consists of different sensors, such as cameras, laser scanners, inertial measurement units, 
global positioning system receivers, distance measurement units, inclination odometers, accelerome-
ters, and lighting units. There are also different types of cameras, for example, charge-coupled device 
CCD cameras, video cameras, line scan cameras, panoramic cameras, and macro-picture cameras (sur-
face cameras). Moreover, there are different types of laser scanners, such as Sick LIDAR scanners, 
Riegl (VMZ 450) laser scanner, Leica (P20) laser scanner, Faro laser scanner, and laser profilometers. 
The selection of one camera or laser type over another is based on the application. A large range, with 
several usages and applications, exploit automated mobile mapping acquisition systems. Some of these 
applications are utilized for highway distress rating and estimation, pavement distress and airport run-
way distress, tunnels, and bridge fields. The framework of this thesis is constrained to describe mobile 
mapping systems that are developed for distress data collection. Different road mobile mapping sys-
tems have the capability for distress data collection. This capability varies from one system to another. 
Different examples of automated acquisition systems will be presented in the following section. 
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2.2.2.2 Examples for Different Automatic Acquisition Systems 

Identification of the different types of distress and connecting them to their corresponding causes is 
the major key to having an effective road surface assessment. As a matter of fact, digital imaging, 
using vision cameras, is the most well-known method for automatically gathering road data. After this 
is used, a suitable technique is exploited for storing and processing continuous pavement images. A 
video logging technique has been adopted by some commercial systems, such as VIASAT (SCHWARZ 

ET AL. 1993) and GeoVAN (GEOVAN 2014). These acquisition systems composite different sensors, like 
cameras, inertial measurement units, global positioning system receivers, and lighting units. The gen-
eral denominator between these systems is that one or more cameras are fixed, along with archival 
equipment, for recording 2D images of the road surface. Another disposition needs a setting of two 
cameras separated by a baseline distance for collecting stereo images. The 3D information is then 
computed, based on the latter two stereo images and camera calibration information, using epipolar 
geometry. Once the global positioning system receiver information is incorporated with the video data 
to generate a GIS database of the road surfaces, it is expected to develop a road network assignment 
and pavement maintenance and management (HE 2002). Some of these imaging-based systems can 
acquire and process images for providing distress information, for instance, crack patterns, length, 
width, counts, areas, and sometimes depth (GONTRAN ET AL. 2003). One drawback of pure video-based 
systems is their disadvantage in differentiating dark areas not caused by pavement distress, such as 
shadows, oil spots, and tire marks (CHENG ET AL. 1999). In addition, shadows and poor lighting are 
considered another main problem that can be overcome by providing additional lighting systems or by 
capturing images at night (MCGHEE 2004). 
 
Due to the complication of automatic object discrimination, an alternative solution is the semi-
automatic object detection. The major rule of the latter system is that object discrimination is utilized 
manually, by human intervention. Subsequently, accurate locations of objects and automatic detection 
are carried out by the system. For example, extraction and location of a vertical lined object from mo-
bile image sequences has been proposed by TAO (2000). In addition, predicting the approximated loca-
tion of the objects is done using a map data set in another approach. After that, several algorithms, 
such as line clustering, feature corresponding, and line reconstruction, are utilized for exactly detecting 
the object existence and its location from the image. 
 
In general, several commercial fully-automated and semi-automated surveying systems have been 
investigated thoroughly in the U.S. transportation departments. The term "system" identifies an in-
strumented mobile vehicle with fixed sensors, hardware, and software for representing and reducing 
distress data from miscellaneous sensor data which is collected by a data acquisition subsystem 
(MEIGNEN ET AL. 1997). 
 
For example, the Pavement Distress Analysis System has been the predominant test system utilized by 
long-term pavement performance programs. This system consists of different sensors, such as cam-
eras, inertial measurement units, global positioning system receivers, distance measurement units, 
inclination odometers, and lighting units. The latter one supplies a semi-automated approach by per-
mitting a human operator to manually choose a distress and its severity level. The digitized images are 
considered input data files; whereas, ASCII format files, with reduced distress data, are represented as 
outputs.  
 
In addition, the Video and Sensor Playback System is called Pathview I, and Digital Playback Work-
stations are called Pathview II. These acquisition systems are developed by Pathway Services, Inc. 
Four cameras, global positioning system receivers, five lasers, and various sensors are integrated as a 
data acquisition subsystem. This last subsystem is called Pathrunner. Automated detection and classi-
fication of roughness, rutting, faulting, and texture are achieved by the software subsystem. Human 
intervention is strongly required for the cracks' estimation. Detailed information is recorded on PATH-

VIEW (2014).  
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Another pavement inspection digital imaging system has been developed by International Cybernetics 
Corporation. This system consists of different sensors, such as progressive scan charge-coupled de-
vices CCD cameras, inertial measurement units, global positioning system receivers, barometers, in-
clination odometers, and lighting units. The system can detect cracks from images and needs only 
minimal human intervention, unlike the former ones. More information about this system is reported 
in IC (2014). 
 
A typical solution to produce images from 3D laser profiles, and then extract cracks, is utilized by a 
pavement scanner profile system. This system is called Roadvidew 3D, developed at Mandi Commu-
nication, Inc. This system consists of different sensors, such as cameras, laser scanners, inertial mea-
surement units, global positioning system receivers, and lighting units. Crack resolution up to 3 mm is 
obtained for a 4.2 m wide image (MANDLI 2014)  
 
A fully automated system known as Wisecrax has been developed by Roadware Group ARAN, Inc. 
(ARAN 2014). Around eight agencies use this system for analysing pavement cracks. The general 
structure of the ARAN system consists of different sensors, such as video cameras, laser scanners, two 
or more charge-coupled devices CCDs, inertial measurement units, global positioning system re-
ceivers, and accelerometers. In the task of planning, two continuous video cameras, covering the sur-
vey lane, are fixed by two beams in the back of the vehicle. These two cameras are black and white 
charge-coupled devices (CCD) and face perpendicularly to the pavement surface. A regular pavement 
surface coating the required lane is composited from simultaneous images from two cameras and suc-
cessive images from one camera. The latter system permits the cameras to collect images without 
shadows at 80 km/h. The crack correspondence process is implemented by using the WiseCrax prod-
uct. The latter one is able to identify each crack, its beginning and end location, using an x-y coordi-
nate system, its length, its width, and its orientation. Finally, a crack map is created, and a statistical 
report is also prepared, through the crack correspondence process. The crack map is associated with 
attributed tables displaying the start and end point of the crack, the length, the width, and the orienta-
tion (WANG/ ELLIOT 1999). As published, this system has the capability for fully automated detection and 
classification of crack types. However, this system possesses some drawbacks and shortcomings re-
garding data acquisition and data processing (WANG/ ELLIOT 1999).  
 
The LEHMANN + PARTNER GmbH Company in Germany utilized the S.T.I.E.R mobile mapper 
system (Note: S.T.I.E.R is not an abbreviation, it is an artificial name) (LEHMANN+PARTNER 2014) 
This S.T.I.E.R mobile mapper system consists of different sensors, for example, panorama colour 
cameras, surface cameras, laser scanner, Applanix POS LV 420 positioning system, and lighting units. 
This mobile mapping vehicle is used for surveying the longitudinal and transverse evenness, measur-
ing texture, and 3-dimensional road surface, as well as recording surface images (LEHMANN+PARTNER 

2014). 
 
The Mobile road mapping system MoSES (Mobiles Strassen-Erfassungs-System) is used by the 3D 
Mapping Solutions GmbH Company in Germany. This system is comprised of a 3D mapping multi-
camera module, powerful high performance kinematic laser scanners, a receiver of the global position-
ing system, an inertial navigation system, and a distance measuring instrument. The system can collect 
panoramic views along roadways (3D-MAPPING 2014).   
 
A group of digital cameras, a receiver of the global positioning system, an inertial navigation system, 
and a distance-measuring instrument are fixed on the Unicom-Umap Company vehicle-Saudi Arabia. 
This system is called VISAT™ (Video Images, INS System and GPS Satellites) mobile mapper sys-
tem. The system can collect images along roadways (UNICOM-UMAP 2014). VISATTM has been devel-
oped at the University of Calgary in the early 1990s and was among the first terrestrial MMS at that 
time. Recently, an improved version was developed by Absolute Mapping Solutions Inc, Calgary, 
Canada. The system’s hardware components include an Inertial Navigation System (INS), a dual fre-
quency GPS receiver, 6 to 12 digital colour cameras, and an integrated Distance Measurement Instru-
ment (DMI), and the VISATTM system controller. The camera cluster provides a 330° panoramic field 
of view (CHENG ET AL. 2008).  
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In the last few years, several high-quality MMS techniques have been presented and amended quickly. 
Distress View 3D (GIE 2014) utilizes a laser vision system. This system contains lasers, cameras, 
global positioning system receivers, an inertial navigation system, and lighting units. Distress View 
3D (GIE 2014  ) produced a map to demonstrate the left and right rut sign of a 2D colour image as a 
model of 3D sensors that assist the image data. JAVIDI ET AL. (2003) shows an improvement for AR-
AN work (ARAN 2014) by measuring 3D-depth. In particular, a phase-shifting digital interferometry-
based approach is introduced for developing ARAN outputs. The principle is utilized by projecting 
multiple laser beams on a charge-coupled devices (CCD) camera, and after that, notices the deviation 
patterns for 3D-coordinates reconstruction, using holography. In LAURENT ET AL. (1997), a multi-
scanner synchronized system for measuring dense 3D coordinates is presented.  This latter approach is 
a nearly real-time solution for a high speed mobile mapping vehicle. In addition, it is eligible to pro-
duce an output binary image with 255 (bright) pointing non-distress areas, and zero (dark) represent-
ing distress areas. It is called a road inspection system. It is developed by the National Optics Institute, 
Canada. Examples of other systems can be mentioned, such as the presentation of a system consisting 
of six sensors for high speed and resolution scanning to produce binary crack maps (BURSANES-

CU/BLAIS 1997), and the use of both 2D and 3D approaches in a universal survey for road data-
capturing methods summarization (TAO 2000). Moreover, ABUHADROUS ET AL. (2004) presents an 
approach to scan road surfaces in general with all extrinsic objects, such as traffic and trees. After that, 
extraction range points associated with road edges and centres then employ feature triangulation for 
indicating roads curves, and terrain hilliness without recovering geometrical details of surface pave-
ment distresses is presented. 
  
The Ministry of Transport, Japan Highway Public Corporation, and Road Management Agents have 
been using a road surface condition survey vehicle for measuring cracks, ruts, and flatness (vertical 
asperities) for some time. This measuring vehicle is known as "ROADMAN". It consists of different 
sensors, such as cameras, inertial measurement units, global positioning system receivers, distance 
measurement units, and lighting units. Finally, preparing the result report of the road surface condition 
is done for the purpose of reasonably and effectively managing and preserving the road pavement 
(HISASHI/TATSUHIDE 2000).  
 
According to the above information, all of these commercial systems share the same goal of collecting 
accurate pavement condition data. Additional details about different automated pavement survey vehi-
cles (commercial systems), worldwide, are reported in Appendix A.  
 
2.2.3 Manual vs. Automatic Data Collection 

Generally, in crack detection applications, two approaches are utilized for data capturing. These meth-
ods are the manual collection and the automatic collection. The former demands are expensive, labour-
intensive, hazardous, subjective, and difficult to manage; whereas, the latter technique is safe, not la-
bour-intensive, objective, integratable with a management system, and can complement the individual 
weaknesses of the former one (WANG/ELLIOT 1999). 
 
In a comparative study of data obtained by a mobile mapping system (MMS) and ground truth obser-
vations (manual method),  LEE ET AL. (1991) concluded that the data obtained by an MMS was of 
“reasonable” accuracy. The conclusion was not based on any statistical analysis, nor was a definition 
of “reasonable” accuracy provided. MASTANDREA ET AL. (1995) reported an accuracy of 5 to 10 cen-
timeters for various inventory elements collected by a MMS. They did not report on the evaluation 
methodology or data elements used in the evaluation or provide analysis details. EL-SHEIMY (1996) 
compared the accuracy of descriptive data obtained with a MMS to ground truth observations. His 
findings indicated that errors in digital measurements increased with increasing distance between the 
object and the camera. However, EL-SHEIMY (1996) does not provide information on the identity and 
size of the measured inventory elements or on the number of observations made on the elements. In a 
test of crack identification and classification, ARAN (2014) compared the accuracy of its photogram-
metric software package for crack identification with the long term pavement performance (LTPP) 
procedure and found them comparable. However, there was no similarity in crack classification 
(block, fatigue, transverse, longitudinal wheelpath, and edge) in the two methods.  
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In another test, ARAN (2014) also shows that its photogrammetric software package was able to auto-
matically classify collected data on pavement cracks into the LTPP categories. However, there was no 
indication if the classification was correct. Not all comments were positive (KHATTAK ET AL.  2000); 
Florida state reported that “the results from real time pavement distress analysis from images [are] far 
from accurate.”  
 
In summary, the literature indicates that accuracy of the manual method depends on the surface com-
position and continuity between the point of observation and the target object. Literature on the accu-
racy of descriptive data obtained by MMSs is insufficient to judge whether MMSs provide accuracy 
comparable to the manual method. Not all agencies are satisfied with the results of automation. Some 
reported that improvements are needed in the quality of images provided, as well as in the data re-
duced from those images.  Most statistical analyses show that the accuracy of descriptive inventory 
data depends on the method of collection and that the manual method provides slightly more accurate 
data (KHATTAK ET AL. 2000). 
 
Regarding time-consumption, data collection by MMSs is speedier in the field compared with the 
manual method. However, data processing and extraction of descriptive data from digital images with 
photogrammetric software packages takes more time in the office as compared with the manual meth-
od. The total time consumed by the manual method was less than the time required by MMS methods. 
In addition, costs of automated pavement condition data collection and processing vary greatly de-
pending on specific items addressed and on logistics. Full-featured collection and processing will av-
erage more than $30 per lane-km and may reach $125 per lane-km or more in urban, high-traffic areas. 
The distance traveled to collect data is also a significant factor in determining costs (MCGHEE 2004). 
 
After collection of the pavement data, using the techniques described above, distress data analyses 
usually follows. The data are analysed manually or automatically based upon standard criteria which 
vary from country to country. In this thesis, the focus will be on the automatic distress data analysis. 
This portion will be implemented by using digital image processing techniques in the following sec-
tion.  

2.3 Distress Data Analysis 

The main idea of this approach is to detect cracks automatically, derive reliable crack measurements, 
and classify cracks into different categories by means of photogrammetry. It utilizes image processing 
analysis to recover crack surface information through different image processing techniques (LUH-

MANN ET AL. 2006). An intensive review of image processing techniques is presented by FRYER ET AL. 

(2006), ATKINSON (1996), LUHMANN ET AL.  (2006), and other textbooks on digital image processing 
(BATTIATO  ET  AL.  2002). 
 

2.3.1 Image Processing for Crack Detection- An Overview 

The framework of this thesis is focused on cracking types and how to detect cracking types using digi-
tal image processing techniques. The cracking types of this thesis are detected from pavement images, 
and therefore digital image processing techniques are used rather than other techniques. A thorough 
review of image processing techniques is presented by LI ET AL. (1991), KOUTSOPOULOS/ DOWNEY 

(2006), CHOU ET AL. (1994), and other algorithms on digital image processing for cracking detection 
(CHENG/MYOJIM 1998, JAVIDI ET AL. 2003, DAVID/JOE 2005, YING/SALARI 2009, TEOMETE ET AL. 

2005). The requirements for any cracking detection procedure, using digital image processing tech-
niques, are presented as follows: 
 

(a) Image with clear cracks and good resolution, 
 

(b) low noise level. 
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Studies in digital image processing techniques (BUGAE/YAXIONG 2003, MASER 1987, CHOU ET AL. 

1994, JAVIDI ET AL. 2003, SEAN/STEVENSON 1998, WANG/HARALICK 2002) have confirmed several 
digital image processing procedures which are based on different concepts as follows: 
 

(a) The definition of the digital image processing concept is pixel intensity, brightness levels 
(contrast), and their distribution. This concept is considered as a base for different previous al-
gorithms; (see LI ET AL. 1991, MASER 1987, KOUTSOPOULOS/DOWNEY 2006, JAVIDI ET AL. 

2003, RABABAAH ET AL. 2005). This digital image processing concept is explained in more 
detail in section 2.3.2. 
 

(b) The definition of the convolution concept is used during the image enhancement stage for 
some algorithms (MOHAJERI/MANNING 1991). The convolution concept, its function, its pro-
cess, and its effect on pixel intensities are explained in more detail in section 2.3.2.1. The im-
age enhancement stage definition is explained in more detail in section 2.3.5. 
 

(c) An edge detection filter, such as the Sobel Edge Detection Filter, is used as a tool for crack ex-
traction during the segmentation stage (see LI ET AL. 1991). This edge detection filter, its equa-
tions, and its principle work are explained in more detail in section 2.3.2.2. 
 

(d) Basic morphological operation reviews are presented in HSU ET AL. (2001). They address the 
main problems during the post-processing stage, and the available solutions using the hole 
pixel initial algorithm (flood filling operation). The morphological operations and their princi-
ples are displayed in more detail in section 2.3.2.3. The post-processing stage definition is ex-
plained in more detail in section 2.3.5. 
 

(e) Any crack detection algorithm must include four stages: preprocessing stage, segmentation 
stage, post-processing stage, and crack extraction and classification stage. These stages have 
been proposed in the literature (see HSU ET AL. 2001, SALARI 2012, CHOU/SALARI 2012, TE-

OMETE ET AL. 2005). Every stage has a definition, problems, and concepts regarding image 
analysis (image interpretation). These stages concerning image analysis (image interpretation) 
are explained in more detail in section 2.3.3. 
 

(f) Some global and local binarization techniques, (e.g., NIBLACK 1985, SAUVOLA/ PIETIKA-

KINEN 2000, YING/SALARI 2009) have been previously used to threshold pavement images 
successfully. These techniques are explained in detail in section 2.3.4. 
 

(g) Several crack detection algorithms have been developed, but many of them experience some  
problems (CHOU ET AL. 1994, LE ET AL. 1990, CHOU/SALARI 2012, TEOMETE ET AL. 2005, 
RABABAAH ET AL. 2005). These partially and completed crack detection algorithms are ex-
plained in detail in section 2.3.5.    

In the above mentioned material, the main steps of distress data analysis are described in detail. More-
over, the steps of image interpretation are briefly introduced, and the main typical challenges associat-
ed with each step are given. In addition, the related algorithm research and binarization overviews are 
introduced. 
 
2.3.2 Digital Image Processing 

The digital image processing term refers to many concepts, such as expansion, rectification, reduction, 
geometrical editing, and assembly that can be utilized on images. This thesis is essentially interested in 
image preprocessing and image analysis (interpretation). The result of the former one is an image 
ready for analysis. This image seems to be similar to the original one or is significantly different. 
Where the aim of image pre-processing is to prepare an image, the result of the latter one is almost 
always the measurement and classification of some features of the original image. In other words, the 
latter aims to demonstrate an image that quantifies and qualifies some of its features.   
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In general, any digital image must be formed of different discrete points of tone (or brightness). These 
tone levels represent different shades of gray or coloured tones. To create a digital image from a con-
tinuous-tone image, the latter continuous-tone image will be sampled and quantized through a sam-
pling process. The aim of the sampling process is to test the intensity of the continuous-tone image at 
certain locations (LUHMANN ET AL. 2006). 
 
The digital brightness value of each sample is specified during the quantification process. A sample 
term in a digitized image is pointed to a pixel. Figure 2.9 illustrates the image coordinate system and 
the pixel numbering convention, where (x, y) are the coordinates for each pixel associated with its 
location in the digital image. The pixel number and the line number are denoted by x and y, respective-
ly.  
 
 
 
 
 

 

 

 

 

 

 

Figure 2.9: The pixel numbering convention (GIRARDELLO 2002 and HOWE/GLEMENA 1987). 
 

In order to understand the image processing concept, the basic notion of photogrammetry needs to be 
introduced. The convolution concept, edge detection filter, morphological image processing opera-
tions, and morphological operations for holes filling, must be defined in advance. 
 
2.3.2.1 Convolution Concept 

Convolution can be generally described as an integral summation of two component functions. Convo-
lution measures the amount of overlap as one function is shifted over the other. The convolution at a 
point is the product of the two functions that occurs when the pulse is moved over the point. When 
actually taking the convolution of two functions, one function is flipped with respect to the independ-
ent variable before shifting, and a change of variables from 𝑡  to 𝑇 with respect to facilitate the shifting 
operation. In one dimension, the mathematical definitions of convolution in discrete and continuous 
time are indicated by the " ∗ " operator (SEAN/STEVENSON 1998).  
 
If 𝑓 and 𝑔 are functions in 𝑡, then the convolution of 𝑓 and 𝑔 over a finite range [0, 𝑡] will be repre-
sented by equation (2-1) below: 
 

[𝑓 ∗ 𝑔](𝑡) = ∫ 𝑓(𝑇)𝑔(𝑡 − 𝑇)𝑑𝑇𝑡0 ,                                                                            (2-1) 

 where      
 𝑓 ∗ 𝑔 : convolution of 𝑓 and 𝑔 under the integral over a finite range [0, 𝑡],  
 𝑓(𝑇) : function of  𝑇 under the integral, 
  𝑔(𝑡 − 𝑇) : reflection of  𝑔(𝑇), shifted by an amount 𝑡 on the 𝑇 axis.  
 
ATKINSON (1996) defines convolution requirements as follows: (i) The first input array is usually a 
gray level image; and (ii) the second input array is called the kernel. This latter image must be signifi-
cantly smaller as compared to the former one, and must also be two-dimensional. Figure (2.10) illus-
trates the definition of a matrix and a kernel at a single coordinate; the complete convolution is found 
by repeating the process until the kernel has passed over every possible pixel of the source matrix.  
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Figure 2.10: A single location in a 2-D convolution (ATKINSON 1996). 
  

LUHMANN ET AL. (2006) summarizes the convolution process as follows: (i) moving the kernel over 
the image, generally starting from the top left corner, through all of the positions where the kernel 
must be fit within the image boundaries; and (ii) each single output pixel must be associated with each 
kernel position. The value is computed by multiplying the kernel value and the underlying image pixel 
value for each of the cells in the kernel, and then adding all of these numbers together. Therefore, the 
convolution is given mathematically by: 
 
 𝑉 =  

∑ (∑ 𝑓𝑖𝑖𝑑𝑖𝑖)
𝑞𝑖=1𝑞𝑖=1 𝐹 ,    (2-2) 

 
With respect to object detection, the most important feature of a smoothing convolution operator is 
that it must not shift the object position. Any shift introduced by a preprocessing operator would cause 
errors in the estimates of the position and possibly other geometric features of an object. In order to 
cause no shift, the transfer function of a filter must be real. A filter with this property is known as a 
zero-phase shift convolution filter. This filter does not introduce a phase shift in any of the periodic 
components of an image (no geometry change). In principle, there are three types of phase response 
that a filter can have: zero-phase, linear phase, and nonlinear phase (BATTIATO ET AL. 2002). In the 
following, a general overview will define only the zero-phase shift convolution filter, as others lie 
beyond the scope of the current research. 
 
Zero-Phase Shift Convolution Filter  

The zero-phase shift convolution filter is characterized by an impulse response that is symmetrical 
around zero. The actual shape does not matter, only that the negative numbered samples are a mirror 
image of the positive numbered samples. When the Fourier transform is taken of this symmetrical 

 where   
 𝑓𝑖𝑖: the coefficient of a convolution kernel at position 𝑖, 𝑗 (in the kernel),   

 𝑑𝑖𝑖  : the data value of the pixel that corresponds to 𝑓𝑖𝑖 , 
 𝑞 : the dimension of the kernel, assuming a square kernel (if q=3, the kernel is 3x3), 
 𝐹 : either the sum of the coefficients of the kernel, or 1 if the sum of coefficients is 0, 
 𝑉 : the output pixel value, if 𝑉 is less than 0, 𝑉 is clipped to 0. 



  29 

waveform, the phase will be entirely zero (Figure 2.11, b). Figure 2.11 illustrates the definition of ze-
ro-phase shift convolution filter. 

 

  

 

 

 

 

  
 
 
 
 
Figure 2.11: (a) A zero-phase shift filter has an impulse response that has left-right symmetry around sample 
number zero, (b) A zero-phase shift filter has a frequency response that has a phase composed entirely of zeros, 
(c) zero-phase impulse responses are desirable because their step responses are symmetrical between the top and 
bottom, making the left and right edges of pulses look the same (ATKINSON 1996). 
 
In conclusion, the advantage of the zero-phase shift filter is that it does not introduce a phase shift in 
any of the periodic components of an image (no geometry change). This advantage is important in the 
case of crack detection. The disadvantage of the zero-phase shift filter is that it requires the use of 
negative indexes, which can be inconvenient to work with. Zero-phase filtering can be achieved by 
running the filter 𝐻(𝑧) twice: first in reverse time, followed by a second application in forward time. 
The two-stage filtering procedure (LUHMANN ET AL. 2006) is as follows: 

1. Signal sequence is given and known as follows  𝑛 = 0, 1, … ,𝑁 − 1 
2. Reverse-time filtering is performed to produce the filtered sequence as follows  𝑦𝑟𝑒𝑟(𝑛),𝑛 =

0,1, … ,𝑁 − 1 
3. Forward-time filtering of the signal sequence {𝑦𝑟𝑒𝑟(𝑛)} is performed.  

 

2.3.2.2 Edge Detection Filter 

In principle, the boundary between two regions, where a large variation in intensity takes place, is 
called an edge. An edge can be derived using digital image processing by first enhancing the input 
image, and then using a thresholding scenario for output image binarization. In order to obtain precise 
edge detection, several edge enhancement filters must be utilized for locating sudden changes in in-
tense profiles. Not surprisingly, several utilizing local derivatives or gradient operator applications 
must be completed using edge enhancement filters. Extraction edges of gray scale images have differ-
ent properties in this manner: (i) edge direction must be orthogonal with considerable intensity change 
in the neighbouring pixels; and (ii) each edge must have a unique direction and magnitude.  
  
In conclusion, the edge, or more accurately the ramp, is defined as a considerable variation of intensity 
between two pixel value areas of a specified size. Extensive summaries of edge detection methods are 
given, for example, by FRYER ET AL. (2006), ATKINSON (1996), LUHMANN ET AL.  (2006), and other 
textbooks on digital image processing (BATTIATO ET AL. 2002). In the following, a general overview 
will define only the Sobel Edge Detection Filters, as others lie beyond the scope of the current re-
search. 
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Sobel Edge Detection Filter 

A special preset 3*3 non-linear edged enhancement filter is called the Sobel Edge Detection Filter. A 
mathematical form of the Sobel function is given by equations (2-3), (2-4), and (2-5), respectively. In 
principle, the convolution of the image with a separable, small, and integer valued filter, in both verti-
cal and horizontal directions, is utilized for the Sobel operator production. One of the Sobel operator 
advantages is that it is comparatively inexpensive in terms of computation time, due to its fixed size. 
In addition, the Sobel operator enables to produce comparatively crude gradient approximations, par-
ticularly for high frequency changes through the image. A mathematical form of the kernel mask com-
putations is given by equations (2-8) and (2-9), correspondingly. Moreover, the convolution process 
involves the original image (equation 2.10) and two 3*3 kernel masks for estimating derivative ap-
proximations of both horizontal and vertical changes, which are given mathematically by equations (2-
6) and (2-7), respectively (LUHMANN ET AL. 2006): 
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    where 
 𝑓𝑥: kernel mask in x-direction, 
 𝑓𝑦 : kernel mask in y-direction, 

 𝐺𝑖𝑖: magnitude of gradient, 

 𝐺𝑥: magnitude of gradient in x-direction, 
 𝐺𝑦: magnitude of gradient in y-direction, 

 𝐹: matrix of gray values of image, 
 𝐹𝑖𝑖: gray value of the investigated pixel, 

 𝑖, 𝑗: coordinates of the pixels which are investigated, 
 𝐹𝑖−1𝑖−1 … . .𝐹𝑖+1,𝑖+1 : gray values of the surrounding pixels. 
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2.3.2.3 Basic Morphological Operations Review 

Morphology expression is derived from biology. The main idea of this operation is to study the struc-
ture of objects within an image. It is defined as a group of different non-linear operations exploiting 
the shape, and relatively ordering pixel values, inside of an image. There is no relationship between 
morphological operations and numerical pixel values. These latter points indicate that morphological 
operation can be utilized for processing binary images (black 0's and white 1's pixels) and also gray-
scale images (black 0's and white 255's pixels) (DROOGENBROECK/TALBOT 1996). A small shape tem-
plate is often required for morphological operation implementation. This template is known as 
a structuring element. This structuring element is expressed as a binary image with a value of zero or 
one. It must be considerably smaller than the image being proposed, yet have the same size and shape 
as the objects which are to be analyzed. Therefore, the structuring element has various shapes based on 
the object shape, such as a line, disk, square, and diamond. In general, there are two types of structur-
ing elements: (i) flat structuring element (origin at the center with symmetrical unit height); and (ii) 
non-flat structuring element (continuous intensity variation, which is seldom utilized). In principle, 
any type of structuring element must be located in all possible positions within an image. Then, it must 
be compared with the neighbouring pixels. Several morphological operations have been proposed in 
the literature, some of which must be checked to determine whether the structural element "fits" within 
the neighbourhood; whereas, others will be utilized if the structuring element "hits" or intersects the 
neighbourhood (Figure 2.12).  

 

 

 

Figure 2.12: Structural element concept (EFFORD 2000). 

Various essential functions, based on Boolean operations for binary images, are presented for morpho-
logical image processing (DROOGENBROECK/TALBOT 1996). 
 

  The Dilation Process 

The idea of this process is to lay the structuring element B on the image A. This structuring element B 
is then moved across image A in the same way as in convolution. However, the concept of dilation is 
different from convolution. The dilation process is mainly performed in two steps (DROOGENBROECK/ 
TALBOT 1996): 

1. If there is a synchronization between any “white” pixel in the image and origin of 
the structuring element, there will be no variation and movement to the next pixel 
presented, 
 

2. If there is a synchronization between any “black” pixel in the image and origin of the 
structuring element, variation will be utilized by making a black for all pixels cov-
ered by a structuring element in the image. 
 

A mathematical form of the dilation process is given by equations (2-11), (2-12) and (2-13). Figure 
(2.13) illustrates the dilation process effect, in which all black pixels of the original image will be kept, 
any image boundaries will be widened, and any small gaps will be removed by filling. 
 

 ,BAE ⊕= is the dilate of image A by structuring element B. (2-11) 

 ( ) =xE �     1,   𝐵 hits 𝐴 at 𝑤 

  0, 𝑓𝑡ℎ𝑒𝑟𝑤𝑖𝑤𝑒 , (2-12) 

 ( )( ){ }AABsBA S ⊆=⊕ ˆ , 
(2-13) 
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 where   
 𝐴  : input image, 
 𝐵 : linear structure element, 
 �𝐵��𝑆 : reflection or translation of structural element B, which overlaps at least some   

portions of A by vector of shift s, 
 𝑤 : vector of shift (pixels), 
 𝐴⊕ 𝐵 : set consisting of all structuring element origin locations,  where the reflection 

 or translation of B overlaps at least some portion of A. 
 
 
 
 
 
 

 

Figure 2.13: Example of the dilate: a. original image A; b. resultant image: BA ⊕   
 

The Erosion Process 

The concept of this morphological operator is the same as the dilation process in a sense. On the con-
trary, converting pixels' colour to white and not black is the major difference between this process, as 
compared with the former one. When a structuring element is moved across an image, the erosion 
process is fundamentally utilized in two steps (DROOGENBROECK/TALBOT 1996): 
 

1. If there is a synchronization between any “white” pixel in the image and the origin 
of the structuring element, there will be no variation and movement to the next pixel 
introduced, 
 

2. If there is a synchronization between any “black” pixel in the image and the origin of 
the structuring element, in addition a minimum of one “black” pixel in the structur-
ing element over a “white” pixel in the image, then variation will be performed by 
changing the “black” pixel in the image (associated to the location on which the 
origin of the structuring element falls) from a “black” colour to a “white” colour. 

 

A mathematical form of the erosion process is presented by equations (2-14), (2-15), and (2-16), re-
spectively (DROOGENBROECK/TALBOT 1996). Figure (2.14) shows that only the pixels synchronizing 
with the structuring element origin will be kept. 
 
  ,BAE Θ= is the erosion of image A by structuring element B.  (2-14) 

 ( ) =xE �     1,   𝐵 fits 𝐴 at 𝑤
  0, 𝑓𝑡ℎ𝑒𝑟𝑤𝑖𝑤𝑒 , (2-15) 

 ( )( ){ },ABsBA S ⊆=Θ  (2-16) 

where   

  𝐴 : input image, 
 𝐵 : linear structure element, 
 �𝐵��𝑆 : reflection or translation of structural element B, that overlaps at least some  portions  

of A by vector of shift s, 
 𝑤 : vector of shift (pixels), 
 BAΘ : set of structuring element origin locations, where the reflected or translated B has no 

overlap with the background of A. 
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Figure 2.14: Example of the erosion: a. original image A; b. resultant image: BAΘ   

 

The Morphological Reconstruction Concept 

          One of the most important morphological operations is usually the morphological transformation, 
which includes two images and a structuring element. This morphological concept is referred to as 
morphological reconstruction. LUHMANN ET AL. (2006) define morphological reconstruction as fol-
lows: (i) morphological reconstruction is utilized using two images; one image is called a marker and 
includes the beginning points for transformation. The second image is called a mask constraining 
transformation; (ii) the morphological reconstruction process relies on the characteristics of the mask 
image and must be continued until the mask image values do not change (peaks of the mask image 
will become flat); (iii) morphological reconstruction requires the structuring element to identify con-
nectivity; and (iv) there are two types of morphological reconstruction, i.e., either by exploiting the 
dilation process (opening by reconstruction) or by investigating the erosion process (closing by recon-
struction).  

 
         VINCENT (1993) summarizes the opening by reconstruction algorithm in sequential steps as follows: 
 

1. The input image must first be eroded before using it as a marker. So, the marker is 
the resultant eroded image.  
 

2. The number of openings by reconstruction of an original input image A is expressed 
as the reconstruction A by dilation from the erosion size n of A. The final dilation 
result is the reconstructed image (Figure 2.15). Mathematically opening by recon-
struction is given by: 

 

                             𝑂𝑅(𝑒)
(𝐴) = 𝑅𝐴𝐷[(𝐴⊖ 𝑛𝑛)],                                                                                           (2-17) 

 
          The idea of closing by the reconstruction approach is similar to the opening by the reconstruction 

concept discussed previously. VINCENT (1993) introduces the closing by reconstruction algorithm in 
two steps: 

1. The complementary image obtained from the opening by reconstruction is used as a 
marker for closing by reconstruction implementation. 
 

 

     where  
 𝐴  : is the mask (original input image), 
 𝑛 : is the marker (the resulted eroded image), 
 𝑛 : are the erosion times, 
 𝑅𝐴𝐷 : reconstruction A by dilation process, 
 𝑂𝑅(𝑒)

(𝐴) : the product of opening by reconstruction operation, 

 (𝐴⊖ 𝑛𝑛) : denotes n erosion times of A by b. 
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2. The number of closing by reconstruction of an image A is utilized as the reconstruc-
tion by erosion of A from the dilation size n of A. Mathematically closing by recon-
struction is presented by: 

 
 
                                                                               (2-18) 

 
In relation to the previously stated, closing by the reconstruction process has been demonstrated by 
complementing the image as a marker, obtaining the opening by reconstruction as a mask, and then 
finally complementing the final result after reconstruction. 
 
 
 
 
 

 
 

 
          

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15: Opening by reconstruction algorithm (MATLAB 2014). 
 

Figure 2.15 illustrates an original image 𝐴 (red colour) as a mask. The resultant eroded image is con-
sidered through the marker 𝑛 (blue colour). The opening by reconstruction is implemented by dilation 𝐴 from the erosion times n of 𝐴  (black curves colour). This procedure will be repeated until no chang-
ing of the mask image (𝐴 [red colour]) values occurs. In other words, all peaks of the mask image will 
become flat. Therefore, the final dilation reconstructed image with flat peaks is denoted in the black 
colour (the last black curve colour) as shown in Figure 2.14. 

       where   
 𝐴  : is the mask (the resulted image from opening by reconstruction), 
 𝑛 : is the marker ( complementary of resulted opening by reconstruction image   

after dilation), 

 𝑛 : are the dilation times, 
 𝑅𝐴𝐸 : reconstruction  A by erosion process, 
 𝐶𝑅(𝑒)

(𝐴) : the product of closing by reconstruction operation, 

 (𝐴 )nb⊕  : denotes n dilation times of A by b. 
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The Morphological Operations for Holes Filling Concept 

A background region encompassed by linked boundaries of foreground pixels is usually referred to as 
a hole. The focus of this thesis is particularly on morphological reconstruction using dilation algo-
rithms for filling holes. So, two morphology reconstruction filling operations can be presented accord-
ing to GONZALEZ/WOODS (2008): 
 
Hole-Pixel Initial Algorithm (HPIA) 

The idea of this algorithm is an approach for region filling. GONZALEZ/WOODS (2008) introduce this 
filling approach as follows: (i) it relies on a cluster of dilations, intersections, and complementations 
by starting with point p inside of the border; (ii) the main target of this algorithm is to fill the entire 
region with black. Therefore, the starting point p must be assigned to a value of “black”; (iii) the as-
sumption of this algorithm is that the “white” colour is labelled for all background (non-boundary) 
regions, so this algorithm will fill the background with a “black” colour; and (iv) this algorithm will be 
continuous until it reaches G. G demonstrates the object number within the images (number of itera-
tions), and (x, y) represent the pixel coordinates of object i. Therefore, vector P is considered an initial 
vector for this algorithm; see equations (2-19) and (2-20), respectively:    
 𝑷 = {𝐼𝑖|𝑖 = 1,2, … . .𝐺},                                                                                          (2-19) 𝑰𝒊 = {�𝑥𝑖,𝑦𝑖�}, 𝑗 is number of holes in object i                                                     (2-20) 
 
The drawback of the hole pixel initial algorithm is that it requires the beginning points for each hole 
inside of each object, within the image, and this is unsuitable for real-time applications. It is time-
consuming and requires human involvement during the primary step. This drawback is solved by us-
ing an automatic way of Matlab (GONZALEZ/WOODS 2008) to find the beginning points for each hole. 
In conclusion, this algorithm can fill holes inside of objects successfully after a specified number of 
epochs and stop when no change of 𝑿𝑮 value will be recorded. Mathematically, the hole pixel initial 
algorithm is given by equation (2-21) (GONZALEZ/WOODS 2008): 
 

                 𝑿𝑮 = (𝑿𝑮−𝟏⊕ B) ∩ 𝐴𝐶  , for G =  1, 2, 3, …                                                          (2-21) 

 
By analyzing equation (2-21), if 𝑿𝑮= 𝑿𝑮−𝟏, then the algorithm ends. The filled set and its boundary 
will be utilized by a set union of 𝑿𝑮 and 𝐴, where finally the 𝑿𝑮−𝟏 set will be included in all of the 
holes. Sequentially, the intersection process with the 𝐴 complement at each epoch will keep the out-
comes within the required region (GONZALEZ/WOODS 2008). 
 
Border Image Initial Algorithm (BIIA) 

The idea of this approach is more effective for filling holes. This algorithm depends on the morpho-
logical reconstruction concept discussed previously. GONZALEZ/WOODS (2008) introduce these algo-
rithm steps as follows: (i) a binary image is assumed as 𝐴(𝑥,𝑦); (ii) a marker image is presented as 
having 0 everywhere, excluding boundaries. Boundaries must have a value of 1 –  𝐴(𝑥,𝑦). Mathemati-
cally, the initial value for this approach is given by equation (2-22); (iii) next, several iterations will be 
realized and repeated by equations (2-23) and (2-24), respectively; and (iv) as any morphological re-
construction process, this algorithm will be terminated when there is  no change in the mask image 
(flat peaks appear). 
 

 where   
 𝑃  : initial vector of the algorithm, 
 𝐵 : symmetric structuring element, 

 ∩ : intersection operator, 
 𝐴𝐶 : complement of original input binary image A, 
 𝑋𝐺: product of the algorithm at iteration step G, 
 𝑋𝐺−1 : vector at iteration step G-1. 
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 𝑛(𝑥,𝑦) = �1− 𝐴(𝑥,𝑦), 𝑖𝑓(𝑥, 𝑦) 𝑖𝑤 𝑎 𝑛𝑓𝑟𝑑𝑒𝑟 𝑝𝑖𝑥𝑒𝑝 𝑓𝑓 𝐴
0                                              𝑓𝑡ℎ𝑒𝑟𝑤𝑖𝑤𝑒   ,      (2-22) 

 where    𝑛 (𝑥,𝑦):    the marker, 𝐴(𝑥,𝑦) :    binary input image (mask). 
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             where   

 
The product of opening by reconstruction operation will produce a final binary image output equal to 
A with all the holes filled. The border image initial algorithm also generates a speed factor problem. 
This hindrance is associated with different reasons as follows: (i) this algorithm must be started from 
the border and will extend one pixel at a time from a boundary. Therefore, it needs several epochs for 
finding the final binary output image with all of the holes filled, while the number of epochs relies on 
the image size (dimensions); and (ii) another reason for this speed problem is in the case of the image 
not containing any objects. In this case, the algorithm will consume a large amount of time (GONZA-

LEZ/WOODS 2008). 
 
This thesis will define no more morphological operations, since this lies beyond the scope of this re-
search. Further definitions of other morphological operations and algorithms can be found in 
DROOGENBROECK/TALBOT (1996) and other textbooks on digital image processing. 
 
2.3.3 Image Analysis (Image Interpretation) 

Image analysis is not the same as image processing. The basic aim of image analysis is to realize, 
measure, and classify image objects. Image analysis for crack detection is utilized during three catego-
ries as follows: 
 

1. segmentation (thresholding stage), 
2. crack connection (post-processing stage), 
3. crack extraction and classification (detection stage). 

 
Segregation of individual objects for measuring their pertinent brow is realized during the segmenta-
tion stage. The type of objects to be isolated (detected) are based on the image analysis target. Bright-
ness, texture, colour, and shape properties may be measured through the segmentation stage (CHOU ET 

AL. 1994). 
 
Crack connection (post-processing stage) is considered an optional stage based on the image analysis 
requirements. The latter stage is usually followed by the classification stage. To some extent, compari-
sons between the extracted measured features are done during the classification stage. In principle, the 
comparison is implemented as follows (CHOU ET AL. 1994): 

 𝐴𝑐: the complement of the original input binary image, 
 𝑛: the marker, 
 𝑅: morphological reconstruction operation, 
 𝐴: mask of original binary image, 
 𝐷: dilation, 
 𝐺: objects number within images (number of iterations) until ( )1+= GG

bb , 
 𝑛: the erosion times, 
 𝑂𝑅(𝑒)

(𝐴𝐶): the product of opening by reconstruction operation. 
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1. Specifying which object features are needed to classify cracks 
2. Specifying the allowance degree (how close the measurement must be to the instituted   
      criteria). The aim is to classify crack features into different classes. Different classes (groups)  
      are generated for crack feature assignment. This process is based on how the crack feature   
     measurements match with the setup criteria. 

 
Regarding crack classification in general, several classification approaches have been proposed in the 
literature; see HSU ET AL. (2001), SALARI (2012), CHOU/SALARI (2012), TEOMETE ET AL. (2005). 
There are no general specifications or methods for all crack cases. Every road authority has its own 
method and own specifications. These differ from one country to another due to their relationship with 
the pavement texture type. 
 
Over the last 15 years, different image processing algorithms for pavement distress analysis were pre-
sented by different algorithms. Although a large amount of attention has been paid to this domain, in 
the literature there is still no single system of algorithms that is considered to be the best path for crack 
detection and classification. There are many complexities involved which are associated with crack 
detection and classification problems. These difficulties are summarized as follows (GERARDO ET AL. 

2004): 
 

1. Pavement construction materials have a lot of variability 
2. Different shapes and alignments of cracks exist 
3. Different extrinsic objects exist on the road pavement surface, for example, tire marks, paint, 

shadows, oil spots, mufflers, traffic loops, etc. All of these extrinsic objects create an object 
occlusion problem. 

A perusal of literature would strongly confirm that there are possibly from 20 to 200 groups of crack 
detection and classifications being executed by different investigators. The performance of each set of 
algorithms is checked by looking at the results and applying them (empirical way). Moreover, due to 
the variance of pavement textures, this situation creates a need for any proposed set of algorithms to be 
examined on comprehensive sections of different pavement textures (HEROLD ET AL. 2008). In conclu-
sion, different sets of algorithms were developed. Possibly, some of these algorithms systems are more 
effective as compared to others, but in principle, none are recommended as superior (HEROLD ET AL. 

2008). Most of the previous algorithms used digital image processing techniques for crack detection. 
Digital image processing and analysis for crack detection can be divided into four sequential stages: 
pre-processing, segmentation, post-processing, and feature extraction and classification. In general, 
segmentation and feature extraction/classification, and the problems associated with them, are of great 
interest throughout different recent research works. However, pre-processing and post-processing 
stages are considered as preparatory stages (optional stages) for segmentation and feature extrac-
tion/classification stages, respectively. In some cases, segmentation may be utilized without having 
any pre-processing, i.e., it is based on the original image’s nature. The same issue exists for post-
processing, as feature extraction/classification may be done without having any post-processing pro-
cesses. This matter depends on the nature of the resultant images from the thresholding stage. Finally, 
feature extraction/classification is related to each other. Classification is impossible unless feature 
extraction is done (JIAN 2002). 
 
Segmentation Definition and Problems 

Over the past years, segmentation has represented a critical task for pavement image processing, as it 
is a fundamental issue in order to measure and distinguish cracks successfully. Isolating the cracks 
from the remaining extrinsic objects and noise is done during the segmentation stage, if the cracks are 
not successfully separated. The cracks will not be measured precisely without segmentation (KELVIN 

ET AL. 2007). 
 
In fact, no direct straightforward approach is known to the author for segmentation, and therefore no 
notion of segmentation is available. As HARALICK/SHAPIRO (1985) has stated: “Image segmentation 
techniques are basically ad hoc and differ precisely in the way they emphasize one or more of the de-
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sired properties and in the way they balance and compromise one desired property against another.” In 
general, MICHAEL (1992) claims that segmentation is the same as binarization. To some extent, this 
assumption is not true because the segmentation may be done on grayscale images, without switching 
to a binary image. For all anyone knows, algorithms for crack detection and classification are utilized 
by converting gray-scale images into binary images. However, working with binary images has differ-
ent utilities. As JAMES (1988) has expressed: "If you can obtain a suitable binary image showing the 
required object, then there is a wide range of techniques which you can use to enhance the image and 
extract features that make classification possible. Binary image processing is easier from both the the-
oretical and practical point of view. Binary images are more amenable to analysis because they have 
clear-cut properties, such as boundaries, areas and shape.We can ask questions about the shape of a 
binary object because it has well-defined boundaries. Questions about the shape of an object in a gray 
level image depend on where we decide its edges are." Overall, obtaining a satisfying binary image 
constitutes the most challenging issue during binary processing. As JAMES (1988) has indicated, “This 
can be 99% of the real image processing/ recognition problem.”  
 
To obtain an appropriate binary image, it is necessary to select a convenient threshold. Sequentially 
picking a suitable threshold is considered a problematical task for pavement images. According to the 
experiences of automated commercial systems, any commercial automated image processing system 
must have a threshold-setting algorithm integrated into it. Moreover, a superior threshold value for 
each image must be recommended by this threshold-setting algorithm. This threshold value should be 
able to isolate only the cracks from the rest of the pavement images. In addition, variations in the 
pavement images must be considered by using a changeable threshold rather than a fixed one. In fact, 
this is one reason why some threshold setting algorithms are more effective than others. The histogram 
method is the most common and simple approach for setting a threshold automatically (KITTLER/ 

ILLINGWORT 1985). 
 
By analysing Figure 2.16, it can be seen that the brightness levels of the pavement surface are lighter 
than the brightness levels of the cracks. Therefore, the histogram (Figure 2.16-left) has two peaks, and 
the threshold will be located in the valley between them. In the final resultant binary image, the cracks 
will be displaced as black, and the rest of the pavement image as white (or vice versa). In actuality, 
most of the cracked pavement image histograms do not have just two obvious peaks (Figure 2.16-
right). It is obvious from this kind of brightness level distribution that the setting threshold value will 
be more complicated. Although it is possible to have several trial and error techniques, it is not a logi-
cal approach for any automated system (KITTLER/ILLINGWORT 1985). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.16: Histogram showing two types of intensity distributions (GIRARDELLO  2002 and HOWE/GLEMENA 1987). 
 
Several significant problems associated with the segmentation stage were recorded as follows: (i) cur-
rent pavement images contain a broad zone of gray levels. Thus, the contrast is considered as one of 
the techniques for crack recognition. There is a variance of the contrast level between pavement sur-
face and the crack. In most cases, cracks must be darker than the rest of the pavement image. In the 
other cases, it is unattainable to detect cracks from the rest if the contrast is too low. Several research 
works tried to solve this problem by adjusting the non-uniform background illumination, using differ-
ent averaging algorithms; and (ii) the other common problem with pavement images is noise. The 
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appearance of noise is due to multiple factors: (a) texture of the pavement surface; and (b) shadows 
and small holes in the surface, such as oil spots and other debris, that are generated due to the pave-
ment surface roughness. A median filter is used as an efficient solution for removing each small spot 
of noise (KOUTSOPOULOS/DOWNEY 2006). It is worth mentioning that there are several kinds of noise 
(e.g., black fan belt or piece of black rubber hose) that are not deleted by the median filter. The reason 
for this is because the size and colour (brightness levels) of the black fan belt or the black rubber 
hose’s pixels are similar than the size and colour (brightness levels) of the pavement cracks. These 
types of noise will appear as lying adjacent to the cracks. Consequently, from an empirical point of 
view, it is impossible to cut them out during the segmentation stage. As can be seen in Figure 2.17, a 
black rubber hose is located adjacent to the cracks (Figure 2.17-right). This creates a problem from the 
image processing side, in contrast to a human rater. The latter one can distinguish between a hose and 
cracks; whereas, the former one will deal with the hose in the same way that it deals with other black 
pixels in the binary image. In conclusion, the hose will be detected as a possible crack. In order to 
solve this problem, some mechanisms must be included to remove the hose from consideration, alt-
hough it may not be deleted from the black pixel class. The characteristics for crack differentiation 
during the classification stage may be utilized as a possible mechanism to exclude the hose from a 
crack. From this point of view, some operations can be used for large-sized noise removal; however, 
in the same instance, narrower cracks will also be removed (KITTLER/ ILLINGWORT 1985). 
 
 
 
 
 
 
 
 

Figure 2.17: Two noisy binary images (GIRARDELLO  2002 and HOWE/GLEMENA 1987). 
 

2.3.4 Review of Some Global and Local Binarization Techniques 

Recent research work has demonstrated that different binarization approaches can be used to extract 
objects from pavement images, as well. OTSU (1979) presented a threshold selection approach. The 
aim of this approach is to automatically select an optimal threshold for image segmentation. This is 
completed to increase the quality of separation. Several methods have been introduced in the literature. 
The histogram of the image will be divided into two probability distributions. The objects will be rep-
resented by one probability side of the distribution, while the background will be represented by the 
other side. These methods are based on the maximum entropy algorithm (KAPUR ET AL. 1985, 
NIBLACK'S 1985). YANOWITZ/BRUCKSTEIN (1989) proposed an approach for threshold surface calcu-
lations. This approach is executed by a gradient map of the image. The latter approach’s aim is to 
mark an object boundary for the local threshold determination. Histogram-based global thresholding 
techniques are used by SOLIHIN/LEEDHAM (1999) and LEEDHAM (2003) in order to define a new class 
of histograms. These techniques rely on a two-phase thresholding approach of foreground, back-
ground, and a fuzzy area. A histogram-based binarization algorithm is used for multi-scale texture 
segmentation and spatial cohesion constraints, e.g., pavement images. This latter algorithm is used 
automatically by MOTWANI ET AL. (2004) for crack detection from various pavement sources. Serious-
ly degraded and very low quality gray scale pavement images, with a great deal of noise, will be bina-
rized using a local (adaptive) threshold method (YANG/YAN 2000). SAUVOLA/ PIETIKAKINEN (2000) 
proposed an approach for adaptive image binarization. This algorithm deals with a pavement image as 
a bundle of different components, such as noise, background, and the rest of the image. RAN-

DOLPH/SMITH (2008) show different overviews of binary domain approaches. They demonstrate that 
filters will extract edges and enhance pavement images to be of a finer quality. Simple and complex 
pavement images were tested by the algorithm by WU/AMIN (2003). This last algorithm works well, 
using multi-stage global thresholding followed by local spatial thresholding. FAN ET AL. (2003) inves-
tigated wavelet coefficient correlations to exchange the segmentation phase with a diffusion process. 
This algorithm succeeds to deal with noisy pavement images. 
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Several high-quality techniques have been introduced and improved rapidly. BARTOLO ET AL. (2004) 
presented Bernsen’s algorithm as a tool for pavement image binarization. This algorithm is able to 
deal with poor quality images, e.g., inhomogeneous shadow background. So, it is considered a precise 
binarization method without any user-defined interaction. A digital image binarization scheme is pre-
sented by GATOS ET AL. (2004). This algorithm scheme is implemented as the follows: (i) low-pass 
Wiener filter is used during the pre-processing stage; (ii) Niblack's approach is done during the seg-
mentation stage; and (iii) a post-processing quality and connectivity step is done lastly. 
MEHMET/SANKUR (2004) show different overviews of most image thresholding methods, such as 
histogram shape, measurement space clustering, entropy, object attributes, spatial correlation, and 
local gray-level surface for pavement images. The performance measures of these thresholding meth-
ods are compared in MEHMET/SANKUR (2004). BIENIECKI/GRABOWSKI (2005) present a comparative 
study between global and local thresholds. This comparative study is implemented with a suitable 
window size (the window size definition is explained in more detail in chapter 3, section 3.2.1). Local 
feature thresholding algorithm and quad-tree decomposition for pavement sub-regions are adapted by 
(AKIHITO/SAITO 2005). GATOS ET AL. (2004) report a segmentation-free recognition procedure and 
closed cavity regions for old pavement images. A novel alternative binarization algorithm and a new 
thresholding technique for pavement image interpolation is introduced and compared against existing 
algorithms, see LEEDHAM (2003), JI ET AL. (2005). A survey  by KAVALLIERATOU/ANTONOPOULOU 
(2005) extensively compares the most widely used pavement image binarization methods. These 
methods utilize the fact that the pixels representing cracks do not exceed 10% of the total number of 
pixels for the entire image. In fact, some algorithms are usually based on robust adjustment techniques 
(e.g., BURGOYNE ET AL. 2007, BADEKAS/PAPAMARKOS 2007). These latter techniques used binariza-
tion algorithms for degraded pavement images, and can differ successfully between crack images and 
non-crack images by different mechanisms. 
                   
Several other well-known methods in the literature have been employed to test the same collections of 
pavement images for comparison. These methods include Niblack’s method (NIBLACK'S 1985), Sau-
vola’s method (SAUVOLA/PIETIKAKINEN 2000), and beamlet transformation for crack detection 
(YING/SALARI 2009).  These methods are chosen because either they have been previously used for 
threshold pavement image successfully, or they were designed to extract textual information from its 
application (WU ET AL. 2005). In the following, a general overview of these well-known methods is 
presented. 
 
Niblack's Method (Local Thresholding by NIBLACK'S 1985) 

A significant advantage of this representation is that it suggests the use of a local adaptive method for 
threshold surface computations. According to equation (2-25), Niblack represents the threshold value 
for a pixel, with a fixed neighbourhood window as a linear relationship of mean and standard devia-
tion of the neighbourhood pixels with a constant gradient of v. Thus, this method is utilized by moving 
a window across the image. The local mean and standard deviation must be calculated for each centre 
pixel in the window. Similar to the corresponding method, two factors affect the algorithm perfor-
mance as follows: (i) window size (a small window leads to a loss of details, on the contrary, a large 
window leads to high computation cost); and (ii) parameter v (which is critical in terms of how the 
algorithm can select a suitable v to separate the object well). The following equation explains the 
threshold determination: 
 𝑇(𝑥,𝑦) = 𝑚(𝑥, 𝑦) + 𝑣 ∙ σ (𝑥,𝑦),                                                                          (2-25) 

 where  
 𝑚(𝑥,𝑦)  : mean gray level of the pixels within the window, 
  𝜎(𝑥,𝑦)  : standard deviation of these pixels within the window, 
 𝑇(𝑥,𝑦)  : Niblack's threshold, 
   𝑣           : 

 

      

user defined parameter that is used to adjust the percentage of total pixels  
that belong to foreground object, especially in the boundaries of the object. 
 A value of v = -0.2 
. 
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Then, from equation (2-26), the pixel class is evaluated as follows: 
 

        𝜔(𝑥,𝑦) = �ω 𝑓 , 𝑓(𝑥,𝑦) < 𝑇(𝑥,𝑦)

ω 𝑏 , 𝑝(𝑥,𝑦) ≥ 𝑇(𝑥,𝑦)
  ,                                  (2-26) 

where 

           ω b          :      background pixels intensity. 
 
Sauvola's Method (Local Thresholding by SAUVOLA/ PIETIKAKINEN 2000) 

Sauvola's algorithm (SAUVOLA/PIETIKAKINEN 2000) is considered as an adjustment of Niblack's algo-
rithm. This algorithm shows a good interpretation for pavement images of complex conditions, e.g., 
the background contains a light texture, large variations, and uneven illumination. The main difference 
between Niblack's algorithm and Sauvola's algorithm is that the latter one uses a dynamic range of the 
standard deviation 𝜎 rather than a fixed one, like the former algorithm. Sauvola's algorithm can select 
a threshold value based on image properties using equation (2-27) as follows:   
 

 𝑇(𝑥,𝑦) = 𝑚(𝑥, 𝑦) ∙ �1 + 𝑣 ∙ �1− 𝜎(𝑥,𝑦)𝜎 ��,                                       (2-27) 

where  

 
Equation (2-26) above is used for pixel class determination. 

The parameter v is used to adjust the percentage of total pixels that belong to the foreground object. 𝜎 is 
referred to as the maximum gray value standard deviation obtained over all of the neighborhoods (win-
dow). It is considered a dynamic range of standard deviation. In conclusion, although different methods 
of image thresholding exist, which may be applied for crack detection of pavement images, all of them 
require some user-defined parameters. Thus, the studied algorithms are inappropriate for an automated 
crack detection interpretation system. Niblack's and Sauvola's algorithms utilize a parameter v. The val-
ue of parameter v must be determined directly from an image’s nature. However, the requirement for the 
single parameter v hinders the automation process. Moreover, determining the intensity for each point 
within a specified window is adverse for speed.  
 
Beamlet Transformation for Crack Detection 

The concept of beamlet transformation was first introduced by DONOHO/HUO (2001) as a tool for mul-
ti-scale image analysis. In general, the beamlet transformation is the collection of line integrals along 
the set of all beamlets. Beamlet transformation for crack detection is defined as a simple dyadic orga-
nisation of all crack line segments at different locations, orientations, and scales (YING/SALARI 2009). 
This principle is used as a tool to detect and extract linear crack edges with high accuracy.  
For digital images, the beamlet transformation is a measure of the line integral in the discrete domain. 
The beamlet transformation for all the points along the beamlet is defined using equation (2-28), 
where the beamlet transform 𝑇𝑓 of function 𝑓 is defined as follows: 
 𝑇𝑓(𝑥,𝑦) = ∑ 𝑓(𝑥,𝑦)∅(𝑥,𝑦)𝑥,𝑦  ,            (2-28) 

 

 𝜔(𝑥,𝑦)  : pixels intensity of image after threshold, 
 𝑓(𝑥,𝑦) : gray level intensity of each pixel (x,y) in the original image, 
 𝑇(𝑥,𝑦)  : threshold calculated by Niblack's method using equation (2.25), 
 ω f         : foreground pixels intensity, 

 𝑚(𝑥,𝑦) : mean gray level of the pixels within the window, 
  𝜎(𝑥,𝑦)  : standard deviation of these pixels within the window, 
 𝑇(𝑥,𝑦)  : Sauvola’s threshold, 
 𝑣            : constant with usual value v =0.1, 
 𝜎            : constant with usual value 𝜎 =128 (it depends on the number of gray values). 
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The weighting function of each pixel is calculated using equation (2-29) by: 
 ∅(𝑥,𝑦) =

l𝑛√L ,            (2-29) 

 
The total length of the beam is calculated using equation (2-30) by: 
 

L = ∑ 𝑝𝑒 ,            (2-30) 
          

The steps for executing the beamlet transformation to detect cracks are implemented as follows 
(YING/SALARI 2009): 
 

a. The image must be divided into smaller rectangular windows; 
 

b. Build a beamlet dictionary: a beamlet dictionary is defined as a dyadically organized 
library of line segments at a range of locations, orientations, and scales which give a 
multi-scale approximation to the collection of all line segments. For single scale 
beamlet transformations, all windows have the same dimension, and thus the same 
beamlet structures. Therefore, the dictionary needs to only be calculated once, and can 
be used for all of the windows. For each beamlet, the following database must be reg-
istered as follows:  

i. The coordinates of the pixels that are located on the beam must be specified, 
ii. Each segment of the beam must record its corresponding length  𝑝𝑒 , 

iii. The total length of beamlet 𝐿 is computed, 
iv. The weighting of the corresponding pixels are calculated based on (ii) and (iii) 

results using equation (2-29), 
v. The beamlets dictionary is saved.  

 
c. The beamlet dictionary is executed iteratively for each small window after completing 

its building and storing. Next, the beamlet, which provides the maximum value, is se-
lected if its value exceeds a pre-defined threshold value. This beamlet will represent 
cracks within the window (Figure 2.18). Figure (2-18) displays the beamlet transform 
as a weighted sum of pixel values along the shaded line that the beamlet traverses.  

 
 
 

 

 

 

Figure 2.18: Beamlet transform is a weighted sum of pixel values along the shaded line (YING/SALARI 2009). 

where    
 𝑇 𝑓 (𝑥,𝑦) : beamlet transformation of function 𝑓(x ,y), 
 (x,y): pixels coordinates, 
 f (x,y): gray level intensity of pixel (x, y) in the image, 
 ∅(𝑥,𝑦):  weighting function of each pixel (x, y) in the image. 

 

 where   
 ∅(𝑥,𝑦): weighting function of each pixel (x, y) in the image, 

 𝑝𝑒: length of a segment in each square pixel on the beam, 
 𝐿: total length of the beam. 
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2.3.5 Partial and Complete Crack Detection Algorithms 

Several image processing algorithms for crack detection have been developed; however, many of 
them, which are dependent on approximation algorithms, face some challenges. Therefore, automated 
analysis and pattern recognition are highly appropriate for pavement surveying. In general, the re-
quired approach is to collect pavement images using cameras mounted on a moving vehicle. Next, 
special software is utilized to identify and quantify the pavement distress from these images. During 
the previous two decades, the numbers of research projects concerning the development of automated 
pavement inspection systems has increased significantly. In most of the developed algorithms, pave-
ment images are processed to extract crack information during four stages as follows (Figure 2.19):  
 

1. Image enhancement (pre-processing) stage: Pavement images are composed of background, 
noise, and cracks. The noise on the image, objects on the road, the pavement patterns, and the 
non-uniform backgrounds, cause difficulties for crack detection and even fail the threshold 
process. In order to recognize distress with fidelity on the road surfaces, many algorithms have 
been developed to eliminate noise and normalize the background. e.g., histogram equalization, 
contrast, morphological operations algorithms, and the multiply factor method. 
 

2. Thresholding (segmentation stage): Thresholding is a technique used to separate objects from 
the background. Since cracks are always darker than their surroundings, the threshold value 
should be of relatively low intensity. Usage of more than one thresholding mechanism value 
gives a dynamic approach to crack extraction.  
 

3. Crack connection (post-processing stage): The binary images extracted from pavement images 
are usually noisy. The cracks in the binary images are discontinuous, and there are two rea-
sons for this discontinuity of the cracks: firstly, the reality of the shape of the cracks itself, and 
secondly, the discontinuity due to the segmentation process in the previous thresholding stage. 
In order to obtain continuity of linear cracks, the discrete linear crack points need to be con-
nected. In addition, in this stage, the remaining noise is reduced, and all of the cracks holes are 
filled using different morphological operation algorithms, hole filling algorithms, and con-
nected components algorithm. 
 

4. Crack extraction and classification (detection stage): Some of the resultant images from the 
post-processing stage are still being affected by noise, so the processing methods in this stage 
are able to extract linear cracks alone by setting a threshold to the crack size. Linear cracks 
will be detected, and the remaining noise will be eliminated. Then, according to length, width, 
and orientation, linear cracks are classified into different categories by using different meth-
ods.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.19: Workflow for the combination of general stages to extract crack information. 
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This section will focus on partial and complete crack detection algorithms. Every crack detection algo-
rithm includes four stages as mentioned previously. Every stage is realized using different methods. 
Figure 2.20, 2.21, 2.22, and 2.23, respectively, present a workflow for the used methods of each stage, 
with respect to different algorithms. All of these algorithms will be explained in detail later in this 
section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

 

 

 Figure 2.20: Workflow for the used methods of image enhancement stage with respect to different algorithms.  
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Figure 2.21: Workflow for the used methods of thresholding stage with respect to different algorithms. 
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Figure 2.22: Workflow for the used methods of crack connection stage with respect to different algorithms. 
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Figure 2.23: Workflow for the used methods of crack extraction and classification stage with respect to different 

algorithms. 
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BUGAE/YAXIONG (2003) developed a customized image processing algorithm for pavement cracking 
inspection. The image enhancement stage is not included in this algorithm. The image is divided into 
small cells during the thresholding stage. Each cell is investigated and classified by determining if 
there is a crack inside. For this reason, local parameters are defined. Connectivity searching (cluster of 
seeds continuity) is done during the crack connection stage. Obviously, after verification, a cluster of 
seeds is identified as a real crack. This real crack must stratify the seeding algorithm characteristic 
during crack extraction and the classification stage. The BUGAE/YAXIONG (2003) algorithm produced 
false seeds (noise) in different cases. Firstly, the road sections are occluded by shadows. This is due to 
the nonexistence of image enhancement (pre-processing stage). Secondly, the road sections contain 
cracks of illuminated background. Moreover, this algorithm cannot classify cracks. Due to these dis-
advantages, this algorithm is considered to be an incomplete procedure. 

 
MASER (1987) used the histogram equalization technique during the image enhancement stage. This 
image processing technique is investigated for image contrast adjustment. This method increases the 
global contrast obviously in cases of close contrast images. During implementation of this technique, 
the most frequent intensity values will be distributed effectively on the histogram. Therefore, the lower 
local contrast areas will gain a higher contrast. This means that the overall contrast of the entire image 
will be improved during the image enhancement stage. MASER (1987) separated crack pixels using a 
threshold-based segmentation method during the thresholding stage. The crack connection stage is not 
included in this algorithm.  In addition, MASER (1987) separated crack pixels with a lot of noise during 
the crack extraction and classification stage. It should be noted that the Maser algorithm cannot distin-
guish between cracks and road markings. Furthermore, the resultant images still have noise. Therefore, 
this algorithm cannot classify cracks. For these reasons, it is considered to be an incomplete procedure. 

 
LI ET AL. (1991) utilized the contrast between pixels in the image enhancement stage. A Sobel Edge 
Detector (described previously in section 2.3.2.2) is used to filter out the edges during the thresholding 
stage. Then, LI ET AL. (1991) modified the threshold determination method. The basics of this thresh-
old determination method are developed by KITTLER/ILLINGWORT (1985). LI ET AL. (1991) modified 
the threshold value depending on statistical characteristics of crack pixel clusters and local threshold-
ing. The assumption of this algorithm is that noise clusters had a perimeter of less than 20 pixels. 
Therefore, the selection of threshold values is done iteratively. This threshold value is different from 
one image to another one. The positive characteristic of this algorithm is its ability to connect crack 
segments using connectivity searching. This is done during the crack connection stage. In addition, the 
final result of this algorithm will form a continuous cluster of crack pixels during the crack extraction 
and classification stage. Alternatively, some disadvantages exist, as follows: Firstly, the LI ET AL. 

(1991) algorithm cannot deal with complex compound cracks with noise clusters of more than 20 pix-
els. Secondly, the algorithm cannot classify cracks. Therefore, this algorithm is considered  to be an 
incomplete procedure. 

 
KOUTSOPOULOS/DOWNEY (2006) proposed a lighting variation compensation method by subtracting 
an average of a few non-distress images from the same series during the image enhancement stage. 
For segmentation, instead of using ordinary binary segmentation, which assigns a value of one to ob-
ject pixels and a value of zero to background pixels resulting in a binary image, a different approach is 
suggested. It assigns values from 0 to 3 to each pixel based on its probability of being an object pixel. 
Background pixels are drawn from the Gaussian distribution. Object pixels are drawn from a similar 
distribution with a lower mean and a higher variance. The threshold that meets various criteria can be 
obtained from these two distributions during the thresholding stage. The aim of this algorithm is to 
separate crack pixels from the background pixels during the crack extraction and classification stage. 
The crack connection stage is not included in this algorithm. However, this algorithm does not work 
correctly because the extracted thresholding value responded to the cracks and lane markings together. 
These line markings need to be eliminated as false positives. Moreover, this algorithm cannot classify 
cracks. In conclusion, this algorithm is considered to be an incomplete procedure. 
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CHOU ET AL. (1994) used moment invariants from different types of distress to obtain features during 
the thresholding stage. The image enhancement and crack connection stages are not included in this 
algorithm. Additionally, back propagation neural networks were used to classify the features during 
the crack extraction and classification stage. A back propagation neural network is used to classify the 
type of distress based on Hu's moments (HMs), Zemike moments (ZMs), and Bamieh moments 
(BMs). The back propagation neural network of this algorithm deals with 18 nodes (four 
BMs+7ZMs+6HMs+1Bias) in the input layer, 17 nodes in hidden layers, and seven nodes in the out-
put layer. This approach can classify cracks into seven types: longitudinal, transverse, combined, right 
and left, diagonal (edge cracks), alligator, and no crack. Moment invariants are shown to be feasible 
for pavement crack classification. The negative sides of this algorithm occur due to different reasons 
as follows: Firstly, the irregularity and fuzzy shape of the pavement cracks themselves will lead to the 
loss of moment invariant properties. Then, the feature extraction will not have been performed well. 
Secondly, the extraction’s irregular and fuzzy features are used as inputs to the neural networks. The 
weaknesses of these extracted features affect the neural network classification rate. Therefore, the 
classification rate will be satisfactory, but not perfect. In conclusion, this algorithm is considered a 
complete procedure with some negative aspects. These negative sides depend on the case studies.  

 
In general, two-dimensional image patterns will be minimized into feature vectors, e.g., translation, 
scale, and the rotation of an object in an image, using moment invariant techniques during the thresh-
olding stage. The hole-pixel initial algorithm (HPIA) is implemented in order to fill all of the object 
holes during the crack connection stage. This is usually followed by a crack extraction and classifica-
tion stage in which the extracted features of the segmentation stage will be considered as input to the 
neural network (HSU ET AL. 2001). The back propagation neural network technique classifies cracks 
into: longitudinal, transverse, netted (alligator & block), and cavities (potholes). Based on the desired 
end-product, the accuracy of the final classification results was 85%. Image enhancement is not in-
cluded in this algorithm. This algorithm cannot distinguish between cracks and lane markings. There-
fore, it is considered as a complete algorithm with some problems and defects. To some extent, the 
crack detection problem is still unsolved. Nevertheless, there are several other algorithms which are 
able to detect and classify cracks, see SALARI (2012), CHOU/SALARI (2012), SALARI ET AL. (2010). 
These algorithms are considered as complete algorithms with some problems and defects. These algo-
rithms face obstacles, such as pavement images with shadows and pavement images with lane mark-
ings. For example, SALARI (2012) proposed an algorithm based on background subtraction by a medi-
an filler during the thresholding stage. Image enhancement and crack connection stages are not includ-
ed in this algorithm. This algorithm employed relaxation labelling techniques and neural network 
training to classify distresses as  longitudinal cracks, transversal cracks, or potholes during the crack 
extraction and classification stage. CHOU/SALARI (2012) suggested an algorithm based on using a re-
gion growing concept and labelling connected components algorithm. These algorithms are able to 
differentiate road surface from the background region and separate cracks from the road surface during 
the thresholding stage. The definition, evaluation, and concepts regarding labelling connected compo-
nents algorithm are explained in detail in chapter 3, section 3.3.1. Image enhancement and crack con-
nection stages are not included in this algorithm. This algorithm used Neural Network Training to 
classify cracks into four categories: block cracks, longitudinal cracks, transverse cracks, and no crack 
during the crack extraction and classification stage. SALARI ET AL. (2010) offered an algorithm to re-
move non-uniform illumination effects using morphological operations during the image enhancement 
stage. Otsu's, Niblack's, and Sauvola's thresholding algorithms are implemented during the threshold-
ing stage. Additionally, 2D-feature mapping was used to classify cracks into four categories: alligator 
cracking, block cracking, longitudinal cracks, and transverse cracks, during the crack extraction and 
classification stage. Afterwards, the extracted cracks will be printed on the original image using a con-
touring algorithm (JONES 1971). Image enhancement and crack connection stages are not included in 
this algorithm. 

 
GEORGOPOULOS ET AL. (1995) proposed a method in which the distress can be represented by a set of 
vectors approximating the crack composing the distress (vectorization) during the thresholding stage. 
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The direction vectors are then grouped into two categories: horizontal and vertical. Finally, the cracks 
are classified based on their direction during the crack extraction and classification stage. The image 
enhancement and crack connection stages are not included in this algorithm.  Although this algorithm 
works well, there are some defects in the case study of having different pavement textures. Therefore, 
this algorithm is considered as a complete procedure with some complications. 

 
According to CHENG/MYOJIM (1998), a viable crack extraction method exists that comprises four 
stages: (i) using a multiple factor method in the image enhancement stage. This method is implement-
ed by dividing pavement images into rectangular windows. The mean value for each window is com-
puted. Then, the mean value of each window is converted to a target value by a multiplier. The latter 
one is different from one window to another. Finally, a decision will be made based on the presence of 
a sudden drop of illumination. If a sudden drop exists within a window, the window is classified as a 
crack window, and the mean value of the window must be exchanged by the average of neighboring 
windows. (ii) fuzzy set theory is implemented during the thresholding stage. The crack membership 
values of the pixels are established by mapping the fuzzified image to the crack domain. (iii) skeleton 
structure (connectivity searching) is used to review the connectivity of the darker pixels during the 
crack connection stage. Finally, (iv) the cracks are classified using the image projection algorithm 
during the crack extraction and classification stage. The algorithm examines the peaks of the projec-
tion vectors in order to determine the type of cracks. The results of classification will appear as fol-
lows: (1) If a peak exists in the vertical projection vector, the crack is classified as longitudinal; (2) if 
the peak exists in the horizontal projection vector, the crack is classified as a transverse crack; (3) if 
the peak exists in the diagonal direction, the crack is classified as diagonal; and (4) if four peaks exist 
in all four direction projections, the crack is classified as an alligator crack. However, the algorithm is 
considered as a complete procedure with two defects. Firstly, this algorithm is limited and can be 
prone to failure, especially in the case of large-sized images. The reason for this is that the algorithm is 
set as a classical pixel based approach. Reviewing and linking cracks, pixel by pixel, is quite time-
consuming. Secondly, the multiple factor method does not execute any reactions in the pre-processing 
stage, if the cracks cross more than one window.  

 
As a consequence, the identification of corresponding crack objects requires a robust extraction algo-
rithm which is insensitive to illumination and scale differences, e.g., wavelet transformation. A wide 
variety of crack extraction algorithms have been proposed and investigated in the literature, e.g. DA-

VID/JOE (2005), JAVIDI ET AL. (2003). DAVID/JOE (2005) addressed the discrete wavelet transformation 
during the thresholding stage. Various frequency sub-bands will be generated for each pavement im-
age. Moreover, the grade of distress without classification will be displaced based on the quantity of 
wavelet coefficients during the crack extraction and classification stage. The image enhancement and 
crack connection stages are not included in this algorithm. This algorithm has an important disad-
vantage because it fails in cases of pavement texture variance. For this reason, this algorithm is con-
sidered to be an incomplete procedure. Further methods exploit the knowledge of wavelet transfor-
mation. JAVIDI ET AL. (2003) presented a smoothing concept as a tool for image enhancement during 
the pre-processing stage. Then, they introduce a cubic spline wavelet transformation during the 
thresholding stage. The partial derivatives along x and y of a two-dimensional smoothing cubic spline 
wavelet function are defined. Next, the noise of the background will be eliminated, and the main 
cracks will be extracted by evaluation of the development across scales related to the wavelet trans-
formation maximum. Moreover, connectivity searching for extracted cracks is done during the crack 
connection stage. In addition, the number of prevailing cracks is quantified without classification by 
using the Hough transform. This is done during the crack extraction and classification stage. The 
Hough transform technique is not very delicate to noise, has a possibility to deal with segmented im-
ages, and is invariant to non-uniform illumination, scaling distortions, and shadows. In fact, this meth-
od is limited and inflexible, especially in the case of having varied pavement textures. This leads to the 
determination that this algorithm is an incomplete procedure. 

  
In the computer vision community, fully automated reconstruction methods, modifications of pixel 
intensities, noise reduction elimination, and separating cracks from the rest of the image have been 
reported extensively; see RABABAAH ET AL. (2005), GEORGOPOULOS ET AL. (1995), TEOMETE ET AL. 

(2005). The usage of linear regression techniques for the image enhancement stage was described by 
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RABABAAH ET AL. (2005). The thresholding process is suggested by GEORGOPOULOS ET AL. (1995). 
The crack is represented by a set of vectors approximating the crack (vectorization) during the thresh-
olding stage. In addition, a default 3-by-3 size median filter is utilized during the crack connection 
stage. The types of cracks are classified by computing a mean value of intensities for each row. Final-
ly, the cracks are defined as either horizontal or vertical, based on the TEOMETE ET AL. (2005) descrip-
tion during the crack extraction and classification stage. To some extent, this algorithm is considered 
to be a complete procedure with some problems and defects. The shadows problem is still unsolved 
from this algorithm side. Importantly, the absence of some parts of the cracks in the case of shadows 
and in noise existence due to checking the cracks pixel by pixel, are likely to occur during algorithm 
implementation. 

 
Due to the above factors, the complete automation of crack detection remains an open topic of re-
search, particularly in the case of complex compound cracks. Therefore, a semi-automatic method 
might still be needed for crack detection, see TEOMETE ET AL. (2005), YING/SALARI (2009). TEOMETE 

ET AL. (2005) presented an algorithm based on dividing images into blocks, determining sub-block 
sizes in pixels, and noting the pixel intensities during the image enhancement stage. Localized (adap-
tive) thresholding is done by computing relative mean values of intensity for each row during the 
thresholding stage. TEOMETE ET AL. (2005) suggested a method for distress quantification and quanti-
zation effectively from the Long Term Pavement Performance Program. The Long Term Pavement 
Performance Program was set up for pavement data collection. It is represented as a part of the Strate-
gic Highway Research Program (SHARP). During the crack connection stage, the images must be 
cropped from 2048 x 3072 to 256 x 256. Finally, during the crack extraction and classification stage, a 
binary mask detection algorithm is implemented to define the region of interest. The binary mask must 
be defined in two ways as follows: (i) either based on colour and intensity values using several trial 
and error techniques (setting threshold to the crack size); and (ii) further automated methods to exploit 
the knowledge of the shape. These methods require pre-defined conditional statements for the binary 
mask shape (square, rectangle, and ellipse). The established binary mask must move over the binary 
image objects. When the conditional statements are satisfied, the binary mask will be projected to de-
fine a region of interest. The characteristics of the extracted objects will be known from the geomet-
rical characteristics of a binary mask shape. Then, a projection histogram is applied for crack classifi-
cation as either horizontal or vertical cracks (TEOMETE ET AL. 2005). This method is considered to be a 
complete procedure with some problems and defects based on the available data sets. The reason for 
this is due to some drawbacks related to some parts of the algorithm. One of these disadvantages is 
that the algorithm cannot identify complex compound cracks clearly. In addition, the algorithm is very 
sensitive to noise (TEOMETE ET AL. 2005). 
  
YING/SALARI (2009) presented an algorithm for crack detection and classification. Statistical proper-
ties for pavement distress images were investigated for amplitude factor correction calculation. This 
factor is important to correct background illumination during the image enhancement stage. The beam-
let transformation concept was introduced by DONOHO/HUO (2001). This concept is used during the 
thresholding stage for extraction of linear objects. Beamlet transformation is able to detect all of the 
line segments at various locations, orientations, and scales. Finally, the crack classification standard 
method is utilized during the crack extraction and classification stage. This method is based on two 
factors: (i) if the crack shape has branches, it will be classified as a block type, irrespective of crack 
orientation; and (ii) if the cracks do not have branches, the orientation angle is calculated as an angle 
between the horizontal axis toward the crack segments (start and end point of each crack) in the 
clockwise direction. This orientation angle is used to control the classification, in which the classifica-
tion will be as the following: (a) if the orientation for the majority of the crack pixel regions is greater 
than or equal to 60°, it will be classified as a vertical individual crack; (b) if the orientation for the 
majority of the crack pixel regions is smaller than or equal to 30°, it will be classified as a horizontal 
individual crack; and (c) if the orientation for the majority of crack pixels region is smaller than 60° 
and greater than 30°, it will be classified as a transverse individual crack. The crack connection stage 
is not included in this algorithm.  It is worth noting that there are limits of angles with horizontal axes 
(such as 30° and 60°) for classification. YING/SALARI (2009) used these numbers based on predefined 
conditional statements for classification. In conclusion, this algorithm is considered to be a complete 
procedure with some problems and defects. The disadvantages are that this method cannot distinguish 
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between cracks and lane marking. Additionally, some parts of noise may appear based on the available 
data sets. 

 
MOHAJERI/MANNING (1991) present a system for crack detection. This system is given as an automat-
ed trail of pavement administration. The multiplication filter is utilized in the image enhancement 
stage. The latter one will be used to remove noise and increase the rise of crack features in the result-
ant images. In the thresholding stage, dynamic (adaptive) thresholding is used for better segmentation. 
A different histogram distribution will be drawn for each image. This part will be done for the best 
threshold selection. The characteristics of each individual crack pattern are used to classify cracks in 
different categories. This is done during the crack extraction and classification stage. The crack con-
nection stage is not included in this algorithm. This approach is determined to be a complete algorithm 
with some problems. It can classify cracks into different types: longitudinal, transverse, block, and 
alligator. In addition, it can register the length, width, and area of the crack region. However, this algo-
rithm can be prone to failure in some cases, e.g., the pavement images have oil spots on the ground. In 
conclusion, this algorithm is considered to be a complete procedure with some problems and defects.  
  
LE ET AL. (1990) offered the tiling method as a possible approach for the thresholding stage. The im-
age data will be minimized through the tiling method into a matrix of 0 and 1. A tile of the original 
image is expressed as a matrix cell, and then the decision if the given tile includes a crack feature or 
not is reported. Each cell is fixed to 1 or 0 according to the results of the latter process. A simulator is 
defined to create generated synthesized images. The real pavement images are used for system exami-
nation. In the crack extraction and classification stage, neural networks are scrutinized using different 
approaches for image impersonation. The first technique is the image-based technique. The entire set 
of tiles of the original image is turned on using the latter technique. For example, if the size of the 
image is: (600*600) and the size of the tile is (20*20), then a vector of (600/20)*(600/20) entries=900 
entry is created. Therefore, the matrix symbolizing the image will have a dimension of (20*20) filled 
of 1’s and 0’s. Then, the neural network will be applied to see every single tile of the original image. 
Finally, the pattern will be detected using neural networks. The second technique is called the histo-
gram-based technique. The outputs from this technique will be horizontal and vertical histograms. The 
latter one is created by counting the number of 1’s in both horizontal and vertical directions of the 
resulting matrix. Neural networks will be run by inserting only two vectors for a training step. Neural 
networks will classify cracks into different types based on the allocation of the number of cracked 
objects cumulative in vertical and horizontal vectors. Taking the same example above, neural net-
works will deal with 30 vertical and 30 horizontal (=60) entries. Furthermore, the third is called the 
proximity-based technique. It is a simple and fast approach. Consequently, this technique calculates 
proximity values by taking the variance between the adjacent cells in the histogram. A proximity value 
is calculated for the vertical histogram. In addition, another proximity value is computed for the hori-
zontal histogram. Finally, neural networks will use three-node input layers only as the following: one 
proximity value from the horizontal histogram, one proximity value from the vertical histogram, and 
the third one will be the number of cracked tiles in the image. The classification results were: 70.2% 
for the image-based technique, 75% for the histogram-based technique, and 95.2% for the proximity-
based technique. Therefore, the latter technique is the best and can be considered as a lower cost ap-
proach when compared to the former ones, since it utilizes just three values for image depiction. Final-
ly, this system can classify two types of cracks as either vertical or horizontal. The image enhancement 
and crack connection stages are not included in this algorithm. However, this system can be prone to 
failure in the case of both alligator and block cracks. Thus, it is considered to be a complete algorithm 
with some problems and defects.   
 
Some automated algorithms, e.g., WANG/HARALICK (2002), rely on an automated system qualified for 
gathering and anatomizing high-resolution digital images in real-time. The analytical description of 
distress characteristics were used as a tool for differentiation between any cracks from other non-
distress noises. In the thresholding stage, a vectorization concept is implemented to link the detected 
cracks. Finally, a distress database is built for storing the location, orientation, crack indices, and the 
size of each crack. In the crack extraction and classification stage, cracks are detected based on prede-
fined distress categorization protocols. Image enhancement and crack connection stages are not in-
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cluded in this algorithm. It is worth noting that this algorithm can be prone to failure. As a result, vari-
ous external objects, e.g., oil spots, lane markings, tree shadows and unclearness may be included in 
the road pavement surface. This approach cannot distinguish between these extrinsic objects and the 
cracks themselves; therefore, this algorithm is considered to be a complete algorithm with some prob-
lems and defects.   
 
WELLNER (1993) utilizes knowledge of the intensities of the surrounding pixels around the current 
pixel. The average value is computed around each required pixel. In other words, an approximate 
moving average of the last s pixel seen is calculated while traversing the image. Next, a comparative 
study is implemented during the thresholding stage. If the intensity value of the current pixel is lower 
than the average, the current pixel is adjusted to black; otherwise, it is adjusted to white. A significant 
advantage of such a representation is that it allows the ability to maintain hard contrast lines. This 
algorithm is low cost with minimal labor, as it needs only a single pass through the image. The disad-
vantages are related to the moving average and the distribution of pixels in all directions. Particularly, 
the neighbourhood pixels are not distributed equally in all directions. The moving average is not con-
sidered to be a perfect representation of the surrounding pixels at each phase. Image enhancement, 
crack connection and crack extraction, and the classification stages are not included in this algorithm. 
Therefore, this algorithm is considered to be an incomplete procedure (BRADLEY/ ROTH 2007). 
 
TIMOTHY (2004) presents a thresholding and evaluation algorithm, which is called the watershed seg-
mentation technique. This technique attempts to enhance the textured area into a three-dimensional 
space during the thresholding stage. The latter one will have different forms of textures that will have 
different heights. This technique determines if there are two regions linked without flooding. The 
shortcoming of this algorithm occurs due to its noise sensitivity, particularly in the case of large areas. 
This algorithm will ignore cracks within wear and polishing areas. The reason for this is based on 
probability only. This leads it to remove some false positives. Image enhancement, crack connection, 
crack extraction, and classification stages are not included in this algorithm. In conclusion, this algo-
rithm is considered to be an incomplete procedure. 
 
In summary, each crack detection algorithm mentioned above has some missing stages, missing points 
for each stage, problems, and defects. These missing points are considered as critical areas for further 
research. Each crack detection algorithm mentioned above requires further research. Table 2.5 summa-
rizes the algorithms, their statuses (complete or incomplete), the missing stages within the algorithms, 
missing points for each step, problems associated with the algorithm. As a logical follow-up, the algo-
rithm to be developed will be based on the ability to achieve more correct results for the detection and 
classification of pavement cracks from continuous pavement images.  
 

 
Table 2.5: Conclusion for each crack detection algorithm, its status, and its missing points 

 

 

Algorithm 

name 

 

Status of algo-

rithm incomplete 

or complete 

(conclusion) 

Missing 

stages 

within 

algorithm 

Missing 

points 

and problems 

associated with the 

algorithm 

BUGAE/YAXIONG 
(2003) 

Incomplete Image enhancement 
and crack classifica-
tion stages 

− Shadow problem 
− Illuminated back-

ground 
− Crack classification 

MASER (1987) Incomplete Crack connection 
and crack classifica-
tion stages 

− Lane markings  
problem 

− Noise problem 
− Crack classification 
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Algorithm 

name 

 

Status of algo-

rithm incomplete 

or complete 

(conclusion) 

Missing 

stages 

within 

algorithm 

Missing 

points 

and problems 

associated with the 

algorithm 

LI ET AL. (1991) Incomplete Crack classification 
stage 

− Complex crack  
detection 

− Crack classification 

KOUTSOPOULOS/ 
DOWNEY (2006) 

Incomplete Crack connection 
and crack classifica-
tion stages 

− Lane marking problem 
− Crack classification 

CHOU ET AL. (1994) Complete with 
some problems and 
defects 

Image enhancement 
and crack connec-
tion stages 

− Irregular shape of 
cracks affects neural 
network classification 
rate 

GEORGOPOULOS ET 

AL. (1995) 

Complete with 
some problems and 
defects 

Image enhancement 
and crack 
connection stages 

− Different pavement    
texture problem 

CHENG/ 
MYOJIM(1998) 

Complete with 
some problems and 
defects 

- − It cannot work in the  
case of large-sized im-
ages or if the crack 
crosses more than one 
window 

DAVID/JOE(2005) Incomplete Image enhance-
ment, crack connec-
tion and crack clas-
sification stages 

− Different pavement   
textures problem 

− Crack classification 

JAVIDI ET AL. 

(2003) 
Incomplete Crack classification 

stage 
− Different pavement   

texture problem 
− Crack classification 

RABABAAH ET AL. 

(2005) 
 

Complete with 
some problems and 
defects 
 

- − Shadow problem 
− Noise problem 

TEOMETE ET AL. 

(2005) 
Complete with 
some problems and 
defects 

- − Complex crack detec-
tion 

− Noise problem 
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Algorithm 

name 

 

Status of algo-

rithm incomplete 

or complete 

(conclusion) 

Missing 

stages 

within 

algorithm 

Missing 

points 

and problems 

associated with the 

algorithm 

YING/SALARI 

(2009) 
Complete with 
some problems and 
defects 

Crack connection 
Stage 

− Lane marking problem 
− Noise problem 

MOHAJERI/ MAN-

NING(1991) 
Complete with 
some problems and 
defects 

Crack connection 
Stage 
 

− Oil spots problem 
− High pavement 
− texture problem 

LE ET AL.(1990) Complete with 
some problems and 
defects 

Image enhancement 
and  crack connec-
tion 
stages 

− Alligator and block 
crack detection 

 

WANG/HARALICK 
(2002) 

Complete with 
some problems and 
defects 

Image enhancement 
and crack connec-
tion 
stages 

− Lane marking problem 
− Oil spot problem 
− Shade problem 

HSU ET AL. (2001) Complete with 
some problems and 
defects 

Image enhancement 
stage 

− Lane marking problem 

SALARI (2012) Complete with 
some problems and 
defects 

Image enhancement 
and crack connec-
tion stages 

− Lane marking problem 
− Shadow problem 

CHOU/SALARI 
(2012) 

Complete with 
some problems and 
defects 

Image enhancement 
and crack connec-
tion stages 

− Lane marking problem 
− Shadow problem 

SALARI ET AL. 

(2010) 
Complete with 
some problems and 
defects 

Crack connection 
stage 

− Lane marking problem 
− Shadow problem 

WELLNER'S (1993) Incomplete Image enhance-
ment, crack connec-
tion, crack extrac-
tion and classifica-
tion stages 

− Crack classification 
− Pixel distribution prob-

lem during threshold-
ing stage 

TIMOTHY (2004) Incomplete Image enhance-
ment, crack connec-
tion, crack extrac-
tion and classifica-
tion stages 

− Crack classification 
− Noise problem 
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3 Preparation Stages for Crack Extraction  
In Chapter 2, it was shown that combining digital image processing and analysis techniques can be 
useful to some extent for overcoming individual difficulties associated with crack detection and 
classification. This is done in order to reach reliable and improved results in almost all operative 
conditions.  At the same time, it is clear that several image processing methods for crack detection 
face numerous obstacles and problems. In addition, some of them are incapable of delivering cor-
rect measureable facts, and usually lead to irregularities in crack aspects. From this perspective, a 
flexible fusibility process which can ensure correctness and homogeneity in the results is urgently 
needed. 
 
The main challenge for the integration of a digital image algorithm is the selection of a suitable 
approach for each crack detection stage. This suitable approach can achieve the desired goals for 
each stage in terms of high correctness rate, ease-of-use, and low level of user involvement. The 
algorithm's goal is to extract and classify cracks of pavement images automatically. Generally, any 
automatic approach should use image processing algorithms as a tool for crack detection.  
 
This thesis presents a uniform algorithm for processing digital pavement images. This algorithm is 
based on a combination of different image processing techniques and some modifications of previ-
ous algorithms, especially during the threshold stage. Specifically, this thesis presents a threshold-
setting algorithm. This threshold-setting algorithm sets the optimal threshold value for each pixel in 
the image. This adaptive local threshold is able to separate all of the cracks, and only the cracks, 
from the remainder of the image. Then, for the purpose of improving the threshold results, this the-
sis employs some combinations of crack connection processes. This general strategy aims to re-
move the remaining noise, check the cracks’ continuity, and fill all of the crack holes. Moreover, it 
provides an accurate crack image ready for the crack extraction and classification stages. In these 
ways, the abovementioned preparation stages pave the way for better crack extraction and classifi-
cation. 
 
As a result, the algorithm of this thesis yields an increase in automation and updating, represents a 
solution for preparation stages in order to extract cracks from sequence pavement images, and re-
sults in detailed crack information with different pavement textures. In the following, a detailed 
description of the algorithm is given in order to introduce all of the used methodologies. As pre-
sented in figure 3.1, the algorithm is divided into the following steps. 
 
 
 
 

 

 

 

 

 

 
 

Figure 3.1: Workflow for the combination of different algorithms during preparation stages. 

Image Enhancement Algorithm 

         Thresholding Algorithm 

Input Image  

    Crack Connection Algorithm   

Preparation Stages 
for Crack Extrac-

tion 
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3.1 Image Enhancement Algorithm (Pre-processing stage) 

3.1.1 Theory  

The reason underlying this first stage is that the pavement images are collected under different 
lighting situations. This creates the need for correction of background illumination. This stage is 
optional, as previously described in Chapter 2, based on images’ nature. As a consequence, conver-
sion of all of the acquired images to standard background conditions requires a robust corrected 
illumination algorithm, which is insensitive to illumination and scale differences, and employs re-
gion properties (CHENG/MIYOJIM 1998). A wide variety of background illumination correction 
algorithms have been proposed and investigated in the literature, (e.g., SINGH/GARG 2011, LI ET AL. 

2011, LIU ET AL. 2009, RADIM ET AL. 2011). Generally ACHARYA ET AL. (2009) addressed the his-
togram equalization algorithm. GONZALEZ/WOODS (2008) proposed the contrast enhancement algo-
rithm, which extends the histogram equalization algorithm to fully accept invariant local image 
illuminations. SINGH/GARG (2011) reported that combinations of morphological operation tech-
niques significantly outperform state-of-the-art methods, such as the histogram equalization 
(ACHARYA ET AL. 2009), the contrast enhancement  (LIU ET AL. 2009), and statistical properties of 
pixels brightness method (CHENG/MIYOJIM 1998). As an example of this, histogram equalization 
can hardly correct background illumination to 60%, while combinations between morphological 
operation techniques can correct background illumination to 80% and higher. Furthermore, 
SINGH/GARG (2011) illustrates that most scenes with negligible or moderate pavement images that 
are corrected with histogram equalization are also corrected with morphological operations (usually 
with fewer lighting conditions). Nevertheless, when the pavement images are obtained with strong 
illumination and shadows, histogram equalization and other methods fail, while a combination of 
morphological operation techniques continues to work. Thus, a combination of morphological oper-
ation techniques has been selected for the application in this thesis.  
 
So, as a first stage, this thesis employs an algorithm for combining different digital morphological 
operations to automatically and accurately adjust lighting for pavement images. This algorithm 
starts by an erode operation of digital images based on selecting a suitable structure element. The 
black pixels will be turned to white. Then, the original image will be modified using the eroded 
image with the help of opening by the morphological reconstruction algorithm. The resultant image 
must be subject to a dilation process, in which the black pixels will be retained and any boundary 
will be widened automatically. After this, closing by morphological reconstruction will be imple-
mented to form a complete detailed representation of a modified image scene. 
 
The image enhancement algorithm of this thesis can be divided into the following steps, as present-
ed in figure 3.2. 
 

1. Erode Operation: The essential erode function, based on Boolean operations for binary 
images, is utilized for morphological image processing (DROOGENBROECK/TALBOT 1996). 
This operation is described in more detail in Chapter 2, section 2.3.2.3. The erode operation 
will be applied to the original image. The implementation of this operation utilizes the line-
ar structural element. The selection for this type of structural element is performed to pre-
serve crack shapes. The erode operation provides the achievable results into a better state, 
i.e., good image appearance and noiselessness, which yields an improvement in the output 
of the algorithm presented in this thesis. 
 

2. Opening by Reconstruction: The original image and the eroded image are combined 
using the opening by the reconstruction process. The opening by the reconstruction process 
is implemented based on VINCENT (1993), as illustrated in Chapter 2, section 2.3.2.3. Fur-
thermore, this thesis makes the process work optimally by setting the original image as a 
mask and the eroded image as a marker. For this purpose, opening by reconstruction is im-
plemented between the mask and marker several times through the dilation process. The 
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operation will be continued automatically until all of the peak values in the mask image be-
come flat. The final image of this operation will help in obtaining similar intensity values, 
as well as reducing illumination differences. 
 

3. Dilate Operation: As previouisly reported in more detail in Chapter 2, section 2.3.2.3, 
the dilate was described as one of the Boolean operations for binary images (DROOGEN-

BROECK/TALBOT 1996). Consequently, the use of this operation offers an important ad-
vantage, i.e., instead of using the intensity values of the resultant opening by the reconstruc-
tion image, the latter image will be applied to a similar operation of erode using linear 
structural elements. This results in expanding every boundary and extracting information 
about them from the resultant image. 
 

4. Closing by Reconstruction: Closing by reconstruction has been used for illumination 
correction and smoothness. In addition, it enables converting the image to a suitable form 
for the segmentation stage. This thesis follows an operation that is somewhat analogous to 
VINCENT (1993), as it is illustrated in detail in Chapter 2, section 2.3.2.3. This operation will 
be implemented using the same concept as the opening by the reconstruction process. The 
complementarity of the resultant dilated image is employed as a marker, while the resultant 
opening by the reconstruction image is utilized as a mask. The aim of this operation is to 
remove all of the peaks from the resultant opening by the reconstruction image through a 
continuous erosion process. Moreover, the intensity values of the complementary result are 
closed by the reconstruction image, which is recorded and locally illuminates the surface at 
a very narrow range. This may result in missing some features which are not visible at the 
narrow range (GONZALEZ/WOODS 2008). Sometimes, the effect of this pre-processing stage 
is displayed in the appearance of the final resultant image from this stage implementation in 
terms of smoothness; whereas, for other pavement image cases, there is no obvious effect in 
the image. However, this does not mean that this stage is not helpful, because in both cases 
the pixels’ intensities are changed to be homogeneous and the background illumination is 
corrected, as well. Thus, this operation plays a key role in providing correct information for 
the next thresholding stage. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Workflow for the combination of morphological operation during the image enhancement stage. 
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3.1.2 Experimental Results 

In order to show the results of this study, the developed algorithm was applied to exemplary pave-
ment images of different streets in Germany, which were obtained from LEHMANN + PARTNER 
GmbH Company. S.T.I.E.R mobile mapper system has been used for capturing image sequences 
(Chapter 6; figure 6.1). The original image (figure 3.3-left) has a resolution of 1920 x 1080 pixels. 
This image contains two crack alignments, moderate pavement texture, and different lighting con-
ditions. In the following, an evaluation of all pre-processing steps is presented. Since all of the fig-
ures below are not visible, a kind of inversion is performed for exemplary visualization. The pave-
ment images will be displayed in white colour instead of black colour. 
 
Erode Operation: Inspired by the positive results of using the erode operation (figure 3.3), a 
binary image was generated from the original image. 
 
Opening by Reconstruction: The opening by reconstruction is a combination of corrected il-
lumination produced by both marker and mask images. Then, the final resultant image is displaced 
after removing peaks of background illumination (figure 3.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.3: LEHMANN + PARTNER GmbH dataset, original image (left), the resultant binary image after 

erode operation (right); (inverted illustration). 

 

Dilate Operation: The object boundaries are expanded by the dilation computation (figure 3.5). 
Additionally, the holes are filled, and the black pixels are retained. Comparing figure 3.5 with fig-
ure 3.4, it can be seen that there is no difference in appearance. However, the values of the pixel 
intensities are changed to become more homogenous, and this is important to obtain a good result 
for the closing by reconstruction (the following step). 
 
Closing by Reconstruction: Once the complementary resultant closing by the reconstruction 
image is determined, this image will be smoother than the original image. At that time, the target 
of the pre-processing stage is realized. The intensities of the final resultant image are used as an 
input for the thresholding stage without any illumination effect. This is done in order to improve 
the results in terms of correctness (figure 3.6). 
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Figure 3.4: LEHMANN + PARTNER GmbH dataset, the resultant image after applying opening by the re-

construction process; (inverted illustration). 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.5: LEHMANN + PARTNER GmbH dataset, the resultant image after applying the dilate process; 

(inverted illustration). 
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Figure 3.6: LEHMANN + PARTNER GmbH dataset, the resultant image after applying closing by the recon-

struction process; (inverted illustration). 

3.2 Thresholding (Segmentation Stage) 

3.2.1 Theory  

In section (3.1), the integration and combination of different morphological operations during the 
pre-processing stage deliver images with a uniform distribution of illumination. Then, as a second 
stage, the threshold setting algorithm requires a robust dynamic automated algorithm. This algo-
rithm is insensitive to noise and obstacles, and employs region properties (TRIER/TAXT 1995). A 
wide variety of thresholding algorithms have been proposed and investigated in the literature (e.g., 
TSAO ET AL. 1994). Generally, LE ET AL. (1990) addressed different types of global fixed threshold 
algorithms, which include the simple image statistic method (KITTLER/ILLINGWORTH 1985), the 
between class variance method (OTSU 1979), the entropy method (KAPUR ET AL. 1985), the moment 
preserving method (TSAI 1985), and the quadtree method (WU ET AL. 1982). These algorithms work 
correctly in the case that the gray-level distribution histogram contains distinctively separated peaks 
corresponding to the objects and background. TRIER/TAXT (1995) proposed the local adaptive dy-
namic threshold algorithms, which extend the global fixed algorithm using local properties. The 
principle of local adaptive dynamic thresholding is dependent on the selection of an individual 
threshold for each pixel based on the range of intensity values in its local neighborhood. It works 
for segmenting an image whose histogram does not contain distinctive peaks (TSAO ET AL. 1994). 
TRIER/TAXT (1995) reported that the local adaptive dynamic threshold algorithms significantly 
outperform other methods, such as global fixed threshold algorithms, in the case of pavement imag-
es, such as the simple image statistic method (KITTLER/ILLINGWORTH 1985), the between class 
variance method (OTSU 1979), the entropy method (KAPUR ET AL. 1985), the moment preserving 
method (TSAI 1985), and the quadtree method (WU ET AL. 1982). For example, the method pro-
posed by TSAI (1985) can extract crack objects to 30%; whereas, Wellener’s local adaptive thresh-
old method (WELLENER 1993) can detect the same cracks up to 80% and higher. Furthermore, 
TSAO ET AL. (1994) illustrates that most scenes with pavement images of high texture and gradient 
that are thresholded with global fixed thresholding methods are also thresholded with dynamic local 
adaptive thresholding methods (always with a higher extraction correctness rate). Nevertheless, 
when pavement images are obtained with a lot of shadows, strong illumination gradients, or do not 
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undergo any pre-processing stage, global fixed threshold methods will certainly fail, while local 
adaptive dynamic thresholding continues to work. In addition, pavement crack images have differ-
ent characteristics, such as: (i) the number of foreground pixels is much smaller than the back-
ground pixels; (ii) the image background is likely to contain a higher variance due to inhomogene-
ous pavement texture and different light intensities; and (iii) a histogram of the gray-level distribu-
tions will show a large peak corresponding to the background gray-levels and a smaller peak corre-
sponding to the foreground gray-levels, such as cracks, manholes, and markings, as shown in figure 
3.7. This makes it difficult to establish a single threshold which will correctly identify the crack 
pixels. Thus, local adaptive dynamic thresholding has been selected for application in this study.   
 
The threshold setting algorithm (adaptive or local dynamic thresholding) can be defined by a simple 
extension of Wellener’s method (WELLENER 1993). Accordingly, a convolution concept (ATKIN-

SON 1996) is introduced, and its parameters are estimated. This concept is implemented by using the 
mean statistical operator within a ws window of pixels around each pixel. This takes advantage of 
the determined suitable threshold results in having a suitable window size in relation to the contrast 
within the image. This is usually followed by a Sobel Edge Detector to extract the edges of cracks 
clearly. Alternatively, after using the Sobel Edge Detector, the approach of this thesis is to use the 
extracted object correspondences to cracks and to other noise as input for the post-processing stage. 
The approach of this thesis consists of the following steps, as shown in Figure 3.8. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Gray-level distribution histogram for an image (MILSTEIN 1998). 

 
1-Adaptive Thresholding Algorithm: As presented in section (3.1), the first stage delivers an im-
age with a uniform distribution of illumination. On the other hand, local adaptive thresholding is 
created for each pixel in the image. This threshold is utilized to evaluate the pixel.  
 
The general threshold definition can be expressed using equation (3-1) as follows: 
 𝑇 =  𝑇 [𝑥,𝑦,𝑔(𝑥,𝑦),𝑓(𝑥, 𝑦)],                                                                              (3-1) 
              where    

 𝑔(𝑥,𝑦) is considered as one of the most important factors in threshold computations around a speci-
fied point. When the value of this factor is 0, then 𝑇 is considered as a simple fixed global thresh-
old. However, this factor is based on the environment around a specified point, in order to take the 
effect of noise and lighting into account. Sometimes, this factor is represented by some local prop-
erty around the specified point (x, y). The local property around the specified point (x, y) is comput-
ed by mean gray-level, max gray-level, or min gray-level, or the average between max and min 
gray-level in a predefined environment (CHOW/KANEKO 1972). 
 
 

 𝑓(𝑥,𝑦) : the gray level of point (x,y) in the original image, 

 𝑔(𝑥,𝑦):        some local property of this point described below, 
 𝑇 : threshold value. 
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Figure 3.8: The general workflow for segmentation (thresholding stage). 
 
Consequently, according to Chapter 2, section 2.3.5, Wellener’s algorithm (WELLNER 1993) ex-
ploits the knowledge of the intensities for the surrounding pixels around the current pixel. The aver-
age value is computed around each required pixel. In other words, an approximate moving average 
of the last s pixels seen is calculated while traversing the image. Then, a comparative study is im-
plemented during the segmentation stage. If the intensity value of the current pixel is lower than the 
average, the current pixel is adjusted to black; otherwise, it is adjusted to white. A significant ad-
vantage of such a representation is that it allows maintaining hard contrast lines. This algorithm is 
also of low computational cost because it only needs a single pass through the image. The disad-
vantages are related to the moving average and distribution of pixels in all directions. Particularly, 
the neighbourhood pixels are not distributed equally in all directions. This means that the moving 
average is not considered as a perfect representation of the surrounding pixels at each phase 
(BRADLEY/ROTH 2007). In conclusion, the use of this Wellener’s method fails in the crack extrac-
tion process due to the abovementioned disadvantages. Therefore, in this thesis, the approach modi-
fies and extends Wellener’s method by computing the average of ws window of pixels centered in 
each pixel using the convolution concept instead of calculating a running average of the last s pixel 
seen. This extension and modification offers important advantages. Specifically, it is direct, easy to 
code, and the computed average is superior for comparison; thus, it is reliable that all of the neigh-
boring pixels around the centered pixel within the window are distributed in all directions. In other 
words, this modification can overcome many problems of the Wellener’s algorithm. Moreover, after 
the local threshold average value is computed iteratively for each pixel in the image, the image will 
undergo some mathematical digital image processing operations (i.e., binarization, subtraction, 
inversion) as described above in figure 3.8. Finally, a comparative study is executed automatically 
between the intensity value of the specified pixel and the threshold average percent value. The aim 
is to produce the final resultant local adaptive dynamic threshold image as follows: if the intensity 
value of the specified pixel is less than the threshold average percent, the pixel is considered as a 
background pixel (black pixel); otherwise, the pixel is considered as a foreground pixel (white pix-
el).   
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In order to evaluate the performance of the adaptive thresholding algorithm for this study, it is ob-
vious that the window size ws and the constant c are the most important factors affecting the adap-
tive thresholding algorithm execution. This creates a need to explain in more detail the definition, 
evaluation, and the effect of window size ws and constant c, respectively in the following. 
 
Evaluation of the window size ws  

The correctness rate with which the image pixels are classified by the algorithm is based on the size 
of the windows being used. If the environment of the window is too small, this will result in noisy 
appearance, some foreground pixels being misclassified as background, and introduce the possibil-
ity of insufficient data, as shown in (figure. 3.9-2ndline-right). On the other hand, large window 
sizes yield the poorest results due to being adversely affected by the illumination gradient, more 
computationally effort than the threshold using smaller windows, and local characteristics of the 
pixel neighbourhood will be lost. Thus, the larger window may capture gray-level contrasts that are 
unavailable in the pixel neighbourhood. This will affect the threshold value. In addition, the mis-
classification of foreground and background pixels will occur due to the manipulated threshold 
value (figure 3.9-2ndline-left).    
 
Finding a suitable window size is still a critical task in the research community. Several approaches 
have been developed and presented, but still rely on a small group of images. In particular, a broad 
variety of window size selection has been proposed and investigated in the literature (e.g., BARTO-

LO ET AL. 2004). KAMEL/ZHAO (1993) utilized (2𝑤𝑤 + 1) ∙ (2𝑤𝑤 + 1) size neighbourhoods cen-
tered at the four points and ws represents an approximate assumed value for the width of the detect-
ed edge for all dataset images as a fixed value. The algorithm requires user pre-defined parameters, 
i.e., the width ws. TRIER/JAIN (1995) proposed Eikvil's method, which is based on smaller window 
ws and larger window wl. The ws and wl selection is performed manually for each image. Further-
more, these parameters cannot be fixed to a particular value like KAMEL/ZHAO'S (1993) assumption 
because these parameters are related to each image’s properties. PAPAMARKOS/GATOS (1994) used 
a fixed 9*9 window size to perform pixel class within the image. YANG/YAN (2000) reported that 
the dynamic window size algorithms significantly outperform  the  other methods, such  as using a 
fixed window size (e.g., BULEN/MEHMETS 2004,  BARTOLO ET AL. 2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9: Adaptive thresholding algorithm: original image (inverted illustration) (1st line); using 
ws=170*170; (2nd line-left); using ws=50*50 (2nd line-right). 
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For example, YANOWITZ/BRUCKSTEIN (1989) used a fixed single window size with a correctness 
rate of 65% for crack detection; whereas, YANG/YAN (2000) can detect the same cracked objects to 
80% by using the dynamic window size algorithm. Furthermore, different methods for threshold 
pavement images exist. These methods all require some user-defined parameters, such as window 
size. Therefore, these algorithms are not suitable for automated crack detection application. Thus, 
this thesis employs the algorithm by YANG/YAN (2000) in order to automatically and accurately 
determine window size without prior knowledge. 
 
The YANG/YAN (2000) algorithm for window size determination is carried out as follows: (i) the 
image will be divided into 𝑁𝑥𝑁 regions, where N=4, 5, 6, 7, 8; (ii) the gray-level histogram distri-
butions will be drawn on partial regions in the image in order to detect higher local contrast regions 
(chosen regions); and (iii) if N is even, two diagonal directions are assumed for regions, but if N is 
odd, horizontal and vertical directions are supposed for regions, as shown in Figure 3.10.   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.10: The divided regions on which gray-level histogram analysis will be performed  
(BARTOLO ET AL. 2004). 

 
The frequency of gray-level histogram is computed in horizontal and vertical directions if N is odd, 
and on two diagonal directions if N is even over the chosen regions from (ii) step; (iv) zero-phase 
shift convolution filter (described in chapter 2, section 2.3.2.1) will be performed if N is odd (5,7) 
over the chosen regions, this filter does not shift the crack position (no geometry change); and (v) 
the evaluation of the window size for the image will be derived from gray-level histogram infor-
mation, in which the window size of the given image is expressed as the region length having the 
highest frequency of pixels.  
 
However, the advantages of this algorithm are that the calculated region lengths in the horizontal 
and vertical directions will reverberate the window size in the region. Since region lengths are cal-
culated in the horizontal and vertical directions, the window length and width will reflect the length 
and width of the object in the region, respectively. For example, region lengths obtained from a 
region having a horizontal crack line would reflect the length of the crack line in the horizontal 
region length and its width in the vertical region length. Thus, the average window size would re-
flect a measure of the length and width of cracks in the selected regions. This guarantees that the 
selected window size is largely sufficient to contain an appropriate exemplification of the cracks 
without losing the local characteristics of the window. Furthermore, this strategy yields a reduction 
of human intervention during the entire process and represents a direct solution for window-size 
selection. On the other hand, if the study deals with a pavement image having complex background 
patterns, variable illumination, or very poor quality, it is recommended to apply the global thresh-
olding technique before applying the YANG/YAN (2000) algorithm for window size determination. 
In figure 3.11, the final threshold result for one image after suitable window size selection is dis-
placed. By analyzing this figure compared with figure 3.9, the results indicate an improvement in 
crack appearance compared to the results of figure 3.9. It is obvious that the correct window selec-
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tion provides a correct crack appearance without loss of local crack properties. It is indeed correct 
that there is still some noise, but it is less compared to figure 3.9. Further post-processing operations 
will improve the crack detection correctness rate by removing the remaining noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11: Adaptive thresholding algorithm after applying the YANG/YAN (2000) algorithm for window 

size determination (ws=120*120). 
 

Evaluation of the constant c  

The performance of the adaptive threshold algorithm is also based on the constant c. This constant 
represents contrast within the image. The contrast is represented by different lighting intensities 
within the image. The natural pavement image contains several light intensities due to different 
textures. So, the contrast grades across the image will vacillate continuously. Thus, this creates a 
need to determine a value to control the lighting fluctuation and its effect on crack detection results. 
The value of c will be computed adaptively. Finding a suitable contrast value c is still a debated 
issue in the research community. In fact, a broad variety of contrast value c selections has been 
proposed and investigated in the literature (e.g., NIBLACK 1985, SAUVOLA/PIETIKAKINEN 2000). 
NIBLACK'S (1985) utilized empirical user-defined parameters as fixed values for adjusting total 
pixels that belong to foreground objects. The algorithm requires a user pre-defined parameter, i.e., 
c. It reflects the contrast within the image. SAUVOLA'S/PIETIKAKINEN (2000) proposed a constant, 
usually with a value of c=0.1. The c selection is done empirically. BARTOLO ET AL. (2004) and 
TRIER/JAIN (1995) reported an automatic solution for determining the value of c. This algorithm 
significantly outperforms other methods, such as using a fixed empirical contrast value (e.g., 
NIBLACK 1985, SAUVOLA/PIETIKAKINEN 2000). Moreover, different methods for thresholding 
pavement images exist. All of these methods require some user-defined parameters for contrast 
determination. Therefore, these algorithms are not suitable for automated crack detection applica-
tion. Thus, this thesis employs an algorithm developed by BARTOLO ET AL. (2004) and TRIER/JAIN 
(1995). This algorithm proposes a solution for the determination of c which is based on two proper-
ties:  the quality of the image foreground and the type of the image background. If an image back-
ground contains high textures, the value of the c must be larger than that chosen for images having a 
homogenous background. This is necessary, as the value of c is sufficiently large to capture the 
contrast between the background pixels. In fact, the largest value of c is controlled by the quality of 
the image foreground. For example, if the study deals with pavement images having a mixture of 
pixel classes in the entire background, the c value must be adequately large for classification mix-
ture windows. On the contrary, pavement images having a low difference between the gray levels of 
the foreground and background require smaller values of c. So, the algorithm is realized as follows: 
(i) dividing each image into smaller regions. In this thesis, the images are divided into 16 equal-
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sized regions. This division is adopted based on the existing data sets to meet the requirements for 
the previous step. (ii) The contrast within each region is utilized for c determination using equation 
(3-2) below. (iii) This method must be performed iteratively until different values of c are calculat-
ed for all image regions.  
 𝑐 = 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑒 ,                                                                                                (3-2) 
              where    

 
Table 3.1: Some results for c and ws with respect to different pavement texture images 

 

 
Table 3.1 displays the contrast range and window size with respect to different image cases. These 
results show the largest window size obtained for dark shadow images or high pavement texture 
images; whereas, the images with low or moderate pavement texture have the smallest window size. 

 

2-Sobel Edge Detection Filter. 

This thesis uses the Sobel Edge Detection filter based on LI ET AL. (1991). They used this edge de-
tector to filter out the response of edges during the segmentation stage. This filter achieved highly 
correct results. The mathematical side and functions related to this edge detector are explained in 
detail in Chapter 2, section 2.3.2.2. In fact, a review of the literature identifies different types of 
edge detection filters. For example, first-order differential filters, which include Sobel, Prewitt, and 
Roberts filters, and second-order differential filters, including Laplacian, and second-order direc-
tional derivatives (LUHMANN ET AL. 2006). Each edge detection filter has its own properties and 
principles for work. For example, Prewitt and Sobel gradient operators work well on images with 
sharp edges. They are suitable in the case of cracks generally where the lighting and overall imag-
ing environment is tightly controlled. At the same time, the results of applying the Roberts opera-
tion will highlight changes in intensity in vertical, horizontal, and diagonal directions. This is suita-
ble in the case of longitudinal cracks, transverse cracks, and alligator cracks. However, it is worth 
noting that there are some disadvantages of these first-order differential filters. For example, the 
Roberts filter suffers greatly from sensitivity to noise.  In addition, the Sobel filter and Prewitt filter 
do not tend to work well in the case of "natural simple" images, such as images with simple cracks. 
In these cases, the need for applying second-order differential filters can sometimes be used as a 
more robust edge detector, such as the Laplacian filter. One distinct advantage of the Laplacian 
filter is that it does not rely on a threshold to separate the edge pixels from the rest of the image. It 
is considered as an isotropic operator (i.e., it detects edges in any direction). Even though the La-
placian filter offers some important advantages, it suffers from major susceptibility to image noise. 
The presence of any noise within the image is the cause of a fair amount of "streaking" (LUHMANN 

ET AL. 2006).   
  
All of these edge detection operators usually do not lead to a robust solution, especially if the imag-
ing environment is not tightly controlled. Moreover, all of them are sensitive to noise based on 
available datasets. Due to the abovementioned reasons, the choice of a suitable edge detection oper-
ator is actually case-dependent. In this application, the Sobel Edge Detector filter is utilized. This 
choice is based on different factors, such as: (i) the advantages of this filter, and how it works (de-
scribed above in more detail); (ii) it is precisely based on the previous algorithms and a literature 

 𝑐  : contrast within the region, 

 𝑍𝑚𝑎𝑥 :     maximum intensity value within the region, 
 𝑍𝑚𝑖𝑒 : minimum intensity value within the region. 

Pavement Image   Contrast range c Window size ws    

Dark shadow image 45≤c≤55   50*50  

Low pavement texture image 10≤c≤30   20*20  

Moderate pavement texture 
image 20≤c≤50   30*30  

High pavement texture image 35≤c≤66   50*50  
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review of all related works (LI ET AL. 1991); and (iii) based on the empirical tests of this study for 
available data set images, the results of the Sobel Edge Detector were the best compared to other 
filters.  
 
3.2.2 Experimental Results  

To assess the results, the second stage in the developed algorithm of this thesis was also applied to 
the dataset of pavement images for different streets in Germany. S.T.I.E.R mobile mapper system 
(LEHMANN + PARTNER GmbH Company) has been employed for capturing image sequences. 
The image (figure 3.12) has the same characteristics previously described in Chapter 3, section 
3.1.2. In the following, an exemplary visualization for all threshold stages is presented. 
  
Adaptive Thresholding Algorithm and Sobel Edge Detector Implementation 

Using the adaptive thresholding algorithm (described above), the approach of this thesis successful-
ly creates binary crack images. The results are shown in figure (3.12-1stline). The window size is 
selected automatically. In addition, the constant value is set up to take different lighting and illumi-
nation levels into consideration. The cracks have been extracted from corresponding images, but the 
crack edge boundaries are unclear. To address this, the approach of this thesis applies the Sobel 
Edge Detector in particular for boundary specification, and it is found to work well. The edge 
boundaries are extracted for the cracks, as well as for noise (Figure3.12-2ndline). This is essential 
for the flow in the later post-processing stage.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12: Results for thresholding (segmentation stage); the resultant image after applying the adaptive 
thresholding algorithm (1st line); the resultant image after applying the Sobel Edge Detector (2nd line). 
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3.3 Crack Connection (Post-processing stage) 

3.3.1 Theory  

In section (3.1), pavement images were processed in order to correct background illumination, not 
taking into account the goal of crack extraction from the images. The resultant corrected images are 
employed then to extract crack outputs, as presented in section (3.2); whereas, all images are con-
verted efficiently into binary images. Using different integration and combination of morphological 
operation during the pre-processing stage with the help of the adaptive thresholding algorithm can 
lead to: (i) noise due to the pixel intensity change, some background pixels displaced as foreground 
pixels; (ii) crack discontinuity (this occurs due to two reasons: firstly, the real shape of the cracks 
themselves, and secondly the discontinuity due to segmentation operations during and threshold 
stage); and (iii) holes inside of the crack regions. In order to overcome these problems and improve 
the results, an integration algorithm for the post-processing stage of this thesis has been developed. 
 
A review of the literature clearly indicates that this post-processing stage is implemented by only a 
few of the algorithms. Most of the crack detection algorithms exclude this stage. This cancellation 
happens due to different reasons: (i) it is unnecessary from their perspective; (ii) it may be incorpo-
rated in the next stage (crack detection) or previous stage (the threshold stage); and (iii) in addition, 
to some extent, some of the algorithms (partially procedures) do not take care of classification and 
everything related with it. Nevertheless, various post-processing algorithms have been proposed and 
investigated in the literature, (e.g., BUGAE/YAXIONG 2003, LI ET AL. 1991, CHENG/MYOJIM 1998, 
JAVIDI ET AL. 2003, RABABAAH ET AL. 2005, TEOMETE ET AL. 2005, HSU ET AL. 2001). Generally, 
no standard method is implemented for the post-processing stage. The selection of one method over 
another is based on the relevant requirements and goals, and is case-dependent on the images’ na-
ture. BUGAE/YAXIONG (2003) addressed the seeds cluster algorithm. RABABAAH ET AL. (2005) 
proposed the median filtering algorithm. Median filter can delete noise and small narrow cracks 
regions. These small narrow cracks regions have the same intensity values as the noise. So RABA-

BAAH ET AL. (2005) reported that the median filter strongly fails in the case of crack detection. HSU 

ET AL. (2001) reported the hole pixel initial algorithm (flood-filling algorithm), which can fill crack 
holes and connect cracks together to 75%. The skeleton structure was introduced by 
CHENG/MYOJIM (1998). Connectivity searching provides an accurate result for crack connection 
(JAVIDI ET AL. 2003, LI ET AL. 1991). In addition, when the pavement images are comprised of high 
texture, some post-processing algorithms, such as the seeds cluster algorithm, median filter and 
other methods, fail; whereas, the hole pixel initial algorithm (flood-filling algorithm) continues to 
work. Thus, this point must be considered when determining which hole-filling algorithm is suitable 
for application in this study.  
 
Thus, the post-processing algorithm of this thesis is based on a combination process between the 
hole-filling algorithm and the labelling connected components algorithm. This integration of both 
algorithms provides correct results. This combination can fill crack holes. Moreover, this enables an 
implicit determination of cracks within images. This determination is performed by dividing pixel 
images into classes with different colours through the labelling connected components algorithm. 
Finally, these different classes enable the approach in this thesis to convert the image into a form 
that is ready for classification. One advantage of this algorithm is that it retrieves crack connectivi-
ty. Another advantage is that dividing image pixels into classes by the labelling connected compo-
nents algorithm can reduce image information related to pixel intensities. Specifically, instead of 
dealing with all pixel intensities randomly, the approach of this thesis can deal with identical, or 
nearly identical, intensity values for each class. This matter will be better when crack classification 
is done. Furthermore, this integration approach reduces human involvement to a minimum during 
the entire process. 
     
The post-processing algorithm of this thesis can be divided into the following steps, as presented in 
figure 3.13. 
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Figure 3.13: Workflow for the combination of different algorithms during the crack connection stage. 
 
The general workflow can be divided into the following steps (figure 3.13): 
 
1. Hole-filling Algorithm 

As presented in Chapter 2, section (2.3.2.3), two hole-filling algorithms have been proposed and 
investigated in the literature, e.g., the hole pixel initial algorithm (HPIA) algorithm and the border 
image initial algorithm (BIIA) (GONZALEZ/WOODS 2008). Generally, there is a difference of work 
principles between the hole pixel initial algorithm and the border image initial algorithm. The latter 
possesses a disadvantage with respect to computational speed, since this algorithm begins from the 
object border. Then, it will be expanded one pixel from the border. This process must be continued 
until all holes are filled. Sometimes, it needs 100 epochs based on the image dimensions. In addi-
tion, this algorithm will be utilized irrespective of whether or not the input image has an object. So, 
this algorithm wastes a lot of time, and the final-filling holes suffer from missing details; whereas 
the disadvantages of the former are related to having the starting point for each hole in each object 
in the image. This matter is quite complex, so it needs human involvement during the fundamental 
stages in order for the final filling holes to be accurate (GONZALEZ/WOODS 2008). HSU ET AL. 
(2001) reported that the hole pixel initial algorithm (flood-filling algorithm) strongly outperforms 
other methods, such as the connectivity searching (JAVIDI ET AL. 2003) and the skeleton structure 
(CHENG/MYOJIM 1998). For example, the hole pixel initial algorithm (flood-filling algorithm) can 
fill crack holes and connect cracks together to 75%; whereas the seeds cluster algorithm can fill 
crack holes and connect cracks together to 30% and lower. Nevertheless, when the pavement ima-
ges are comprised of high texture, as mentioned previously, some post-processing algorithms, such 
as the seeds cluster algorithm and other methods, fail; whereas the hole pixel initial algorithm 
(flood-filling algorithm) continues to work. Thus, in this thesis, based on previously described 
properties, previous algorithms, and literature review, the hole pixel initial algorithm and the border 
image initial algorithm have been tested for crack hole filling. A comparative study is implemented 
to select the best algorithm based on the available datasets. After this, the best hole-filling algorithm 
(hole pixel initial algorithm) is investigated, accompanied by several dilation processes that were 
described previously in Chapter 2, section 2.3.2.3. A disk-structuring element is used during this 
dilation process. This operation plays a key role to facilitate the distinction between crack and other 
extrinsic objects during the next detection stage.  
 
2. Labelling Connected Components Algorithm  

This step is designed, at first to accurately and quickly divide binary image pixels into connected 
components (CC). The connected component process is performed on the hole-filling binary image 
to segment its pixels into smaller connected components (CC). All of the pixels in each connected 
component have the same intensity values (0 or 1) due to the binarization. So, the division process 
is based on two factors: (i) the pixel connectivity; and (ii) the pixel intensities. Firstly, the connec-

Hole-filling Algorithm and Several Times of Dilation Process 
 

Input Image  

Labelling Connected Components Algorithm 

 

Crack Connection 
(Post-processing 

Stage) 
 

Output Image  



  71 

ted components (CC) process has been completed, and all of the pixels have been separated into 
different groups (figure 3.14-1stline left). Secondly, the labelling connected components algorithm 
is run for each group of pixels. The latter is labelled with two possibilities: (i) by gray-level value 
(value labelling), such as 1,2,3,...etc., (figure 3.14-1stline right); or (ii) by colour (colour-labelling), 
such as one colour for the background as an isolated connected component, and a fixed colour for 
each foreground connected component (figure 3.14-2ndline). The labelling connected components 
algorithm is performed based on the connected components of the pixel, which are assigned to 
GONZALEZ/WOODS (2008).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14: Labelling connected components algorithm during the post-processing stage; connected compo-
nents (1st line-left); labelling connected components (value-labelling) (1st line-right); labelling connected com-
ponents (colour-labelling) (2nd line) (MATLAB  2014). 
 
In particular by dealing with various connected components in an image instead of random fore-
ground and background black and white pixels, the processing time can significantly decrease. A 
coloured connected component image is the output of this step, and it is used as a heuristic for the 
crack appearance and the rest of the noise. 
The labelling connected components algorithm is realized for connected region detection in binary 
or coloured images. So, if the labelling connected components algorithm is incorporated into an 
image analysis system, several kinds of data will be operated (SAMET/TAMMINEN 1988). Similar 
approaches are introduced in the literature to divide images into different regions in order to guide 
image classification and analysis, such as the relaxation labelling technique (SALARI 2012). Others 
were used for robust threshold images, such as the region growing concept and the labelling con-
nected components algorithm (CHOU/SALARI 2012, SAMET/TAMMINEN 1988, CHEN/LEEDHAM 
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2005, WU/AMIN 2003). In addition, the labelling connected components algorithm reveals the struc-
ture of all equivalent classes by assigning a unique label or colour to each class. Thus, this will lead 
to reduced classification errors and time. In addition, the labelling connected components algorithm 
is critical for any automated image analysis enforcement. Finally, it serves to guide the process of 
classification to deal with different pixel equivalent classes instead of attempting to classify each 
white pixel as a crack or noise alone. This can simplify and speed up the classification stage. The 
approach of this thesis follows the labelling connected components algorithm having some analogy 
with CHOU/SALARI (2012). This connected components algorithm is utilized mathematically in 
equation (3-3) as follows:   
 𝑋𝐺 = (𝑋𝐺−1⊕𝐵) ∩  𝐴 ,𝑓𝑓𝑟 𝐺 =  1, 2, 3, …                                                              (3-3) 
              where 

 
As in equation (3-3), the connected components algorithm is executed on the hole-filling binary 
image. The algorithm finished at iteration step G when  𝑿𝑮 =𝑿𝑮−𝟏. The algorithm uses the union 
set to collect structure data that supply a good representation of the equivalent classes. The intersec-
tion at each iteration with the hole-filling binary image constrains the results inside of the region of 
interest only. The connected components algorithm represents a good exemplification of how a 
morphological process can be exploited to meet the requirements. 
  
In this study, the application of the connected components algorithm is realised as follows: 
 
(i) Assume eight-connected pixels, which are defined as a neighbour to every pixel that touches 

one of their edges or corners. These pixels are linked vertically, horizontally, and diagonally. 
Each pixel with coordinates is represented as a neighbour to the pixel (x, y) (figure 3.15). It is 
worth noting that the approach of this thesis selects eight-connectivity due to the available da-
taset image nature. This approach could also be expressed as e.g., north-east, north, north-west, 
and west of the actual pixel (assuming eight-connectivity). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.15: Assuming eight-connectivity during the crack connection stage. 

 
Figure 3.15 shows eight-connected pixels around the central pixel (red square), which are defined 
as neighbors to the central pixel (red square) that touches one of their edges or corners. These pixels 
are linked vertically (green squares), horizontally (orange squares), and diagonally (blue squares).  
 
 
 

 

 𝐵 : symmetric structuring element, 

 ∩ : intersection operator, 
 𝐴 : input binary image, 

 𝑋𝐺: the product of the algorithm at iteration step G, 
 𝑋𝐺−1 : the vector at iteration step G-1. 
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(ii) The connected component is built by scanning a binary image pixel-by-pixel from top to bot-
tom and from left to right. This process is done in order to specify connected pixel regions that 
have the same set of intensity values (I).  
 

(iii) The connected component regions are formed by eight-connectivity checks around each pixel. 
The question then arises: Does the pixel to the left have the same intensity value as the actual 
pixel? If the answer is yes, this pixel is put in the same connected component region of the cur-
rent pixel. If the answer is no, this pixel is out of the connected component region of the cur-
rent pixel. This question must be repeated over all pixel neighbours during eight-connectivity. 
The algorithm continues this approach. Finally, this approach will generate connected compo-
nents whenever necessary. 

 
After this, the resulting connected components must be labelled through the labelling connected 
components algorithm. This algorithm is realised as a two-pass algorithm. The aims of the first-pass 
algorithm are as follows: (1) assign temporal labels for every pixel; and (2) store equivalence clas-
ses. On the other hand, the aims of the second-pass algorithm are as follows: (1) find the smallest 
label within each equivalence class; (2) replace each temporary label for each pixel within the 
equivalence class by the smallest label; and (3) display the different equivalence classes by different 
gray-levels form or different colours, where one unique label and colour are assigned for each 
equivalence class. 
 
The first-pass labelling algorithm is realized as follows: 
(i) Scan the image by moving along a row until it comes to element h. 
(ii)  If element h is not the background (h symbolizes the pixel to be labelled for which                    

I=1 [white not black]); when it is true, the following steps must be performed:  
a. Examine the neighbours of h that have been obverted in the scan. 
b. If there are no neighbours (all neighbours are 0 [black]), specify a new label to h. 
c. If only one neighbour has I=1, specify its label to h. 
d. Otherwise, if more than one of the neighbours have I=1, find the neighbours with the small-

est label and specify it to h.  Then, record the note of equivalence between neighbour labels. 
After completing the first-pass labelling algorithm, the equivalence label pairs are recorded 
and saved into equivalence classes. 

 
The second-pass labelling algorithm is utilized as follows (GONZALEZ/WOODS 2008): 
(i) Scan for each element of the image data by column, and then row, and identify if element h is in 

the background or not. 
(ii) If it is not in the background, the following steps must be performed: 

a. Find the smallest label within the equivalence class that concludes element h. 
b. Relabel element h with the smallest equivalence class label. 
c. Display the final results, in which each equivalence class has its unique value and its 

unique colour. 
 

It is worth noting that the background is consumed to specify the remarkable elements from the fore-
ground. In the case of ignoring the background, the two-pass algorithm will deal with the background as 
another coloured region, similar to this study's application. 
 
3.3.2 Experimental Results  

In order to show the results of this thesis, the algorithm was applied to the dataset of pavement im-
ages for different streets in Germany. S.T.I.E.R mobile mapper system (LEHMANN + PARTNER 
GmbH Company) has been employed for capturing image sequences. The image (figure 3.16) has 
the same characteristics previously described in Chapter 3, section 3.1.2. In the following, an ex-
emplary visualization for all of the workflow of the post-processing stage is presented. 
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Hole-filling Algorithm 

Since the processing time has not yet been taken into account, the hole pixel initial algorithm 
(HPIA) and the border image initial algorithm (BIIA) have been tested in this thesis in order to en-
sure good robustness for crack hole filling. A comparative study is implemented to select the best 
algorithm based on the available datasets. Finding better crack hole filling and crack connectivity 
constitute an important issue, especially in the case of having high pavement texture images. The 
nature of these latter images have numerous obstacles, such as aggregate size, the binder size itself, 
and black rubber hose. All of these obstacles will appear as noise. Sometimes these obstacles 
(noise) affect the hole-filling algorithm’s behaviour. In fact, this impact is based on how the algo-
rithm is performed, in which some hole-filling algorithms may deal with these obstacles as cracks 
and fill the holes between them. In addition, some parts of the crack regions will be missed; where-
as, another hole-filling algorithm will perform successfully in crack hole filling and crack connec-
tivity. The conclusion is that the choice of the hole-filling algorithm is actually case-dependent (fig-
ure 3.16). 
 
Accordingly, figure 3.16 shows that there are differences in the results of applying the border image 
initial algorithm with respect to the results of applying the hole pixel initial algorithm. The associat-
ed resultant image by the latter algorithm might be more useful than the first one. The former one 
can be prone to failure due to different reasons, such as: (i) it fails to connect some parts of the 
crack regions; (ii) it cannot fill some holes inside of the crack regions; and (iii) there are some miss-
ing parts of the crack regions. Although the hole pixel initial algorithm cannot reduce noise, it can, 
to some extent, fill crack holes and check connectivity successfully. In conclusion, the hole pixel 
initial algorithm followed by several iterations of the dilation process is adapted in this study's ap-
plication (AL-MISTAREHI/SCHWIEGER 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 

 Figure 3.16: Results for hole-filling algorithms (post-processing stage); the resultant image after applying the 
border image initial algorithm (1st line); the resultant image after applying the hole pixel initial algorithm  

(2nd line). 
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Labelling Connected Components Algorithm 

Once the resultant image from the hole-filling algorithm is realized, the division of the binary image 
into regions can be solved automatically by using the labelling connected component algorithm. 
The labelling connected component algorithm results are considered as a final preparation step be-
fore the crack extraction and classification stage (figure 3.17). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: Results for the labelling connected components algorithm (post-processing stage). 
 

Figure 3.17 illustrates that different connected components are assigned different colours. Each 
colour represents a connected component region (equivalence class) with the same, or nearly the 
same, intensity values. For example, all backgrounds have one colour and the cracks have another 
colour due to different intensity values. These results are sufficient as a final preparation step before 
the crack extraction and classification stage (detection stage) due to different reasons, such as: (i) 
the crack regions are clear with distinctive colours (instead of dealing with the original unclear 
crack gray-scale images); (ii) the holes and gaps inside of the crack regions are filled; and (iii) the 
cracks’ connectivity is adequate, to some extent. In fact, it can be seen from Figure 3.17 that there 
are some noise connected component regions which have the same colour as the crack connected 
component regions. This means that some noise intensities have the same, or nearly the same, in-
tensities as the crack intensities. This creates a challenge for the next detection stage (crack extrac-
tion and classification) regarding how the algorithm presented in this thesis will be able to distin-
guish between cracks and noise based on the intensity factor only. This creates a need to insert an-
other factor, rather than intensity, to overcome this problem (AL-MISTAREHI/SCHWIEGER 2015).   
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4 Crack Extraction and Classification  
Crack extraction and classification, as the task of detecting different crack types from different 
pavement texture images, is still an active topic of transportation research, e.g., (SALARI 2012). A 
complete detailed representation of cracks’ surfaces is required for any application, for instance, 
pavement evaluation, performance measurement, maintenance rehabilitation, and reconstruction of 
pavement surfaces. Manual crack detection systems may provide an accurate representation of 
crack surfaces. However, due to field survey limitations, such as time consumption, high labour 
effort, and dangerous and low repeatability level, manual crack detection systems are not sufficient 
to produce full crack sense coverage. Automatic crack detection systems are more suitable for crack 
detection coverage than the former manual detected methods.  
  
Most well-known crack detection algorithms are executed by the integration of digital image pro-
cessing approaches. These approaches are considered to be the most suitable tool for the crack de-
tection target. As presented in Chapter 3, in order to simplify the crack detection task from an origi-
nal gray scale pavement image, several categories of preparation stages, such as the pre-processing 
stage, thresholding stage, and post-processing stage, have been exploited; see (TRIER/TAXT 1995; 
CHOU/SALARI 2012, BIENIECKI/GRABOWSKI 2005). Each preparation stage is realized by a combi-
nation of different digital image processing algorithms styles. The aims of all of the preparation 
stages are as follows: (i) conversion of the original gray scale crack image to an easier form for 
crack detection; (ii) elimination of several distributing information from the original gray scale im-
age, such as shadows during the pre-processing and thresholding stages due to binarization; and (iii) 
production of a coloured image with different equivalence classes instead of dealing with random 
intensities of black and white images. In fact, if anyone looks roughly on the final resultant image 
from all of the preparation stages, the cracks will be represented as a coloured connected compo-
nent region in addition to remaining noise. Some noise connected component regions have the same 
colour as cracks connected component regions’ colour. This means that some noise intensities have 
the same or nearly the same intensity as the crack intensities. This creates a challenge to introduce a 
powerful algorithm. This algorithm enables one to find other criteria in addition to cracks’ intensi-
ties. This criterion will help for crack extraction (AL-MISTAREHI/SCHWIEGER 2015). 
 
Direct crack extraction and classification from pavement images based on the combination of dif-
ferent image processing techniques, and some modifications of previous algorithms, are presented. 
The algorithm of this thesis suggests applying the contouring algorithm (SALARI ET AL. 2010; 
JONES 1971). This contouring algorithm specifies exactly the location of the crack in the original 
image. Then, for the purpose of extracting cracks, this study modifies the binary mask detection 
algorithm based on the geometric relationship for crack regions (TEOMETE ET AL. 2005). This modi-
fication strategy aims to extract cracks and their characteristics. Furthermore, this study uses the 
crack classification method (YING/SALARI 2009) for an implicit determination of the type of cracks 
and their characteristics in the final resultant images. 
 
In principle, the algorithm’s goal for this study can extract and classify cracks of pavement images 
automatically, not manually. In the following, a detailed description of the algorithm is given in 
order to introduce the completely used methodologies. As presented in Figure 4.1, the algorithm of 
this stage is divided into the following steps. 
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Figure 4.1: Workflow for the combination of different algorithms during the detection stage. 

4.1 Contouring Algorithm 

A wide variety of the most common contour tracing algorithms for different applications have been 
proposed and investigated in the literature, e.g., JONES (1971), ARAMINI (1980), BRUSS (1977), 
COTTAFAVA/LEMOLI(1969), ERMLER ET AL. (1976), FISHER (1981), HECKMAN/MEYER(1980), 
BATCHA/REESE(1960), and WALDEN (1972). Generally, SOSS (2003) addressed the square tracing 
algorithm. TOUSSAINT (1997) proposed the Moore-neighbour tracing algorithm, which cannot be 
based on the same stopping criterion as the square tracing algorithm, to fully accept invariant image 
patterns and terminate. TOUSSAINT (1997) introduces border tracing by radial sweep, while 
PAVLIDIS (1982) presented the Pavlidis' algorithm. In particular, the most evident contouring algo-
rithm is investigated using triangular procedures (JONES 1971). The other methods, such as the 
square tracing and Moore tracing algorithms, possess a number of shortcomings which cause them 
to fail in tracing the contour of huge patterns; this is due to their size of connectivity (TOUSSAINT 
1997). SALARI ET AL. (2010) utilises the contouring algorithm for printing cracks on the original 
image. SALARI ET AL. (2010) reports that applying contouring algorithms outperforms significantly 
over the drawbacks of other methods, such as the border tracing by radial sweep (TOUSSAINT 1997) 
and Pavlidis' algorithm (PAVLIDIS 1982), e.g., border tracing by radial sweep ignores holes present 
in the pattern. Although, the contouring algorithm by SALARI ET AL. (2010) can successfully trace 
the contour around the crack regions, taking holes into consideration.  
 
Furthermore, SALARI ET AL. (2010) illustrates that if the crack pavement images are connected with-
in eight connectivity patterns, some contouring algorithms, such as the square tracing algorithm, fail 
to extract the contour around the crack regions (usually fewer contouring algorithms can accom-
plish this). Thus, this application based on the literature adapts applying the contouring algorithm 
by JONES (1971) and SALARI ET AL. (2010). This contouring algorithm is able to compute and draw 
contour lines around different regions in the original image. These regions are considered as the 
probable regions to have cracks. The contouring algorithm’s aim is to automatically specify the 
probable crack locations in the original image. This will be helpful to extract the real crack meas-
urements from the original images after detecting them. This is done instead of measuring cracks’ 
properties from coloured connected components images. In other words, the contouring algorithm is 
used as a tool for projecting all of the coloured equivalence classes (probably crack regions) on the 
original image. 

Contouring algorithm 

        Binary mask detection algorithm 

Input image (the resultant image after applying the post-
processing stage) 

     Classification algorithm 

Crack extraction 
and classification 
(detection stage) 

Output image  
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Then, the overall algorithm for contouring (JONES 1971, SALARI ET AL. 2010) is described as fol-
lows: 

1. Define the feature e.g. cracks. 
2. Find the minimum and the maximum gray values (colour) fmin, fmax over the feature. f repre-

sents the gray values "colours". The gray value  f  is interpreted as the third dimension of 
the coordinate system ''heights''.   

3. Identify the existing contour level e, where e is defined as the lowest contour level to be 
drawn within range [fmin , fmax]. 

4. If fmin≤e≤fmax then go to step (5), or else go to step (7). 

5. Dash the contour over the feature. 
6. Save the contour. 
7. If not all the features are handled, then consider the next feature and go to step (2), or else 

go to step (8). 
8. Connect the contours that have the same level. 
9. Scheme the contours. 
10. Compute the contour lines data structure matrix as a two-row matrix using linear interpola-

tion. The previous described overall contouring algorithm is summarized in detail in Figure 
(4.2). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Workflow for the contouring algorithm during the detection stage. 

 
In conclusion, the contouring algorithm specifies all contour lines using this matrix. The first row of 
the column contains the labelled contour value in the map. The value below this is the number of 
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No 
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vertices in the contour line. The remaining columns contain the (x, y) coordinates for each vertex in 
which the contour crosses over them (Figure 4.3). 
 

 

 
 
 
 
 
 

Figure 4.3: Example of the contour matrix for three vertices (MATLAB HELP. 2012b). 
 
By analyzing Figure 4.3, the contour line crosses over nine vertices (edges), and the labeled contour 
value for first three vertices is equal to (-0.2000). The (x, y) coordinates for the first three vertices 
were (1.8165, 1.0000), (2.0000, 1.0367), and (2.1835, 1.0000), respectively. 

4.2 Binary Mask Detection Algorithm 

The resultant contouring images indicate different probable crack regions (green colour regions). 
Some of them are related to actual cracks, and others are related to noise. As a consequence, the 
discrimination between cracks and noise requires a robust extraction algorithm, which employs 
region shape properties instead of being based on the intensities only (TEOMETE ET AL. 2005). A 
wide variety of crack classification algorithms have been proposed and investigated in the literature, 
e.g., (CHOU ET AL. 1994, GEORGOPOULOS ET AL. 1995, CHENG/MYOJIM 1998, LE ET AL. 1990, 
RABABAAH ET AL. 2005). Generally, all of these classification algorithms are considered a complete 
procedure with some problems and defects. Some of these problems are summarized as follows: (i) 
loss of invariant properties of cracks in the case of different pavement textures; (ii) absence of some 
parts of cracks in the case of shadows; (iii) incapacity to distinguish cracks from noise due to simi-
lar intensities; (iv) incapability to differentiate cracks from marking lines; and (v) inability to identi-
fy cracks from other extrinsic objects (LE ET AL. 1990). The reasons for all of these problems are as 
follows: (i) inadequate preparing stages before the crack extraction and classification stage; and (ii) 
most crack extraction methods are based on the pixel intensity values, and unfortunately some noise 
regions have the same intensities as the crack regions. This issue will affect the classification rate. 
 
TEOMETE ET AL. (2005) proposes the binary mask detection algorithm. This binary mask detection 
algorithm is able to detect reliable crack regions by different approaches. One approach is complet-
ed by setting a threshold to the crack size using several trials and errors; whereas, the second ap-
proach investigates the shape of crack regions. The latter approach of this algorithm can detect 
crack regions automatically. TEOMETE ET AL. (2005) report that the binary mask detection algorithm 
significantly outperforms other classification methods in terms of the incapacity to distinguish 
cracks from noise due to similar intensity. So, the binary mask detection algorithm (second ap-
proach) inserts a shape factor besides the intensity for crack extraction successfully. Thus, the bina-
ry mask detection algorithm (second approach) has been selected for this thesis application with 
some modifications and extensions. This extension has an important advantage to preserve crack 
connectivity for classification. Moreover, the modified binary mask algorithm can ignore noise 
regions. To some extent, this modified binary mask algorithm performs successfully in extracting 
characteristics of the crack regions from the geometric characteristics of the binary mask shape. 
Moreover, these crack characteristics play a key role to provide the correct crack type in the next 
step.  
 
As a result, the modified binary mask algorithm achieves an increase in automation. It represents a 
straightforward solution for crack extraction and results in detailed crack structures, with high 
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pavement texture. In the following, a detailed description of the modified binary mask algorithm is 
presented in order to introduce the used steps in their entirety.  
 
Preparing Stage: A statistical analysis is performed for most of the crack images to determine the 
range of crack area lengths, the range of crack area widths, and the minimum crack widths. These 
numbers are considered to meet the requirements for generating the binary mask shape of the latter 
step. In this thesis, the results of the statistical analysis are as follows: (1) the range of crack areas 
length is between 0.1 to 1 m on the ground, which equals 100-833 pixels on the image; and (2) the 
range of crack areas width is between 0.04 to 0.2 m on the ground, which equals 35-166 pixels on 
the image. The minimum crack width on the available case study is 3 mm (2.5 pixels). Based on the 
German regulations of the Road State Determination Manual (FGSV 2006), cracks thicker than 1 
mm should be detected. This stage is done just once for most of the crack images in one case study. 
The results of the statistical analysis are used as pre-defined conditional statement values in all case 
studies of this thesis. 

 
The overall modified binary mask detection algorithm (TEOMETE ET AL. 2005) is introduced as 
follows: 

(i) Define the binary ellipse mask based on the pre-defined conditional statement values 
mentioned above (results of preparing stage) 

 
(ii) Move the binary ellipse mask over the resultant image after applying the hole filling al-

gorithm, as shown in Figure 4.4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Moving binary ellipse mask over the image during the crack extraction and classification stage. 
 

(iii) When the pre-defined conditional statements values are satisfied, the ellipse will be 
printed over the contour on the image after applying the contouring algorithm (Figure 
4.12, Section 4.4). This is done to define the region of interest. Until step (iii), the binary 
mask detection algorithm is utilized as in TEOMETE ET AL. (2005). After this, in order to 
fit the crack connectivity for the classification and filter out incorrect noise, this study 
modifies and extends the algorithm in the following steps: 

 
(iv) Some conditions must be checked as follows: (a) if there are different continuous ellip-

ses (binary masks) printed over continuous contours; (b) and if these contours are corre-
sponding with connected components (equivalence classes), having the same or nearly 
the same intensities and colours, the continuous binary ellipse masks will be merged 
around the continuous contour regions automatically. Otherwise, each binary ellipse 
mask will be drawn for each contour part alone automatically.  
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(v) Draw the major axis and minor axis for each ellipse by a geometric method. This geomet-
ric method is done by generating two matrices. One matrix represents the x-coordinates 
for the starting and ending points of major and minor axes, respectively. On the other 
hand, the second matrix performs y-coordinates for the same points associated with major 
and minor axes, respectively. The two matrices are utilized mathematically in equations 
(4-1), and (4-2), respectively. Figure (4.5) shows how the major axis and minor axis are 
actually determined. The orientation angle of the binary ellipse shape Ω is involved for 
calculating the coordinates of start and end points. The orientation angle value Ω is as-
signed as the orientation of the major axis inside the binary ellipse mask region. This ori-
entation angle value Ω is obtained automatically from the region properties. 

 
 𝑎𝑥 = �𝑋1 𝑋3𝑋2 𝑋4�,  (4-1) 

 𝑎𝑦 = �𝑌1 𝑌3𝑌2 𝑌4�, (4-2) 

 𝑋1 = (𝑋0 − 𝑑𝑥1) = �𝑋0 − 𝑟𝑎
2
∗ cos(Ω)�, (4-3) 

 𝑋2 = (𝑋0 + 𝑑𝑥2) = �𝑋0 +
𝑟𝑎2 ∗ cos(Ω)�,   (4-4) 

 𝑋3 = (𝑋0 + 𝑑𝑥3) = �𝑋0 +
𝑟𝑏
2
∗ sin(Ω)�, (4-5) 

 𝑋4 = (𝑋0 − 𝑑𝑥4) = �𝑋0 − 𝑟𝑏2 ∗ sin(Ω)�,  (4-6) 

 𝑌1 = �𝑌0 − 𝑑𝑦1� = �𝑌0 − 𝑟𝑎2 ∗ sin(Ω)�,        (4-7) 

 𝑌2 = �𝑌0 + 𝑑𝑦2� = �𝑌0 +
𝑟𝑎2 ∗ sin(Ω)�,   (4-8) 

 𝑌3 = �𝑌0 − 𝑑𝑦3� = �𝑌0 − 𝑟𝑏
2
∗ cos(Ω)�, (4-9) 

 𝑌4 = �𝑌0 + 𝑑𝑦4� = �𝑌0 +
𝑟𝑏
2
∗ cos(Ω)�, (4-10) 

where   

 
 

𝑎𝑥   : matrix represents the (x-coordinates) for the starting and ending points of major   
 and minor axes, respectively, 

 𝑋1 : x-coordinate for the start point of the major axis, 

 𝑋2 : x-coordinate for the end point of the major axis, 

 𝑋3 : x-coordinate for the start point of the minor axis, 

 𝑋4 : x-coordinate for the end point of the minor axis, 

 𝑎𝑦  : matrix represents the (y-coordinates) for the starting and ending points of  major 
 and minor axes, respectively, 

 𝑌1 : y-coordinate for the start point of the major axis, 

 𝑌2 : y-coordinate for the end point of the major axis, 

 𝑌3 : y-coordinate for the start point of the minor axis, 

 𝑌4 : y-coordinate for the end point of the minor axis, 

 𝑋0 : x-coordinate for the center of the ellipse shape (obtained automatically from region   
properties)(pixels), 

 𝑌0 : y-coordinate for the center of the ellipse shape (obtained automatically from region   
properties)(pixels), 

 𝑟𝑎 : major axis length (pixels), 
  𝑟𝑏 : minor axis length (pixels), 
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 Ω : crack area orientation angle (degree). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: Masking ellipse definition; 1st line: explanation of the major axis; 2nd line: explanation of the mi-

nor axis. 
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(vi) Detect cracks automatically, in which each contour region surrounded by an ellipse 
shape is automatically considered as a crack region (Figure 4.6). Otherwise, any other 
item (other green regions) is ignored automatically, as shown in Figure 4.13, Section 
4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Ellipse around crack regions during the crack extraction and classification stage. 
 
(vii) Determine severity levels for each cracking region based on the state value ZG and the 

normalized state value ZW calculations that are described in Chapter 2, section (2.1.2). 
 
(viii) Extract crack characteristics automatically from the geometrical characteristics of the 

binary ellipse mask shape (region properties) as follows:  
 

a. Crack area length is represented by the length of the major axis given in pixels. 
  

b. Crack area width is represented by the length of the minor axis given in pixels. 
   

c. Crack area orientation Ω is represented by the orientation of the major axis inside 
of the binary ellipse mask region. A virtual vertical axis ranging from -90° to 90° 
is defined and passed through the ellipse shape centre. Then, the algorithm can 
move directly through a path within the range of -90° to 90° from the positive hor-
izontal axis to the major axis of the ellipse shape. The orientation angle will be 
generated from this movement either clockwise or counter-clockwise. The final 
orientation angle will be measured as a value in degrees with a positive or nega-
tive sign. The sign will represent the direction of the path from the positive hori-
zontal axis to the major axis of the ellipse shape. The orientation angle is automat-
ically realized from the region properties. 

 

d. Area of crack region: In this thesis, the area of the crack region is determined by 
calculating the area of the ellipse surrounding each crack region by equation (4-
11) below. This parameter is used in the case of network of cracks (block type). 
The modified algorithm generates a group of ellipse masks in the block type re-
gion. The affected areas by the block crack type are measured by summing-up the 
areas for all ellipses inside of the block crack region automatically (Figure 4.15, 
Section 4.4). The previous described overall modified binary mask algorithm is 
summarized in detail in Figure (4.7). 
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                   𝐴 = 𝜋 ∙ 0.52 ∙ 𝑟𝑎 ∙ 𝑟𝑏 ,                                                                                                 (4-11) 
              where    

             𝑟𝑎 : major axis length (pixels), 

 𝑟𝑏 : minor axis length (pixels), 

 A : area of the crack region that equals the ellipse area (pixels). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Workflow for the modified binary mask algorithm during the detection stage. 

4.3 Classification Algorithm 

The resultant image, after applying the modified binary mask algorithm, indicates the regions relat-
ed to cracks only. A broad set of classification methods are introduced and investigated in the litera-
ture, for example (CHOU ET AL 1994). Generally, there is no standard method for classification, 
which indicates the capability of crack classification under different conditions, such as different 
pavement textures, different illuminations, and shadows. Furthermore, there are no standard specifi-
cations that can be used everywhere. The standard specifications are different from one country to 
another and sometimes from one state to another, within the same country. For example, in the 
U.S., there is a specification for each state. It is based on the pavement condition texture, the reflec-
tion of pavement materials, illumination and shadow conditions, and weather conditions (SHAHIN 
2002). Every road authority has its own method for this classification. The author asserts that the 
differentiation between cracks types is considered as more of a challenge than detecting the cracks 
(GIRARDELLO 2002). In conclusion, the selection of the classification method is considered to be 
case-dependent.  
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GEORGOPOULOS ET AL. (1995) classifies cracks based on the orientation direction of their presence. 
Moreover, back propagation neural network is addressed for crack classification (CHOU ET AL. 

1994, LE ET AL. 1990, HSU ET AL. 2001, CHOU/SALARI 2012). The projection histogram method is 
able to classify cracks by examining the peaks of the projection vectors (CHENG/MYOJIM 1998; 
RABABAAH ET AL. 2005; TEOMETE ET AL. 2005). JAVIDI ET AL. (2003) addressed the Hough Trans-
form algorithm. Some other methods are based on predefined characteristics of each individual 
crack pattern (WANG/HARALICK 2002). SALARI ET AL. (2010) proposed a 2D-feature mapping 
method for crack classification. As described previously in Chapter 2, every classification method 
has its own problems and defects. The Hough Transform method (JAVIDI ET AL. 2003) suffers from 
two significant problems as follows: (i) it can be prone to failure to check pixel connectivity in the 
case of a large number sequence of pavement images; and (ii) although edge pixels are connected, 
the count of the accumulator cell cannot reflect the length of the crack segment. YING/SALARI 

(2009) state that the crack classification standard method significantly outperforms other methods, 
such as the Hough Transform method (JAVIDI ET AL. 2003). For example, the crack classification 
standard method classifies cracks based on predefined orientation angles and crack branch numbers. 
Moreover, it determines the crack length by taking pixel connectivity into consideration. While the 
Hough Transform method can classify cracks, it cannot detect their lengths exactly. Furthermore, 
YING/SALARI (2009) illustrate that the crack classification standard method is easier for realization 
than other methods (CHOU ET AL. 1994), because it is only based on the crack orientation and the 
number of crack branches. In the case of complex compound crack pavement images, the projection 
histogram method (TEOMETE ET AL. 2005), as well as other methods, fails while the crack classifi-
cation standard method continues to work. Therefore, it is not very sensitive to noise and can deal 
with poor quality images. Thus, the crack classification standard method (YING/SALARI 2009) has 
been adapted, with some modifications and improvements, for this thesis application. In the follow-
ing, a detailed description of the crack classification standard method is demonstrated in order to 
thoroughly introduce the steps.  
 
Based on (YING/SALARI 2009), the orientation angle Ω is defined as an angle between the horizon-
tal axis to the start and end points of each crack. YING/SALARI (2009) introduced limits of the orien-
tation angle Ω with the horizontal axis, such as (30°, 60°). These numbers (angles limits) are sup-
posed as a specification for the control crack classification of either horizontal, vertical, or trans-
verse. These numbers (angles limits) and crack types are selected based on YING/SALARI (2009) 
and available datasets. Therefore, the crack classification standard method (YING/SALARI 2009) is 
modified to meet the objectives of this thesis application as follows: (i) the orientation angle Ω is 
defined as an angle between the horizontal (+x-axis) and the major axis of the region (ellipse 
shape), either clockwise or counter-clockwise. This orientation angle Ω ranges from -90° to 90°. It 
will be obtained automatically from applying the previous modified binary mask algorithm step. (ii) 
Based on the knowledge of the YING/SALARI (2009) algorithm, YING/SALARI (2009) created gen-
eral specifications to connect between the crack type and its orientation, automatically. In this the-
sis, crack classification is done based on these general specifications. The classification of cracks 
(Figure 4.8) is implemented as follows (YING/SALARI 2009): 
 

1- The vertical individual cracks have an orientation angle (Ω>= 60o), 
 

2- The horizontal individual cracks have an orientation angle (Ω<= 30o), 
 

3- The transverse individual cracks have an orientation angle (60o>Ω>30o), 
 

4- The network of cracks (block type) has different orientations associated to different branch-
es. There is no specified range for its orientation. 
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Figure 4.8: Types of cracking; 1st line: vertical individual cracks (left), Horizontal individual cracks 
(right); 2nd line: Transverse individual cracks (left), Network of cracks (Block type) (right) 
(YING/SALARI 2009). 
 

Consequently, the algorithm for the determination of the number of branches is not explained in 
more detail by YING /SALARI (2009). Therefore, this study develops an algorithm for counting the 
number of block crack branches within an image as follows: 
 
Preparing Stage: Statistical analysis is performed for most of the block crack images to determine 
the range of block crack branch area lengths and the range of block crack branch area widths. These 
numbers are considered to meet the requirements for generating the rectangle binary mask shape for 
(ii), the latter step. In this thesis, the results of the statistical analysis over most of the block crack 
branches are as follows: (1) the range of block crack branch area lengths is between 0.3 to 0.6 m on 
the ground, which equals 250-500 pixels on the image. (2) The range of block crack branch area 
widths is between 0.07 to 0.1 m on the ground, which equals 58-83 pixels on the image. This stage 
is done just once for most of the block crack images in one case study. The results of the statistical 
analysis are used as pre-defined conditional statement values in all case studies of this thesis. 

 
The overall modified algorithm is introduced as follows: 

 

(i) If the resultant image, after applying the modified binary mask algorithm, has one ellipse 
region only, there are no branches and the algorithm should proceed to step (v) directly. 
Otherwise, if the answer is false, go to step (ii). 

 

(ii) Define the rectangular binary mask based on the pre-defined conditional statement val-
ues mentioned above in the preparing stage. 

 

(iii) Check each ellipse region inside of the image by moving the rectangular binary mask 
over it. If the rectangular binary mask fits with the ellipse shape, the ellipse shape is 
considered a block crack branch and one should go to step (iv) directly. Otherwise, it is 
considered to be a main crack and the algorithm should go to step (v) directly. This step 
must be repeated until the entire ellipse shapes inside the image are completed (Figure 
4.9). 

 

(iv) Check if there is at least one branch in the image. The algorithm will count the total 
number of branches inside the images and classify them together as a network of cracks 
(block type), irrespective of the angles of the cracks. The classification procedure will 
now be completed. The algorithm will compute the area of the block cracks automatical-
ly by summation of the areas for all of the block branches inside of the image. 
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Figure 4.9: The modified algorithm for classification procedure; 1stline: first example of block crack shape 

with seven branches; 2ndline: second example of another block crack shape with three branches; 3rdline: third 

example of another block crack shape with four branches. (Note: green rectangle means that the rectangle 

binary mask determines the block crack branch). 
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(v) If there are main cracks in the image, the cracks are classified as follows: 

 

a. If the orientation angle Ω>= 60o, the crack is classified as a vertical individual crack. 
  

b. If the orientation angle Ω<= 30o, the crack is classified as a horizontal individual 
crack. 

 

c. If the orientation angle 60o>Ω>30o, the crack is classified as a transverse individual 
crack. The previously described overall modified classification method is summa-
rized as shown in Figure (4.10). 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10: Workflow of the modified algorithm to count the number of block crack branches within the 

image and classify the cracks into different types during the detection stage. 

 
Inspired by the positive results of using the modified classification algorithm (Figure 4.9), the latter 
figure shows that the modified algorithm can determine the block crack branches (marked by a 
green rectangular binary mask) accurately, despite of its different irregular shapes. This represents a 
key role to control the classification method. When the rectangle mask fits with the ellipse shape 
geometrically, the ellipse shape will be considered as a branch, automatically. Moreover, one 
branch is enough to classify cracks as a network of cracks (block type) without taking orientation 
into consideration. Otherwise, if the image contains just one ellipse, the block cracks will be ex-
cluded as unqualified. At that time, the orientation angle only is the main factor to classify cracks as 
either vertical individual cracks, horizontal individual cracks, or transverse individual cracks. This 
assumption is based on the fact that the block crack type must comprise different connected compo-
nents (branches) with different intensities, colours, and orientations due to their irregular shapes. It 
is impossible to find block cracks that contain just one connected component (one branch equals 
one ellipse). 
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4.4 Experimental Results 

To obtain the results, the algorithm of this thesis for crack extraction and classification was applied 
to the dataset of pavement images of different streets in Germany. The image (Figure 4.11) has the 
same characteristics as described previously in Chapter 3, section 3.1.2. In the following, a visuali-
zation of the crack extraction and classification steps is shown. 
 
Contouring Algorithm 

The algorithm of this thesis successfully printed all of the probable crack locations automatically in 
the original image. This projection, for all coloured equivalence classes (probably crack regions), 
on the original image is done by the contouring algorithm. This algorithm is essential for the flow 
of the binary mask detection algorithm (Figure 4.11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 4.11: Results for applying the contouring algorithm. 

 

Binary Mask Detection Algorithm 

The contouring algorithm image can be used as an input for the binary mask detection algorithm. 
The modified binary mask detection algorithm can generate a binary ellipse mask around the crack 
regions only, and ignore any other regions (noise). Moreover, this algorithm can extract crack cha-
racteristics, such as the crack area length, the crack area width, the crack area orientation, and the 
area of the crack regions, automatically. Figure 4.12 shows that the binary ellipse mask fits correct-
ly around the crack region area, due to the accurately modified algorithm. Moreover, all of the noise 
regions (in green) are eliminated automatically, as presented in Figure 4.13 below. This algorithm is 
essential for the flow of the classification steps (AL-MISTAREHI/SCHWIEGER 2015). 
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Figure 4.12: Final binary ellipse mask around the correctly detected crack regions, only during the detection 
stage. (Note: The green colour in the image means that there is a probability of cracks due to the texture of the 
street, and the ellipse shape is the correctly detected crack regions). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13: Final binary ellipse mask around the correctly detected crack regions, only after elimination of 
all of the noise regions. 
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Classification Algorithm  

Once the crack images are determined by the modified binary mask algorithm, the modified classi-
fication method can be easily applied using the stored crack orientation characteristics in the re-
gions’ properties. Moreover, the modified classification algorithm can determine whether or not the 
cracks have branches. Depending on the existence of the crack branches and crack orientations, a 
decision can be made to classify cracks automatically. Figure (4.14) shows an example of vertical 
individual cracks with their characteristics and severity levels. Furthermore, (Figure 4.15) demon-
strates that the overall algorithm can generate a group of ellipse masks in the block crack type re-
gion. The area affected by the block cracks is measured by summing-up the areas for all the ellipses 
inside of the block crack region, automatically. This will help for further improvement, mainte-
nance, and rehabilitation, such as patching, for all block crack regions (AL-MISTAREHI/SCHWIEGER 

2015). 
 

 
 

Figure 4.14: Final resultant image with vertical individual cracks and their characteristics. 
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Figure 4.15: Final resultant image with network of cracks (block type) and their characteristics. 
 

For example, (Figure 4.14) contains two cracks: (1) one vertical individual crack with a crack area 
length equals  686.8 pixel (0.82 m), crack area width equals 50.6 pixel (0.06 m), crack area orienta-
tion equals  85.0°, area of crack region equals 27284.2 pixel2 (0.04 m2) and severity level of cracks 
region is low; (2) vertical individual cracks with crack area length equals 513.1 pixel (0.62 m), 
crack area width equals 85.7 pixel (0.10 m), crack area orientation equals 83.1°, area of crack re-
gion equals 34539.5 pixel2 (0.05 m2), and severity level of cracks region is low (weak). The algo-
rithm provides a good estimation of crack properties. This will be important for further mainte-
nance. 
 

As another example, (Figure 4.15) contains a network of cracks (block crack). The area of the total 
crack region equals 31298 pixel2 (0.05 m2) and the severity level of crack region is low (weak). 
This will contribute to further improvements, maintenance, and rehabilitation, such as patching, for 
all block crack regions (AL-MISTAREHI/SCHWIEGER 2015). The decision for a network of cracks 
(block crack) is taken for this image because the rectangular binary mask fits with the ellipse shape 
(based on Figures 4.9 and 4.10, respectively). 
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5  Discussion of the Algorithm 

5.1 Advantages of the Total Approach  

This total approach is intended for combining and modifying various aspects of several individual 
techniques. Therefore, the major attempted refinements of this thesis’s approach, regarding the four 
stages described in chapters 3 and 4, are introduced as follows: 
 
Advantage 1: Ignoring linear extrinsic objects 

Distinguishing between cracks and other linear extrinsic objects is still a problematic issue in the 
research community. Although several approaches have been developed and presented, these ap-
proaches are still unable to separate between cracks and other linear extrinsic objects. The linear 
extrinsic objects have some general characteristics. One of the most general characteristics is the 
linear geometrical shape. This common characteristic is shared between crack shapes and other 
linear extrinsic objects. Lane markings with different shapes, tire marks, paint, skid markings, rail-
way tracks, sidewalks (curbs), and line stripping are considered to be the most popular examples of 
linear extrinsic objects. 
 
The following explanation interprets how the algorithm behaves in order to separate linear extrinsic 
objects from cracks. The defined reasons for this advantage in the algorithm depend on the prepa-
ring stages before the cracks’ detection stage. This explanation is summarized as follows: 
 

a. Change pixel intensities of the linear extrinsic objects to become background pixel intensi-
ties. This is done using a robust modified local adaptive (dynamic) thresholding algorithm. 
This modified algorithm takes into consideration the suitable window size ws and a correct 
constant c. The correct selection of these two values (ws, c) achieves a better result. These 
better results are visualized by using a white colour for all linear extrinsic objects, as a part 
of the background pixels. Furthermore, the intensity values of these linear extrinsic objects 
are changed to become similar to the background pixel intensity. 
  

b. Distort the linear extrinsic objects’ geometrical shape by losing their linear geometrical 
properties. In other words, the linear extrinsic objects will lose any common denominator, 
such as linear geometrical shape or intensity values with the cracks’ properties. The defined 
reason for this action in the algorithm depends on applying the hole pixel initial algorithm, 
accompanied by the dilation process, and the labelling connected components algorithm. 
This hole pixel initial algorithm and dilation process will enlarge the linear extrinsic objects 
to the maximum extent. Furthermore, it will distort their geometrical shapes by losing their 
geometrical linear properties. Every linear extrinsic object will have a different colour due 
to different intensity values. Finally, when the modified binary mask detection algorithm is 
moved over the connected component regions, the ellipse will not be drawn. This is be-
cause there are no cracks in the image, as shown in Figures (5.1 and 5.2), Appendix (B), 
Figure B.1, Figure B.2 and Figure B.8, respectively. 
 
 

Advantage 2: Successful treatment of noisy pavement surfaces and lighting condition changes 

This advantage focuses on the effect of lighting conditions and the texture of the pavement on the 
crack detection process. Crack identification within different noisy pavement textures is considered 
to be one of the most important drawbacks in several researches. Noisy pavement surfaces are de-
fined as a change in pavement textures (low, moderate, and high). Lighting condition changes in-
clude shadows from road traffic, people, trees, reflectivity of paving materials, inter-reflected light, 
and different illumination conditions (low, moderate, and high).  
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Figure 5.1: Behaviour of all of the overall algorithms to ignore lane markings within an image; 1st line: origi-

nal image; image after applying the image enhancement stage (middle), image after applying the adaptive 

local threshold algorithm (right); 2nd line: image after applying the Sobel Edge Detector (left), image after 

applying the hole pixel initial algorithm, including several phases of the dilation process (middle),  image 

after applying the labelling connected components algorithm (right); 3rd line: the final contouring image with-

out an ellipse. 
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Figure 5.2: Behaviour of all of the overall algorithms to ignore sidewalks within an image; 1st line: original 

image (left), image after applying image enhancement (middle), image after applying the adaptive local 

threshold algorithm (right); 2nd line: image after applying the Sobel Edge Detector (left), image after applying 

the hole pixel initial algorithm, including several stages of the dilation process (middle), image after applying 

the labelling connected components algorithm (right); 3rd line: the final contouring image without an ellipse. 
 
 
The defined reasons for this advantage in the algorithm depend on the following: 
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a. A combination between different morphological operations during the pre-processing stage. 
This combination smoothes the image and reduces the jumps (peaks) of pixel intensities. This 
will reduce shadows, reflectivity of paving materials, and illumination effects.  

 
b. A kind of binarization is implemented during the thresholding stage. To some extent, shad-

ows, reflectivity, and illumination effects will be omitted as a black pixel (background re-
gion) due to good binarization. Noise problems due to the different pavement textures are re-
duced. Good binarization is represented by applying the Sobel Edge Detector. The Sobel 
Edge Detector plays a critical role in extracting the outer edges of the crack in a white colour.  
Most of the noisy regions, due to the lighting and pavement texture changes, are filled with a 
black colour as a background. 

  
Thus, the algorithm of this thesis provides a good solution for noisy pavement surfaces (low, medi-
um, and high), lighting conditions, and shadows, as shown in Appendix (B) Figure B.5 and Chapter 
6, section (6.4.4) (Figure 6.15 as an example of noisy high pavement texture) and section (6.4.2) 
(Figure 6.10 as an example of noisy moderate pavement texture, and Figure 6.9 as an example of 
noisy low pavement texture).  
 

Advantage 3: Ignoring nonlinear extrinsic objects 

Differentiation between cracks and other nonlinear extrinsic objects is considered a difficult task in 
transportation research. Nonlinear extrinsic objects include manhole covers, signs on the ground, 
lighting columns, water pipelines, traffic loops, and bicycles. These nonlinear extrinsic objects have 
irregular and different shapes. They are considered a part of the noise problem. This advantage con-
centrates on the ability of the algorithm to ignore these nonlinear objects, even with their irregular 
and different shapes.  
    
The defined reasons for this advantage in the algorithm depend on the following: 
 

a. The outer edges of these nonlinear extrinsic objects are extracted in a white colour by apply-
ing the Sobel Edge Detector. The Sobel Edge Detector paves the way to apply several post-
processing steps.  

 
b. The hole pixel initial algorithm, accompanied by several phases of the dilation process as a 

filtering step, will attempt to fill all of the holes inside of the nonlinear extrinsic objects. This 
is done to cause its irregular geometrical shape to become larger. The labelling connected 
components algorithm is utilized to display different intensity values with different colours. 
Finally, the binary ellipse mask will not be generated for any of the nonlinear extrinsic object 
regions, as shown in Appendix (B) Figure B.4. 

5.2 Disadvantages of the Total Approach  

The algorithm of this study demonstrates its ability to successful detect and classify cracks for se-
quence images. However, this algorithm can be prone to failure in one situation only, as follows: 

 
Problem: Oil spots on the ground 

Oil spots on the ground are considered as one part of the noise problem in pavement images. This is 
caused by some pits and holes in the pavement surface. These pavement holes can collect oil and 
other debris. By analysing these oil spot regions, the study concludes the following: (i) the bright-
ness levels (intensity values) and the colour of the oil spot pixel regions are similar to the crack 
pixel regions, (Figure 5.3); and (ii) the geometric size and shape of the oil spot regions is the same 
as the geometric size and shape of narrow, small cracks. 
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Figure 5.3: Comparison between brightness levels (intensities values) and the colour of oil spot pixel regions 

(left) and crack pixel regions (right). 
 
 
The defined reasons for this disadvantage in the algorithm depend on the following explanation:  
 

a. The modified local adaptive (dynamic) thresholding algorithm gives a black colour for these 
oil spot regions, as part of the foreground pixels. Moreover, the thresholding algorithm can-
not exclude oil spot pixels from the ranks of the foreground pixels. Therefore, if this process 
is completed, the small narrow cracks with the same brightness level and geometric size as 
the oil spots will be deleted. Consequently, the best decision is to keep these oil spot regions 
in the resultant image, after applying thresholding stage. 

 
b. The hole pixel initial algorithm and several phases of the dilation process will extend the oil 

spot regions and deform their geometric shapes. Every oil spot region will take a different 
colour during the labelling connected components step due to different intensity values. In 
conclusion, the deformation of the oil spots’ geometric shapes will help to delete some oil 
spot regions. Nevertheless, the ellipse shape will be still drawn around each narrow, small oil 
spot region. This means that the geometric size and shape of the oil spot regions is still simi-
lar to the geometric size and shape of narrow, small cracks, even after the distortion during 
the post-processing stage.  

 
This study concludes that the algorithm can be prone to failure in the case of oil spot existence on 
the pavement, due to the above mentioned reasons, as shown in Appendix (B) Figure B.3, Figure 
B.9, Figure B.10 and Figure B.11, respectively, and Chapter 6, section (6.4.1) (Figure 6.8) as differ-
ent examples of false detection due to oil spots on the ground. This type of error is considered to be 
an error of the second type (based on Chapter 6, section 6.3).  
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6 Case Studies on Crack Extraction and Classification 
An automated extraction and classification system for pavement cracks based on the level of severi-
ty and other distinguishing characteristics is an invaluable resource; facilitating our scientific under-
standing of pavement cracks for new research and development endeavours. An automated crack 
extraction and classification system is a more efficient and effective means of providing infor-
mation about specific attributes of pavement cracks compared to the available manual system. In 
addition, an automated system serves as an accurate mean by which pavement evaluation, perfor-
mance measurement, maintenance, rehabilitation, and road reconstruction issues can be determined 
(SHAHIN 2002). Furthermore, the automated records and archived crack measurements can be used 
to solve future pavement problems by searching through the automated digital images obtained 
from a variety of locations and environments. Therefore, a common digital technology should be 
used for the automated processing and analysis of images of cracked pavement in order to make 
them readily available to the public. There are three main advantages of automatic digital archiving 
of pavement cracks:1) the precise location of a pavement crack can be identified; 2) it provides an 
opportunity for reconstruction using the correct maintenance procedures without the risks associa-
ted with manual surveying methods; and 3) it shares the knowledge of crack characteristics with the 
public in order to identify critical areas for future research.  
 
Throughout this chapter, the results of automatic fusion will be highlighted, as well as combinations 
and modifications of digital image processing techniques for crack extraction and classification 
recording purposes. In particular, it aims to demonstrate the efficiency of the algorithm proposed in 
this thesis by presenting relevant case studies, in which the combinations and modifications for the 
outputs of digital image processing techniques are evaluated and assessed. In addition, the results of 
the algorithm  are compared to other algorithms that have been previously used to successfully 
evaluate pavement images.This chapter refers to seven case studies that use a sequence of pavement 
crack images as input data, and one case study containing only individual pavement images. In the 
following section, this thesis provides a short overview of the data acquisition, as well as a detailed 
description of the obtained results. 

6.1 Data Acquisition 

Seven datasets have been utilized for investigation in this thesis: 1) four observed case studies that 
use a sequence of pavement crack images by LEHMANN + PARTNER GmbH, Germany; 2) one 
observed case study using a sequence of pavement crack images by 3D Mapping Solutions GmbH, 
Germany; and 3) two observed case studies of individual and sequenced pavement crack images 
provided by Unicom-Umap Company, Saudi Arabia. The data collection in the first four observed 
case studies was executed by LEHMANN + PARTNER GmbH, Germany, using a S.T.I.E.R. mo-
bile mapping system. The primary goal of this work is to automatically extract and classify pave-
ment cracks to create archiving datasets of comprehensive crack characteristics for an entire survey-
ing site. (Note: S.T.I.E.R is not an abbreviation, it is an artificial name) (LEHMANN+PARTNER 2014). 
 
3D Mapping Solutions GmbH in Germany has acquired data for one case study using the Mobile 
Strassen-Erfassungs-System (MoSES) mobile mapping system. Another case study obtained data in 
cooperation with the Unicom-Umap Company in Saudi Arabia. In addition, Video images, inertial 
navigation systems (INS), and global positioning system (GPS) satellites (VISAT™) were utilized 
for gathering images of either individual or sequences of pavement cracks. In addition, the dataset 
from Saudi Arabia is rich in diverse crack types. This work is aimed at automatically extracting and 
classifying cracks under a variety of conditions. 
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6.1.1 Data Acquisition System of LEHMANN + PARTNER GmbH 

The sequence of pavement images (for the four case studies) observed by LEHMANN + PART-
NER GmbH were obtained using the S.T.I.E.R. mobile mapping system. The S.T.I.E.R. measuring 
vehicle (Figure 6.1) is a system for surveying longitudinal and transverse evenness. Specifically, it 
measures the texture and 3D road surface and records the surface images, and is certified by the 
German Federal Highway Research Institute. The S.T.I.E.R. mobile mapping system stores geo-
referenced digital images, with the system itself considered to be the basic unit, and combines an 
arbitrary number of image units. This system consists of different sensors, each with discrete speci-
fications as follows: 1) panorama colour camera system which consists of several single cameras, 
tasked with taking panoramic images of the surroundings. Each of these colour cameras has a reso-
lution with 1.44 MP. One of these cameras is arranged as a front camera; 2) macro picture cameras 
(surface cameras, with two in the rear) tasked with taking "nearly orthophotos of the road surface" 
with a very short overlap. The resolution of these surface cameras is 1920 x 1080 pixels, of which 
every image pixel equals 1.2 mm per ground point; 3) Fraunhofer Institute for Physical Measure-
ment Techniques (IPM) laser scanning system, at 900 points per transverse profile. It functions to 
produce 3D profiles, transverse profiles, and record 3D surface images; 4) an Applanix POS LV 
420 positioning system. The task for the combination of POS-LV positioning system and IPM laser 
scanner is to create a surface model with a grid size of up to 1 x 1 cm; and 5) the lighting unit to 
generate suitable lighting conditions for data collection. In this thesis, orthophoto images for the 
road surface (generated from surface cameras with a resolution of 1920 x 1080 pixels) are used to 
achieve the goals of this study. Further information regarding this system can be found in LEH-

MANN+PARTNER (2014). 
 
 
 
 
 
 
 
 
 
 
  

Figure 6.1: S.T.I.E.R. mobile mapping system (LEHMANN+PARTNER  2014). 

 
6.1.2 Data Acquisition System of 3D Mapping Solutions GmbH 

This thesis also presents another type of pavement image (under different lighting conditions) in an 
attempt to improve the degree of automation. These sequences of pavement images (from one case 
study) were observed by 3D Mapping Solutions GmbH, using the Mobile Strassen-Erfassungs-
System (MoSES). This system (Figure 6.2) integrates a cluster of digital cameras, a kinematic laser 
scanner,  global positioning system receivers (GPS), an inertial navigation system (INS), and a dis-
tance-measuring instrument (DMI). Therefore, the system is able to collect panoramic views along 
roadways. The primary objective of this system is to obtain the specific information required. The 
detailed specifications of the Mobiles Strassen-Erfassungs-System (MoSES) are summarized as 
follows: 1) A single multi-camera module consists of up to four cameras. At present, MoSES is 
equipped with eight cameras from all types (color, grayscale, and infrared cameras), each with a 
different image resolution, resulting in images with different sizes. The task of this multi-camera 
system is to permit a complete survey of the traffic corridor; 2) two robust laser scanners for digiti-
zing the traffic corridor and providing precise up-to-date 3D data for planning, tendering, construc-
tion work, and final inspection; 3) global positioning system receivers (GPS) for calculating geo-
graphical location by receiving information from global positioning system receivers, and an iner-
tial navigation system (INS), for reporting velocity, orientation, and gravitational forces. In this 
thesis, color images of the road surface (generated from the multi-camera module, with a resolution 
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of 1178 x 1225 pixels) were used. Further information pertaining to this system can be found in 3D-

MAPPING (2014). 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 

Figure 6.2: MoSES mobile mapping system (3D-MAPPING 2014). 

 
6.1.3 The Data Acquisition System of Unicom-Umap Company 

Another type of individual and sequenced pavement image was tested using the algorithm of this 
study on two case studies utilizing the company Unicom-Umap and the VISAT™ mobile mapping 
system. These case studies represent sequences and individual images of circular pavement, as well 
as the King Fahd Expressway in Saudi Arabia. These images were obtained from a group of digital 
cameras, global positioning system receivers (GPS), and an inertial navigation system (INS), that 
were affixed to the Unicom-Umap Company vehicle (Figure 6.3). The specifications of the VI-
SAT™ mobile mapping system of Unicom-Umap Company are as follows: 1) 6 to 12 cameras, with 
a resolution of 2058 x 2456 pixels. The primary task is to capture images of the traffic corridor; and 
2) an integrated global positioning system receivers (GPS) and inertial navigation systems (INS), 
for generating a continuous stream of data on position and orientation. For the purpose of this the-
sis, color images of the traffic lane generated from the multi-camera system with a resolution of 
2058 x 2456 pixels were used. Further information pertaining to this system can be found at UNI-

COM-UMAP (2014). 
 
 

 
 
 
 
 
 
 
 
 

Figure 6.3: Unicom-Umap mobile mapping moving vehicle (UNICOM-UMAP 2014). 
 

6.2 General Image Characteristics of the Case Studies 

The algorithm for this study requires the following characteristics for its verification: 

(a) Noisy pavement surfaces (change in pavement textures: low, moderate, and high), 
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(b) Distinctive types of cracking (vertical individual cracks, horizontal individual cracks, trans-
verse individual cracks, and network of cracks (block type)), 
 

(c) Various linear extrinsic objects, such as lane marking with different shapes, tire marks, 
paint, skid markings, railways trucks, sidewalks (curbs), and line stripping, 
 

(d) Assorted nonlinear extrinsic objects, such as manhole covers, signs on the ground, lighting 
columns, water pipelines, traffic loops, and bicycles,  
 

(e) Oil spots on the ground, 
 

(f) Changes in lighting, such as shadows, shade from road traffic, persons, trees, and different 
illumination conditions (low, moderate, and high). 

Table 6.1: General image characteristics of the case studies 

                                        Characteristics 

Case 

Study 

No. 

Source of 

Images 

Noisy Pave-

ment Surface 

Crack Type Linear 

Extrinsic 

Objects 

Nonlinear 

Extrinsic 

Objects 

Oil Spot 

on the 

Ground 

Changes in 

Lighting 

Conditions  

1 LEHMANN 
+ PARTNER 
GmbH  

Moderate 
pavement 
texture 

Individual 
vertical,  
horizontal and 
transverse 
cracks 

Yes No Yes Low 

2 LEHMANN 
+ PARTNER 
GmbH  

Mixture bet-
ween moder-
ate and low 
pavement 
texture 

Individual 
vertical cracks 
 

Yes No Yes Low 

3 LEHMANN 
+ PARTNER 
GmbH  

Mixture bet-
ween high and  
low pavement 
texture 

No cracks 
existing 

Yes Yes Yes Moderate 

4 LEHMANN 
+ PARTNER 
GmbH  

Mixture bet-
ween high and 
moderate 
pavement 
texture 

Individual 
vertical, 
horizontal, 
transverse and 
block cracks 

Yes No Yes Moderate 

5 3D Mapping 
Solutions 
GmbH  

Low pave-
ment texture 

No cracks 
existing 

Yes Yes Yes High  

6 Unicom-
Umap  

High pave-
ment texture 

Block cracks No No Yes Low 

7 Unicom-
Umap  

Mixture bet-
ween low, 
high, and 
moderate 
pavement 
texture 

No cracks 
existing 

Yes Yes Yes High  

 

Several different case studies of pavement images are required to test the algorithm presented in this 
thesis. Therefore, seven case studies with various pavement images from different countries were 
chosen in order to demonstrate the generality, efficiency, and the automation degree for the entire 
algorithm. Furthermore, the only means of creating a superior algorithm for crack detection and 
classification is by testing it on extensive sections of actual pavement (HEROLD ET AL. 2008). Thus, 
these seven case studies were chosen to evaluate the behaviour of the algorithm under the condi-
tions (a) to (f) in Table 6.1 above. 
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6.3  Evaluation Criteria 

The algorithm of this thesis needs a quality model for its evaluation. The quality concept is defined 
as the degree to which a set of inherent characteristics fulfils requirements (DIN EN ISO 9000 2005).  
In turn, a characteristic is defined as a distinguishable feature and it can generally be stated that 
quality is the fulfilment of requirements of data or processes. A quality model is defined as a part of 
the quality concept that contains a fixed set of inherent quality characteristics and variable quality 
parameters to describe the quality of information. 
 
In general, a quality model should fulfill the following requirements. A fixed set of inherent quality 
characteristics is used to describe the quality of a phenomenon. It is essential to use the same quali-
ty characteristics throughout the process to obtain a uniform quality description. Concretization of 
the quality characteristics is effected by means of variable quality parameters. The quality parame-
ters are needed to obtain flexibility for the description of heterogeneous data types. Each quality 
parameter is filled with a numerical value. On the one side it is the recent actual value that may be 
measured or obtained in another way. On the other side a target value has to be given for the respec-
tive parameter. The required quality is achieved, if the actual (measured) value fulfils the require-
ment (the target value) (SCHWIEGER ET AL. 2010). A general description of the terms quality charac-
teristic and quality parameter is given as follows (SCHWEITZER/SCHWIEGER 2011):  
  

• Quality characteristic: an inherent characteristic of a data or process, related to a require-
ments. The quality characteristics form the first hierarchy level. Each characteristic may be 
described by a number of sub-characteristics or parameters. A sub-characteristic has the 
same attributes as a characteristic. It forms the second hierarchy level. 
 

• Quality parameters: the parameters substantiate the characteristics. Each parameter may be 
quantified with a specific (measured) value. Additional required quality values are defined 
on the parameter level. 

 
 
 
 
 
 
 
 
 
 

Figure 6.4: Definition of a quality model (SCHWEITZER/ SCHWIEGER 2011). 
 

Figure 6.4 represents the relationship between characteristics and parameters, and the term quality 
is presented in conjunction with a quality model. The conclusion from this figure is that the charac-
teristics and parameters are derivable from the requirements definition. Furthermore, the relation-
ship between the characteristics and parameters is shown in a general way. The parameters substan-
tiate the characteristics and the characteristics structure the parameters. There are different available 
quality models with respect to different fields. In the field of geodesy, quality is generally deter-
mined for measurements and evaluations based on these measurements. Most quality characteristics 
and parameters are related to accuracy; additional reliability and sensitivity parameters as product-
related quality characteristics (geodetic nets) (SCHWIEGER ET AL. 2010) exist. In the geo-data as 
well as in the traffic telematics field, according to (WILTSCHKO/KAUFMANN 2005), the quality 
characteristics include availability, up-to-dateness, completeness, consistency, correctness and ac-
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curacy. In civil engineering domain, quality is mainly defined and described by tolerances that are 
quality parameters for the quality characteristic “accuracy”. These tolerances are defined within 
norms, standards and general recognized codes of practice. E.g. in Germany more than 4000 DIN1 
standards are used in the construction of buildings. Despite the high number of accuracy parame-
ters, no concluded quality model exists (SCHWIEGER ET AL. 2010).   
 
The developed quality model of this thesis not only evaluates and judges the quality of the data but 
also optimizes the quality of the algorithm workflow (process). Therefore, the quality model of this 
thesis will distinguish between the quality of the process and the quality of the product. The follow-
ing Figure 6.5 presents the structure of the quality model for the crack detection and classification. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Structure of the quality model for the detection and classification of cracks. 
 

Data quality in general is defined as the quality of incoming data (input), but in the case of this 
application, it is defined as the quality of outcoming results (output or product quality). Product 

related quality characteristics include among others correctness. The correctness is defined as 
degree of adherence of existence of information (feature(s), attributes, functions, relationships) to 
corresponding elements of the reality (WILTSCHKO/KAUFMANN 2005). This is judged by method of 
a statistical/hypothesis test. 
 
Statistical/Hypothesis Tests (General theory): Two hypotheses are discussed in many hypothesis-
testing problems. The first hypothesis is called the null hypothesis 𝐻0. The second hypothesis is 
called the alternative hypothesis 𝐻𝐴. If the null hypothesis 𝐻0 is false, then the alternative hypothe-
sis 𝐻𝐴 is true, and vice versa. In general, statistical hypothesis is a rule or procedure, in which a 
random sample of 𝑦  is used for deciding whether to reject or not reject null hypothesis 𝐻0. A test of 
a statistical hypothesis is completely specified by the so-called critical region, which will be denot-
ed by 𝐾. The critical region 𝐾 of a test is the set of sample values of 𝑦 for which 𝐻0 is to be reject-
ed. Thus, the null hypothesis 𝐻0 is rejected if the sample value or observation of 𝑦 falls in the criti-
cal region, if 𝑦 𝜖 𝐾. Otherwise the null hypothesis 𝐻0 is accepted, if  𝑦 ∉ 𝐾 (FÖRSTNER 1991). Two 
types of errors can be made: 
 

1. Type І error (error of first type): rejection of 𝐻0 when in fact 𝐻0 is true. 
 

2. Type ІІ error (error of second type): acceptance of 𝐻0 when in fact 𝐻0 is false.  
Table 6.2 shows the decision table with the type І and ІІ errors.   
 

                                                           
1DIN: Deutsches Institut für Normung (German Institute for Standardization) 

Quality Model 

Process Quality 

Quality Character-
istic 

Quality Parameter 

 

Timeliness 

Processing Time 

Data Quality 

Quality Character-
istic 

Quality Parameter 

 

Correctness 

Correctness Rate 
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Table 6.2: Decision table with the type І error and ІІ error (FÖRSTNER 1991) 
 

 
 
 
 
 
 

The size of a type І error is defined as the probability that a sample value of  y falls in the critical 
region when in fact H0 is true. This probability is denoted by α and is called the level of signifi-
cance. The size of the test, 𝛼, can be computed once the critical region 𝐾 and the probability density 
function of 𝑦 is known under 𝐻0. The size of a type ІІ error is defined as the probability that a sam-
ple value of 𝑦 falls outside the critical region when in fact 𝐻0 is false. This probability is denoted by 𝛽. The size of a type ІІ error, 𝛽, can be computed once the critical region 𝐾 and the probability den-
sity function of 𝑦 is known under 𝐻A. Figure 6.6 presents generally the errors types for statisti-
cal/hypothesis tests in the density distribution function (NIEMEIER 2008). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6: Errors types for statistical/hypothesis tests in the density distribution function. 

 

In the case of crack detection and classification, correctness occurs in two cases as follows: 
 

1. In reality there is no crack, and the algorithm does not detect any crack (case 1). 
 

2. In reality there is a crack, and the real crack is detected and classified correctly 
              by the algorithm (case 2). 
 
Incorrectness occurs in two cases also as follows: 
 

1. In reality there is a crack, but the algorithm can not detect it correctly; either no crack is 
identified or the existing crack is classified incorrectly (Type І error). 
 

2. In reality there is no crack, but the algorithm detects crack (Type ІІ error). 
 

 𝐻0 true 𝐻0 false 
Reject 𝐻0 

 𝑦 𝜖 𝐾 
Wrong 

Type І error Correct 

Accept 𝐻0 
 𝑦 ∉ 𝐾 

Correct 
Wrong 

Type ІІ error 
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In this work, correctness and incorrectness cases are judged by using statistical/hypothesis tests 
(table 6.3, 6.4 and 6.5). Product related quality parameters include three parameters for correct-
ness. These three parameters are the correctness rate for correct identified cracks, the correctness 
rate for correct identified crack types and the correctness rate for images where all cracks are classi-
fied correctly. The three parameters of correctness rates are defined and calculated using equation 
(6-1). Table (6.6) displays the indices for determining the correctness rates of equation (6-1). 
 

Table 6.3: Statistical/hypothesis test for correct identified cracks  
(H01: crack is identified correctly; HA1: no crack) 

 

Table 6.4: Statistical/hypothesis test for correct identified crack types  
(H02: crack type is identified correctly; HA2: crack type is not identified correctly) 

 
 
 
 
 
 
 
 
 
 
 

Table 6.5: Statistical/hypothesis test for correct identified images  
(H03: image having crack is identified correctly; HA3: image having crack is not identified correctly) 

 

 
Theoretically, the complete statistical/hypothesis test should be implemented as described above in 
tables 6.3, 6.4 and 6.5 respectively. Actually, the first row in table 6.4 (gray colour) is not recog-
nized by the algorithm of this thesis because it is impossible to check it automatically:   
 𝐵𝑖 = � 

𝑀𝑖𝑆𝑖 ∙ 100�,                                                                                       (6-1) 

 

 

 𝐻01  true 𝐻01false 𝐻𝐴1 true 

Reject 𝐻01  

Accept 𝐻𝐴1  

 𝑦 𝜖 𝐾 

Special crack type is available ⟹ but no crack is detected 
Type І error 

No crack  is available   ⟹ no crack is detected 
Correct (Case 1) 

Accept 𝐻01  

 𝑦 ∉ 𝐾 

There is a crack  ⟹ crack is detected correctly  
Correct (Part of Case 2) 

No crack is available ⟹ but crack is detected  

Type ІІ error 

 𝐻02  true 𝐻02false 𝐻𝐴2 true 

Reject 𝐻02  

Accept 𝐻𝐴2  

 𝑦 𝜖 𝐾 

Crack is classified correctly ⟹ but the examina-
tion gives a wrong result  

Crack is classified incorrectly  ⟹ and it 
is recognized to be wrong 

Accept 𝐻02  

 𝑦 ∉ 𝐾 

There is a crack  ⟹ crack is classified correctly  
Correct (Part of Case 2) 

The existing crack is classified incor-
rectly  

Type І error 

 𝐻03  true 𝐻03false 𝐻𝐴3 true 

Reject 𝐻03  

Accept 𝐻𝐴3  

 𝑦 𝜖 𝐾 

There is an image having cracks ⟹ but it is identified as 
no crack image 

 Type І error 

There is no image having cracks   ⟹ and it is 
identified as no crack image 

 Correct (Case 1) 

Accept 𝐻03  

 𝑦 ∉ 𝐾 

There is an image having cracks   ⟹  and it is identified as 
an image having cracks  

Correct (Part of Case 2) 

There is no image having cracks   ⟹ but it is 
identified as a crack image  

Type ІІ error 
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Table 6.6: Indices for determining the correctness rate in equation (6-1) 

 (Table No.** represents every index belonging to a specific table) 

Evaluation and judgement of the data quality is done based on the correctness quality characteristic 
only.  The defined reason for this selection depends on  the fact that the focus of this thesis is to get 
more correct results in crack detection and classification than previous algorithms. The correctness 
rate is important to show if the algorithm is able to detect and classify cracks correctly. The correct-
ness rate will be displayed by percentage value.  
 
Process quality is defined as the quality for the complete algorithm process. Process related quali-

ty characteristics include among other timeliness (WILTSCHKO 2004). In this work, the timeliness 
is defined as the time which the algorithm needs to detect and classify the cracks and its characteris-
tics in the input images and provide the required output. It gives an indication about the algorithm 
effectiveness.  The processing time to complete crack detection and classification is the process 

related quality parameter. It can be calculated using equation (6-2): 
 

 𝑡𝑝 = 𝑡𝑒𝑒𝑒 − 𝑡𝑏𝑒𝑏 ,                                                                                   (6-2) 

 where    
 𝑡𝑝  : processing time for complete crack detection and classification [s], 

 𝑡𝑒𝑒𝑒 : time at the end of the algorithm process [s], 
 𝑡𝑏𝑒𝑏 : time at the beginning of the algorithm process [s].  
 

Timeliness is only selected for the evaluation and judgement of the process quality.  The defined 
reasons for this selection depend on the goal of this thesis to detect and classify cracks for continu-
ous mobile mapping images in a short period of time. The timeliness is the most important process 
quality characteristic to give an indication of the algorithm speed and effectiveness.   

6.4 Evaluations 

In the following section, a description of the obtained results and the completed evaluations is pre-
sented for seven case studies. The general image characteristics of these seven case studies are 

 where   
 𝐵𝑖   : correctness rate of the object entity (%), 
 𝑀𝑖 : number of correct identified object entities, 
 𝑆𝑖 : total number of the object entities (images, or crack type),  
 𝑖 : indices for determining the correctness rate (𝑖=1, 2, 3, 4, 5, 6). 

 

Index 

(i) 

Table 

 No.
** 

Object Entity 

1 Table (6.3) 

Cracks 

Correct detected cracks in all images irrespective of type 

2 Table (6.4) Correct detected individual vertical cracks in all images 

3 Table (6.4) Correct detected individual horizontal cracks in all images 

4 Table (6.4) Correct detected individual transverse cracks in all images 

5 Table (6.4) Correct detected network of cracks (block) cracks in all images 

6 Table (6.5) Images Correct detected images having cracks 
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explained in section (6.2), table (6.1). The general approach as introduced in Chapters 3 and 4 has 
been applied to these seven case studies. The obtained results are evaluated and judged based on 
the evaluation criteria described in section (6.3). 

 6.4.1 Case Study 1: LEHMANN + PARTNER GmbH 

This case study contains 96 pavement images with a length of 100 m on the street ground. Table 6.7 
presents a description of the dataset for this case study. The acquired images for this case study 
have a moderate pavement texture. It is considered to be the main difference between this case 
study and the other case studies.  The developed algorithm pertaining to each of the four stages was 
applied to this dataset with the aim of automatically extracting and classifying cracks for all images 
together, without human interaction. Moreover, some pavement images contained extrinsic objects, 
such as markings and oil spots on the ground. In situations which involve moderate pavement tex-
ture, it is challenging for the algorithm to detect cracks (marked in Figure 6.7, line 1, left) and ig-
nore other objects at the same time. 

 
Table 6.7: Description of the dataset for case study (1) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
  
 
 

 
 

 

 

 
 
 
 
 
 
 
Figure 6.7: Behaviour of the algorithm for the preparation stages of crack extraction within the image: 1st line 
shows the original image (left), and the image after applying the pre-processing stage (right); 2nd line depicts 
the image after applying an adaptive local threshold algorithm (left), and the image after applying the sobel 
edge detector (right); 3rd line presents the image after applying the Hole Pixel Initial Algorithm including 
several dilation processes (left), and the image after applying the labeling connected components algorithm 
(right). 
 

 

Category   Quality 

Number of images 96 images 

Number of crack images 70 images 

Number of vertical crack images 60 images 

Number of horizontal crack images 5 images 

Number of transverse crack images 5 images 

Number of network cracks (Block type) 0 images 

Number of non-crack images 26 images 

Length of vertical cracks for all images (m) 53.4 m 

Length of  horizontal cracks for all images (m) 0.5 m 

Length of  transverse cracks for all images (m) 5.4 m 

Area of network cracks (Block type) for all images  (m
2
) 0.0 m2 
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After the appearance of the coloured connected components, they will be printed on the original 
image during the contouring algorithm. The location of the cracks in the original image is defined 
successfully (Figure 6.8, left). Following this step, the modified binary mask detection algorithm, 
which is based on the geometric relationship for crack regions, is utilized for crack extraction, 
severity level, and characteristics. The image in Figure 6.8 (right) demonstrates that the modified 
ellipse binary mask fits correctly into the crack alignment, and the remaining noise (the other green 
regions) is ignoreed. In addition, the lane marking is deleted automatically, the characteristics of 
cracks are derived from the properties of the elliptical region, and the severity level is determined 
(Figure 6.8, right). Figure 6.8 (right) also shows that the image contains a vertical individual crack, 
with the crack area length equal to the major axis length (639.5 pixels = 0.77 m), width equal to 
the minor axis length (68.1 pixels = 0.01 m), an orientation of 83.6°, area of the crack region 
(29190.9 pixels2 = 0.04 m2), and the severity level of crack region determined (low). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.8: Behaviour of the algorithm for crack extraction and classification within the image shows the 
original image after applying a contouring algorithm (left), and the image after applying a modified binary 
mask algorithm, as well as the modified standard classification method (right). 
 
Since the procedure described above has been successfully implemented, the correctness rate can be 
calculated using equation (6-1). A sample of the results will be displayed, as was shown in Figure 
6.8 above. Table 6.8 summarizes that the crack evaluation and that an overall correctness rate for 
cracks (𝐵1) of 98.9 % is achieved. The correctness rate for the image (B6) is 99%, with 98.7%, 100 
%, 100%, and 100% achieved for the correctness rates for individual vertical (𝐵2), horizontal (𝐵3), 
and transverse cracks (𝐵4), as well as network (block) cracks (𝐵5), respectively. The severity level 
for most cracks is low. In conclusion, the algorithm succeeds in detecting different types of cracks 
for a moderate pavement texture. This is done for a sequence of 96 geo-referenced pavement im-
ages during a time period (𝑡𝑝) of only 3.6 min. In addition, the algorithm shows the ability to ignore 
markings and oil spots on the ground. Only one crack was falsely detected, and is considered as an 
error of the second type (based on section 6.3). This is because the main crack is detected from the 
image, in addition to other small crack regions that were falsely detected (marked in Figure 6.9). 
This occurs due to two reasons: 1) some oil spot regions have the same brightness level (intensity 
values) and color as narrow small crack pixel regions; and 2) the geometrical size and shape for oil 
spot regions is the same as the geometric size and shape of narrow small cracks. The explanation 
for this drawback is described in more detail in Chapter 5, section 5.2. An error of the first type 
(based on section 6.3) was not recorded in this case study. More details regarding other examples of 
the interface for a sample of sequence images with cracks and the resulting classification are report-
ed in Appendix B. 
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Table 6.8: Results of the evaluation process 

 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Example of a false detection (second type of error) in this case study. 
 
6.4.2 Case Study 2: LEHMANN + PARTNER GmbH 

This case study contains 94 pavement images, and represents 100 m of the street ground. Table 6.9 
shows a description of the dataset for this case study. The acquired images for this case study are 
subjected to the same algorithm that was used in case study 1, and a mixture of moderate and low 
pavement texture is considered to be the main difference between the two studies (Figure 6.10 and 
Figure 6.11). 

 
 

Category   Quality 

Falsely detected cracks  

 

1 crack   

Falsely detected images  

 

1 image 𝑩𝟏 (%) 98.9 𝑩𝟐 (%) 98.7 𝑩𝟑 (%) 100  𝑩𝟒 (%) 100  𝑩𝟓 (%) 100  𝑩𝟔 (%) 99  

N1 80 

N2 10 

N3 0.0 

N4 0.0 𝒕𝒑 [s] 212.7s≈3.6 min 
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Table 6.9: Description of the dataset for case study (2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 

 

 

 

 

Figure 6.10: Image with low pavement texture, markings, and oil spots without cracks (LEHMANN+PARTNER  

2014). 

 

 

 

 

 

 

Figure 6.11: Image with moderate pavement texture, and markings with cracks (LEHMANN+PARTNER  2014). 
 

In conclusion, the algorithm succeeds in detecting cracks in both the low and moderate pavement tex-
tures (Figure 6.12). Moreover, Table 6.10 depicts an overall correctness rate for the crack (𝐵1) and im-
age (𝐵6) of 98.6% and 99%, respectively. The correctness rate for the crack (𝐵1) is slightly lower when 
compared to the result of case study 1 where, 98.6%, 100%, 100%, and 100% are achieved as the cor-
rectness rates for individual vertical (𝐵2), horizontal (𝐵3), and transverse cracks (𝐵4), as well as network 
(block) cracks (𝐵5), respectively. The severity level for all cracks in this case study is low. The algo-
rithm can complete the cracks detection and classification during a time period (𝑡𝑝) of only 3.8 min. The 
processing time is slightly higher when compared to the processing time of case study 1. Nevertheless, 
using this algorithm for narrow small oil spot regions was prone to failure as case study 1. One crack in 
this case study was falsely detected, and this error is considered to be the second type. An error of the 

Category   Quality 

Number of images 94 images 

Number of crack images 23 images 

Number of vertical crack images 23 images 

Number of horizontal crack images 0 images 

Number of transverse crack images 0 images 

Number of network cracks (Block type) 0 images 

Number of non-crack images 71 images 

Length of vertical cracks for all images (m) 24.2 m 

Length of  horizontal cracks for all images (m) 0.0 m 

Length of  transverse cracks for all images (m) 0.0 m 

Area of network cracks (Block type) for all images  (m
2
)  0.0 m2 
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first type (based on section 6.3) was not recorded in this case study. 
 

  

 

 

 

 

 

 

 
 
 
 
 

Figure 6.12:  Final elliptical binary mask around crack regions only, its characteristics, and ignored markings 
on moderate pavement texture. 

 
 

Table 6.10: Results of the evaluation process 
 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

 
 
 

  

 

 

 

 

 

 
 
 
 
6.4.3 Case Study 3: LEHMANN + PARTNER GmbH 

Another dataset from LEHMANN + PARTNER GmbH was also tested by the algorithm. 95 pave-
ment images are included in this case study, representing 100 m of the street ground. Table 6.11 
shows a description of the dataset for this case study. A mixture of high and low pavement texture, 
moderate lighting conditions,and existing nonlinear extrinsic objects are considered to be the main 
differences between this case study and previous case studies (Figure 6.13, and Figure 6.14).    
 

Category   Quality 

Falsely detected cracks  

 

1 crack   

Falsely detected images  

 

1 image 𝑩𝟏 (%) 98.6 𝑩𝟐 (%) 98.6 𝑩𝟑 (%) 100 𝑩𝟒 (%) 100  𝑩𝟓 (%) 100  𝑩𝟔 (%) 99  

N1 70 

N2 0.0 

N3 0.0 

N4 0.0 𝒕𝒑 [s] 280.80s≈3.8 min 
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Figure 6.13: Image of high pavement texture, markings with different shapes, and oil spots without cracks 

(LEHMANN+PARTNER 2014). 
 

 

 

 

 

 
 
 
 

Figure 6.14: Image with low pavement texture, shadows from vehicles, and oil spots without cracks  
(LEHMANN+PARTNER 2014). 

 

Table 6.11: Description of the dataset for case study (3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
All images containing only different lane markings without cracks will be classified as “non-crack 
images” (Figure 6.15, line 2, right). Further details pertaining to the behaviour of the algorithm in 
the case of images with lane markings are described in Chapter 5, section 5.1. 
 
 
 
 

Category   Quality 

Number of images 95 images 

Number of crack images 0 images 

Number of vertical crack images 0 images 

Number of horizontal crack images 0 images 

Number of transverse crack images 0 images 

Number of network cracks (Block type) 0 images 

Number of non-crack images 95 images 

Length of vertical cracks for all images (m) 0.0 m 

Length of  horizontal cracks for all images (m) 0.0 m 

Length of  transverse cracks for all images (m) 0.0 m 

Area of network cracks (Block type) for all images  (m
2
) 0.0 m2 
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Figure 6.15: Non-crack images, and ignored markings with different shapes for high pavement texture: 1st line 

shows the image after applying the pre-processing stage (left), and the image after applying the adaptive local 

threshold algorithm (right); 2nd line shows the image after applying the labeling connected components algo-

rithm (left), and the final image with no ellipse drawn inside it as a non-crack image (right). 

 
Moreover, Table 6.12 shows that an overall correctness rate (𝐵6) of 98.9 % is achieved for the im-
age, an error higher compared to the results of the previous case studies. The correctness rate for the 
individual vertical (𝐵2), horizontal (𝐵3), and transverse cracks (𝐵4), as well as network (block) 
cracks (𝐵5) were not calculated due to the unavailability of any type of crack in this case study. In 
conclusion, this case study was tested to demonstrate the ability of the algorithm to cope with dif-
ferent marking shapes and oil spots for a mixture of pavement textures. A short period of only 3.8 
min (𝑡𝑝) is required for processing 95 pavement images.  Despite the strength of the algorithm, the 
problem of a small narrow oil spots still exists in this case study. The algorithm falsely detected 
only one crack, and is considered to be an error of the second type. An error of the first type (based 
on section 6.3) is not recorded in this case study. More details regarding other examples of false 
detection are reported in Appendix B. 
 

Table 6.12: Results of the evaluation process 
 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Category   Quality 

Falsely detected cracks  

 

1 crack   

Falsely detected images  

 

1 image 𝑩𝟏 (%) - 𝑩𝟐 (%) - 𝑩𝟑 (%) - 𝑩𝟒 (%) - 𝑩𝟓 (%) - 𝑩𝟔 (%) 98.9 

N1 0.0 

N2 0.0 

N3 0.0 

N4 0.0 𝒕𝒑 [s] 227.70s≈3.8 min 



114 Case Studies on the Extraction and Classification of Cracks 

6.4.4 Case Study 4: LEHMANN + PARTNER GmbH 

The entire algorithm presented in Chapters 3 and 4 was also applied to another LEHMANN + 
PARTNER dataset. This dataset differs from other former datasets by having various network 
cracks (block crack types) and a mixture of high and moderate pavement textures (Figure 6.16 and 
Figure 6.17). 96 pavement images are included in this case study, representing 100 m on the street 
ground. Table 6.13 depicts a description of the dataset for this case study.  
 
 
 
 
 

 

 

 

Figure 6.16: Image with high pavement texture and a sidewalk (curb) without cracks  
(LEHMANN+PARTNER 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.17: Different network cracks (block crack types) images with a high pavement texture 

(LEHMANN+PARTNER 2014). 
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Table 6.13: Description of the dataset for case study (4) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
In conclusion, the algorithm succeeds in detecting and classifying network cracks (block type) 
(Figure 6.18). The behaviour of the algorithm in the case of network cracks (block type) is de-
scribed in more detail in Chapter 4, section 4.3. The complete algorithm is successful for a sample 
from this case study that has sidewalks (curbs) with a mixture of high and moderate pavement tex-
tures. In addition, the algorithm does not detect sidewalks (curbs) as cracks, despite the linear 
shape.  Further details pertaining to the algorithm behaviour with respect to sidewalk (curb) cancel-
lation are presented in Chapter 5, section 5.1. 
 
 
 
 
 
 
 
 

 

 

 

 
 

Figure 6.18: The behaviour of the algorithm in the case of crack network (block cracks types): a group of elliptical 
 masks in the block type region (left); a group of rectangular binary masks for branch determination (middle);  
final classification as crack network (block type), its severity level, and characteristics (right).  
 
The period of time (𝑡𝑝) for processing all the images is only 3.8 minutes, and the evaluation process 
is completed (Table 6.14). The processing time is slightly higher when compared to the processing 
time of case study 1 and equal to the results of case studies 2 and 3. The overall correctness rate for 
the crack (𝐵1) is 98.9%, and is equal to the result of case study 1. The overall correctness rate 
achieved for the image (𝐵6) is 99%, and is higher than the result of case study 3, and is equal to the 
results in case studies 1 and 2. Correctness rates of 98.2%, 100%, 100%, and 100% were achieved 
for the individual vertical (𝐵2), horizontal (𝐵3), and transverse cracks (𝐵4), as well as the network 
(block) cracks (𝐵5), respectively. The severity level for the majority of cracks in this case study was 

Category   Quality 

Number of images 96 images 

Number of crack images 50  images 

Number of vertical crack images 18 images 

Number of horizontal crack images 2 images 

Number of transverse crack images 10 images 

Number of network cracks (Block type) 20 images 

Number of non-crack images 46 images 

Length of vertical cracks for all images (m) 18.9 m 

Length of  horizontal cracks for all images (m) 1.7 m 

Length of  transverse cracks for all images (m) 7.3 m 

Area of network cracks (Block type) for all images  (m
2
) 0.57 m2 
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low, with some of the cracks displaying a level of medium or high severity. However, although this 
algorithm performs well for network cracks (block type), the algorithm fails in the instance of small 
narrow oil spots on the ground as previous case studies. An error of the first type (based on section 
6.3) is not recorded in this case study. 
 

Table 6.14: Results of the evaluation process 
 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

6.4.5 Case Study 5: 3D Mapping Solutions GmbH 

This case study differs from the former datasets by having high lighting conditions and low pave-
ment texture (Figure 6.19). 336 pavement images are included in this case study. Table 6.15 pre-
sents a description of the dataset used for this case study.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6.19: Image with a marking, sidewalks, and railways, without cracks 
 (3D-MAPPING 2014). 

 
 
 

Category   Quality 

Falsely detected cracks  

 

1 crack   

Falsely detected images  

 

1 image 𝑩𝟏 (%) 98.9 𝑩𝟐 (%) 98.2 𝑩𝟑 (%) 100 𝑩𝟒 (%) 100 𝑩𝟓 (%) 100 𝑩𝟔 (%) 99 

N1 70 

N2 10 

N3 10 

N4 0.0 𝒕𝒑 [s] 227.70s≈3.8 min 
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Table 6.15: Description of the dataset for case study (5) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

In conclusion, the entire algorithm can successfully process the images of this case study, and even 
with high lighting conditions and low pavement texture, it ignores sidewalks (curbs), markings, and 
railways (Figure 6.20). 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 6.20: The behaviour of the algorithm during the processing stages for crack extraction from within an 
image; 1st line shows the image after the pre-processing stage (left), and the image after applying an adaptive 
local threshold algorithm (right); 2nd line shows the image after applying the HPIA,which included several 
applications of the dilation process (left), and the image after applying the labeling connected components 
algorithm (right). 
 

Table 6.16 shows the results of the evaluation process. The overall correctness rate for the image 
(𝐵6) was 100%, a value higher than in previous case studies. The correctness rate for individual 
vertical (𝐵2), horizontal (𝐵3), and transverse (𝐵4) cracks, as well as the network (block) cracks 
(𝐵5) were not calculated due to the lack of cracks in this case study. The period of time (𝑡𝑝)  for 
completing the processing was 16.2 min, longer than the processing time for the LEHMANN + 
PARTNER GmbH images, because the 3D Mapping Solutions GmbH case study consists of a 
greater number of images than the LEHMANN + PARTNER case studies. Despite the higher image 
resolution obtained from 3D Mapping Solutions GmbH, there are several limitations. These limita-
tions were mentioned previously, and include lighting conditions and disruptive surroundings. In 
conclusion, the algorithm ignores all of the disrupting surroundings, such as railways, sidewalks, 
and lighting conditions. 

Category   Quality 

Number of images 336 images 

Number of crack images 0  images 

Number of vertical crack images 0 images 

Number of horizontal crack images 0 images 

Number of transverse crack images 0 images 

Number of network cracks (Block type) 0 images 

Number of non-crack images 336 images 

Length of vertical cracks for all images (m) 0.0 m 

Length of  horizontal cracks for all images (m) 0.0 m 

Length of  transverse cracks for all images (m) 0.0 m 

Area of network cracks (Block type) for all images  (m
2
)  0.0 m2 
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Table 6.16: Results of the evaluation process 
 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

6.4.6 Case Study 6: Unicom-Umap 

The next two case studies presented here are obtained from the company Unicom-Umap, using the 
VISAT™ mobile mapping system. The goals are to evaluate the algorithm, the usability under dif-
ferent lighting conditions, and to review whether the algorithm can detect and classify cracks with 
another type of pavement texture (different from the pavement texture found in Germany). There-
fore, the properties of the Unicom-Umap images are different from the German case studies men-
tioned above. This dataset differs from the former datasets by having other crack shapes, crack im-
ages with a different resolution (2058x2456), a high pavement texture, and changes in lighting con-
ditions. An evaluation using this thesis approach is introduced for each Unicom-Umap case study. 
 
The first case study contains two individual pavement images for the circular street of Riyadh City 
in Saudi Arabia. These images are good representative examples of network cracks (block type) 
(Figure 6.21).  A mixture of high pavement texture, and low lighting conditions are considered to be 
the main differences between this case study and previous case studies. Table 6.17 presents a de-
scription of the dataset for this case study.  

 
 
 
 
 
 
 
 

Figure 6.21: Images of this case study: first example of network cracks (block type) (left); second example 
of network cracks (block type) (right) (UNICOM-UMAP 2014). 
 
 
 
 
 
 

Category   Quality 

Falsely detected cracks  

 

0 crack   

Falsely detected images  

 

0 image 𝑩𝟏 (%) - 𝑩𝟐 (%) - 𝑩𝟑 (%) - 𝑩𝟒 (%) - 𝑩𝟓 (%) - 𝑩𝟔 (%) 100 

N1 0.0 

N2 0.0 

N3 0.0 

N4 0.0 𝒕𝒑 [s] 970.35s ≈16.2 min 
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Table 6.17: Description of the dataset for case study (6) 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
In conclusion, the overall algorithm succeeds in processing the images of this case study, despite 
the type of pavement texture (Figure 6.22).  The results for the correctness rate were reviewed, and 
the evaluation process was utilized (Table 6.18). The overall correctness rate obtained for the image 
(𝐵6) and crack (𝐵1) was 100%, a superior value compared to all previous case studies. The correct-
ness rate for individual vertical (𝐵2), horizontal (𝐵3) and transverse cracks (𝐵4) were not calculated 
due to the lack of cracks in this case study. The severity level for the crack in the first image is very 
high, and also high in the second image. Errors of the first and second type (based on section 6.3) 
are not recorded in this case study. 
 

 

Figure 6.22: Behaviour of the modified standard classification method for two images in this case study 
shows the network of cracks (block type), its area, and severity level for the first and second image (left and 
right). 

 

 

 

Category   Quality 

Number of images 2  images 

Number of crack images 2  images 

Number of vertical crack images 0 images 

Number of horizontal crack images 0 images 

Number of transverse crack images 0 images 

Number of network cracks (Block type) 2 images 

Number of non-crack images 0 images 

Length of vertical cracks for all images (m) 0.0 m 

Length of  horizontal cracks for all images (m) 0.0 m 

Length of  transverse cracks for all images (m)  0.0  m 

Area of network cracks (Block type) for the first image (m
2
)  90.6 m2 

Area of network cracks (Block type) for the second image (m
2
)  36.5 m2 
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Table 6.18: Results of the evaluation process 
 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels) 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.7 Case Study 7: Unicom-Umap 

This case study represents 200 pavement images for King Fahd Street of Riyadh city in Saudi Ara-
bia. Image sequences for King Fahd Street differ from other former datasets by having mixture of 
low, moderate, and high pavement texture. This case study is used as a good example to determine 
if the algorithm can classify the images of Unicom-Umap Company as non-crack images and ignore 
any other limitations. Worthy of note, King Fahd Street is a main street in Saudi Arabia and does 
not have cracks (Figure 6.23). Table 6.19 shows a description of the dataset for this case study.  
 

 
 

 
 
 
 
 
 
 

 
 

 
 
Figure 6.23: Example of the King Fahd Street images with markings, shadows (different lighting conditions), 
sidewalks (curbs), and extrinsic objects, such as trees, buildings, traffic, and lighting columns without cracks 
(left, middle, and right) (UNICOM-UMAP 2014). 

 
 

 
 
 

Category   Quality 

Falsely detected cracks  

 

0 crack   

Falsely detected images  

 

0 image 𝑩𝟏 (%) 100 𝑩𝟐 (%) - 𝑩𝟑 (%) - 𝑩𝟒 (%) - 𝑩𝟓 (%) 100 𝑩𝟔 (%) 100 

N1 0.0 

N2 0.0 

N3 1.0 

N4 1.0 𝒕𝒑 for  for the first image[s] 16.8 min 
 𝒕𝒑 for  for first the image[s] 16.9 min 
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Table 6.19:  Description of the dataset for case study 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To assess the correctness rate, the evaluation process results were computed (Table 6.20). This table 
indicates that there was improvement compared to the results for some German case studies. The 
overall correctness rate for the image (𝐵6) was 100%, a value superior to that obtained in the previ-
ous case studies. The correctness rate for individual vertical (𝐵2), horizontal (𝐵3), and transverse 
cracks (𝐵4), as well as network (block) cracks (𝐵5) were not calculated due to the lack of cracks in 
this case study. The processing time (𝑡𝑝) for completing all analyses was 14.2 min, shorter than the 
processing time for the 3D Mapping Solutions GmbH images because the 3D Mapping Solutions 
GmbH case study consists of a greater number of images than the Unicom-Umap case studies. In 
conclusion, this case study provides an opportunity to test the empirical algorithm on another coun-
try’s datasets with different pavement textures (Figure 6.24). Errors of the first type and second type 
(based on section 6.3) are not recorded in this case study.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.24: Non-crack images: the algorithm ignores marking, extrinsic objects, and sidewalks (curbs) (left 
and right); the algorithm ignores shadows, oil spots, and escape of binder and sidewalks (curbs) (middle). 
 
 
 
 
 

Category   Quality 

Number of images 200 images 

Number of crack images 0  images 

Number of vertical crack images 0 images 

Number of horizontal crack images 0 images 

Number of transverse crack images 0 images 

Number of network cracks (Block type) 0 images 

Number of non-crack images 200 images 

Length of vertical cracks for all images (m) 0.0 m 

Length of  horizontal cracks for all images (m) 0.0 m 

Length of  transverse cracks for all images (m) 0.0 m 

Area of network cracks (Block type) for all images  (m
2
)  0.0 m2 
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Table 6.20: Results of the evaluation process 

 (N1, N2, N3 and N4 represent a number of cracks having low, medium, high and very high severity levels)  

Category   Quality 

Falsely detected cracks  

 

0 crack   

Falsely detected images  

 

0 image 𝑩𝟏 (%) - 𝑩𝟐 (%) - 𝑩𝟑 (%) - 𝑩𝟒 (%) - 𝑩𝟓 (%) - 𝑩𝟔 (%) 100 
N1 0.0 
N2 0.0 
N3 0.0 
N4 0.0 𝒕𝒑 [s] 850.31s ≈14.2 min 

 

 

6.5 Final Conclusion of the Case Studies 

In the following section, this thesis will sum up the results of the seven case studies such as average 
correctness rate, average processing time, and average number of cracks having low, medium, high 
and very high severity levels, respectively (Table 6.21).  
 

Table 6.21: Final Conclusion of the Case Studies 

 
 

Final Conclusion 

Case 

Study 

No. 

Source of 

Images 

Processing time  𝒕𝒑 [min] 

  Correctness     

   Rate 𝐁𝟔 (%) 

N1 

 

N2 N3 N4 

1 LEHMANN + 
PARTNER 
GmbH  

3.6 99 80 10 0.0 0.0 

2 LEHMANN + 
PARTNER 
GmbH  

3.8 99 70 0.0 0.0 0.0 

3 LEHMANN + 
PARTNER 
GmbH  

3.8 98.9 0.0 0.0 0.0 0.0 

4 LEHMANN + 
PARTNER 
GmbH  

3.8 99 70 10 10 0.0 

Average (1 to 4) 3.8 98.9 - - - - 
5 3D Mapping 

Solutions 
GmbH  

16.2 100 0.0 0.0 0.0 0.0 

Average (5) 16.2 100 - - - - 
6 Unicom-Umap  16.9 100 0.0 0.0 1.0 1.0 
7 Unicom-Umap  14.2 100 0.0 0.0 0.0 0.0 
Average (6 to 7) 15.6 100 - - - - 
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The average processing time (tp) for processing all the images from LEHMANN + PARTNER 
GmbH is only 3.8 minutes, and the evaluation process is completed. Average correctness rates of 
98.9%, 100%, and 100% were achieved for the case studies from LEHMANN + PARTNER GmbH, 
3D Mapping Solutions GmbH, as well as Unicom-Umap, respectively. The severity level for the 
majority of cracks was low, with some of the cracks displaying a level of medium or high severity 
(Table 6.21).  
 
This thesis shows that different case studies to evaluate various types of cracks are required to test 
an algorithm. Unfortunately, the available case studies from 3D Mapping Solutions and Unicom-
Umap do not have cracks. In addition, obtaining other datasets was not possible. Therefore, the 
framework of this thesis is constrained to the seven case studies that were presented. 
  

6.6 Performance Evaluations 

In the following section, this study attempts to demonstrate the performance, efficiency, and credi-
bility of the algorithm with regard to each of the four stages. A review of the current literature 
strongly confirms that none of the previous algorithms can detect and classify all cracks from con-
tinuous pavement images. In addition, several other common non-commercial methods in the litera-
ture have been used to test individual images for comparison. These methods include NIBLACK'S 

(1985), SAUVOLA/PIETIKAKINEN (2000), and Beamlet transformation for crack detection 
(YING/SALARI 2009). These methods are chosen over others as they have either been formerly uti-
lized to evaluate individual pavement images efficiently, or they are used to separate textual infor-
mation from its application. In this section, a comparative study is conducted between the algorithm 
of this thesis, and the three other common methods for individual images.  
 
This comparative study has been conducted for 100 images from 3D Mapping Solutions GmbH 
(sample in Figure 6.25), another 100 images from LEHMANN + PARTNER GmbH (sample in 
Figure 6.26), and a set of 100 images from Unicom-Umap (sample in Figures 6.27). A kind of in-
version is preformed for exemplary visualization (Figure 6.26). More details regarding other sample 
comparisons for different individual images are reported in Appendix C.  
 
Moreover, some pavement images contained a high degree of noise (sample in Figure 6.26), and 
extrinsic objects, such as lane markings, sidewalks (curbs), shadows due to column lighting, and 
railroad crossing on the ground (samples in Figure 6.25, and 27). In situations that involve different 
pavement textures, it is challenging for the algorithm to detect cracks, and ignoring other objects at 
the same time. 
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Figure 6.25: A comparison between the algorithm of this thesis and other methods: 1st line shows the original 
image for 3D-Mapping Solution; 2nd line shows the image after applying Niblack's method (left), and Sau-
vola's method (right); and 3rd line shows the image after applying the Beamlet transformation method (left), 
and the algorithm of this thesis (right). 
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Figure 6.26: A comparison between the algorithm of this thesis and other methods: 1st line shows the original 
image (inverted illustration) from LEHMANN+PARTNER; 2nd line shows the image after applying Niblack's 
method (left), and Sauvola's method (right); and 3rd line shows the image applying Beamlet transformation 
method (left), and the algorithm of this thesis (right) 
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Figure 6.27: A comparison between the algorithm of this thesis and other methods: 1st line shows the original 
image for Unicom-Umap(King Fahd street); 2nd line shows the image after applying Niblack's method (left), 
and Sauvola's method (right); and 3rd line shows the image after applying the Beamlet transformation method 
(left), and the algorithm of this thesis (right). 
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The crack recognition results from the four different evaluation methods are presented in this sec-
tion. The visual evaluation of the experimental results confirms that the algorithm of this thesis 
performs well above the other cited methods by exemplary visualization. However, from the analy-
sis of the results, the following conclusions can be reached: 
  

1. Results from Niblack’s algorithm (NIBLACK'S 1985), with optimal parameters (ws and 𝑣), do 
not perform well around the region where the background is even, as the algorithm tries too 
hard to separate the pixels into two classes. However, the results revealed crack pixels in 
black as background pixels, in addition to the removal of some parts of the cracks. Moreover, 
regarding the Unicom-Umap case studies, Niblack’s algorithm results appear to show a high 
degree of noise, and extrinsic objects, such as lane markings, sidewalks (curbs), shadows due 
to column lighting, and roads appear in white as a part of the foreground pixels. 

  
2. Results from Sauvola’s algorithm (SAUVOLA'S/PIETIKAKINEN 2000) are similar to the results 

from Niblack's algorithm in that they both out-perform the traditional method (Otsu's meth-
od), but not to the level of the algorithm in this thesis. In addition, these two methods could 
not perform well enough to binarize the crack images or achieve any overall improvement in 
recognition, and thus do not perform as well as the algorithm of this thesis. Since both the 
Niblack and Sauvola algorithms count the background information around the foreground 
texture as an important feature for local threshold calculation, the pixels for the cracks are 
considered part of the background pixels. 

 
3. Results from the Beamlet transformation algorithm (YING/SALARI 2009) perform better than 

the Niblack (NIBLACK'S 1985) and Sauvola algorithms (SAUVOLA'S/PIETIKAKINEN2000). The 
Beamlet transform-based method is highly effective for the presence of cracks in pavement 
images, and can be applied to pavement images with a very high rate of detection, and a very 
high rate of correctness. However, the processing time in this method is higher than the pro-
cessing time using the algorithm of this thesis (Table 6.22). Furthermore, this method detects 
cracks and noise surrounding the cracks, unlike the algorithm of this thesis. In addition, it is 
sensitive to different pavement textures (asphalt binder appears as noise), and it cannot dis-
tinguish between cracks and extrinsic objects, such as lane markings, sidewalks (curbs), col-
umn lighting, people, and roads (Figures 6.25, and 6.27). 

 
4. The results of the algorithm of this thesis display an outstanding performance compared to 

the former methods, and have excellent preservation of the intended information after the 
evaluation. The primary advantage of the algorithm of this thesis is simplicity, since it does 
not require any further post-processing procedures. Moreover, it is based on a simple and ro-
bust technique, resulting in low computational cost, while allowing the user to achieve results 
on cracks without noise in an automatic fashion. Consequently, the processing time of this 
algorithm is lower and the correctness rate is higher than that of all the former methods of in-
dividual images (Table 6.22).  

 
As presented in the previous sections, the processing time for crack detection and classification for 
sequences of mobile mapping images remains low and acceptable. For example, the average pro-
cessing time is 3.8 min for completing the crack detection and classification when using approxi-
mately 96 mobile mapping (Lehmann+Partner GmbH) images sequences. In contrast, the average 
processing time is 16.2 min for 3D-Mapping Solutions GmbH images, while a sequence of 200 
mobile mapping images by Unicom-Umap requires 15.6 min on average to complete all detections 
and classifications. Table 6.22 illustrates the processing time using each binarization to reveal the 
speed of the algorithm of this thesis for each individual image. Table 6.23 shows the processing 
time using each binarization method for 100 images obtained from 3D Mapping Solutions GmbH, 
LEHMANN + PARTNER GmbH, and Unicom-Umap. Table 6.24 shows the correctness rate using 
each binarization method for 100 images obtained from 3D Mapping Solutions GmbH, LEHMANN 
+ PARTNER GmbH, and Unicom-Umap. 
  



128 Case Studies on the Extraction and Classification of Cracks 

Table 6.22: Processing time [in sec] for one image using the algorithm of this thesis compared to other  
methods 

 
      Table 6.23: Processing time [in min] for 100 images using the algorithm of this thesis compared to other 

methods 

 
 Table 6.24: Correctness rate [in %] for 100 images using the algorithm of this thesis compared to other  

methods 

 

The algorithm can complete the crack detection and classification during a time period (𝑡𝑝) of only 
2.4 sec (Table 6.22, Figure 6.25). The processing time is slightly lower when compared to the pro-
cessing time of other binarization methods. The algorithm succeeds in detecting different types of 
cracks for different pavement textures. This is done for a sequence of 100 geo-referenced pavement 
images from LEHMANN + PARTNER Company during a time period (𝑡𝑝) of only 3.8 min (Table 
6.23) and correctness rate of (98.9%) (Table 6.24). In conclusion, the algorithm of this thesis has 
higher correctness rate (Table 6.24), and lower processing time (Tables 6.22, and 6.23) compared to 
other binarization methods (Niblack's, Sauvola's, and Beamlet Transformation). 

 

Processing 

time [s] 

 

 Niblack's 

Method 

Sauvola's 

Method 

Beamlet Trans-

formation 

Method 

Algorithm of 

this thesis 

Input image Dimension 

[pixels] 

    

Figure 6.24 1178*1225 8.7 9 8.9 8.5 

Figure 6.25 1920*1080 5 4 3.5 2.4 

Figure 6.26 2058*2456 9.3 9 9 8.4 

Processing 

Time [s] 

 Niblack's 

Method 

Sauvola's 

Method 

Beamlet Trans-

formation 

Method 

Algorithm of 

this thesis 

Total Num-

ber of Input 

Images 

Company 

Name 

 

    

100 
3D-Mapping 

Solutions  
9.2 9.1 8.0 6.4 

100 
LEHMANN + 

PARTNER  
8.2 7.3 6.0 3.8 

100 
Unicom-

Umap  
8.1 8.1 7.3 5.2 

Correctness 

Rate [%] 

 Niblack's 

Method 

Sauvola's 

Method 

Beamlet Trans-

formation 

Method 

Algorithm of 

this thesis 

Total Num-

ber of Input 

Images 

Company 

Name 

 

    

100 
3D-Mapping 

Solutions  
94.7 94.9 95.9 98.5 

100 
LEHMANN + 

PARTNER  
94.1 95.1 96.5 98.9 

100 
Unicom-

Umap  
94.0 94.2 96.1 98.7 
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7. Conclusions and Future Directions 

7.1 Conclusion 

Within this thesis, the potential of combining and modifying digital image processing algorithms 
for road maintenance applications, such as crack extraction and classification, is discussed. The 
overall algorithm for crack extraction and classification is based on the use of improved images, 
created from the original digital images, in order to simplify the extraction and classification of 
cracks. This integration and combination between different preparation stages is directed at correct-
ing background illumination, due to different occlusions and lighting conditions, weak reflectivity 
of the asphalt material, or inhomogeneous pavement textures. It also allows for the retrieval of more 
crack details by using a robust modified local adaptive threshold algorithm and distorting the geo-
metrical size and shape of any extrinsic objects, especially in the case of noisy pavement images 
included partially by lane markings, sidewalks, railways, and other extrinsic objects. Furthermore, 
the overall method uses the labelling connected components algorithm. Moreover, this can be useful 
for coloured indicator existence, in which each crack region gives a unique colour based on its pixel 
intensity value. 

In addition, the algorithm for crack extraction and classification, based on the modified binary mask 
detection algorithm and the geometric size and shape of common crack regions, is also investigated. 
A resultant image of the binary masks around the crack regions has been exploited for classifying 
cracks by a modified standard classification method. However, these methods are highly dependent 
on precise data acquisition and on the accurate resultant images, after applying all of the preparing 
stages. Therefore, using these methods in the case of some small, narrow oil spots, pits, and holes in 
the pavement surface, would be prone to failure. Moreover, the crack extraction and classifications 
are recorded, not only for archival purposes, but also for maintenance priorities, rehabilitation, and 
reconstruction, based on the severity level determined for each cracking region. For example, in 
Chapter 6, there are several case studies that have high and very high severity level cracks. These 
sections need maintenance priority over other sections. 

The overall algorithm is used for testing real pavement crack images. Performance is checked by 
comparing the results with three well-known previous crack detection algorithms. Within the tests, 
four case studies contain 96, 94, 95, and 96 images, respectively, which were obtained by LEH-
MANN + PARTNER GmbH Company in Germany. The images of these four case studies have a 
resolution of 1920 x 1080 pixels. These images contain different types of cracks, lane markings, 
and lighting conditions. The developed algorithm delivers an average computation time of 3.8 min 
and the correctness detection rate for the images is 98.9% to complete crack detection and classifi-
cation. In addition, one case study contains 336 different continuous crack images, which were cap-
tured by 3D Mapping Solutions GmbH Company in Germany too. The images of this case study 
have different resolutions with numerous extrinsic objects, such as railways, sidewalks, oil spots, 
and shadows. The developed algorithm exhibits a correctness detection rate for the images of 100% 
in 16.2 min processing time, and detects and classifies the cracks on around 336 continuous mobile 
mapping images. Another two case studies contain two images of a circular street, and 200 images 
of King Fahd Street, respectively, and were collected by Unicom-Umap Company in Saudi Arabia. 
The images of these two case studies have a resolution of 2058 x 2456 pixels. These images contain 
different types of cracks, different extrinsic objects, and other pavement textures (different from the 
abovementioned German case studies). The developed algorithm delivers an average computation 
time of 15.6 min, and the correctness detection rate for the images is 100% to complete crack detec-
tion and classification. 
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It is advantageous that the overall integration and combination approach of this thesis presents an 
effective solution by fusing together different modified algorithms for crack extraction and classifi-
cation applications. Secondly, it achieves a complete automation, in order to meet the requirements 
of the end-user. Finally, it represents an automatic solution for different shortcomings in the previ-
ous crack extraction and classification algorithms. 

7.2 Future Directions and Recommendations 

There are still critical areas that need to be elucidated in further research studies. These critical 
areas can be summarized as follows: 

 
• One of the advanced technologies that could be further investigated is the combination be-

tween laser scanner and photogrammetry. This technique could be utilized for registering the 
images captured by the mobile mapping vehicle cameras, with laser point clouds acquired by 
the mobile mapping vehicle laser scanner. This integration will be helpful for the crack ex-
traction application and for severity level assessment of the out-breaks (potholes). 

 
• The classification algorithm provides crack types, their severity level, and their geometric 

properties, such as width, length, and area. This motivates the development of more intelli-
gent solutions for investigating the possibility of integrating these geometric properties for 
computing pavement indices for each crack type.  
 

• The use of colour image segmentation could also be applied directly in the resultant image 
after applying the labelling connected components algorithm, which can detect cracks based 
on their colour. This is because colour is a strong indicator that often simplifies crack detec-
tion and identification; however, some noisy regions share the same colouring as the crack re-
gions. Therefore, this motivates the development of novel approach for this problem through 
further research. 

 
• The overall algorithms utilized throughout this thesis have been written as a proof of a con-

cept. Further developments would include rewriting the code in a compiled language, instead 
of the MATLAB language. Furthermore, designing new data structures will make it more ap-
plicable. A graphical user interface (GUI) for crack detection applications should be designed 
for use in engineering departments in the municipalities of Germany or other countries, so 
that the end-user can make maintenance decisions with greater certainty.  

 
• One of the techniques that could be investigated more thoroughly is that of unmanned aerial 

vehicles (UAV). This technique could be utilized for collecting aerial mobile mapping images 
for pavement sections. The images captured by the UAVs may be tested using the digital im-
age processing algorithm of this thesis, especially in the case of crack clarity in the coverage 
of pavement surfaces. 

 
• The algorithm provides a specification for crack extraction and classification. These specifica-

tions were acquired by labour-intensive statistical analysis, for most actual crack images due 
to the existing unavailability in crack extraction and classification specifications. To over-
come this, the present study recommends that existing highway sections develop their specifi-
cations and create a general specification for all distress types. 

 
• The correctness of the algorithm results is highly dependent on the image acquisition stage 

resolution. For this, this thesis recommends closely capturing high resolution (pixel values) 
images for pavement surfaces. This could lead to a higher correctness rate in the final detected 
cracks. 
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• The overall approach introduces a solution for crack extraction and classification in the case 
of different flexible pavement textures. This encourages improvement to the algorithm to de-
tect other types of distress in the flexible pavement, such as outbreaks (potholes), binder en-
richment, etc. This can be achieved by using pattern recognition techniques that geometrically 
cover the exact shape of other distresses. 

 
• The overall approach presents a solution for crack extraction and classification in the case of 

flexible pavement. This encourages improvement to the algorithm to detect the types of dis-
tress in the other materials such as rigid pavement and stones. 

 
• The overall approach is based on some hundred images only, so that the work is not 100 % 

representative. Therefore, this motivates that further work has to be done on a more general 
approach with more data and other materials, etc. 
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Appendix A: Introducing overview of Pavement Distress Data Capturing 

Systems being used worldwide 
 

No Company/Institution System Equipments Web-link/Reference 

1 ARRB Group 
‘Australian Road 
Research Board’ 

Network Survey 
Vehicles (NSV)  

GPS ( DGPS); Digital 
Laser Profiler; Digital 
Imaging System; 
GIPSI-Track geome-
try; Rotorpulser Data 
Acquisition system 

http://www.arrb.com.au/Equipment
-services/Hawkeye-2000-
Series.aspx 

2 CSIRO’s crack 
tracker 

CSIRO’s System Series of line scan 
camera; GNSS;  
Lighting system 

http://www.csiro.au/promos/ozadva
nces/Series3CrackMovB.html 

3 3D Mapping Solu-
tions GmbH, Mu-
nich, Germany 

Mobiles Strassen-
Erfassungs-
System  
(MoSES) 

3D Mapping multi 
camera module;  
powerful high perfor-
mance laser scanners; 
GNSS 

http://www.3d-mapping.de/ dynas-
ite.cfm?dssid=4324 

4 Eagle Eye Technol-
ogies, Hamburg, 
Germany 

Eagle Eye Tech-
nologies 
MMS 

Stereo camera; GPS; 
INS; Georader (X-ray) 

http://www.ee-t.de 

5 EarthEye, Orlando, 
Florida (USA) 

EarthEye's Mobile 
Asset Collection 
(MAC) Vehicle 

Mobile LiDAR Solu-
tions; GNSS 

http://www.eartheye.com/Services/
Mobile 
 
 

6 Earth Technology 
Corporation,  
Canada 

Pavement Condi-
tion Evaluation  
Services  
(PCES) 

Line scan camera; 
GNSS 

http://www.earthcanada.com/ 

7 GeoAutomation 
company, Belgium 

GeoAutomation™ 
MMS Van (Im-
age-based mobile 
mapping)  

Set of cameras; GNSS http://www.geoautomation.com/ 

8 GeoVISAT compa-
ny, Belgium 

VISATTM MMS 
Van 

GPS; INS; DMI; pan-
oramic cameras 

http://www.geovisat.eu 

9 G.I.E. Technology, 
Canada 

LaserVision  
System 

Laser; camera; GNSS http://www.gietech.com/LVS 

 

10 GIE Technology, 
Inc. 

LaserVersion  
System 

Laser; DGPS; camera http://www.gietech.com/LVS 
 

11 GISPRO mapping 
company, Szczecin, 
Poland 

UltraCammapping  
system 

Digital aerial camera 
system; GNSS 

http://www.microsoft.com/ultracam/en-
us/AUG10Gispro.aspx 

http://www.arrb.com.au/Equipment-services/Hawkeye-2000-Series.aspx
http://www.arrb.com.au/Equipment-services/Hawkeye-2000-Series.aspx
http://www.arrb.com.au/Equipment-services/Hawkeye-2000-Series.aspx
http://www.csiro.au/promos/ozadvances/Series3CrackMovB.html
http://www.csiro.au/promos/ozadvances/Series3CrackMovB.html
http://www.ee-t.de/
http://www.eartheye.com/Services/Mobile
http://www.eartheye.com/Services/Mobile
http://www.geovisat.eu/
http://www.microsoft.com/ultracam/en-us/AUG10Gispro.aspx
http://www.microsoft.com/ultracam/en-us/AUG10Gispro.aspx
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No Company/Institution System Equipments Web-link/Reference 

12 Infrastructure Man-
agement Services 
(IMS), Swiss 

PAVUE System Video camera; video 
cassette recorders; 
GNSS 

http://www.imsrst.com 

 

13 International  
Cybernetics Corpo-
ration 

Digital Imaging  
System 

Progressive Scan 
CCD camera; GPS; 
IMU; inclination 
odometer; barometer 

http://www.internationalcybern 
etics.com/imagingvehicle.html 

14 Komatsu, Japan Komatsu System 2D laser; video cam-
era with special light 
system; GPS 

RUKUHARA ET AL. (1990) 

15 Lambda Tech. In-
ternational, Fort 
Wayne, USA 

GPSVision™ 
MMS 

GPS; INS; four high-
speed digital color 
stereo cameras 

http://www.lambdatech.com/ 

16 Lehmann+Partner 
GmbH company 

S.T.I.E.R Mobile 
Mapper System 

Laser scanner, Fraun-
hofer (IPM); surface 
cameras;  
panorama cameras;  
Applanix POS LV; 
lighting Unit; GNSS 

http://www.ipm.fraunhofer.de. 
http://www.vvertragermany.com/sy
stem-stier 

17 Mandli Communi-
cations, Inc., Madi-
son, Wisconsin 

Pavement Scanner 
Profile System 
(PPS) [roadview]  

Laser; Camera; 
GPS 

http://www.mandli.com/systems  

18 National Optics 
Institute, Canada 

Road Inspection 
System 

Laser; GNSS LAURENT ET AL. (1997) 

19 Omnicom Engineer-
ing, York, U.K. 

OmniInspector 
System 

Camera; GPS http://www.omnieng.co.uk/index 
.php? id=47, 

20 Pathway Services, 
Inc. 

Pathrunner Video 
inspection vehicle 
(VIV) 

Pathrunner: camera; 
GPS; (VIV): 5 LA-
SERS+4 cameras 

http://www.pathwayservices.com 
 

21 Road Radar Ltd., 
Canada 

Road Radar sys-
temTM 

GPS; Ground Pene-
trating Radar; video 
camera 

www.rrl.com 

22 Roadware Group, 
Inc. 

Automatic Road 
Analyzer (AR-
AN); Canada 

Video camera; 
Laser SDP; Laser 
XVP; 2 or more CCD; 
GPS; IMU; accel-
erometers 

http://www.roadware. com 

http://www.imsrst/
http://www.ipm.fraunhofer.de./
http://www.vvertragermany.com/system-stier
http://www.vvertragermany.com/system-stier
http://www.mandli.com/system
http://www.omnieng.co.uk/index
http://www.rrl.com/
http://www.roadware/
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No Company/Institution System Equipments Web-link/Reference 

23 ‘ROMDAS’ (ROad 
Measurement Data 
Acquisition System) 
Data Collection Ltd. 
(DCL), New Zea-
land 

ROMDAS® 
(Road Measure-
ment Data Acqui-
sition System)  

GPS; digital video 
camera; Laser crack 
measurement system; 
Laser rutting meas-
urement system; Laser 
profilometers (IRI) 

http://www.romdas.com 

24 Siteco -company 
incorporated with 
Parma university 
and Bologna uni-
versity; Italy 

Road-Scanner 
System 

2 GPS; IMU; Laser 
Scanner Faro; LS880 

http://www.sparpointgroup.com.  

25 Surface Engineer 
and Software, Inc. 
(SES)  

Road Surface  
Analyzers  
(ROSAN) 

Laser; accelerometer; 
GNSS 

GERARDO ET AL. (2004) 

26 Swiss Federal  
Institute of Tech-
nology (EPFL) 

Crack Recognition 
Holographic Sys-
tem (CREHOS) 

Laser; GNSS MOTWANI  ET AL. (2004) 

27 Transmap Corpora-
tion, Columbus, 
Ohio and Tampa, 
Florida (USA) 

ON-SIGHT™ van GPS; IMU; DMI; 4 or 
more digital color 
CCD cameras; Sick 
LiDAR scanner 

http://www.transmap.com/?page_id
=1312 

28 Triple Vision. National Coopera-
tive Highway 
Research Program 
(NCHRP) 

Camera; GNSS FUNDAKOWSKI  ET AL.  

(1991) 

29 University of Cali-
fornia 

Automated Road 
Inspection System 

Camera with special 
light system; GNSS 

http://shino8.eng.uci,edu/AMPIS.html 

30 WayLink Systems  
Corporation 

Digital Highway 
Vehicle 

Camera; GPS; gyro-
scope 

http://www.waylink.com 

http://www.sparpointgroup.com./
http://www.transmap.com/?page_id=1312
http://www.transmap.com/?page_id=1312
http://www.waylink.com/
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Appendix B: Overview of Some Case Studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1: Behaviour of all the overall algorithms of this thesis to ignore railways, sidewalks, manholes and 

lane markings within an image; 1st line: 3D-Mapping Solution original image (left), the image after applying 

image enchancement stage (middle), the image after applying adaptive local threshold algorithm (right); 2nd line: 

image after applying sobel edge detector (left), the image after applying hole pixel initial algorithm including 

several times of dilation process (middle), the image after applying labelling connected components algorithm 

(right); 3rd line-right: the final contouring image without an ellipse. 
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Figure B.2: Behaviour of all the overall algorithms of this thesis to ignore sidewalks, shades of road traffic, 

shadows and lane markings within an image; 1st line: 3D-Mapping Solution original image (left), the image after 

applying image enchancement stage (middle), the image after applying adaptive local threshold algorithm 

(right); 2nd line: image after applying sobel edge detector (left), the image after applying hole pixel initial algo-

rithm including several times of dilation process (middle), the image after applying labelling connected compo-

nents algorithm (right); 3rd line-right: the final contouring image without an ellipse.  
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Figure B.3: Behaviour of all the overall algorithms of this thesis fails to delete small narrow spot oil within an 

image; 1st line: (LAHMANN+PARTNER) original image (inverted illustration)(left), the image after applying 

image enchancement stage (middle), the image after applying adaptive local threshold algorithm (right); 2nd line: 

image after applying sobel edge detector (left), the image after applying hole pixel initial algorithm including 

several times of dilation process (middle), the image after applying labelling connected components algorithm 

(right); 3rd line-right: the final contouring image with drawn ellipse inside it as a false detection. 



  153 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4: Behaviour of all the overall algorithms of this thesis to ignore lane markings, sidewalks, and other 

extrinsic objects within an image; 1st line: Unicom-Umap original image of king Fahd Street (left), the image 

after applying image enchancement stage (middle), the image after applying adaptive local threshold algorithm 

(right); 2nd line: image after applying sobel edge detector (left), the image after applying hole pixel initial algo-

rithm including several times of dilation process (middle), the image after applying labelling connected compo-

nents algorithm (right); 3st line-right: the final contouring image without an ellipse. 
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Figure B.5: Behaviour of all the overall algorithms of this thesis to ignore shades (different light conditions and 

different pavement textures(escape of binder)), sidewalk (curbs) and extrinsic objects such as buildings, and 

traffic within an image; 1st line: Unicom-Umap original image of Muktar street (left), the image after applying 

image enchancement stage (middle), the image after applying adaptive local threshold algorithm (right); 2nd line: 

image after applying sobel edge detector (left), the image after applying hole pixel initial algorithm including 

several times of dilation process (middle), the image after applying labelling connected components algorithm 

(right); 3rd line-right: the final contouring image without an ellipse. 
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Figure B.6: Example of the interface for a sample of sequence images with cracks and the resulting 

classification (case study 1). 
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Figure B.7: An example of the interface for a sample of image sequences with cracks, and their clas-
sification (case study 2). 
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Figure B.8: An example of the interface for a sample of image sequences without cracks, and their 
classification (case study 5). 

 

 

 

 

 

 

 

 

Figure B.9: A sample of false detection (second type of error) in case study (2). 
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Figure B.10: A sample of a false detection (second type of error) for case study (3). 

 

 

 

 

 

 

 

Figure B.11: An example of a false detection (second type of error) for case study (4). 
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Appendix C: Some Comparative studies for Performance Evaluation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: Comparative study between the algorithm of this thesis and other methods; 1st line: 3D-
Mapping Solution original image ; 2nd line: the image after applying Niblack's method (left), the image af-
ter applying Sauvola's method (right); 3rd line: the image after applying Beamlet transformation method 
(left), the image after applying the algorithm of this thesis (right). 
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Figure C.2: Comparative study between the algorithm of this thesis and other methods; 1st line: LEH-
MANN+PARTNER original image (inverted illustration); 2nd line: explains the image after applying 
Niblack's method (left), the image after applying Sauvola's method (right); 3rd line: the image after applying 
Beamlet transformation method (left), the image after applying the algorithm of this thesis (right). 
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Figure C.3: Comparative study between the algorithm of this thesis and other methods; 1st line: Unicom-Umap 
of original image (King Fahd street) ; 2nd line: the image after applying Niblack's method (left), the image after 
applying Sauvola's method (right); 3rd line: the image after applying Beamlet transformation method (left), the 
image after applying the algorithm of this thesis (right). 
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Figure C.4: Comparative study between the algorithm of this thesis and other methods; 1st line: Uni-
com-Umap of original image (King Fahd street) ; 2nd line: the image after applying Niblack's method 
(left), the image after applying Sauvola's method (right); 3rd line: the image after applying Beamlet 
transformation method (left), the image after applying the algorithm of this thesis (right). 
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