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ABSTRACT
We describe a novel approach for building a secure and fault toler-
ant data storage service in collaborative work environments, which
uses perfect secret sharing schemes to store data. Perfect secret
sharing schemes have found little use in managing generic data be-
cause of the high computation overheads incurred by such schemes.
Our proposed approach uses a novel combination of XOR secret
sharing and replication mechanisms, which drastically reduce the
computation overheads and achieve speeds comparable to standard
encryption schemes. The combination of secret sharing and repli-
cation manifests itself as an architectural framework, which has
the attractive property that its dimension can be varied to exploit
tradeoffs amongst different performance metrics. We evaluate the
properties and performance of the proposed framework and show
that the combination of perfect secret sharing and replication can
be used to build efficient fault-tolerant and secure distributed data
storage systems.

Categories and Subject Descriptors:H.3.4 [Information Storage
and Retrieval]: Systems and Software –distributed systems, perfor-
mance evaluation; C.4 [Performance of Systems]: Fault Tolerance,
Reliability, availability, and serviceability

General Terms: Security, Algorithms, Design, Performance

Keywords: Byzantine fault tolerance, collaborative environments,
confidentiality, distributed data storage, replication, secret sharing

1. INTRODUCTION
The storage of sensitive information has been studied extensively

in various contexts ranging from cryptographic keys [19, 4] to generic
data [9]. This paper considers the problem of storing sensitive in-
formation at a storage service realized using a distributed set of
storage servers. The sensitive data must be stored at these servers
such that data confidentiality, integrity, and availability require-
ments are met even when some storage servers are compromised.
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The traditional approach for realizing a secure and fault-tolerant
storage service is to encrypt the data for confidentiality, and store
the encrypted data using replication-based techniques for fault tol-
erance. This approach has the benefit of being computationally
and storage efficient. In collaborative work environments, multiple
clients may be authorized to access the encrypted data. To facilitate
easy sharing of the encrypted data amongst authorized clients, the
cryptographic keys used to encrypt the sensitive data must also be
stored at the storage service. Obviously, these keys must be stored
at the storage service in a secure and fault tolerant manner without
using additional keys. A possible approach given in [9] is to store
the key using perfect secret sharing schemes [19, 4]. Perfect secret
sharing schemes encode data (in this case, the cryptographic keys)
into shares such that only certain valid combinations of shares can
be used to reconstruct the encoded data, while invalid combinations
of shares give no information on the encoded data. By storing these
shares at different servers, the encoded data is kept confidential as
long as not enough servers are compromised. Confidentiality is
achieved without any additional encryption, thus avoiding the need
for the storage and management of additional cryptographic keys.
Perfect secret sharing schemes have the additional property that the
shares can be changed, or “renewed”, distributively such that the
encoded data still remains the same. This process of share renewal,
when performed often, can provide strong data confidentiality. The
security of such a scheme relies on the inability of an adversary to
compromise a sufficient number of servers in the time between two
consecutive share renewals.

The above approach has the drawback that the security of the
encrypted data relies solely on maintaining the secrecy of the cryp-
tographic keys. An adversary can find the key through vulnerabil-
ities elsewhere in the system, such as in the applications used by
the clients. The release of a cryptographic key to an adversary will
give away the confidentiality ofall the sensitive data encrypted us-
ing that key. Our proposed approach to overcome this drawback is
to store the sensitive information itself using perfect secret sharing.
Thus, the security gained by using perfect secret sharing schemes to
store cryptographic keys has been transferred to the sensitive data
directly. Moreover, disclosure of some of the sensitive data to an
adversary will still not affect the confidentiality of the rest of the
sensitive data stored at the storage service.

Unlike private-key encryption schemes, however, most perfect
secret sharing schemes are computationally expensive. Verifiable
secret sharing schemes [6] are typically used with perfect secret
sharing schemes to detect incorrect shares that may be returned by
faulty or compromised servers, and also to detect incorrect secret
sharing during writes. Such techniques further increase the com-
putation time during the encoding and decoding of data. We solve



these problems by 1) using XOR secret sharing for fast computa-
tions, and 2) using replication-based schemes to detect incorrect
shares that may be returned by faulty or malicious servers. This
combination of secret sharing and replication manifests itself as an
architectural framework, where servers are arranged in the form of
a rectangle or a grid. The proposed architectural framework, which
we call GridSharing, has the useful property that its dimensions
can be varied to trade off several performance metrics.

In collaborative environments, it can be expected that there will
be changes in the list of clients authorized to read or update the
sensitive data. When using the traditional approach, changes in
the access list will require re-encrypting the stored data with a new
cryptographic key, which may be cumbersome. For fine grained
access list management, each file or document stored at the data
storage service would require a unique key. The number of keys
could then become large and unmanageable. If the sensitive data is
itself stored using secret sharing techniques, such expensive opera-
tions during changes in the access list are avoided.

Our contributions are as follows: We describe a novel approach
for building a secure and fault tolerant data storage service that uses
a combination of perfect secret sharing techniques and replication
to provide data confidentiality, integrity, and availability. Perfect
secret sharing schemes have found little use in managing sensi-
tive data because of the high computation overheads such schemes
incur especially when supplemented with mechanisms to achieve
Byzantine fault tolerance. Our proposed approach uses a novel
combination of XOR secret sharing and replication mechanisms,
which drastically reduce the computation overheads and achieve
speeds comparable to standard encryption schemes. The combina-
tion of secret sharing and replication manifests itself as an architec-
tural framework, whose dimension can be varied to exploit trade-
offs amongst different performance metrics. We evaluate the prop-
erties and performance of the proposed framework to show that the
combination of perfect secret sharing and replication can be used
to build efficient fault-tolerant and secure distributed data storage
systems for collaborative work environments.

2. RELATED WORK
Several works [2, 5, 14, 21, 3, 12, 24, 7] have emerged recently

that consider the problem of providing secure distributed data stor-
age services. The confidentiality of the stored data is provided ei-
ther by encrypting the data with a key and storing the key also at the
store using secret sharing [19, 4], or secret sharing the data itself,
or a combination of both.

Most works use imperfect secret sharing schemes, such as era-
sure codes (e.g. Rabin’s IDA [18] algorithm), where the knowledge
of fewer than the threshold number of shares can reveal some infor-
mation on the encoded data. Such coding algorithms are thus not
information-theoretic secure, but allow savings in storage space.
Given enough time, an adversary may compromise enough servers
to learn the encoded data. Thus, to provide long-term confidential-
ity, the secret sharing scheme should allow share renewal, where
the shares are changed in a distributed fashion such that the en-
coded secret is not recovered in the process and is unchanged. To
our knowledge, no share renewal scheme for imperfect secret shar-
ing has been developed to date. We instead use perfect secret shar-
ing schemes, which allow share renewal. Perfect secret sharing
schemes are also information-theoretic secure, meaning the leak-
age of an insufficient number of shares to an adversary does not
reveal any information on the encoded data.

When data is stored using secret sharing, it must be possible for
a client to identify corrupted shares during reads. Verifiable secret
sharing schemes [6] can be used with perfect secret sharing for this

purpose, and also to check if the secret sharing was performed cor-
rectly during writes. Verifiable secret sharing schemes also allow
share renewal. Such schemes are however computationally expen-
sive. Section 4 describes in detail how we avoid using verifiable
secret sharing schemes, thereby drastically reducing the computa-
tion overheads. Another approach to detect corrupted shares during
reads is to store the hash of the shares in a hash vector at all the
servers. To our knowledge, no algorithm has been developed for
updating the hash vector distributively after share renewal.

Several works have combined replication-based mechanisms and
perfect secret sharing [9, 17, 15]. [9] presents a scheme where
data is encrypted using a key, and both are stored at the storage
servers. The data is stored in replicated form in a quorum, while
the key is stored using secret sharing. [17] uses quorum systems
and secret sharing to build an authorization service. Quorum prop-
erties are used to ensure that sufficient servers agree to authorize
a request, but the shares are not replicated at the servers. The pa-
per addresses malicious users, and does not consider compromised
servers. The shares are never directly read and written. Thus, [9,
17] consider using perfect secret sharing for some special types of
data and not for generic data. Performance during reads and writes
is not addressed. [15] uses perfect secret sharing for generic data,
while [23] uses perfect secret sharing for archival data. Both these
works do not address the problem of high computation overheads.

In [7], a technique called fragmentation-redundancy-scattering is
used. The security of this technique relies mainly on securely main-
taining the encryption key and the fragmentation key. We instead
store data directly using perfect secret sharing schemes.

In CODEX [16], secrets are encrypted using the public key of the
data storage service. The private key is maintained at the data stor-
age servers using secret sharing. Due to the use of expensive cryp-
tographic operations, the computation latencies of this approach
are expected to be higher than our approach. Also, the secrecy of
all stored data rests upon maintaining the secrecy of only one key,
which is the service’s private key. The scheme is thus not as secure
as storing the data directly using perfect secret sharing.

In [24], secret sharing is used to build survivable information
storage systems. Tradeoffs possible when usingp-m-n threshold
schemes are outlined. The description is in terms of how the choice
of p, m, andn affect performance. This paper not only explores
the trade off space in detail, but also addresses the performance
overheads involved in such schemes. However, we consider only
perfect secret sharing schemes (which are a special case ofp-m-
n schemes), since distributed share renewal algorithms (e.g. [10])
have been developed only for these schemes.

3. BACKGROUND

3.1 Secret Sharing Schemes
Secret sharing schemes are techniques where asecret is encoded

into several fragments, calledshares, such that certain combina-
tions of shares can together reveal the encoded secret. Inper-
fect secret sharing schemes, invalid combinations of shares give
no information on the encoded secret. Thus, perfect secret sharing
schemes are information-theoretic secure. Perfect secret sharing
schemes also allow share renewal, which is the process of distribu-
tively changing the shares such that the encoded secret is the same.
Frequent share renewal can provide strong data confidentiality.

In perfectthreshold secret sharing schemes, a secret is encoded
into q shares such that anyk out of theq shares can be used to
recover the encoded secret, while any(k − 1) shares give no in-
formation on the encoded secret. Such schemes are also called
(k, q)-threshold schemes. Shamir’s scheme [19] is an example of a



(k, q)-threshold perfect secret sharing scheme, wherek ≤ q.
In the next subsection, we describe Ito, Saito, and Nishizeki’s

share assignment scheme [11], which realizes any access structure
using a(q, q)-threshold secret sharing scheme.

3.2 Ito, Saito, and Nishizeki’s Share Assign-
ment Scheme

We describe Ito, Saito, and Nishizeki’s share assignment scheme
[11] for a threshold access structure. Consider a set ofr participants
{P1, P2, ..., Pr} such that any(m + 1) participants can pool their
shares to recover the encoded secret. For a secret sharing scheme
realizing this access structure, first list the setB consisting of all
possible combinations ofm participants.
Thus,B = {B1, B2, ..., Bq}, whereq =

`

r

m

´

.
Next, encode the secret using a(q, q)-threshold secret sharing

scheme, whereq =
`

r

m

´

. Let the shares thus generated be denoted
by s = {s1, s2, ..., sq}, where q =

`

r

m

´

. The set of shares as-
signed to participantPi is given by the functiong(i) = {sj, Pi /∈
Bj, 1 ≤ j ≤ q}. Thus, each participant receives

`

r−1
m

´

shares, and
each share is stored at(r − m) participants.

For example, consider a set of four participants such that at least
three participants must pool their shares to find the encoded secret.
Thenr = 4, m = 2, and the setB = {(P1, P2), (P1, P3), (P1, P4),
(P2, P3), (P2, P4), (P3, P4)}. Next, generate6 shares of the secret
such that all six of them are needed to decode the secret. Denote
the six shares by{s1, s2, s3, s4, s5, s6}.

From the share assignment functiong,

ParticipantP1 gets shares(s4, s5, s6),
ParticipantP2 gets shares(s2, s3, s6),
ParticipantP3 gets shares(s1, s3, s5),
ParticipantP4 gets shares(s1, s2, s4).

Thus, any two participants can pool their shares to find out only
five of the six shares. Without the knowledge of the sixth share,
the encoded secret cannot be found out. Any three participants can
pool their shares to find out all six shares needed to recover the
encoded secret.

4. COMPUTATION OVERHEAD OF PER-
FECT SECRET SHARING SCHEMES

In this section, we show the high computation overhead of some
well known secret sharing schemes, which is the main reason why
such schemes are not widely used for distributed data storage. We
contrast the computation overheads with that of the Rijndael (AES)
symmetric-key encryption algorithm to illustrate this point. We
then show that XOR secret sharing combined with replication-and-
voting mechanisms has a computational overhead similar to that
of Rijndael. All performance measurements reported in this pa-
per were done on an Intel Pentium4 3GHz processor with256 MB
RAM running Linux2.6.9. The MIRACL [1] library was used to
implement all the cryptographic algorithms. In Section 8, we also
compare the communication overheads of the techniques developed
against encryption and secret sharing.

Shamir’s scheme [19] is an example of a(k, q)-threshold per-
fect secret sharing scheme, wherek ≤ q. Table 1 lists the time
taken to compute shares (sharing), and the time taken to compute
the secret given enough shares (recovery), for an8 KB block of
data using Shamir’s scheme, for a selection of(k, q) values. Secret
sharing and recovery are done during writes and reads, respectively,
and their overheads are therefore important. For Shamir’s scheme,
since the computations are done modulo a primep, the size of this
modulus is also a factor in the throughput measurements.

Table 1: Computation times for Shamir’s scheme (8 KB block)
Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 4.956 ms 826 µs 14.87 ms 1.446 ms
512 bits 6.192 ms 1.290 ms 20.00 ms 2.064 ms
1024 bits 10.53 ms 2.145 ms 34.65 ms 3.575 ms

Table 2: Computation times for 8 KB block using Shamir’s
with Feldman’s scheme (Feldman’s prime length = 1025 bits).

Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 2.461 s 2.616 s 4.956 s 7.228 s
512 bits 1.037 s 1.097 s 2.090 s 2.795 s
1024 bits 728 ms 747.5 ms 1.464 s 1.809 s

There are two attacks possible when data is stored using secret
sharing techniques. One attack is by a faulty client that generates
inconsistent shares during writes, i.e., different subsets ofk shares
out of theq shares will decode to different values. The other at-
tack is when a faulty server returns incorrect or arbitrary shares
during reads. Such attacks can be detected using verifiable secret
sharing schemes [6]. In such schemes, some common data (called
witnesses) for all the shares is computed by a client during writes
and sent to all the servers. Before storing the shares and the wit-
nesses, the servers check the shares received against the witnesses
and arrive at a consensus on the consistency of the shares. During
reads, a client will first determine the witnesses and check the va-
lidity of each share with the witnesses before proceeding to decode
the sensitive data. Verifiable secret sharing schemes significantly
increase the computation overheads during the secret sharing (en-
coding) and secret recovery (decoding) processes. A widely used
method for verifiable secret sharing is Feldman’s scheme [8]. Ta-
ble 2 gives the computation times during secret sharing and secret
recovery of an8 KB block of data when Feldman’s scheme is used
with Shamir’s scheme.

For comparison purposes, the throughputs of the AES Rijndael
symmetric-key encryption algorithm are given in Table 3.

From Tables 1–3, it is clear that the computation times of Shamir’s
scheme and Feldman’s scheme are far higher than those of symmetric-
key encryption and, in fact, this performance is well below what
is acceptable for modern data storage systems. The secret recov-
ery computation time for verifiable secret sharing are at least3000
times slower than the Rijndael decryption times. The above anal-
yses also indicate, in part, why perfect secret sharing techniques
have not been adopted for generic data to date. We reduce the com-
putation overheads by using the following two mechanisms:

Mechanism 1: Use a (q, q) perfect secret sharing scheme:When
k = q, i.e., all the shares are needed to recover the secret, then
“inconsistent” secret sharing is not possible. That is, there is no
question of different subsets ofk shares out ofq shares decoding to
different values because there is only one such subset, sincek = q.
Hence, verifiable secret sharing schemes can be avoided. Further,
a (q, q) perfect secret sharing scheme can be realized using sim-
ple bit-wise XOR operations. If each data bit is thought of as a
separate secret, then each share is a single bit and XOR of theq
shares (orq bits) gives the encoded secret bit. In practice, XOR
secret sharing can be implemented with word-wide operations for
efficiency. Table 4 lists the computation times during secret shar-
ing and secret recovery for a selection of(q, q) values for XOR
secret sharing. Note that XOR secret sharing is also a perfect se-



Table 3: Computation time for AES (CBC mode, 8 KB block).
Key length Encryption Decryption

16 bytes 205 µs 205 µs
24 bytes 230 µs 241 µs
32 bytes 282 µs 271 µs

Table 4: Computation times for XOR sharing (8 KB block).
(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 35 µs
(10, 10) 732 µs 60 µs
(20, 20) 1.494 ms 140 µs

cret sharing scheme. The only constraint compared to the general
(k, q)-threshold scheme withk < q is that allq shares must be re-
covered to reconstruct the secret. Compared with the computation
times using Shamir’s scheme (Table 1), the computation times us-
ing XOR secret sharing are much lower.

Mechanism 2: Use replication-and-voting to determine incor-
rect shares during reads:To detect incorrect shares that may be
returned by malicious servers during reads, we propose that each
share is replicated at enough servers such that if at least a thresh-
old of servers return the same share during a read, then that share is
correct and can be used for the secret recovery computation. This is
the traditional technique used for managing replicated data, which
we apply for each share. If the number of malicious servers is de-
noted byb, then for each share at least(2b + 1) responses must
be received. The value returned by at least(b + 1) servers is the
correct value of the share being read.

Table 5 gives the computation times for determining each share
from (2b + 1) responses, whereb is the number of possibly ma-
licious servers. Note that the numbers are given for each share.
Hence, the computation time during secret recovery must now in-
clude the product of the time taken to determine each share from
(2b + 1) responses and the number of shares. The secret sharing
computation time will remain unchanged as no additional shares
are generated. The secret sharing and recovery computation times
for XOR secret sharing along with voting forb = 3 are shown in
Table 6. Compared with the computation times of verifiable secret
sharing schemes (Table 2), the computation times of XOR secret
sharing with voting are much lower, and are in the same order of
magnitude as those of the Rijndael encryption algorithm (Table 3).

Summarizing, perfect secret sharing schemes can be used for
fault-tolerant and secure distributed data storage by combining them
with verifiable secret sharing schemes. Using the computation la-
tency of Rijndael as the benchmark, we have shown that well known
verifiable secret sharing techniques such as the combination of Feld-
man’s scheme with Shamir’s scheme are too slow to be used for
large volumes of data. The computation overheads can be drasti-
cally reduced by using instead a(q, q) perfect secret sharing scheme
(namely, XOR secret sharing) along with replication-and-voting
mechanisms. The computation times are comparable to those of
Rijndael. In the rest of the paper, we describe in detail how XOR
secret sharing with replication-and-voting mechanisms can be com-
bined, and the benefits of this approach.

5. FAULT AND ADVERSARY MODEL
Since our data storage service must offer availability, integrity,

and confidentiality guarantees for the stored data, we identify the
following three types of server faults:

Table 5: Computation times for voting out of 2b+1 responses to
determine a share of size 8 KB. Measurements reflect the best
case where there are no incorrect responses.

b 1 2 3 4 5
Computation Time (µs) 13.75 25 40 50 65

Table 6: Secret sharing and recovery computation times for
XOR secret sharing with voting (8 KB block, b = 3).

(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 235 µs
(10, 10) 732 µs 460 µs
(20, 20) 1.494 ms 940 µs

• Crash: A server is said to becrashed if it stops performing
all computations and neither sends nor receives messages on
the network.

• Byzantine: A Byzantine-faulty server can deviate arbitrarily
from its specified protocol. A Byzantine faulty server can
also reveal the shares stored locally and its internal state to
an adversary.

• Leakage-only: A server is said to exhibit a leakage-only
fault if it can reveal its shares and state to an adversary, but
executes its specified protocol faithfully.

The proposed fault model allows for direct reasoning about the
availability, integrity, and confidentiality properties of the storage
service. In availability attacks, such as Denial-of-Service attacks,
the resources available for legitimate use of the service are con-
strained by, for example, limiting network bandwidth and by in-
creasing server loads. Crash faults are a more severe form of at-
tack, where a server stops execution completely and permanently.
A storage service that can tolerate a high number of crash faults
is also a highly-available storage service, and will be able to tol-
erate Denial-of-Service attacks to a greater degree. Integrity at-
tacks, in the storage service model we consider, can consist of ei-
ther compromising servers and altering their behavior or compro-
mising servers and arbitrarily modifying the shares stored in them.
Such attacks are represented by Byzantine faults. Confidentiality
attacks can be launched only by compromising servers to obtain
sufficient shares, as we focus only on the share allocation problem
and not on actual protocols. These are modeled by Byzantine and
leakage-only faults.

We use the threshold fault model for each of the three types of
faults. We assume that not more thanc servers can crash, not more
thanb servers can be Byzantine-faulty, and not more thanl servers
can exhibit leakage-only faults.

6. COMBINING SECRET SHARING AND
REPLICATION

Our approach for a fault tolerant and secure data storage service
is to use perfect threshold secret sharing for data confidentiality,
and to use replication-based mechanisms to manage each share for
crash and Byzantine fault tolerance. We first describe a straight-
forward method of using this approach, called thedirect approach,
and show that it suffers from requiring a large number of storage
servers. We then introduce theGridSharing framework, where a
tradeoff between the number of servers required and the storage
space needed at each server is achieved. This is a worthwhile trade-
off because storage space is cheap.



Figure 1: The Direct Approach: Servers are arranged in a log-
ical grid having (l+b+1) rows, with at least (3b+c+1) servers in
each row. Secret sharing is done across rows, with a distinct
share assigned to each row. Shares are replicated along rows.

6.1 The Direct Approach
We are interested in designing a share allocation scheme given

N storage servers, where not more thanl servers can be leakage-
only faulty, not more thanb servers can be Byzantine faulty, and
not more thanc servers can crash. The direct solution to this is to
use a(l+ b+1, l+ b+1)-threshold perfect secret sharing scheme.
Each share is given to a distinct set ofx servers. The setup can be
envisioned as theN servers arranged in the form of a logical grid
with (l + b + 1) rows andx columns, as shown in Figure 1.

Servers in the same row store the same shares. Replication of
shares is used to achieve crash and Byzantine fault tolerance. Data
confidentiality is achieved using secret sharing. The secret sharing
is done across rows. Thus,(l + b + 1) rows are required, with each
share assigned to a distinct row. The compromise of any(l + b)
servers will give only up to(l + b) shares to an adversary, but all
(l + b + 1) shares are needed to recover the secret.

When secrets are read and written, the shares are read and writ-
ten using replication-based protocols. For the purposes of this and
subsequent analyses, we assume the following simple replication
protocol. To write a secretS, the user generates(l + b + 1) shares
such that their bitwise-XOR gives the secretS. The user writes to
each server its assigned share. Thus, in the example depicted in
Figure 1, the user will write to each server in row1 the shares1, to
each server in row2 the shares2, and so on.

When the secretS is to be read at a later time, the same user or a
different user will need to only contact some set of servers to read
all the shares. Consider how shares1 is read in our example. The
shares1 is stored in row1, which consists ofx servers. The user
needs to contact only(2b+1) of these servers to determines1, since
only a maximum ofb servers can be Byzantine faulty. The shares1

returned by at least(b + 1) servers must have been returned by at
least one server that is not Byzantine-faulty, and therefore should
be correct. The user must obtain at least(2b + 1) responses to de-
termines1, but up to(c+ b) servers can fail to return any response.
Assuming clients connect to the servers over an asynchronous net-
work so that they are unable to detect server failures, each share
must be written to at least((2b + 1) + (c + b)) = (3b + c + 1)
servers for reads to be successful in the presence ofb Byzantine
failures andc crash failures in the system.

Thus, each share must be stored on at least(3b + c + 1) servers.
Thus,x = (3b+ c+1), which givesN ≥ (l + b+1)(3b+ c+1).
Note that the given description for writes and reads is only an
approach for a possible replication-based protocol to manage the
shares. We have overlooked the need for the use of timestamps
which are common to all the shares. All the shares must be writ-
ten as part of a single write operation. The approach described is

Figure 2: The GridSharing framework: N servers are arranged
in a logical grid having r rows. Secret sharing is done across
rows, and shares are replicated along rows. Setup shown for N
= 20, l = 1, b = 1, and c = 6. Note that each server holds 3 shares.

just sufficient to derive a lower bound on the number of servers re-
quired to store each share. This lower bound will change based on
the assumptions on the system model and the kind of read-write se-
mantics to be realized. The minimum number of servers needed to
maintain each share is the only point in the design of the framework
that is dependent on the choice of the replication protocol and its
underlying assumptions.

Thus, to toleratel leakage-only faults,b Byzantine faults, andc
crash faults, at least(l+ b+1)(3b+ c+1) servers are required for
this approach. Forl = b = c = 2, at least45 servers are required.
That is, only up to6/45 = 13.3% servers can be faulty. This
is inefficient in terms of the number of storage servers required.
However, the storage blowup at each server is one, as the size of
each share is the same as the size of the encoded secret. Also, the
bare minimum number of shares are generated, which is(l + b +
1). Thus, the computation times during secret sharing (writes) and
secret recovery (reads) at the clients are kept as small as possible.

In the next section, we describe theGridSharing framework,
where we balance the strengths and the weakness of thedirect ap-
proach. We tradeoff the number of storage servers required against
the storage blowup at each server and the total number of shares
generated for each secret.

6.2 The GridSharing Framework
Similar to thedirect approach, theGridSharing framework con-

sists ofN servers, where not more thanc servers can crash, not
more thanb servers can be Byzantine faulty, and not more than
l servers can exhibit leakage-only faults. TheN servers are ar-
ranged in the form of a logical rectangular grid withr rows andN

r

columns, where for simplicity it is assumed thatN is a multiple of
r. The arrangement is depicted in Figure 2.

Servers in the same row store the same shares. Thus, tolerance
to crash and Byzantine failures is achieved. Data confidentiality is
achieved using secret sharing. The secret sharing is done across
rows. Ito et al’s [11] share assignment scheme is used to assign
shares to the rows. Thus, as per the terminology used in Sec-
tion 3.2, ther rows are ther participants amongst which shares are
distributed. Since up tol servers can be leakage-only faulty (reveal
their shares to an adversary) and up tob Byzantine-faulty servers
can also do the same, shares from up to(l+b) rows can be disclosed

to an adversary. From Section 3.2, an
“

`

r

l+b

´

,
`

r

l+b

´

”

-threshold

perfect secret sharing scheme can be used to tolerate(l + b) faulty
servers inr rows.

Figure 2 gives an example whereN = 20 servers are arranged in
a rectangular grid withr = 4 rows. If it is necessary to tolerateb =
1 Byzantine fault andl = 1 leakage-only fault, then a
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(6, 6) XOR secret sharing scheme will have to be used. Assume a
secretS is encoded into six shares(s1, s2, s3, s4, s5, s6) such that
S = s1⊕s2⊕s3⊕s4⊕s5⊕s6. That is, each bit in the secretS is the
XOR of the corresponding bits in the sharess1, s2, s3, s4, s5, s6.
Then according to the share assignment functiong given in Sec-
tion 3.2,

Servers in row1 get shares(s4, s5, s6),
Servers in row2 get shares(s2, s3, s6),
Servers in row3 get shares(s1, s3, s5),
Servers in row4 get shares(s1, s2, s4).

The choice of Ito et al’s share assignment scheme is motivated by
the fact that each share is assigned to multiple rows. This is in line
with our principle of using replication of shares to achieve Byzan-
tine and crash fault tolerance. Note also that, as in thedirect ap-
proach, shares are replicated along rows. As argued in Section 6.1,
each share must be stored on at least(3b+c+1) servers. In the pro-
posed framework, each share is assigned to(r− (l + b)) rows, and
each row hasN

r
servers. Thus, each share is stored at(r−(l+b))N

r

servers, and this must be at least(3b + c + 1). Thus,

(r − (l + b))
N

r
≥ 3b + c + 1 (1)

which gives

r ≥
N(l + b)

N − (3b + c + 1)
(2)

Inequality 2 gives the smallest number of rows possible for the

framework. Thus,r can vary in the range
h

N(l+b)
N−(3b+t+1)

, N
i

. Also,

r must be greater than(l + b), otherwise a Byzantine fault or a
leakage-only fault in each row will give the adversary all the shares
to recover the encoded data. From Inequality 2, it is obvious that
the lower bound onr is greater than(l + b).

For a givenl, b, c, andr, Inequality 1 can be rewritten as

N ≥
3b + c + 1

1 − l+b

r

(3)

to give a lower bound on the number of serversN required. The
lower bound is minimized for a givenl, b, andc whenr is at its
maximum value, which isN . Substitutingr = N in Inequality 3
gives the following requirement forN for toleratingl leakage-only
faults,b Byzantine faults, andc crash faults:

N ≥ 4b + l + c + 1 (4)

Thus, as the number of rowsr is increased from(l + b + 1) to
(4b + l + c + 1), the minimum number of servers required will
decrease. Whenr = (4b + l + c + 1), the smallest number of
servers needed to tolerateb Byzantine,c crash, andl leakage-only
faults will be reached. Forr > (4b + l + c + 1), there will be
only one column, the number of serversN will be the same as the
number of rowsr, andN will increase withr.

7. PERFORMANCE ANALYSIS OF GRID-
SHARING

7.1 Performance Metrics
This section defines some performance metrics, whose relation

with the fault tolerance and security propertiesl, b, andc, and the
number of rowsr, will be described in this section.

• min(N): is the minimum number of servers required for a
givenl, b, c, andr. This is given by the smallestN satisfying
Inequality 3, withN being a multiple ofr.

• #Shares: The total number of shares generated per secret.
For the proposed framework,#Shares=

`

r

l+b

´

.

• Storage Blowup Per Server: is defined as the ratio of the
storage space taken at each server to the size of the data en-
coded. For the proposed framework, the storage blowup fac-
tor is

`

r−1
l+b

´

. Since we use the XOR secret sharing scheme,
the size of a share is the same as the size of the secret.

• Secret Sharing and Secret Recovery Computation Times:
The secret sharing computation time is the time taken to gen-
erate (#Shares) shares of an8 KB block of data. The se-
cret recovery computation time is the sum of two compo-
nents. The first component is the time taken to determine
the correct (#Shares) shares from(2b + 1) responses for
each share, whereb is the Byzantine fault tolerance thresh-
old. We assume the best case where there are no incorrect
servers when evaluating this component. The second com-
ponent is the time taken to compute the data block once the
correct (#Shares) shares have been determined. The size
of the data block and each share are8 KB. The measure-
ments were taken on a Pentium4 3GHz computer with256
MB RAM running Linux 2.6.9. All measurements were per-
formed in memory and involved no disk and network I/O.

7.2 Effect of Grid Dimension
For given security and fault tolerance thresholdsl, b, andc, the

performance metrics can be traded off against each other by vary-
ing the number of rowsr in the framework. The secret sharing and
recovery computation times are dependent on#Shares, which is
dependent onr and(l + b). The smaller the number of rowsr, the
fewer the number of shares (#Shares), and the lower the compu-
tation times during secret sharing and secret recovery. But ifr is
increased from(l + b + 1) to (4b + l + c + 1), from Inequality 3,
the minimum number of servers required will decrease. Thus, the
number of rows affectsmin(N) and the secret sharing and recov-
ery computation times in opposing ways. Forl = 2, b = 2, and
c = 2, the tradeoff space is given in Table 7.

Table 7 shows that increasing the number of rows from(l+b+1)
reduces the minimum number of servers required for that configu-
ration while increasing the number of shares,#Shares, needed to
store each secret. The storage capacity required at each server thus
increases withr. Increasing#Shares will also increase the com-
putation overheads at the users during the secret sharing and secret
recovery processes. The practical range ofr is thus limited by the
storage blowup and the computation overheads.

When there are five rows in the framework, each row gets a dis-
tinct share (which is, thedirect approach). The number of shares
(#Shares) generated is minimum, and the computation times are
small. But45 servers are required for this configuration. By having
7 rows in the framework, the minimum number of servers required
is lowered by more than half to21 servers. For given fault tolerance
and security thresholds, having fewer servers implies that a higher
percentage of faulty servers is tolerated. Having fewer servers will
also increase the manageability of the system. On the other hand,
the storage blowup at each server increases by a factor of15. Since
storage cost is cheap, this is a worthwhile tradeoff. The compu-
tation times are also at acceptable values whenr = 7. Thus, the
choice of the number of rows in the framework can be used to arrive
at a suitable tradeoff point between the number of servers required,
and the storage blowup and the secret sharing and recovery compu-
tation overheads.



Table 7: Effect of increasing number of rows r on performance when l = 2, b = 2, and c = 2

r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
5 45 5 1 333 µs 160 µs
6 30 15 5 1.103 ms 490 µs
7 21 35 15 2.668 ms 1.150 ms
8 24 70 35 5.480 ms 3.020 ms
9 18 126 70 10.31 ms 6.276 ms

Table 8: Effect of increasing l on performance when b = 2, c = 2, andmin(N) ≤ 35 servers

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 5 25 10 4 732 µs 310 µs
2 6 30 15 5 1.103 ms 490 µs
3 7 35 21 6 1.568 ms 706 µs
4 9 27 84 28 6.750 ms 4.084 ms
5 10 30 120 36 9.675 ms 6.120 ms

7.3 Effect of Fault Thresholds Given N Servers
In this section, we assume that35 data storage servers are avail-

able, and investigate the relation between the fault tolerance and
security thresholdsl, b, andc and the performance metrics. We
consider three cases. In each case, we fix two of the thresholds
at two servers, and increase the other threshold from one to five
servers. Tables 8, 9, and 10 show the three different cases. For
each combination of(l, b, c), we fix the number of rows such that
the secret recovery computation time is the smallest possible for the
given configuration. Since the secret recovery computation time
decreases with increasingr, for the given(l, b, c), r is set to the
smallest value (r ≥ N(l+b)

N−(3b+c+1)
) such thatmin(N) is not more

than35 servers.
From Table 8, increasing the leakage-only fault thresholdl leads

to a tolerable increase in the storage blowup per server, while the
secret sharing and recovery computation times become high for
l ≥ 4 servers. The effect of increasing the Byzantine fault threshold
b, as shown in Table 9, has a more adverse effect on performance.
The storage blowup per server and the secret sharing and recov-
ery computation times increase rapidly with increasingb. Thus, to
achieve a very high performance with35 servers, only a relatively
small number of Byzantine failures can be tolerated.

On the other hand, the framework can accomodate more crash
failures without any substantial performance impact, as shown in
Table 10. Increasing the crash fault threshold from one to five
servers leaves the performance metrics mostly unchanged. The
storage blowup at each server is tolerable and the computation through-
puts are maintained at acceptable levels.

The examples considered above demonstrate that the framework
can tolerate crash failures with little performance impact, leakage-
only faults with medium peformance impact, and a limited number
of Byzantine faults. The maximum number of faults that can be tol-
erated is given by Equation 4. Thus, given35 servers, whenb = 2
and c = 2, up to 24 leakage-only faults can be tolerated; when
l = 2 andc = 2, up to7 Byzantine faults can be tolerated; and
whenl = 2 andb = 2, up to24 crash faults can be tolerated. How-
ever, practical limits on the secret sharing and recovery computa-
tion times and the storage blowup at each server are a more severe
restriction on the actual range of faults that can be tolerated. Notice
that, except for high values for the Byzantine fault thresholdb, the
secret sharing and recovery computation times are much smaller
than the figures given for verifiable secret sharing in Table 2.

7.4 Effect of Fault Thresholds Given Restric-
tion on Secret Recovery Computation Time

Since increasingl, andb in particular, can lead to a substantial
increase in secret sharing and secret recovery computation times,
as observed in Table 8 and Table 9, we remove the requirement of
having only35 storage servers available, and instead impose the
requirement that the secret recovery computation time for8 KB of
data must be less than1.6 ms. The secret recovery computation
time is important when reads are more frequent than writes, which
is often the case. A secret recovery computation time of1.6 ms
for 8 KB of data is approximately six and eight times slower than
the decryption time using the Rijndael encryption algorithm for key
sizes of32 bytes and16 bytes respectively, as was shown in Table 3.

Similar to Section 7.3, we consider three cases. In each case, we
fix two of the fault thresholds at two servers, and increase the other
fault threshold from one to five servers. Tables 11, 12, and 13 show
the three different cases. For each combination of(l, b, c), we fix
the number of rowsr that gives the smallestmin(N) while main-
taining the secret recovery computation time to be less than1.6 ms.
Restricting the secret recovery computation time limits the num-
ber of shares (#Shares) generated, which in turn keeps the storage
blowup at each server reasonable. In Table 11, the minimum num-
ber of servers required (min(N)) shows a moderate increase with
increasingl. Whenl = 5 servers, a total of9 (l + b + c) servers
out of 45 servers are faulty. That is, up to20% of the servers can
be faulty (leakage-only, Byzantine, or crash), which should be ac-
ceptable. In Table 12, the minimum number of servers required
(min(N)) increases rapidly with the Byzantine fault thresholdb.
Thus, the proposed framework is suitable for tolerating a small
number of Byzantine faults.

In Table 13, the computation throughputs and the storage blowup
remain the same with increasing crash fault thresholdc for the ex-
ample considered. With21 servers, up to two crash faults are tol-
erated, and with28 servers, up to5 crash faults can be tolerated.
Note that with5 crash faults, a total of9 servers out of28 servers
can be faulty. That is, up to32% of the servers can be faulty, which
is a standard property of replica management protocols that tolerate
only Byzantine faults. While in this example most of the faults are
crash faults, the number of servers required is reasonable.

Thus, from Tables 11, 12, and 13, low secret recovery compu-
tation times can be achieved with acceptable requirements on the
number of servers and the storage blowup at each server. As ob-



Table 9: Effect of increasing b on performance when l = 2, c = 2, andmin(N) ≤ 35 servers

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 4 24 4 1 267 µs 80 µs
2 6 30 15 5 1.103 ms 490 µs
3 8 32 56 21 4.315 ms 2.740 ms
4 11 33 462 210 38.88 ms 37.41 ms
5 16 32 11440 6435 3.104 sec 2.319 sec

Table 10: Effect of increasing c on performance when l = 2, b = 2, and min(N) ≤ 35 servers

c r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 24 15 5 1.103 ms 490 µs
2 6 30 15 5 1.103 ms 490 µs
3 6 30 15 5 1.103 ms 490 µs
4 7 28 35 15 2.668 ms 1.150 ms
5 7 28 35 15 2.668 ms 1.150 ms

served in Section 7.3, the number of servers required for tolerating
crash and leakage-only faults is acceptable, while practical con-
siderations will restrict the number of Byzantine faults that can be
tolerated. Note that, in all the analyses, the number of rows was
manipulated to arrive at the optimum configuration.

8. DISCUSSION
While theGridSharing framework aims to decrease the compu-

tation overheads incurred during secret sharing and recovery, the
storage blowup at each server is increased, which increases the
communication overhead during reads and writes. Table 14 shows
the computation and communication overheads during the secret
sharing (writes) and secret recovery (reads) processes for encryp-
tion, verifiable secret sharing (VSS), and theGridSharing frame-
work when the fault thresholdsl, b, andc are all equal to one.

The total time taken during a write operation is composed of
three parts - the secret sharing operation, encryption of the shares
to establish secure channels between the client and the servers, and
the communication time. Similarly, the total time taken during a
read operation consists of the communication time in getting the
required number of shares, decrypting the shares from the secure
channels, and then recovering the secret. For the communication
time, it is assumed that the network bandwidth between the client
and the servers is100 Mbps. Note that our read / write proto-
col is a very simple one where a client writes to all servers and
reads from the required number of servers. Timestamps and the use
of Message Authentication Codes for providing message integrity
during communication have been overlooked. It is also assumed
that the client reliably gives each server its share(s) during writes,
thus eliminating the need to implement a reliable broadcast proto-
col. The figures given serve only to compare between GridShar-
ing, verifiable secret sharing schemes (namely, the combination of
Shamir’s and Feldman’s scheme), and encryption.

The figures given for encryption do not take into account the
overheads due to the storage and retrieval of cryptographic keys.
The encrypted data need not be re-encrypted to achieve secure chan-
nels. The read and write latencies are thus very small. Only the
minimum number of servers (= (3b+ c+1)) are required, and the
storage blowup at each server is one. Data storage using encryption-
and-replication is hence an attractive option when performance is
critical. However, as argued in Section 1, the security of the scheme
relies on the secure maintenance of the cryptographic keys.

For VSS, the number of servers required is only5 (= (3b +
c + 1)). A (3, 5)-threshold Shamir’s scheme is used, because up
to two servers (= (l + b)) can leak shares to an adversary. The
write and read latencies of VSS are over213x and346x slower
than those of encryption. The secret sharing and recovery compu-
tation overheads account for over98% of the total write and read
latencies. In GridSharing, the secret sharing and recovery com-
putation overheads are decreased substantially, while the commu-
nication overheads are increased. However, the overall write and
read latencies for GridSharing are still much less than that of VSS.
When the number of rowsr is set to7 in GridSharing, the write
and read operations are over7x and13x faster than that of VSS,
respectively. The number of servers required is only two more than
that of VSS, but the storage blowup at each server is15. Decreas-
ing r in GridSharing decreases the read and write latencies and the
storage blowup at the expense of requiring more storage servers.
Whenr = 3, the write and read latencies are comparable to those
of encryption, but three times more storage servers are required.

The increased storage blowup in GridSharing should not be a
limitation, as storage space is cheap. The fact that large amounts
of inexpensive, surplus storage are available has been exploited in
other applications, such as in [20], where the surplus storage space
is used to store different versions of objects for subsequent intru-
sion diagnosis and recovery.

Finally, we would like to note that the communication over-
heads when using replication-based protocols can be reduced using
other techniques. In [13], the use of cryptographic hashes when
reading replicated data has been shown to significantly reduce the
read latency. [22] investigates the tradeoff between computation
and communication overheads for several lossless compression al-
gorithms. Cryptographic hashes and compression algorithms re-
duce communication overheads while increasing the computation
overheads, which reinforces the need for reducing the computation
overheads during the secret sharing and recovery processes.

9. CONCLUSION
This paper presents a novel approach for realizing a secure and

fault tolerant data storage service in collaborative work environ-
ments. Key highlights of our work are:

• Perfect secret sharing schemes provide stronger security than
encryption-based techniques, and facilitate easier sharing of
data in collaborative work environments.



Table 11: Effect of increasing l on performance when b = 2, c = 2, and secret recovery computation time≤ 1.6 ms

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 18 20 10 1.494 ms 640 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 35 21 6 1.568 ms 706 µs
4 8 40 28 7 2.109 ms 928 µs
5 9 45 36 8 2.742 ms 1.196 ms

Table 12: Effect of increasing b on performance when l = 2, c = 2, and secret recovery computation time≤ 1.6 ms

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 12 20 10 1.494 ms 415 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 42 21 6 1.568 ms 1.02 ms
4 8 64 28 7 2.109 ms 1.60 ms
5 8 144 8 1 592 µs 576 µs

• Verifiable secret sharing schemes are typically used with per-
fect secret sharing schemes to achieve Byzantine fault toler-
ance. We show that verifiable secret sharing schemes incur
substantial computation overheads, and are much slower than
the Rijndael encryption algorithm.

• We use an(n, n)-threshold perfect secret sharing scheme,
namely the XOR secret sharing scheme, for confidentiality,
and manage each share using replication-based protocols for
Byzantine and crash fault tolerance. The computation over-
heads are reduced drastically when compared to verifiable
secret sharing schemes, but additional servers and storage ca-
pacities at each server are required. An example where the
secret recovery computation time was only up to 6 to 8 times
slower than the Rijndael decryption algorithm was given.

• We present an architectural framework, calledGridSharing,
whose dimension can be varied to tradeoff between the num-
ber of servers required, and the storage blowup and secret
sharing and recovery computation times. This property was
shown to be valuable in arriving at optimum configurations
for different fault thresholds.

• We introduce a new fault model consisting of crash, Byzan-
tine, andleakage-only faults for our analyses. We believe this
new fault model will prove to be useful for analyzing works
that are common to the areas of fault tolerance and security.

• For secret recovery computation times that are 6 to 8 times
slower than Rijndael decryption, we show that our proposed
framework provides good fault tolerance to leakage-only and
crash faults with acceptable overheads. However, in prac-
tice, resource limitations place a restriction on the number of
Byzantine server failures that can be tolerated.

• A rough comparison of the overheads, including read and
write latencies, between encryption-with-replication, verifi-
able secret sharing, andGridSharing was given. SinceGrid-
Sharing incurs a higher storage blowup at each server, the
read and write communication overheads are higher than with
VSS. Despite this, GridSharing has lower overall write and
read latencies than VSS. Write and read latencies compara-
ble to storing data using private-key encryption schemes can

be achieved at the expense of requiring a greater number of
storage servers.
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