
An Approach for Exploring Code-
Improving Transformations

DEBORAH L. WHITFIELD and MARY LOU SOFFA
University of Pittsburgh

Although code transformations are routinely applied to improve the performance of programs
for both scalar and parallel machines, the properties of code-improving transformations are
not well understood. In this article we present a framework that enables the exploration, both
analytically and experimentally, of properties of code-improving transformations. The major
component of the framework is a specification language, Gospel, for expressing the conditions
needed to safely apply a transformation and the actions required to change the code to
implement the transformation. The framework includes a technique that facilitates an
analytical investigation of code-improving transformations using the Gospel specifications. It
also contains a tool, Genesis, that automatically produces a transformer that implements the
transformations specified in Gospel. We demonstrate the usefulness of the framework by
exploring the enabling and disabling properties of transformations. We first present analytical
results on the enabling and disabling properties of a set of code transformations, including
both traditional and parallelizing transformations, and then describe experimental results
showing the types of transformations and the enabling and disabling interactions actually
found in a set of programs.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques;
D.3.1 [Programming Languages]: Formal Definitions and Theory—semantics; syntax; D.3.4
[Programming Languages]: Processors—code generation; compilers; optimization; transla-
tor writing systems and compiler generators

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Automatic generation of optimizers, code-improving
transformations, enabling and disabling of optimizations, parallelizing transformations, spec-
ification of program optimizations

1. INTRODUCTION

Although code-improving transformations have been applied by compilers
for many years, the properties of these transformations are not well

This work was partially supported by the NSF under grant CCR-9407061 to Slippery Rock
University and by CCR-9109089 to the University of Pittsburgh.
Authors’ addresses: D. L. Whitfield, Department of Computer Science, Slippery Rock Univer-
sity, Slippery Rock, PA 16057; email: deborah.whitfield@sru.edu; M. L. Soffa, Department of
Computer Science, 307 Mineral Industries Building, University of Pittsburgh, Pittsburgh, PA
15260; email: soffa@cs.pitt.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0164-0925/97/1100–1053 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997, Pages 1053–1084.

understood. It is widely recognized that the place in the program code
where a transformation is applied, the order of applying code transforma-
tions, and the selection of the particular code transformation to apply can
have an impact on the quality of code produced. Although concentrated
research efforts have been devoted to the development of particular code-
improving transformations, the properties of the transformations have not
been adequately identified or studied. This is due in part to the informal
methods used to describe code-improving transformations. Because of the
lack of common formal language or notation, it is difficult to identify
properties of code transformations, to compare transformations, and to
determine how transformations interact with one another.

By identifying various properties of code-improving transformations,
such as their interactions, costs, expected benefits, and application fre-
quencies, informed decisions can be made as to what transformation to
apply, where to apply them, and in which order to apply them. The order of
application is important to the quality of code as transformations can
interact with one another by creating or destroying the potential for further
code-improving transformations. For example, the quality of code produced
would be negatively affected if the potential for applying a beneficial
transformation was destroyed by the application of a less beneficial trans-
formation. Certain types of transformations may be beneficial for one
architecture but not for another. The benefits of a transformation can also
be dependent on the type of scheduler (dynamic or static) that is used
[Watts et al. 1992].

One approach that can be taken to determine the most appropriate
transformations and the order of application for a set of programs is to
implement a code transformer program (optimizer) that includes a number
of code-improving transformations, apply the transformations to the pro-
grams, and then evaluate the performance of the transformed code. How-
ever, actually implementing such a code-transforming tool can be a time-
consuming process, especially when the detection of complex conditions and
global control and data dependency information is required. Also, because
of the ad hoc manner in which such code transformers are usually devel-
oped, the addition of other transformations or even the deletion of transfor-
mations may necessitate a substantial effort to change the transformer.
Another approach is to modify an existing optimizer. However, optimizing
compilers are often quite large (e.g., SUIF [Stanford SUIF Compiler Group
1994] is about 300,000 lines of C11 code, and the GNU C compiler [Free
Software Foundation 1995] is over 200,000 lines of code) and complex,
making it difficult to use them in experiments that take into account the
various factors influencing the performance of the transformed code.

We present here a framework for exploring properties of code-improving
transformations. The major component of the framework is a code transfor-
mation specification language, Gospel. The framework includes a technique
that utilizes the specifications to analytically investigate the properties of
transformations. Gospel is also used in the design of Genesis, a tool that
automatically produces a code transformer program from the specifications,

1054 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

enabling experimentation. A specification for a transformation consists of
expressing the conditions in the program code that must exist before the
transformation can be safely applied and the actions needed to actually
implement the transformation in the program code. The specification uses
a variant of first-order logic and includes the expression of code patterns
and global data and control dependencies required before applying the
transformation. The actions are expressed using primitive operations that
modify the code. The code-improving transformations that can be expressed
in Gospel are those that do not require a fix-point computation. This class
includes many of the traditional and parallelizing code-improving transfor-
mations.

We demonstrate how the framework can be used to study the phase-
ordering problem of transformations by exploring the enabling and dis-
abling properties of transformations. Using Gospel, we first show that
enabling and disabling properties can be established analytically. We also
demonstrate through the use of Genesis that these properties can be
studied experimentally. Using Genesis, code transformers were automati-
cally produced for a set of transformations specified in Gospel and then
executed to transform a test suite of programs. We present results on
experiments that explored the kinds of transformations found in the test
suite and the types and numbers of transformation interactions that were
found.

A number of benefits accrue from such a framework. Guidelines suggest-
ing an application order for a set of code-improving transformations can be
derived from both the analytical and experimental exploration of the
interactions. Also, a new transformation can be specified in Gospel and its
relationship to other transformations analytically and experimentally in-
vestigated. From the specifications, a transformer can be generated by
Genesis, and using sample source programs, the user can experimentally
investigate transformations on the system under consideration. The deci-
sion as to which transformations to include for a particular architecture
and the order in which these transformations should be applied can be
easily explored. New transformations that are particularly tailored to an
architecture can be specified and used to generate a transformer. The
effectiveness of the transformations can be experimentally determined
using the architecture. Transformations that are not effective can be
removed from consideration, and a new transformation can be added by
simply changing the specifications and rerunning Genesis, producing a
program (transformer) that implements the new transformation. Transfor-
mations that can safely be combined could also be investigated analytically,
and the need to combine them can be explored experimentally. Another use
of Gospel and Genesis is as a teaching tool. Students can write specifica-
tions of existing transformations, their own transformations, or can modify
and tune transformations. Implementations of these transformations can
be generated by Genesis, enabling experimentation with the transforma-
tions.

Code-Improving Transformations • 1055

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Prior research has been reported on tools that assist in the implementa-
tion of code-improving transformations, including the analysis needed.
Research has been performed on automatic code generation useful in the
development of peephole transformers [Davidson and Fraser 1984; Fraser
and Wendt 1988; Giegerich 1982; Kessler 1984]. In these works, the
transformations considered are localized and require no global data flow
information. A number of tools have been designed that can generate
analyses. Sharlit [Tjiang and Hennessy 1992] and PAG [Alt and Martin
1995] use lattice-based specifications to generate global data flow analyses.
SPARE is another tool that facilitates the development of program analysis
algorithms [Venkatesh and Fischer 1992]. This tool supports a high-level
specification language through which analysis algorithms are expressed.
The denotational nature of the specifications enables automatic implemen-
tation as well as verification of the algorithms. A software architecture
useful for the rapid prototyping of data flow analyzers has also recently
been presented [Dwyer and Clarke 1996].

Only a few approaches have been developed that integrate analysis and
code transformations, which our approach does. A technique to combine
specific transformations by creating a transformation template that fully
describes the combined operations was developed as part of the framework
for iteration-reordering loop transformations [Sarkar and Thekkath 1992].
New transformations may be added to the framework by specifying new
rules. This work is applied only to iteration-reordering execution order of
loop interactions in a perfect (tight) loop nest and does not provide a
technique to specify or characterize transformations in general.

The next section of this article discusses the framework developed to
specify transformations. Section 3 presents details of the Gospel language.
Section 4 shows how Gospel can be used (1) in the analytical investigation
of the enabling and disabling conditions of transformations and (2) in the
automatic generation of transformers. Section 5 demonstrates the utility of
the specification technique using Genesis and presents experimental re-
sults. Conclusions are presented in Section 6.

2. OVERVIEW OF THE TRANSFORMATION FRAMEWORK

The code-improving transformation framework, shown in Figure 1, has
three components: Gospel, a code transformation specification language; an
analytical technique that uses Gospel specifications to facilitate formal
proofs of transformation properties; and Genesis, a tool that uses the
Gospel specifications to produce a program that implements the application
of transformations. These three components are used to explore transfor-
mations and their properties. In this article, we use the framework to
explore disabling and enabling properties.

A Gospel specification consists of the preconditions needed in program
code in order for a transformation to be applicable and the code modifica-
tions that implement the transformation. Part of the precondition specifi-
cation is the textual code pattern needed for a transformation. An example

1056 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

includes the existence of a statement that assigns a variable to a constant
or the existence of a nested loop. Thus, the code patterns operate on
program objects, such as loops, statements, expressions, operators, and
operands.

In order to determine whether it is safe to apply a transformation,
certain data and control dependencies may also be needed. Program objects
are also used to express these dependence relationships. In describing
transformations, Gospel uses dependencies expressed in terms of flow,
anti-, output, and control dependencies [Wolfe 1996]. These dependencies
are quantified and combined using logical operators to produce complex
data and control conditions. A flow dependence (Si d Sj) is a dependence
between a statement Si that defines a variable and a statement Sj that uses
the definition. An antidependence (Si d2 Sj) exists between statement Si
that uses a variable that is then defined in statement Sj. An output
dependence (Si do Sj) defines a dependence between a statement Si that
defines (or writes) a variable that is later defined (or written) by Sj. A
control dependence (Si dc Sj) exists between a control statement Si and all of
the statements Sj under its control. The concept of data direction vectors for
both forward and backward loop-carried dependencies of array elements is
also needed in transformations for parallelization [Padua and Wolfe 1986].
Each element of the data dependence vector consists of either a forward,
backward, or equivalent direction represented by ,, ., or 5, respectively.
These directions can be combined into .5, ,5, and *, with * meaning any
direction. The number of elements in the direction vector corresponds to
the loop-nesting level of the statements involved in the dependence.

In some cases, code-improving transformations have been traditionally
expressed using global data flow information. This information can either
be expressed as a combination of the data and control dependencies [Wolf
1996] or can be introduced in Gospel as a relationship that needs to be
computed and checked. The underlying assumption of Gospel is that any
algorithm needed to compute the data flow or data dependency information
is available. Thus, Gospel uses basic control and data dependency informa-

Fig. 1. Components and utilization of the transformation framework.

Code-Improving Transformations • 1057

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

tion with the possibility of extensions to other types of data flow informa-
tion. It should be noted that in the more than 20 transformations studied in
this research, all data flow information was expressed in terms of combina-
tions of data and control dependencies [Whitfield and Soffa 1990; 1993]. A
sample of transformation specifications is given in Appendix B.

Gospel also includes the specification of the code modifications needed to
implement a transformation. Although code-improving transformations can
produce complex code modifications, the code changes are expressed in
Gospel by primitive operations that can be applied in combinations to
specify complex actions. These operations are applied to code objects such
as statements, expressions, operands, and operations. Using primitive
operations to express code modifications provides the flexibility to specify a
wide range of code modifications easily.

Another component of the framework is an analytical technique useful
for proving properties of transformations. The technique uses the specifica-
tion from Gospel to provide a clear, concise description of a transformation
useful in analysis. We show how this component was used in establishing
the enabling and disabling properties of a set of transformations.

The last component of the framework is Genesis, a tool that generates a
program that implements transformations from the Gospel specification of
those transformations. Thus, the generated program contains code that will
check that conditions needed for the safe application of a transformation
are satisfied and contains code that will perform the code modifications as
expressed in the Gospel specification. A program to be transformed is then
input into the program generated by Genesis, and the output produced is
the program transformed by the specified transformations. A run-time
interface is provided that either permits the user to select the type and
place of application of a transformation or automatically finds all applica-
ble transformations at all points. We demonstrate the utility of Genesis in
determining the kinds and frequencies of transformations occurring in a
number of programs and the types and frequencies of enabling and dis-
abling interactions.

Figure 1 presents the code-improving framework and uses of the frame-
work. The three components of the framework are shown in the box, and
some applications of the framework are shown in ovals. Solid lines connect
the framework with the applications that are described in this article. A
solid line connects the framework to the interaction prover used to estab-
lish enabling and disabling properties of transformations. There is another
solid line between the framework and the experimental studies of enabling
and disabling properties. The dotted line connecting the framework and the
combining transformations represents a potential use of the framework yet
to be fully explored.

3. DESCRIPTION OF THE GOSPEL LANGUAGE

Gospel is a declarative specification language capable of specifying a class
of transformations that can be performed without using fix-point computa-

1058 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

tion. We have specified over 20 transformations using Gospel, including
specifications for invariant code motion, loop fusion, induction variable
elimination, constant propagation, copy propagation, and loop unrolling.
Transformations that do require fix-point computation such as partial
dead-code elimination and partial redundancy elimination cannot be speci-
fied. Likewise, although Gospel can be used to specify a type of constant
propagation and folding, it cannot be used, for example, to specify constant
propagation transformations requiring fix-point computation. However,
studies have shown that code seldom contains the types of optimizations
needing iteration [Click 1995]. A BNF grammar for a section of Gospel
appears in Appendix A. The grammar is used to construct well-formed
specifications and is used in the implementation of the Genesis trans-
former.

We assume that the general form of statements in a program to be
transformed is three-address code extended to include loop headers and
array references. However, Gospel and Genesis can be adapted to handle
other representations including source-level representation. We assume
that a basic three-address code statement has the form

operand1 :5 operand2 opcode operand3

The three-address code retains the loop headers and array references from
the source program, which enables the user to specify loop-level transfor-
mations and array transformations.

The template for a specification of a transformation consists of a Name
that is used to identify the particular code-improving transformation
followed by three major specification sections identified by the keywords
DECLARATION, PRECONDITION, and ACTION. The PRECONDITION
section is decomposed into two sections: Code_Pattern and Depend. The
overall design of a Gospel specification follows.

Name
DECLARATION
PRECONDITION

Code_Pattern
Depend

ACTION

The DECLARATION section is used to declare variables whose values
are code objects of interest (e.g., loop, statement). Code objects have
attributes as appropriate such as a head for a loop and position for an
operand. The PRECONDITION section contains a description of the code
pattern and data and control dependence conditions, and the ACTION
section consists of combinations of primitive operations to perform the
transformation.

Figure 2 presents a Gospel specification of a Constant Propagation
transformation (CTP) (see Section 3.2 for details). The specification uses
three variables Si, Sj, and Sl whose values are statements. The Code_Pat-

Code-Improving Transformations • 1059

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

tern section specifies the code pattern consisting of any statement
Si.opcode 55 assign that defines a constant type (Si.opr2) 55 const. Si

will have as its value such a statement if it exists. In the Depend section, Sj

is used to determine which statement uses the constant. The pos attribute
records the operand position (first, second, or third) of the flow dependence
between Si and Sj. The second statement with Sl ensures that there are no
other definitions of the constant assignment that might reach Sj. Again, the
pos attribute records the position of the flow dependence between Sj and Sl.
The Si !5 Sl specification indicates that the two statements are not the
same statement, and the operand (Si, pos) !5 operand (Sl, pos) specifi-
cation ensures that the dependence position recorded in Si does not involve
the same variables as the dependence found in Sl.

If an Sj is found that meets the requirements, and no Sl’s are found that
meet the specified requirements, then the operation expressed in the
ACTION section is performed. The action is to modify the use at Sj to be the
constant found as the second operand of Si.

Next consider the specification of the parallelizing transformation Loop
Circulation (CRC) found in Figure 3 that defines two statements and three
tightly (perfect) nested loops, which are loops without any statements
occurring between the headers. In the Code_Pattern section, any specifies
an occurrence of tightly nested loops L1, L2, and L3. The data dependence
conditions in the Depend section first ensure that the loops are tightly
nested by specifying no flow dependences between loop headers. Next, the
Depend section expresses that there are no pairs of statements in the loop
with a flow dependence and a (,,.) direction vector. If no such statements
are found then the Heads and Ends of the loops are interchanged as
specified in the ACTION section.

The next section provides more details about the Gospel language.

Fig. 2. Gospel specification of constant propagation.

1060 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

3.1 Gospel Types and Operations

Variables, whose values are code elements, are defined in the declaration
section and have the form

type : id_list;

Variables are declared to be one of the following types: Statement, Loop,
Nested loops, Tight loops, or Adjacent loops. Thus, objects of these types
have as their value a pointer to a statement, loop, nested loop, tight loop, or
adjacent loop, respectively. All types have predefined attributes denoting
relevant properties, such as next (nxt) or previous (prev). The usual
numeric constants (integer and real) are available in Gospel specifications.
Besides these constants, two classifications of predefined constants are also
available: operand types and opcode values. These constants reflect the
constant values of the code elements that are specified in Gospel. Examples
of constants include const for a constant operand and var for a variable
operand. Typical mathematical opcodes as well as branches and labels can
appear in the specification code. Gospel can be extended to include other op
codes and variable types by changing the grammar and any tools, such as
Genesis, that use the grammar.

A variable of type Statement can have as its value any of the statements
in the program and possesses attributes indicating the first, second, and
third operand (opr1, opr2, and opr3, respectively) and the operation
(opcode). Additionally a pos attribute exists to maintain the operand
position of a dependence required in the Depend section. A Loop typed
variable points to the header of the loop and has as attributes Body, which
identifies all the statements in the loop and Head, which defines Lcv, the
loop control variable, Init, the initial value and Final, the last value of the

Fig. 3. Gospel specification of loop circulation.

Code-Improving Transformations • 1061

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

loop control variable. The End of the loop is also an attribute. Thus, a
typical loop structure, with its attributes is

Head {L.Head defines L.Init, L.Final, and L.Lcv}
Start_of_Loop {L.Start}

Loop_body {L.Body}
End_of_Loop {L.End}

Nested loops, Tight loops, and Adjacent loops are composite objects
whose components are of type Loop. Nested loops are defined as two (or
more) loops where the second named loop appears lexically within the first
named loop. Tight loops restrict nested loops by ensuring that there are no
statements between loop headers. Adjacent loops are nested loops without
statements between the end of one loop and the header of the next loop.

The id_list after type is either a simple list (e.g., statement and loop
identifiers) or a list of pairs (e.g., identifiers for a pair of nested, adjacent,
or tight loops). For example, Tight: (Loop_One, Loop_Two) defines a
loop structure consisting of two tightly nested loops.

3.2 The Gospel Precondition Section

In order to specify a code-improving transformation and conditions under
which it can be safely applied, the pattern of code and the data and control
dependence conditions that are needed must be expressed. These two
components constitute the precondition section of a specification. The
keyword PRECONDITION is followed by the keywords Code_Pattern,
which identifies the code pattern specifications, and Depend, which identi-
fies the dependence specification.

Code Pattern Specification. The code pattern section specifies the for-
mat of the statements and loops involved in the transformation. The code
pattern specification consists of a quantifier followed by the elements
needed and the required format of the elements.

quantifier element_list: format_of_elements;

The quantifier operators can be one of any, all, or no, with the following
meanings:

(1) all: returns a set of all the elements of the requested types for a
successful match.

(2) any: returns a set of one element of the requested type if a match is
successful.

(3) no: returns a null set if the requested match is successful.

For example, the quantifier element list any (Sj) returns a pointer to some
statement Sj.

The second part of the code pattern specification format_of_elements
describes the format of the elements required. If Statement is the element
type, then format_of_elements restricts the statement’s operands and oper-

1062 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

ator. Similarly, if Loop is the element type, format_of_elements restricts
the loop attributes. Thus, if constants are required as operands, or if loops
are required to start at iteration 1, this requirement is specified in the
format_of_elements. An example code pattern specification which specifies
that the final iteration count is greater than the initial value is

any Loop: Loop.Final 2 Loop.Init > 0.

Expressions can be constructed in format_of_elements using the and and
or operators with their usual meaning. Also, restrictions can be placed on
either the type of an operand (i.e., const or var) or the position, pos, of the
opcode as seen in the Code_Pattern section of Figure 2.

Depend Specification. The second component of the PRECONDITION
section is the Depend section, which specifies the required data or control
dependencies of the transformation. The dependence specification consists
of expressions quantified by any, no, or all that return both a Boolean
truth value and the set of elements that meet the conditions. If the pos
attribute is used, then the operand position of the dependence is also
returned. The general form of the dependence specification is

quantifier element: sets_of_elements, dependence_conditions.

The sets_of_elements component permits specifying set membership of
elements; mem(Element, Set) specifies that Element is a member of the
defined Set. Set can be described using predefined sets, the name of a
specific set, or an expression involving set operations and set functions
such as union and intersection. The dependence_conditions clause describes
the data and control dependencies of the code elements and takes the form

type_of_dependence (StmtId, StmtId, Direction).

In this version of Gospel, the dependence type can be either flow dependent
(flow_dep), antidependent (anti_dep), output dependent (out_dep), or
control dependent (ctrl_dep). Direction is a description of the direction
vector, where each element of the vector consists of either a forward,
backward, or equivalent direction (represented with ,, ., 5, respectively;
also ,5 and .5 can be used), or any, which allows any direction.
Direction vectors are needed to specify loop-carried dependencies of array
elements for parallelizing transformations. This direction vector may be
omitted if loop-carried dependencies are not relevant.

As an example, the following specification is for one element named Si
that is an element of Loop1 such that there is an Sj, an element of Loop2,
and either a flow dependence or an antidependence between Si and Sj.

any Si: mem(Si, Loop1) AND mem(Sj, Loop2),
flow_dep(Si, Sj, (5)) OR anti_dep(Si, Sj, (5))

Code-Improving Transformations • 1063

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

3.3 The Gospel Action Section

We decompose the code modification effects of applying transformations
into a sequence of five primitive operations, the semantics of which are
indicated in Table I. These operations are overloaded in that they can apply
to different types of code elements.

An example of a Move operation that moves Loop_1 header after Loop_2
header is

move(Loop_1.Head, Loop_2.Head).

An example of a modify action that modifies the end of Loop_2 to jump to
the header of Loop_2 is

modify(Loop_2.End, address (Loop_2.Head)).

These primitive operations are combined to fully describe the actions of a
transformation. It may be necessary to repeat some actions for statements
found in the PRECONDITION section. Hence, a list of actions may be
preceded by forall and an expression describing the elements to which the
actions should be applied.

The flow of control in a specification is implicit with the exception of the
forall construct available in the action section. In other words, the AC-
TION keyword acts as a guard that does not permit entrance into this
section unless all conditions have been met.

4. APPLICATIONS OF THE GOSPEL SPECIFICATION

The Gospel specifications are useful in a number of ways. In this section,
we demonstrate the utilization of the specifications to explore the phase-
ordering problem of transformations by analytically establishing enabling
and disabling properties. In Section 4.2, we show how Gospel is used to
produce an automatic transformer generator, Genesis, which can be used to
explore properties of transformations experimentally.

4.1 Technique to Analyze Specifications

The Gospel specifications can be analyzed to determine properties of
transformations, and in particular, we use the analysis technique for
establishing enabling and disabling properties of transformations. Through
the enabling and disabling conditions, the interactions of transformations
that can create conditions and those that can destroy conditions for
applying other transformations are determined. Knowing the interactions

Table I. Action Operations

1064 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

that occur among transformations can be useful in determining when and
where to apply transformations. For example, a strategy might be to apply
a transformation that does not destroy conditions for applying another
transformation in order to exploit the potential of the second transforma-
tion, especially if the second transformation is considered to be more
beneficial.

4.1.1 Enabling and Disabling Conditions. Enabling interactions occur
between two transformations when the application of one transformation
creates the conditions for the application of another transformation that
previously could not be applied. Disabling interactions occur when one
transformation invalidates conditions that exist for applying another trans-
formation. In other words, transformation A enables transformation B
(denoted A f B) if before A is performed, B is not applicable, but after A is
performed, B can now be applied (B’s precondition is now true). Similarly,
transformation A disables transformation B (denoted A f

D
B) if the precon-

ditions for both transformation A and B are true, but once A is applied, B’s
precondition becomes false. These properties are involved in the phase-
ordering problem of transformations.

Before determining the interactions among transformations, the condi-
tions for enabling and disabling each transformation must be established.
The enabling and disabling conditions are found by analyzing the PRE-
CONDITION specifications of the transformations. For each condition in
the Code_Pattern and Depend section of a transformation, at least one
enabling/disabling condition is produced. For example, if a code pattern
includes

any Statement: Statement.opcode 55 assign

then the enabling condition is the creation of a statement with the opcode
of assign, and the disabling conditions are the deletion of such a statement
or the modification of the statement’s opcode. The enabling and disabling
conditions of six transformations derived from their specifications (see
Appendix B for their Gospel specifications) are given in Table II.

4.1.2 Interactions Among Transformations. Using the Gospel specifica-
tions, we can prove the nonexistence of interactions. We also use the
specifications in developing examples that demonstrate the existence of
interactions. Such an example of an interaction is given in Figure 4, where
Loop Fusion (FUS) enables Loop Interchange (INX). The two inner loops on
J are fused into one larger loop, which can then be interchanged.

Sometimes the interaction between two transformations is more complex
in that a transformation can both enable and disable a transformation.
Invariant Code Motion (ICM) and Loop Interchange (INX) are two such
transformations, as shown in Figure 5. ICM enables INX and also can
disable INX. In Figure 5(a), an example of ICM enabling INX is given, and
in Figure 5(b) an example of ICM disabling INX is shown.

Code-Improving Transformations • 1065

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

For ease in proving the noninteraction, we use a formal notation of the
Gospel specifications that is directly derived from the specification lan-
guage by using mathematical symbols in place of the language-related
words. A comparison of the two styles is exemplified by the following:

Language: no Sm, Sn: mem (Sm, L2) AND mem (Sn, L2),
flow_dep (Sn, Sm, (,, .));

Formal: ¬? Sm, Sn such that Sm [L2 ` Sn [L2 ` (Sn d,,. Sm)

The following claim and proof illustrate the technique to prove nonexist-
ence of enabling and disabling interactions between transformations. The
claim is that loop interchange (INX) cannot disable the application of
constant propagation (CTP). The proof utilizes the disabling conditions for
CTP as given in Table II.

Fig. 4. Loop fusion enables loop interchanging.

Fig. 5. Enabling and disabling transformations.

1066 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Claim. INX ¬ f
D

CTP (Loop interchange does not disable constant
propagation).

PROOF. Assume that INX f
D

CTP. For INX to disable CTP, both INX and
CTP must be applicable before INX is applied.

For INX to be applicable, there must be two tightly nested loops, L1 and
L2, where the loop limits are invariant and where there is no data
dependence with a (,,.) direction vector.

Table II. Enabling and Disabling Conditions

Code-Improving Transformations • 1067

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

For CTP to be applicable, there must exist an Si that defines a constant
and an Sj which uses the constant value such that (Si d5 Sj) ` ¬? Sl such
that Sl d5 Sj.

Since CTP is applicable, INX must alter the state of the code to disable
CTP. The three disabling conditions for CTP given in Table II produce the
following cases:

Case 1: Destroy Si which Defines the Constant. INX does not delete any
statements, but does move a header, L2. Si defines a variable, and a loop
header only defines the loop control variable. If the loop control variable
and the variable defined in Si were the same, then CTP is not applicable
because Si does not define a constant value. INX does not destroy Si, the
statement defining the constant.

Case 2: The Nonexistence of Sj or the Removal of the Dependence (Si d5 Sj).
INX does not delete any statements but does move a header, L2. However,
moving the header to the outside of the loop would not destroy the
relationship (Si d5 Sj), since the headers must be invariant relative to each
other in order for INX to be applicable. INX does not destroy Sj.

Case 3: The Creation of Sl such that (Sl d5 Sj). INX does not create or
modify a statement. So there are three ways for INX to create the condition
(Sl d5 Sj):

(1) INX could delete a definition Si, but this is not a legal action for this
transformation.

(2) INX could introduce Sl. INX does not create any statements, but it does
move a header. Sl could not be the header because Sl defines a constant.

(3) INX creates a path so that Sl reaches Sj. Sj could be the header, but the
definition in Sl would have reached Sj prior to INX, since the headers
must be invariant. INX does not create Sl.

Thus, we show that INX ¬f
D

CTP. e

That is, loop interchange when applied will not destroy any opportunities
for constant propagation.

By exploring examples of interactions and developing proofs for noninter-
action, we derived (by hand) an interaction table that displays the potential
occurrence of interactions. Table III displays interactions for eight transfor-
mations: Dead-Code Elimination (DCE), Constant Propagation (CTP), Copy
Propagation (CPP), Constant Folding (CFO), Invariant Code Motion (ICM),
Loop Unrolling (LUR), Loop Fusion (FUS), and Loop Interchange (INX).
Each entry in the table consists of two elements separated by a slash. The
first element indicates the enabling relationship between the transforma-
tion labeling the row and the transformation labeling the column, and the
second element is the disabling relationship. A hyphen indicates that the
interaction does not occur, whereas an “E” or “D” indicates that an enabling
or disabling interaction occurs, respectively. As an example, the first row
indicates that DCE enables DCE and disables CTP. Notice the high degree

1068 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

of potential interactions among the triples ^FUS, INX, and LUR& and ^CTP,
CFO, and LUR&.

4.1.3 Impact of the Interactions on Transformation Ordering. The dis-
abling and enabling relationships between transformations can be used
when transformations are applied automatically or when transformations
are applied interactively. When transformations are applied automatically,
as is the case for optimizing compilers, the interactions can be used to order
the application so as to apply as many transformations as possible. When
applying transformations in an interactive mode, knowledge about the
interaction can help the user determine which transformation to apply
first. Using the interaction properties, two rules are used for a particular
ordering, if the goal is to apply as many transformations as possible.

(1) If transformation A can enable transformation B, then order A before
B--^A, B&.

(2) If transformation A can disable transformation B, then order A after
B--^B, A&.

These rules cannot produce a definite ordering as conflicts arise when

(1) A f B and B f A

(2) A f
D

B and B f
D

A

(3) A f
D

B and A f B.

In these cases, precise orderings cannot be determined from the properties.
However, as shown in the next section, experimentation can be performed
using Genesis to determine if there is any value in applying one transfor-
mation before the other transformation.

For an example of using the orderings, consider a scenario where the
transformer designer decides that LUR is an extremely beneficial transfor-
mation for the target architecture. The transformer designer could benefit
from two pieces of information: (1) the transformations that enable LUR
and (2) the transformations that disable LUR. As can be seen in Table III,
CTP, CFO, and LUR all enable LUR. These interactions indicate that CTP

Table III. Theoretical Enabling and Disabling Interactions

Code-Improving Transformations • 1069

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

and CFO should be applied prior to LUR for this architecture. Additionally,
one could infer from the table that since CTP enables CFO and CFO
enables CTP, these two transformations should be applied repeatedly
before LUR. Of course, there may be other factors to consider when
applying loop unrolling. We focus on only one—namely, transformation
interactions. Other factors may include the impact that the unrolled loop
has on the cache. When other factors are important in the application of
transformations, these factors could be embedded in Genesis experiments
(e.g., by adding measures of cache performance).

Table III also displays the interactions that disable LUR. As FUS is the
only transformation that disables LUR, a decision must be made about the
importance of applying FUS on the target architecture. If LUR is more
important, then either FUS should not be applied at all or only at the end
of the transformation process.

The information about interactions could also be used in the development
of a transformation guidance system that informs the user when a trans-
formation has the potential for disabling another transformation and
informs the user when a transformation has the potential for enabling
another transformation. The interactions among the transformations can
also be used to determine some pairwise orderings of transformations. For
instance, Table III indicates that when applying CPP and CTP, CPP should
be applied first. Other such information can be gleaned from this table.

4.2 Genesis: An Automatic Transformer Generator Tool

Another use of the framework is the construction of a transformer tool that
automatically produces transformation code for the specified transforma-
tions. The Genesis tool analyzes a Gospel specification and generates code
to perform the appropriate pattern matching, check for the required data
dependences, and call the necessary primitive routines to apply the speci-
fied transformation [Whitfield and Soffa 1991]. Figure 6 presents a picto-
rial description of the design of Genesis. The value of Genesis is that it
greatly reduces the programmer’s burden by automatically generating code
rather than having the programmer implement the optimizer by hand. In
Figure 6, a code transformer is developed from a generator and constructor.

The generator produces code for the specified transformations, utilizing
predefined routines in the transformer library, including routines to com-
pute data and control dependencies. The constructor packages all of the
code produced by the generator, the library routines, and adds an interface
which prompts interaction with the user. The generator section of Genesis
analyzes the Gospel specifications using LEX and YACC, producing the
data structures and code for each of the three major sections of a Gospel
specification. The generator first establishes the data structures for the
code elements in the specifications. Code is then generated to find elements
of the required format in the three-address code. Code to verify the
required data dependences is next generated. Finally, code is generated for

1070 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

the action statements. The Genesis system is about 6500 lines of C code,
which does not include the code to compute data dependences. A high-level
representation of the algorithm used in Genesis is given in Figure 7.

The generated code relies on a set of predefined routines found in the
transformer library. These routines are transformation independent and
represent routines typically needed to perform transformations. The library
contains pattern-matching routines, data dependence computation algo-
rithms, data dependence verification procedures, and code manipulation
routines. The pattern-matching routines search for loops and statements.
Once a possible pattern is found, the generated code is called to verify such
items as operands, opcodes, and initial and final values of loop control
variables.

When a possible application point is found in the intermediate code, the
data dependences must be verified. Data dependence verification may
include a check for the nonexistence of a particular data dependence, a
search for all dependences, or a search for one dependence within a loop or
set. The generated code may simply be an “if” to ensure a dependence does
not exist or may be a more complex integration of tests and loops. For
example, if all statements dependent on Si need to be examined, then code
is generated to collect the statements. The required direction vectors
associated with each dependence in the specification are matched against
the direction vectors of the dependences that exist in the source program.

Fig. 6. Overview of Genesis.

Code-Improving Transformations • 1071

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

If the dependences are verified then the action is executed. Routines
consisting of the actions specified in the ACTION section of the specifica-
tion are generated for the appropriate code elements.

The constructor compiles routines from the transformer library and the
generated code to produce the transformer for the set of transformations
specified. The constructor also generates an interface to execute the various
transformations. The interface to the transformer reads the source code,
generates the intermediate code and computes the data dependences. The
interface also queries the user for interactive options. This interactive
capability permits the user to execute any number of transformations in
any order. The user may elect to perform a transformation at one applica-
tion point (possibly overriding dependence constraints) or at all possible
points in the program.

4.2.1 Prototype Implementation. In order to test the viability and ro-
bustness of this approach, we implemented a prototype for Genesis and
produced a number of transformers. For ease of experimentation, our
prototype produces a transformer for every transformation specified.

Fig. 7. The Genesis algorithm.

1072 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

For any transformation specified, the generator produces four procedures
tailored to a transformation: set_up_Trans, match_Trans, pre_Trans, and
act_Trans. These procedures correspond to the DECLARATION, Code_Pat-
tern, Depend, and ACTION sections in the specifications.

In our implementation, a transformer consists of a driver that calls the
routines that have been generated specifically for that transformation.
Code for the driver is given in Figure 8. The format of the driver is the
same for any transformer generated. The driver calls procedures in the
generated call interface for the specific transformation (set_up_Trans,
match_Trans, pre_Trans, and act_Trans). The call interface in turn calls
the generated procedures that implement the transformation (the gener-
ated transformation-specific code). For CTP, as given in Figure 9, the
set_up_Trans procedure consists of a single call to set_up_CTP. The driver
requires a successful pattern match from match_CTP and pre_CTP in order
to continue. Thus, the match_Trans and pre_Trans of the call interface
procedures return a boolean value.

Any generated set_up procedure consists of code that initializes data
structures for each element specified using any or all in the PRECONDI-
TION section. A type table data structure, TypeTable, contains identifying
information about each statement or loop variable specified in the DECLA-
RATION section. The TypeTable holds the identifier string, creates an
entry for a quantifier that may be used with this identifier in the PRE-
COND section, and maintains the type of the identifier (e.g., statement,
loop, adjacent loop, or nested loop). For type Statement, an entry is
initialized with the type and corresponding identifier. If a loop-typed
variable is specified, additional flags for nested or adjacent loops are set in
the type table entry. These entries are filled in as the information relevant
to the element is found when the transformer is generated. For each
statement in the DECLARATION section, a call to TypeTable_Insert is
generated with the identifier and the type of the identifier and placed in

Fig. 8. The driver algorithm.

Code-Improving Transformations • 1073

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

the set_up procedure. During execution of CTP, shown in Figure 9, a type
table entry is initialized with type “Statement” and identifier Si when the
transformer executes procedure set_up_CTP.

After the set_up_CTP procedure terminates, the driver indirectly ini-
tiates an exhaustive search for the statement recorded in the type table by
calling match_CTP. If the source program’s statement does not match, then
the transformer driver restarts the search for a new statement. The match
procedure is generated from the statements in the Code_Pattern section of
the Gospel specification. For each quantified statement in the Code_Pat-
tern section, a call to SetTable_Insert is made with the identifier, type of

Fig. 9. The generated code for CTP.

1074 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

identifier, and quantifier. SetTable_Insert searches for the requested type
and initializes the Set_Table data structure with the appropriate attributes
for the type (e.g., for a statement, the opcode and operands are set). Next
the restrictions in the Code_Pattern section are directly translated into
conditions of IF statements to determine if the requested restrictions are
met. If the current quantifier is an “all,” then a loop is generated to check
all of the objects found by Set_Table. In the CTP example in Figure 9, code
is generated that searches for an assignment statement with a constant on
the right-hand side.

The next routine is the procedure pre, which is generated from the
statements in the Depend section. For each quantified statement, a call to
SetTable_Insert is generated (however, the pattern matching will not be
performed again at run-time.) For the CTP example, the pre_CTP proce-
dure inserts an element into the Set_Table structure for each dependence
condition statement. Sj is inserted into Set_Table, and the dependence
library routine is called to find the first statement that is flow dependent
on Si; if no statement is found then the condition fails. Sl is also inserted
into the Set_Table, and the dependence routine is called again. Each Sl

such that Sl is flow dependent on Sj is examined to determine if the
operand of Sl causing the dependence is the same variable involved in the
dependence from Si to Sj. If such an Sl is found then the condition fails.
Next, an assignment statement is generated to assign the “hits” field of the
Set_Table data structure with the result of the requested dependence or
membership procedure call. For example, by setting the “hits” field to a
result of a flow_dependence call, the hits field will contain either 1 (for the
any quantifier) or many (for the all quantifier) statement numbers that
are flow dependent with the required direction vector. Next, IF statements
are directly generated from any relational conditions that exist in the
specification.

The last procedure to be called is the action procedure. The action
procedure is generated from the statements in the Action section of the
Gospel specification. For each individual action, a call to the primitive
transformation is made with the required parameters (e.g., modify requires
the object being modified and the new value). If the Gospel forall construct
is used, then a for loop is generated, and the calls to the primitive
transformations are placed within the loop. In the example in Figure 9,
act_CTP simply modifies the operand collected in Sj. This modification
occurs in either the first or second modify statement, depending on the
operand that carries the dependence. Thus, the first call to modify consid-
ers “operand a” of Sj for replacement, and the second call considers
“operand b” for replacement, effectively implementing the pattern match-
ing needed for determining the operand position of a dependence. The
procedure act_CTP is called by the driver only if match_CTP and pre_CTP
have terminated successfully. For more implementation details, the reader
is referred to Whitfield and Soffa [1994].

Code-Improving Transformations • 1075

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

5. EXPERIMENTATION

Using our prototype implementation of Genesis, we performed experiments
to demonstrate that Genesis can be used to explore the properties of
transformations including (1) the frequency of applying transformations
and (2) the interactions that occur among the transformations.

Using Genesis, transformers were produced for 10 of the 20 transforma-
tions specified: CPP, CTP, DCE, ICM, INX, CRC (Loop Circulation), BMP
(Bumping), PAR (Parallelization), LUR, and FUS. Experimentation was
performed using programs found in the HOMPACK test suite and in a
numerical analysis test suite [Burden and Faires 1989]. (A short descrip-
tion and the Gospel specifications of these transformations are given in
Appendix B.) HOMPACK consists of Fortran programs to solve nonlinear
equations by the homotopy method. The numerical analysis test suite
included programs such as the Fast Fourier Transform and programs to
solve nonlinear equations using Newton’s method. A total of 10 programs
were used in the experimentation. The benchmark programs were coded in
Fortran, which was the language accepted by our front end. They ranged in
size from 110 to 900 lines of intermediate code statements. The programs
were numerical in nature and had a mixture of loop structures, including
nested, adjacent, and single loops. Both traditional optimizations and
parallelizing transformations could be applied in the programs, as we were
interested in the interaction between these types of transformations.
Longer programs would more likely show more opportunities for transfor-
mations and thus more opportunities for interactions.

In order to verify Genesis’ capability to find application points, four
transformations were specified in Gospel and run on the HOMPACK test
suite. The number of application points for each of the transformations was
recorded and compared to the number of application points found by Tiny
[Wolfe 1989]. The comparison revealed that Genesis found the same num-
ber of applications points that Tiny found. Furthermore, seven optimiza-
tions were specified in Gospel, and optimizers were generated by Genesis.
The generated optimizers were compared to a hand-coded optimizer to
further verify Genesis’ ability to find application points. Again, the optimiz-
ers generated by Genesis found the same application points for optimiza-
tions.

In the test programs, CTP was the most frequently applicable transfor-
mation (often enabled) while no application points for ICM were found. It
should be noted that the intermediate code did not include address calcula-
tions for array accesses, which may introduce opportunities for ICM. CTP
was also found to create opportunities to apply a number of other transfor-
mations, which is to be expected. Of the total 97 application points for CTP,
13 of these enabled DCE; 5 enabled CFO; and 41 enabled LUR (assuming
that constant bounds are needed to unroll the loop). CPP occurred in only
two programs and did not create opportunities for further transformation.
These results are shown in Table IV where a “2” entry indicates that no
interaction is theoretically possible, and a number gives the number of

1076 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

interactions that occurred. For example, the entry for INX/FUS indicates
that 5 enabling interactions were found and 4 disabling interactions were
found in the 13 application points.

To investigate the ordering of transformations, we considered the trans-
formations FUS, INX, and LUR, which we showed in Section 4 can
theoretically enable and disable one another. In one program, FUS, INX,
and LUR were all applicable and heavily interacted with one another by
creating and destroying opportunities for further transformations. For
example, applying FUS disabled INX, and applying LUR disabled FUS.
Different orderings produced different transformed programs. The transfor-
mations also interacted when all three transformations were applied; when
applying only FUS and INX, one instance of FUS in the program destroyed
an opportunity to apply INX. However, when LUR was applied before FUS
and INX, INX was not disabled. Thus, users should be aware that applying
a transformation at some point in the program may prevent another
transformation from being applicable. To further complicate the process of
determining the most beneficial ordering, different parts of the program
responded differently to the orderings. In one segment of the program, INX
disabled FUS, while in another segment INX enabled FUS. Thus, there is
not a “right” order of application. The context of the application point is
needed. Using the theoretical results of interactions from the formal
specifications of transformations as a guide, the user may need multiple
passes to discover the series of transformations that would be most fruitful
for a given system.

The framework could also be used to explore the value of combining
transformations. Blocking is a transformation that combines Strip Mining
and Interchange [Sarkar and Thekkath 1992]. We performed a preliminary
experiment in which we applied various orders of Loop Interchange (INX),
Loop Unrolling (LUR), and Loop Fusion (FUS). In the experiments, LUR
when followed by INX produced more opportunities for transformations
than other orders. Thus, after performing experimentation to examine
what happens when a series of transformations are applied, it might be
beneficial to combine certain transformations and apply them as a pair. In
our example, we would consider combining LUR and INX.

Table IV. Enabling and Disabling Interactions

Code-Improving Transformations • 1077

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

6. CONCLUDING REMARKS

The code-improving transformation framework presented in this article
permits the uniform specification of code-improving transformations. The
specifications developed can be used for analysis and to automatically
generate a transformer. The analysis of transformations enables the exam-
ination of properties such as how transformations interact to determine if a
transformation creates or destroys conditions for another transformation.
These relationships offer one approach for determining an order in which to
apply transformations to maximize their effects. The implementation of the
Gospel specifications permits the automatic generation of a transformer.
Such an automated method enables the user to experimentally investigate
properties by rapidly creating prototypes of transformers to test their
feasibility on a particular machine. Genesis also permits the user to specify
new transformations and quickly implement them.

Future work in this research includes examining the possibility of
automatically proving interactions by expanding the specifications to a
more detailed level. Such a transformation interaction proving tool would
enable the user to determine properties of the transformations. Also, the
design of a transformation guidance system prototype is being examined for
its feasibility. This type of system would aid the user in applying transfor-
mations by interactively providing interaction information. The Gospel
specifications are also being explored to determine if they can easily be
combined to create more useful transformations.

APPENDIX

A. PRECONDITION GRAMMAR FOR THE GOSPEL PROTOTYPE

Precon 3 DEPEND Precon_list
Precon_list 3 Quantifier Code_list : Mem_list Condition_list ;

Precon_list u «
Quantifier 3 ANY u NO u ALL

Code_list 3 StmtId StmtId_list
Mem_list 3 Mem_list OR Mem_list

3 Mem_list AND Mem_list
3 Mem(StmtId, Set_Exp)

Mem 3 MEM u NO_MEM
Set_Exp 3 INTER (Set_Exp, Set_Exp)

3 UNION (Set_Exp, Set_Exp)
3 ID
3 PATH (ID, ID)
3 CTRL_DEP (ID)

Condition_list 3 NOT Condition_list
3 Condition_list AND Condition_list
3 Condition_list OR Condition_list
3 Type (StmtId, StmtId Dir_Vect)
3 (StmtId Rel_Op StmtId)

1078 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Type 3 FLOW_DEP u OUT_DEP u ANTI_DEP u CTRL_DEP
Dir_Vect 3 (Dir Dir_List) u «
Dir_List 3 , Dir u «

Dir 3 Rel_Op u ANY
Rel_Op 3 , u . u ,5 u .5 u 5 u !5
StmtId 3 ID u POS(ID)

StmtId_list 3 , StmtId u «

B. GOSPEL SPECIFICATION OF TRANSFORMATIONS

Bumping (BMP): Modify the loop iterations by bumping the index by a
preset amount (e.g., 2).

DECLARATION
Statement: S, Snew;
Loop L;

PRECONDITION
Code_Pattern

any L;
Depend

all S: flow_dep (L.Lcv, S, (any));
ACTION

forall S
add (S.Prev, (2, 2, S.opr1, S.opr1), Snew);
modify (L.Initial, eval(L.Initial, 1, 2));
modify (L.Final, eval(L.Final, 1, 2));

Constant Folding (CFO): Replace mathematical expressions involving
constants with their equivalent value.

DECLARATION
Statement: Si;

PRECONDITION
Code_Pattern Find a constant expression

any Si: type(Si.opr2) 55 const
AND type(Si.opr3) 55 const AND Si.opcode !5 assign;

Depend No Dependence checks
ACTION Fold the constants into an expression

modify (Si.opr2, eval(Si.opr2, Si.opcode, Si.opr3);
modify (Si.opcode, assign);

Copy Propagation (CPP): Replace the copy of a variable with the original.
DECLARATION

Statement: Sj, Si, Sk, Sp;
PRECONDITION

Code_Pattern Find a copy statement
any Si: Si.opcode 55 assign

AND type (Si.opr2) 55 var AND type (Si.opr1) 55 var;
Depend all uses do not have other defs along the path

all (Sj, pos): flow_dep (Si, Sj, (5));
no Sk: flow_dep (Sk, Sj, (5)) AND (Sk !5 Si);

Code-Improving Transformations • 1079

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

no Sp: mem (Sp, path (Si, Sj)), anti_dep (Si, Sp, (5));
ACTION propagate and delete the copy

forall Sj
modify (operand (Sj, pos), Si.opr2);
delete (Si);

Loop Circulation (CRC): Interchange perfectly nested loops (more than two)
DECLARATION

Statement: Sn, Sm;
Tight: (L1, L2, L3);

PRECONDITION
Code_Pattern Find tightly nested loops

any (L1, L2, L3);
Depend Ensure perfect nesting, no flow_dep with ,,.

no L1.Head: flow_dep (L1.Head, L2.Head);
no L2.Head: flow_dep (L2.Head, L3.Head);
no Sm, Sn: mem (Sm, L3) AND mem (Sn, L3),

flow_dep (Sn, Sm, (,,.));
ACTION Interchange the loops

move (L1.Head, L3.Head);
move (L1.End, L3.End.Prev);

Common-Subexpression Elimination (CSE): Replace duplicate expres-
sions so that calculations are performed only once.

DECLARATION
Statement: Sn, Sm, Sk, Sj;

PRECONDITION
Code_Pattern Find binary operation

any Sn: Sn.opcode 55 1 OR Sn.opcode 55 2 OR Sn.opcode 55* OR
Sn.opcode 55/;

Depend Find common subexpression
any Sm: Sm.opcode 55 Sn.opcode AND Sm.opr2 55 Sn.opr2 AND

Sm.opr3 55 Sn.opr3;
no (Sk, pos): anti_dep(Sn, operand(Sk, pos))

AND flow_dep (operand(Sk, pos), Sm);
all Sj: ctrl_dep(Sj, Sn) AND ctrl_dep(Sj, Sm);

ACTION
add ((Sn.opcode, temp, Sn.opr2, Sn.opr3), ,Sn)
modify (Sn, (assign, Sn.opr1, temp)
modify (Sm, (assign, Sm.opr1, temp)

Dead-Code Elimination (DCE): Remove statements that define values for
variables that are not used.

DECLARATION
Statement: Si, Sj;

PRECONDITION
Code_Pattern Find statement assigning variable, value or expression

any Si: Si.opcode 55 assign OR Si.opcode 55 2 OR Si.opcode 55*
OR Si.opcode 55 1 OR Si.opcode 55/;

1080 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Depend statement may not be used
no Sj: flow_dep (Si, Sj, (any));

ACTION delete the dead code
delete (Si);

Loop Fusion (FUS): Combine loops with the same headers.
DECLARATION

Statement: Sn, Sm, Si, Sj, Sk;
Adjacent: (L1, L2);

PRECONDITION
Code_Pattern Find adjacent loops with equivalent Heads

any L1, L2: L1.Initial 55 L2.Initial
AND L1.Final 55 L2.Final
AND L1.Lcv 55 L2.Lcv

Depend No dependence with backward direction first; no def reaching
prior to loops

no Sn, Sm: mem (Sn, L1) AND mem (Sm, L2),
flow_dep (Sn, Sm, (5*, ., any)) OR out_dep (Sn, Sm, (5*, ., any))
OR anti_dep (Sn, Sm, (5*, ., any));

no Si, Sj: mem (Sj, L1) AND mem (Sk, L2),
flow_dep (Si, Sj, (any)) AND anti_dep (Sj, Sk, (any)) AND (Si !5 Sk);

ACTION Fuse the loops
modify (L1.Head.opr1, L2.Head.Label);
modify (L2.End.opr1, L1.End.Label);
delete(L1.End);
delete (L2.Head);

Invariant Code Motion (ICM): Remove statements from within loops
where the values computed do not change.

DECLARATION
Statement: Sk, Sm;
Loop: L;

PRECONDITION
Code_Pattern Any loop

any L;
Depend Any statement without dependence within the loop

any Sk: mem(Sk, L) AND mem (Sm, L),
NOT (flow_dep (Sm, Sk) OR anti_dep (Sk, Sm) OR

((out_dep (Sm, Sk) OR out_dep (Sk, Sm)) AND (Sm !5 Sk)
OR anti_dep (Sm, Sk) OR ctrl_dep (Sm, Sk) OR flow_dep(Sk, Sk)
OR anti_dep (Sk, Sk) OR flow_dep (L.head, Sk)));

ACTION move statement to within header
move (Sk, L.Start.Prev);

Loop Unrolling (LUR): Duplicate the body of a loop.
DECLARATION

Statement: Si, Sj;
Loop: L1, L2;

Code-Improving Transformations • 1081

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

PRECONDITION
Code_Pattern Any loop iterated at least once

any L1: type (L1.Initial) 55 const AND type (L1.Final) 55 const
AND L1.Final 2 L1.Initial . 0;

Depend No dependence checks
ACTION Unroll one iteration, update original loop’s Initial

copy (L1.Body, L1.Head.Prev, L2);
modify (L2.Final, L2.Initial);
modify (L1.Initial, eval(L1.Initial, 1, 1));
delete (L2.End);
delete (L2.Head.Label);

Parallelization (PAR): Modify loop type for parallelization.
DECLARATION

Statement: Si, Sj;
Loop: L1;

PRECONDITION
Code_Pattern

any L1: L1.opcode 55 DO;
Depend

no Si, Sj: mem (Si, L1) AND mem (Sj, L1), flow_dep(Si, Sj, (5, *));
ACTION

modify (L1.opcode, PAR);

Strip Mining (SMI): Modify loop to utilize vector architecture.
DECLARATION

Loop: L;
PRECONDITION

Code_Pattern
any L: L.Final 2 L.Initial . SZ;

Depend
ACTION

copy (L.Head, L.Head.Prev, L2.Head);
modify (L2.Lcv, temp(T));
modify (L2.step, SZ);
modify (L1.Initial, T);
modify (L1.Final, MIN(T 1 SZ 2 1, L1.Final));
copy (L.End, L.End, L2.End);
modify(L2.End, address(L2.Head));

Loop Unswitching (UNS): Modify a loop that contains an IF to an IF that
contains a loop.

DECLARATION
Loop: L;
Statement: Si, Sk;

PRECONDITION
Code_Pattern

any L;
Depend

1082 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

any Si: mem (Si, L), Si.opcode 55 IF AND
ctrl_dep (Si, L.End.Prev. Prev) AND NOT flow_dep(L.Head, Si);

Find the Else
any Sk: mem (Sk, L) AND NOT ctrl_dep(Si, Sk);

ACTION
copy (L.Head, Sk, L2.Head);
copy (L.End, L.End.Prev.Prev, L2.End);
modify (L2.End, address(L2.Head));
move (L.Head, Si);
move (L.End, Sk.Prev);

ACKNOWLEDGMENT

We are especially grateful to Associate Editor Jack Davidson for his
insightful criticisms and advice on earlier drafts of this article. We also
thank the anonymous referees for their helpful comments and suggestions,
which resulted in an improved presentation.

REFERENCES

ALT, M. AND MARTIN, F. 1995. Generation of efficient interprocedural analyzers with PAG.
In Lecture Notes in Computer Science, A. Mycroft, Ed. Vol. 983. Springer-Verlag, Berlin.

BURDEN, R. AND FAIRES, J. D. 1989. Numerical Analysis. Prindle, Weber and Schmidt,
Boston, Mass.

CLICK, C. 1995. Global code motion global value numbering. In Proceedings of the SIGPLAN
’95 Conference on Programming Language Design and Implementation. ACM, New York,
246–257.

DAVIDSON, J. W. AND FRASER, C. W. 1984. Automatic generation of peephole transforma-
tions. In Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction. ACM,
New York, 111–115.

DWYER, M. AND CLARKE, L. 1996. A flexible architecture for building data flow analyzers. In
Proceedings of the 18th International Conference on Software Engineering. 554–564.

FRASER, C. W. AND WENDT, A. L. 1988. Automatic generation of fast optimizing code
generators. In Proceedings of the SIGPLAN ’88 Conference on Programming Language
Design and Implementation. ACM, New York, 79–84.

GIEGERICH, R. 1982. Automatic generation of machine specific code transformer. In Proceed-
ings of the 9th Annual ACM Symposium on Principles of Programming Languages. ACM,
New York, 75–81.

FREE SOFTWARE FOUNDATION. 1995. GNU C Compiler Manual. Version 2.7.2. Free Software
Foundation, Inc., Boston, Mass.

KESSLER, R. R. 1984. Peep—An architectural description driven peephole transformer. In
Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction. SIGPLAN Not.
19, 6 (June), 106–110.

PADUA, D. A. AND WOLFE, M. J. 1986. Advanced compiler transformations for supercomput-
ers. Commun. ACM 29, 12 (Dec.), 1184–1201.

SARKAR, V. AND THEKKATH, R. 1992. A general framework for iteration-reordering loop
transformations. In Proceedings of the SIGPLAN ’92 Conference on Programming Language
Design and Implementation. ACM, New York, 175–187.

STANFORD SUIF COMPILER GROUP. 1994. The SUIF Parallelizing Compiler Guide. Version
1.0. Stanford Univ., Stanford, Calif.

TJIANG, S. AND HENNESSY, J. 1992. Sharlit—A tool for building transformers. In Proceedings
of the SIGPLAN ’92 Conference on Programming Language Design and Implementation.
ACM, New York, 82–93.

Code-Improving Transformations • 1083

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

VENKATESH, G. A. AND FISCHER, C. N. 1992. SPARE: A development environment for
program analysis algorithms. IEEE Trans. Softw. Eng. 18, 4 (Apr.), 304–318.

WATTS, T., SOFFA, M. L., AND GUPTA, R. 1992. Techniques for integrating parallelizing
transformation and compiler based scheduling methods. In Proceedings of Supercomputing
’92. IEEE, New York, 830–839.

WHITFIELD, D. AND SOFFA, M. L. 1990. An approach to ordering optimizing transformations.
In Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming. ACM, New York, 137–146.

WHITFIELD, D. AND SOFFA, M. L. 1991. Automatic generation of global optimizers. In
Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation. ACM, New York, 120–129.

WHITFIELD, D. AND SOFFA, M. L. 1993. Investigation of properties of code transformations.
In Proceedings of the 1993 International Conference on Parallel Processing. 156–160.

WHITFIELD, D. AND SOFFA, M. L. 1994. The design and implementation of Genesis. IEEE J.
Softw. Pract. Exper. 24, 3 (Mar.), 307–325.

WOLFE, M. 1989. A loop restructuring research tool. Oregon Graduate Inst. of Science and
Technology.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood, Calif.

Received July 1995; revised April 1997; accepted April 1997

1084 • Deborah L. Whitfield and Mary Lou Soffa

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

