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Abstract 
An integrated, hardware / software co-designed CISC 

processor is proposed and analyzed. The objectives are 
high performance and reduced complexity. Although the 
x86 ISA is targeted,  the overall approach is applicable to 
other CISC ISAs.   To provide high performance on fre-
quently executed code sequences, fully transparent dy-
namic translation software decomposes CISC superblocks 
into RISC-style micro-ops.  Then, pairs of dependent 
micro-ops are reordered and fused into macro-ops held in 
a large, concealed code cache. The macro-ops are fetched 
from the code cache and processed throughout the pipe-
line as single units.  Consequently, instruction level com-
munication and management are reduced, and processor 
resources such as the issue buffer and register file ports 
are better utilized. Moreover, fused instructions lead 
naturally to pipelined instruction scheduling (issue) logic, 
and collapsed 3-1 ALUs can be used, resulting in much 
simplified result forwarding logic. Steady state perform-
ance is evaluated for the SPEC2000 benchmarks,, and a 
proposed x86 implementation with complexity similar to a 
two-wide superscalar processor is shown to provide per-
formance (instructions per cycle) that is equivalent to a 
conventional four-wide superscalar processor.  

1. Introduction 
The most widely used ISA for general purpose com-

puting is a CISC – the x86. It is used in portable, desktop, 
and server systems. Furthermore, it is likely to be the 
dominant ISA for the next decade, probably longer. There 
are many challenging issues in implementing a CISC ISA 
such as the x86, however. These include the implementa-
tion of complex, multi-operation instructions, implicitly 
set condition codes, and the trap architecture. *

A major issue with implementing the x86 (and CISC 
ISAs in general) is suboptimal internal code sequences. 
Even if the original x86 binary is optimized, the many 
micro-ops produced by decomposing (“cracking”) the 
CISC instructions are not optimized [39]. Furthermore, 
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performing runtime optimization of the micro-ops is non-
trivial. In this paper, we propose and study an overall 
paradigm for the efficient and high performance imple-
mentation of an x86 processor.  The design employs a 
special implementation instruction set based on micro-
ops, a simplified but enhanced superscalar microarchitec-
ture, and a layer of concealed dynamic binary translation 
software that is co-designed with the hardware. 

A major optimization performed by the co-designed 
software is the combination of dependent micro-op pairs 
into fused “macro-ops” that are managed throughout the 
pipeline as single entities. Although a CISC ISA already 
has instructions that are essentially fused micro-ops, 
higher efficiency and performance can be achieved by 
first cracking the CISC instructions and then re-arranging 
and fusing them into different combinations than in the 
original code.  The fused pairs increase effective instruc-
tion level parallelism (ILP) for a given issue width and 
reduce inter-instruction communication. For example, 
collapsed 3-1 ALUs can be employed to reduce the size of 
the result forwarding network dramatically.  

Because implementing high quality optimizations 
such as macro-op fusing is a relatively complex task, we 
rely on dynamic translation software that is concealed 
from all conventional software. In fact, the translation 
software becomes part of the processor design; collec-
tively the hardware and software become a co-designed 
virtual machine (VM) [10, 11, 29, 42] implementing the 
x86 ISA.  

We consider an overall x86 implementation, and 
make a number of contributions; three of the more impor-
tant are the following.  

1) The co-designed VM approach is applied to an en-
hanced out-of-order superscalar implementation of a 
CISC ISA, the x86 ISA in particular.   

2) The macro-op execution pipeline combines collapsed 
3-1 ALU functional units with a pipelined 2-cycle 
macro-op scheduler. This execution engine achieves 
high performance, while also significantly reducing 
the pipeline backend complexity; for example, in the 
result forwarding network. 
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3) The advanced macro-op fusing algorithm both priori-
tizes critical dependences and ALU ops, and also 
fuses more dynamic instructions (55+ %) than re-
ported in other work [5, 8, 27, 38] (40% or less on 
average) for the common SPEC2000int benchmarks.      
The paper is organized as follows. Section 2 dis-

cusses related work. The co-designed x86 processor is 
outlined in section 3 from an architectural perspective. 
Section 4 elaborates key microarchitecture details. Sec-
tion 5 presents design evaluation and analysis. Section 6 
concludes the paper. 

2. Related Work  
2.1 x86 Processor Implementations    

Decoder logic in a typical high performance x86 im-
plementation decomposes instructions into one or more 
RISC-like micro-ops.  Some recent x86 implementations 
have gone in the direction of more complex internal op-
erations in certain pipeline stages, however. The AMD 
K7/K8 microarchitecture [9, 23] maps x86 instructions to 
internal Macro-Operations that are designed to reduce the 
dynamic operation count in the pipeline front-end. The 
front-end pipeline of the Intel Pentium M microarchitec-
ture [16] fuses ALU operations with memory stores, and 
memory loads with ALU operations as specified in the 
original x86 instructions. However, the operations in each 
pair are still individually scheduled and executed in the 
pipeline backend.  

The fundamental difference between our fused 
macro-ops and the AMD/Intel coarse-grain internal opera-
tions is that our macro-ops combine pairs of operations 
that (1) are suitable for processing as single entities for 
the entire pipeline, and (2) can be taken from different 
x86 instructions -- as our data shows, 70+% of the fused 
macro-ops combine operations from different x86 instruc-
tions. In contrast, AMD K7/K8 and Intel Pentium M 
group only micro-operations already contained in a single 
x86 instruction. In a sense, one could argue that rather 
than “fusing”, these implementations actually employ 
“reduced splitting.” In addition, these existing x86 im-
plementations maintain fused operations for only part of 
the pipeline, e.g. individual micro-operations are sched-
uled separately by single-cycle issue logic.   

2.2 Macro-op Execution     

The proposed microarchitecture evolved from prior 
work on coarse-grained instruction scheduling and execu-
tion [27, 28] and a dynamic binary translation approach 
for fusing dependent instruction pairs [20]. The work on 
coarse-grained scheduling [27] proposed hardware-based 
grouping of pairs of dependent RISC (Alpha) instructions 
into macro-ops to achieve pipelined instruction schedul-
ing. Compared with the hardware approach in [27, 28], 
we remove considerable complexity from the hardware 

and enable more sophisticated fusing heuristics, resulting 
in a larger number of fused macro-ops. Furthermore, we 
propose a new microarchitecture in which the front-end 
features dual-mode x86 decoders and the backend execu-
tion engine uniquely couples collapsed 3-1 ALUs with a 
2-cycle pipelined macro-op scheduler and simplified 
operand forwarding network. The software fusing algo-
rithm presented here is more advanced than that reported 
in [20]; it is based on the observations that it is easier to 
determine dependence criticality of ALU-ops, and fused 
ALU-ops better match the capabilities of a collapsed 
ALU. Finally, a major contribution over prior work is that 
we extend macro-op processing to the entire processor 
pipeline, realizing 4-wide superscalar performance with a 
2-wide macro-op pipeline.   

There are a number of related research projects. In-
struction-level distributed processing (ILDP)[25] carries 
the principle of combining dependent operations (strands) 
further than instruction pairs. However, instructions are 
not fused, and the highly clustered microarchitecture is 
considerably different from the one proposed here. Dy-
namic Strands [38] uses intensive hardware to form 
strands and involves major changes to superscalar pipe-
line stages, e.g. issue queue slots need more register tags 
for potentially (n+1) source registers of an n-ops strand. 
The Dataflow Mini-Graph [5] collapses multiple instruc-
tions in a small dataflow graph and evaluates performance 
with Alpha binaries. However, this approach needs static 
compiler support. Such a static approach is very difficult 
for x86 binaries because variable length instructions and 
embedded data lead to extremely complex code “discov-
ery” problems [19]. CCA, proposed in [8] either needs a 
very complex hardware fill unit to discover instruction 
groups or needs to generate new binaries, and thus will 
have difficulties in maintaining x86 binary compatibility. 
The fill unit in [15] also collapses some instruction pat-
terns. Continuous Optimization [12] and RENO [34] 
present novel dynamic optimizations at the rename stage. 
By completely removing some dynamic instructions (also 
performed in [39] by a hardware-based frame optimizer), 
they achieve some of the performance effects as fused 
macro-ops. Some of their optimizations are compatible 
with macro-op fusing. PARROT [1] is a hardware-based 
x86 dynamic optimization system capable of various 
optimizations. Compared with these hardware-intensive 
optimizing schemes, our software-based solution reduces 
hardware complexity and provides more flexibility for 
optimizations and implementation of subtle compatibility 
issues, especially involving traps [30].   

2.3 Co-designed Virtual Machines    

The Transmeta Crusoe and Efficeon processors [29, 
42] and IBM DAISY and BOA [10, 11] are examples of 
co-designed VMs. They contain translation/optimization 
software and a code cache, which resides in a region of 



physical memory that is completely hidden from all con-
ventional software.  In effect, the code cache [10, 11, 29] 
is a very large trace cache. The software is implementa-
tion-specific and is developed along with the hardware 
design. The co-designed VM systems from Transmeta and 
IBM use in-order VLIW hardware engines. As such, 
considerably heavier software optimization is required for 
translation and reordering instructions than our supersca-
lar implementation, which is capable of dynamic instruc-
tion scheduling and dataflow graph collapsing.  

3. Processor Overview 
There are two major components in a co-designed 

VM implementation -- the software binary translator/ 
optimizer and the supporting hardware microarchitecture. 
The interface between the two is the x86-specific imple-
mentation instruction set. 

A new feature of the proposed architecture, targeted 
specifically at CISC ISAs, is a two-level decoder, similar 
in some respects to the microcode engine in the Motorola 
68000 [40].  In the proposed implementation (Figure 1), 
the decoder first translates x86 instructions into “vertical” 
micro-ops -- the same fixed-format micro-ops we use as 
the implementation ISA (refer to the next subsection). 
Then, a second level decoder generates the decoded 
“horizontal” control signals used by the pipeline.  A two-
level decoder is especially suited to the x86 ISA because 
complex x86 instructions need to be cracked into micro-
ops and then decoded into pipeline control signals. Com-
pared with a single-level monolithic decode control table, 
the two-level decoder is smaller [40] by breaking the 
single monolithic decode table into two much smaller 
decode tables. It also yields decode logic that is not only 
more regular and flexible, but also more amenable to a 
fast clock.  

With the two-level decoder, the pipeline can process 
both x86 instructions (x86-mode) and fused macro-ops 
(macro-op mode). When in x86-mode, instructions pass 
through both decode levels; this would be done when a 
program starts up, for example.  In x86-mode, perform-
ance will be similar to a conventional x86 implementation 
(there is no dynamic optimization).  Profiling hardware 
such as that proposed by Merten et al. [32] detects fre-
quently-used code regions (“hotspots”). As hotspots are 
discovered, control is transferred to the VM software 
which organizes them into superblocks [21], translates 
and optimizes them as fused macro-ops, and places them 
in the concealed code cache. When executing this hotspot 
code in macro-op mode, the first level of decode in Figure 
1 is bypassed, and only the second (horizontal) decode 
level is used.  Then, the full benefits of the fused instruc-
tion set are realized.   While optimized instructions are 
executed from the code cache, the first-level decode logic 
can be powered off. 
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 Figure 1. Overview of the proposed x86 design 

As the processor runs, it will switch back and forth 
between x86 mode and macro-op mode, under the control 
of co-designed VM software.  In this paper, we focus on 
the macro-op mode of execution; our goal is to demon-
strate the steady-state performance benefits of the pro-
posed x86 design.  The x86 mode is intended to provide 
very good startup performance to address program startup 
concerns regarding dynamic translation. The full dual 
mode implementation and performance tradeoffs are the 
subject of research currently underway; this is being done 
in conjunction with our migration to a 64-bit x86 research 
infrastructure.   

3.1 The Implementation ISA 
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      Figure 2.  Formats for fusible micro-ops 

The implementation instruction set (the fusible ISA) 
is shown in Figure 2 and contains RISC-style micro-ops 
that target the x86 instruction set.  

The fusible micro-ops are encoded in 16-bit and 32-
bit formats. Using a 16/32-bit instruction format is not 
essential, but provides a denser encoding of translated 
instructions (and better I-cache performance) than a 32-bit 
only format as in most RISCs (the Cray Research and 
CDC machines [4, 36, 41] are notable exceptions). The 
32-bit formats encode three register operands and/or an 
immediate value. The 16-bit formats use an x86-like 2-
operand encoding in which one of the operands is both a 
source and a destination. This ISA is extended from an 
earlier version [20] by supporting 5-bit register designa-
tors in the 16-bit formats. This is done in anticipation of 
implementing the 64-bit x86 ISA, although results pre-
sented here are for the 32-bit version.  

The first bit of each micro-op indicates whether it 
should be fused with the immediately following micro-op 
to form a single macro-op.  The head of a fused macro-op 
is the first micro-op in the pair, and the tail is the second, 
dependent micro-op which consumes the value produced 
by the head.  To reduce pipeline complexity, e.g., in the 
rename and scheduling stages, fusing is performed only 



for dependent micro-op pairs that have a combined total 
of two or fewer unique input register operands. This as-
sures that the fused macro-ops can be easily handled by 
conventional instruction rename/issue logic and an execu-
tion engine with a collapsed 3-1 ALU. 

3.2 Dynamic Binary Translator 

The major task of the co-designed dynamic binary 
translation software is to translate and optimize hotspot 
x86 instructions via macro-op fusing.  Clearly, as exem-
plified by existing designs, finding x86 instruction 
boundaries and then cracking individual x86 instructions 
into micro-ops is lightweight enough that it can be per-
formed with hardware alone. However, our software 
translation algorithm not only translates, but also finds 
critical micro-op pairs for fusing and potentially performs 
other dynamic optimizations. This requires an overall 
analysis of the micro-ops, reordering of micro-ops, and 
fusing of pairs of operation taken from different x86 in-
structions.  

Many other runtime optimizations could also be per-
formed by the dynamic translation software, e.g. perform-
ing common sub-expression elimination and the Pentium 
M’s “stack engine” [16] cost-effectively in software, or 
even conducting “SIMDification” [1] to exploit SIMD 
functional units.  However, in this work we do not per-
form such optimizations. 

3.3 Microarchitecture 

The co-designed microarchitecture has the same ba-
sic stages as a conventional x86 superscalar pipeline. 
Consequently, it inherits most of the proven benefits of 
such designs. A key difference is that the proposed mi-
croarchitecture can process instructions at the coarser 
macro-op granularity throughout the entire pipeline. 

Because of the two-level decoders, there are two 
slightly different pipeline flows – one for executing x86 
code and the other for executing optimized, macro-op 
code (see Figure 3). For x86 code, the pipeline operates 
just as a conventional dynamic superscalar processor 
except that the instruction scheduler is pipelined for a 
faster clock cycle. After the decode stage, some adjacent 
micro-ops cracked from x86 instructions are re-fused as in 
some current x86 implementations, but no reordering or 
optimizations are done.  Note that even without optimized 
fusing of macro-ops, the pipeline is still a high perform-
ance superscalar processor for x86 instructions.  
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    Figure 3.  x86-mode and macro-op mode pipelines 
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Figure 4.  Macro-op execution overview  

For the optimized macro-op code, paired dependent 
micro-ops are placed in adjacent memory locations in the 
code cache and are identified via a special “fuse” bit. 
After they are fetched the two fused micro-ops are imme-
diately aligned and fused. From then on, macro-ops are 
processed throughout the pipeline as single units (Figure 
4). Macro-ops contain dependent micro-ops at a granular-
ity comparable to the original x86 CISC instructions; 
however, fused macro-ops are streamlined and appear as 
RISC-like operations to the pipeline. By processing fused 
micro-op pairs as a unit, processor resources such as reg-
ister ports and instruction dispatch/tracking logic are 
reduced or better utilized. Perhaps more importantly, the 
dependent micro-ops in a fused pair share a single issue 
queue slot and are awakened and selected for issue as a 
single entity. The number of issue buffer slots and issue 
width can then be reduced without affecting performance.   

After fusing, there are very few isolated single-cycle 
micro-ops that generate register results. Consequently, 
key pipeline stages can be designed as if the minimum 
instruction latency is two cycles.  The instruction issue 
stage is one of the more difficult pipeline stages in a con-
ventional design, because of the need to execute single 
cycle back-to-back instructions. In the proposed x86 
processor design, instruction issue can be pipelined in two 
stages, simply and without performance loss.   

Another critical stage in a conventional design is the 
ALU and result forwarding logic.  In our design, these 
two operations can be performed in two cycles.  In the 
first cycle, two dependent ALU micro-ops in a macro-op 
are executed by using a combination of a collapsed three-
input ALU [31, 35, 37] and a conventional two-input 
ALU. There is no need for an expensive and time-
consuming ALU-to-ALU operand forwarding network 
during the same cycle. Rather, the results only need to be 
sent to the register file (or ROB) at the end of the ALU 
execution cycle, and register file (or ROB) hardware can 
take care of providing results to dependent instructions 
during the next cycle as in a conventional design. 

The co-designed VM CISC implementation has other 
advantages. For example, unused legacy features in the 
architected ISA can be largely (or entirely) emulated by 
software. A simple microarchitecture reduces design risks 
and cost and yields a shorter time-to-market. Although it 
is true that the translation software must be validated for 
correctness, this translation software does not require 



physical design checking, does not require circuit timing 
verification, and if a bug is discovered late in the design 
process, it does not require re-spinning the silicon.  

4. Microarchitecture Details  
The major features to support our efficient x86 proc-

essor are the software runtime macro-op fusing algorithm, 
and macro-op processing in the co-designed superscalar 
pipeline. We elaborate on technical details regarding 
hotspot x86 code optimization and generated macro-op 
code execution.   

4.1 The Dynamic Translator: Macro-op Fusing  

Once a hot superblock is detected, the dynamic bi-
nary translator performs translation and fusing steps.  We 
use registers R0-R15 to map the x86 state (R0-R7 for 32-
bit code), registers R16- R31 are used mainly for tempo-
rary/scratch values, x86 hotspot optimization, code cache 
management, precise state recovery, etc. The fusing algo-
rithm substantially improves on the algorithm in [20]; the 
critical improvements will be summarized following the 
description of the algorithm. 

Two main heuristics are used for fusing.  (1)  Single-
cycle micro-ops are given higher priority as the head of a 
pair. It is easier to determine dependence criticality 
among ALU-ops. Furthermore, a non-fused multi-cycle 
micro-op will cause no IPC loss due to pipelined schedul-
ing logic, so there is reduced value in prioritizing it. (2) 
Higher priority is given to pairing micro-ops that are close 
together in the original x86 code sequence. The rationale 
is that these pairs are more likely to be on the program’s 
critical path and should be scheduled for fused execution 
in order to reduce the critical path latency.  Consecutive 
(or close) pairs also tend to be less problematic with re-
gard to other issues, e.g., extending register live ranges to 
provide precise x86 state recovery [30] when there is a 
trap. An additional constraint is maintaining the original 
ordering of all memory operations. This avoids complicat-
ing memory ordering hardware (beyond that used in a 
conventional superscalar design).  

A forward two-pass scan algorithm creates fused 
macro-ops quickly and effectively (Figure 5). After con-
structing the data dependence graph, the first forward 
scan considers single-cycle micro-ops one-by-one as tail 
candidates. For each tail candidate, the algorithm looks 
backwards in the micro-op stream to find a head. This is 
done by scanning from the second micro-op to the last in 
the superblock, attempting to fuse each not-yet-fused 
single-cycle micro-op with the nearest preceding, not-yet-
fused single-cycle micro-op that produces one of its input 
operands. The fusing rules favor dependent pairs with 
condition code dependence. And the fusing tests make 
sure that no fused macro-ops can have more than two 
distinct source operands, break any dependence in the 
original code, or break memory ordering.  

1. for(int pass = 1; pass <=2; pass++){ 
2.    for(each micro-op from 2nd to last) { 
3.       if(micro-op already fused)continue;  
4.       if (pass == 1 and micro-op multi-cycle, 
             e.g. mem-ops) continue;   
5.       look backward via dependence edges for  
         its head candidate; 
6.       if (heuristic fusing tests pass)  
             mark as a new fused pair;  
7.    } 
8. } 

  Figure 5. Two-pass fusing algorithm  

After the first scan, a second scan is performed; the 
second scan allows multi-cycle micro-ops as fusing can-
didate tails. The lines of pseudo-code specific to the two-
pass fusing algorithm are highlighted in Figure 5. 
1. lea    eax, DS:[edi + 01] 
2. mov    [DS:080b8658], eax 
3. movzx  ebx, SS:[ebp + ecx << 1] 
4. and    eax, 0000007f 
5. mov    edx, DS:[eax + esi << 0 + 0x7c] 
(a) x86 assembly 
1. ADD    Reax, Redi, 1 
2. ST     Reax, mem[R18]   
3. LDzx  Rebx, mem[Rebp + Recx << 1] 
4. AND   Reax, 0000007f 
5. ADD   R21,  Reax, Resi 
6. LD     Redx, mem[R21 + 0x7c] 
(b) micro-operations  
1. ADD  R20, Redi, 1  ::AND Reax,R20, 7f    
2. ST   R20, mem[R18] 
3. LDzx Rebx, mem[Rebp + Recx << 1] 
4. ADD  R21, Reax,Resi::LD Redx, mem[R21 + 0x7c] 
(c) Fused macro-ops    

Figure 6.  Two-pass fusing algorithm example 

Figure 6 illustrates fusing of dependent pairs into 
macro-ops. Figure 6a is a hot x86 code snippet taken from 
164.gzip in SPEC2000. The translator first cracks the x86 
binary into the micro-ops, as shown in Figure 6b. Reax 
denotes the native register to which the x86 eax register 
is mapped. The long immediate 080b8658 is allocated 
to register R18 due to its frequent usage.  After building 
the dependence graph, the two-pass fusing algorithm 
looks for pairs of dependent single-cycle ALU micro-ops 
during the first scan. In the example, the AND and the first 
ADD are fused. (Fused pairs are marked with double co-
lon, :: in Figure 6c). Reordering, as is done here, compli-
cates precise traps because the AND overwrites the value 
in register eax earlier than in the original code. Register 
assignment resolves this issue [30]; i.e., R20 is assigned 
to hold the result of the first ADD, retaining the original 
value of eax. During the second scan, the fusing algo-
rithm considers multi-cycle micro-ops (e.g., memory ops) 
as candidate tails. In this pass, the last two dependent 
micro-ops are fused as an ALU-head, LD-tail macro-op. 

The key to fusing macro-ops is to fuse more depend-
ent pairs on or near the critical path. The two-pass fusing 
algorithm fuses more single-cycle ALU pairs on the criti-



cal path than the single-pass method in [20] by observing 
that the criticality for ALU-ops is easier to model and that 
fused ALU-ops better match the collapsed ALU units. 
The single-pass algorithm [20] would fuse the first ADD 
aggressively with the following store, which typically 
would not be on the critical path.  Also, using memory 
instructions (especially stores) as tails may sometimes 
slow down the wakeup of the entire pair, thus losing cy-
cles when the head micro-op is critical for another de-
pendent micro-op. Although this fusing algorithm im-
provement comes with slightly higher translation over-
head and slightly fewer fused macro-ops overall, the 
generated code runs significantly faster with pipelined 
issue logic.  

Fused macro-ops serve as a means for re-organizing 
the operations in a CISC binary to better match state-of-
the-art pipelines, e.g. most x86 conditional branches are 
fused with the condition test instructions to dynamically 
form concise branches and reduce much of the x86 condi-
tion code communication. The x86 ISA also has limited 
general purpose registers (especially for the 32-bit x86) 
and the ISA is accumulator-based, i.e. one register oper-
and is both a source and destination. The consequent 
dependence graphs for micro-ops tend to be narrow and 
deep. This leads to good opportunities for fusing and most 
candidate dependent pairs have no more than two distinct 
source registers.  Additionally, micro-ops cracked from 
x86 code tend to have more memory operations than a 
typical RISC binary; fusing some memory operations can 
effectively improve machine bandwidth.  

4.2 The Pipeline Front-End: Macro-op Formation  

The front-end of the pipeline (Figure 7) is responsible 
for fetching, decoding instructions, and renaming source 
and target register identifiers. To support processing 
macro-ops, the front-end fuses adjacent micro-ops based 
on the fuse bits marked by the dynamic binary translator. 
Fetch, Align and Fuse  

Each cycle, the fetch stage brings in a 16-byte chunk 
of instruction bytes from the L1 instruction cache. After 
fetch, an align operation recognizes instruction bounda-
ries. x86-mode instructions are routed directly to the first 
level of the dual-mode decoders. 

The handling of optimized macro-op code is similar, 
but the complexity is lower due to dual-length 16-bit 
granularity micro-ops as opposed to arbitrary multi-length, 
byte-granularity x86 instructions. The effective fetch 
bandwidth, four to eight micro-ops per cycle, is a good 
match for the pipeline backend.  Micro-ops bypass the 
first level of the decoders and go to the second level di-
rectly. The first bit of each micro-op, the fuse bit, indi-
cates that it should be fused with the immediately follow-
ing micro-op. When a fused pair is indicated, the two 
micro-ops are aligned to a single pipeline lane, and they 
flow through the pipeline as a single entity.  
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  Figure 7. Front-end of macro-op execution 

Instruction Decode 
The x86 instructions pass through both decode levels 

and take three or more cycles (similar to conventional x86 
processors [9, 17, 23]) for x86 cracking and decoding. 
RISC-style micro-ops only pass through the second level 
and take one cycle to decode. For each pipeline lane, 
decoders for micro-ops have two simple level-two micro-
op decoders that can handle pairs of micro-ops (a fused 
macro-op pair in macro-op mode or two micro-ops in x86 
mode). These micro-op decoders decode the head and tail 
of a macro-op pair independently of each other. Bypass-
ing the level-one decoders results in an overall pipeline 
structure with fewer front-end stages when in macro-op 
mode than in x86 mode. The biggest performance advan-
tage of a shorter pipeline for macro-ops is reduced branch 
misprediction penalties. 

Rename and Macro-op Dependence Translation 
Fused macro-ops do not affect register value commu-

nication. Dependence checking and map table access for 
renaming are performed at the individual micro-op level. 
Two micro-ops per lane are renamed. Using macro-ops 
simplifies the rename process (especially source operand 
renaming) because (1) the known dependence between 
macro-op head and tail does not require intra-group de-
pendence checking or a map table access, and (2) there 
are two source operands per macro-op, which is the same 
for a single micro-op in a conventional pipeline.  

Macro-op dependence translation converts register 
names into macro-op names so that issue logic can keep 
track of dependences in a separate macro-op level name 
space. In fact, the hardware structure required for this 
translation is identical to that required for register renam-
ing, except that a single name is allocated to two fused 
micro-ops. This type of dependence translation is already 
required for wired-OR-style wakeup logic that specifies 
register dependences in terms of issue queue entry num-
bers rather than physical register names. This process is 
performed in parallel with register renaming and hence 
does not require an additional pipeline stage. Fused 
macro-ops need fewer macro-op names, thus reducing the 
power-intensive wakeup broadcasts in the scheduler.  



Dispatch 
Macro-ops check the most recent ready status of 

source operands and are inserted into available issue 
buffer and ROB entries at the dispatch stage. Because the 
two micro-ops in a fused pair have at most two source 
operands and occupy a single issue buffer slot, complex-
ity of the dispatch unit can be significantly reduced; i.e. 
fewer dispatch paths are required versus a conventional 
design.  In parallel with dispatch, the physical register 
identifiers, immediate values, opcodes as well as other 
information are stored in the payload RAM [6].  

4.3 The Pipeline Back End: Macro-op Execution  

The back-end of the pipeline performs out-of-order 
execution by scheduling and executing macro-ops as soon 
as their source values become available.  
Instruction (Macro--op) Scheduler 

The macro-op scheduler (issue logic) is pipelined and 
can issue back-to-back dependent macro-ops every two 
cycles. However, because each macro-op contains two 
dependent micro-ops, the net effect is the same as a con-
ventional scheduler issuing back-to-back micro-ops every 
cycle. Moreover, the issue logic wakes up and selects at 
the macro-op granularity, so the number of wakeup tag 
broadcasts is reduced for energy efficiency.  

Because the macro-op execution pipeline processes 
macro-ops throughout the entire pipeline, the scheduler 
achieves an extra benefit of higher issue bandwidth. 
(Macro-op execution eliminates the sequencing point at 
the payload RAM stage [27] that blocks the select logic 
for macro-op tail micro-ops). 
Operand fetch: Payload RAM Access & Register File 

An issued macro-op accesses the payload RAM to 
acquire the physical register identifiers, opcodes and other 
information needed for execution. Each payload RAM 
line has two entries for the two micro-ops fused into a 
macro-op. Although this configuration increases the num-
ber of bits to be accessed by a single request, the two 
operations in a macro-op use only a single port for both 
reads (the payload stage) and writes (the dispatch stage), 
increasing the effective bandwidth. For example, a 3-wide 
dispatch machine configuration has three read and three 
write ports that support up to six micro-ops in parallel. 

A macro-op accesses the physical register file for the 
source values of the two fused operations. Because the 
maximum number of distinct source registers in a macro-
op is limited to two by the dynamic binary translator, the 
read bandwidth is the same as for a single micro-op in a 
conventional implementation. Fused macro-ops better 
utilize register read ports by fetching an operand only 
once if it appears in both head and tail, and increasing the 
probability that both register identifiers of a macro-op are 
actually used. Furthermore, because we employ collapsed 
3-1 ALU units at the execution stage the tail micro-op 
does not need the result value produced by the macro-op 

head to be passed through either the register file or an 
operand forwarding network.  

Macro-op mode does not improve register write port 
utilization, however, and requires the same number of 
write ports as a conventional machine with an equivalent 
number of functional units. However, macro-op execution 
can be extended to reduce write port requirements by 
analyzing the liveness of register values at translation 
time. We leave this to future work. 
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Figure 8.   Datapath for macro-op execution 

Execution and Forwarding Network 
Figure 8 illustrates the datapath of a 3-wide macro-op 

pipeline. When a macro-op reaches the execution stage, 
the macro-op head is executed in a normal ALU. In paral-
lel, the source operands for both head and tail micro-ops 
are routed to a collapsed 3-1 ALU [31, 35, 37] to generate 
the tail value in a single cycle. Although it finishes execu-
tion of two dependent ALU operations in one step, a 
collapsed 3-1 ALU increases the number of gate levels by 
at most one compared with a normal 2-1 ALU [31, 35]. 
On the other hand, modern processors consume a signifi-
cant fraction of the ALU execution cycle for operand 
forwarding [14, 33]. As we have already observed, the 
macro-op execution engine removes same-cycle ALU-
ALU forwarding logic, which should more than compen-
sate for the extra gate level for the collapsed 3-1 ALUs. 
Thus, the overall cycle time should not be affected by the 
collapsed 3-1 ALU.  

To better appreciate the advantages of forwarding 
logic simplification, first observe that for a conventional 
superscalar execution engine with n ALUs, the ALU-to-
ALU forwarding network needs to connect all n ALU 
outputs to 2*n ALU inputs. Each forwarding path there-
fore needs to drive at least 2*n loads. Typically there are 
other forwarding paths from other functional units such as 
memory ports. The implications are two-fold. (1) The 
many input sources at each input of the ALUs necessitate 
a complex MUX network and control logic. (2) The big 
fan-out at each ALU output means large load capacitance 
and wire routing that leads to long wire delays and extra 
power consumption. To make matters worse, when oper-
ands are extended to 64-bits, the areas and wires also 
increase significantly. In fact, wire issues related to for-
warding led the designers of the Alpha EV6 [24] to adopt 



a clustered microarchitecture. There is also a substantial 
body of related work (e.g. [13, 26, 33]) that attempts to 
address such wiring issues. 

Functional units that have multiple cycle latencies, 
e.g. cache ports, still need a forwarding network as illus-
trated in Figure 8. However, the complexity of the for-
warding paths for macro-op execution is much less than a 
conventional processor. In macro-op execution, the for-
warding network only connects multi-cycle functional 
unit outputs to ALU inputs. In contrast, a conventional 
superscalar design having a full forwarding network 
needs to connect all input and output ports across all func-
tional units.  
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       Figure 9. Resource demands and execution timing 

Figure 9 illustrates resources and effective execution 
timings for different types of micro-ops and macro-ops; S 
represents a single-cycle micro-op; L represents a multi-
cycle micro-op, e.g., a load, which is composed of an 
address generation and a cache port access. Macro-ops 
combining the test with the branch resolve the branch one 
cycle earlier than a conventional design. Macro-ops with 
fused address calculation ALU-ops finish address genera-
tion one cycle earlier for the LD/ST queues. These are 
especially effective for the x86 where complex addressing 
modes exist and conditional branches need separate test or 
compare operations to set condition codes.  

Instruction Retirement 
The reorder buffer performs retirement at macro-op 

granularity, which reduces the overhead of tracking the 
status of individual instructions. This retirement policy 
does not complicate branch misprediction recovery be-
cause a branch cannot be fused as a macro-op head. In the 
event of a trap, the virtual machine software is invoked to 
assist precise exception handling for any aggressive op-
timizations by reconstructing the precise x86 state (using 
side tables or de-optimization) [30]. Therefore, the VM 
runtime software enables aggressive optimization without 
losing intrinsic binary compatibility.  

5. Evaluation  
5.1 Evaluation Methodology  

The proposed x86 processor is evaluated for per-
formance via timing simulation models. The dynamic 
binary translator/optimizer is implemented as part of the 
concealed co-designed virtual machine software. The co-
designed processor pipeline as described is modeled with 
a much modified version of SimpleScalar [7, 26] that 

incorporates a macro-op execution pipeline. A number of 
alternative x86 microarchitecture models were also simu-
lated for comparison and performance analysis. Details 
regarding the microarchitecture parameters are given in 
Section 5.2, along with the performance results. 

SPEC2000 integer benchmarks are simulated. 
Benchmark binaries are generated by the Intel C/C++ 
v7.1 compiler with SPEC2000 –O3 base optimization.  
Except for 253.perlbmk, which uses a small reference 
input data set, all benchmarks use the test input data set to 
reduce simulation time. All programs are simulated from 
start to finish. The entire benchmark suite executes more 
than 35 billion x86 instructions.  

As stated earlier, in this work we focus on evaluating 
the performance of optimized macro-op code. The de-
tailed evaluation of mixed mode x86/macro-op operation 
is the subject of our on-going research.  Startup IPC per-
formance in x86-mode will likely be slightly degraded 
with respect to conventional designs because the design is 
slanted toward optimized macro-op execution; results 
given below support this observation. The hotspot optimi-
zation overhead is negligible for most codes (including 
the SPEC benchmarks). With a straightforward translator 
/ optimizer written in C++, we measure slightly more than 
1000 translator instructions per single translated instruc-
tion. The SPEC benchmarks typically have hot code re-
gions of at most a few thousand static instructions; 
benchmark gcc has the most hot code with almost 29,000 
static instructions. The total translation overhead is thus 
measured in the few millions of instructions; about 30 
million in the case of gcc. Most of the benchmarks con-
tain over a billion instructions even for the relatively 
small test input set.  Hence, the overhead is a fraction of 
one percent for all but two of the benchmarks.  Overhead 
is largest for gcc, where it is two percent.  With the larger 
reference input data, we estimate the overhead to be much 
smaller than one percent (.2 percent for gcc). This obser-
vation regarding translation overheads of under one per-
cent is qualitatively supported by other related works in 
dynamic translation for SPEC2000 [3] and dynamic opti-
mization at the x86 binary level for a set of Windows 
applications [32]. 

5.2 Performance  

Pipeline models 
To analyze and compare our design with conven-

tional x86 superscalar designs, we simulated two primary 
microarchitecture models. The first, baseline, models a 
conventional dynamic superscalar design with single-
cycle issue logic. The second model, macro-op, is the co-
designed x86 microarchitecture we propose. Simulation 
results were also collected for a version of the baseline 
model with pipelined, two-cycle issue logic; this model is 
very similar to the proposed pipeline when in x86-mode. 
Figure 3 also serves to compare the pipeline models.  



Table 1. Microarchitecture configuration 

 BASELINE BASELINE 
PIPELINED MACRO-OP 

ROB Size 128 128 128 
Retire width 3,4 3,4 2,3,4 MOP 
Scheduler 
Pipeline Stages 1 2 2 

Fuse RISCops ? No No Yes 
Issue Width 3,4 3,4 2,3,4 MOP 
Issue Buffer 
Size 

Variable. Sample points:  from 16 up to 64 Effec-
tively larger for Macro-op execution. 

Register File 128 entries, 8,10 Read ports, 
5,6 Write ports 

128 entries, 
6,8,10 Read & 

Write  ports 
Functional 
Units 4,6,8 INT ALU, 2 MEM R/W ports, 2 FP ALU 

CacheHierarchy 4-way 32KB L1-I,  32KB L1-D,  8-way 1 MB L2 
Cache/Memory 
Latency 

L1 : 2 cycles + 1 cycle AGU, L2 : 8 cycles, Mem: 
200 cycles  for the 1st chunk, 6 cycles b/w chunks 

Fetch width 16-Bytes x86 instructions 16B fusible 
RISC-ops 

The baseline design is intended to capture the per-
formance characteristics of a Pentium-M-like implemen-
tation although it only approximates the Pentium-M ap-
proach.  First, it uses our cracked micro-ops instead of 
Pentium-M micro-ops (which are not available to us for 
obvious reasons). Second, it does not fuse the micro-ops, 
but has significantly wider front-end resources to provide 
a performance effect similar to Pentium-M micro-op 
fusion. In the baseline design, an “n-wide” baseline front-
end can crack up to n x86 instructions per cycle, produc-
ing up to 1.5 * n micro-ops which are then passed up a 
width 1.5n pipeline.  For example, the four-wide baseline 
can crack four x86 instructions into up to six micro-ops, 
which are then passed through a six-wide front-end pipe-
line. The micro-ops in the baseline are scheduled and 
issued separately as in current x86 processors. 

Resources for the three microarchitectures are listed 
in Table 1. Two register read ports are reserved for stores 
and two write ports are reserved for loads   We simulated 
two pipeline widths (3,4) for the baseline models and 
three widths (2,3,4) for the co-designed x86 processor 
model featuring macro-op execution. 

Performance  
Figure 10 shows the relative IPC performance for is-

sue buffer sizes ranging from 16 to 64. Performance is 
normalized with respect to a 4-wide baseline x86 proces-
sor with a size 32 issue buffer1.  Five bars are presented 
for configurations of 2-, 3-, and 4-wide macro-op execu-
tion model; 3- and 4-wide baseline superscalar.  

                                                                 
1 The normalized values are very close to the absolute values; 

the harmonic mean of absolute x86 IPC is 0.95 for the four-
wide baseline with issue buffer size 32.  
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Figure 10.  IPC performance comparison 

If we first focus on complexity effectiveness, we ob-
serve that the two-wide co-designed x86 implementation 
performs at approximately the same IPC level as the four-
wide baseline processor. However, the two-wide macro-
op model has approximately same level of complexity as 
a conventional two-wide machine. The only exceptions 
are stages where individual micro-ops require independ-
ent parallel processing elements, i.e. ALUs. Furthermore, 
the co-designed x86 processor has a pipelined issue stage. 
Hence, we argue that the macro-op model should be able 
to support either a significantly higher clock frequency or 
a larger issue buffer for a given frequency, thus giving the 
same or better performance as a conventional four-wide 
processor. It assumes a pipeline no deeper than the base-
line model, and in fact it reduces pipeline depth for hot 
code by removing the complex first-level x86 decoding 
and cracking stages from the critical branch misprediction 
path. On the other hand, if we pipeline the issue logic in 
the baseline design for a faster clock, there is an IPC 
performance loss of about 6~9%.  

If we consider the performance data in terms of IPC 
alone, a four-wide co-designed x86 processor performs 
nearly 20% better than the baseline four-wide superscalar 
primarily due to its runtime binary optimization and the 
macro-op execution engine that has an effectively larger 
issue buffer and issue width. As will be illustrated in 
subsection 5.3, macro-op fusing increases operation 
granularity by 1.4. We also observe that the four-wide co-
designed x86 pipeline performs no more than 4% better 
than the three-wide co-designed x86 pipeline and the 
extra complexity involved, for example, in renaming and 
register ports, may make the three-wide configuration 
more desirable for high performance.  

5.3 Performance Analysis: Software Fusing   

In the proposed co-designed x86 processor, the major 
performance-boosting feature is macro-op fusing per-
formed by the dynamic translator. The degree of fusing, 
i.e., the percentage of micro-ops that are fused into pairs 
determines how effectively the macro-op mode can utilize 
the pipeline bandwidth. Furthermore, the profile of non-



fused operations implies how the pipelined scheduler may 
affect IPC performance. Figure 11 shows that on average, 
more than 56% of all dynamic micro-ops are fused into 
macro-ops, more than the sub-40% coverage reported in 
the related work [5, 8, 27, 38]. Most of the non-fused 
operations are loads, stores, branches, floating point, and 
NOPs. Non-fused single-cycle integer ALU micro-ops are 
only 6% of the total, thus greatly reducing the penalty due 
to pipelining the issue logic.  

The nearly 60% fused micro-op pairs lead to an ef-
fect

haracterization data are also col-
lect

uniq

ive 30% bandwidth reduction throughout the pipeline. 
This number is lower than the ~65% reported in [20] 
because the improved fusing algorithm prioritizes critical 
single-cycle ALU-ops for fusing. Previous experiments 
with the single-pass fusing algorithm [20] actually show 
average IPC slowdowns because the greedy fusing algo-
rithm does not prioritize critical dependences and single-
cycle ALU operations. 

Additional fusing c
ed on the SPEC 2000 integer benchmarks to evaluate 

the fusing algorithm and its implications on the co-
designed pipeline. About 70% of the fused macro-ops are 
composed of micro-ops cracked from two different origi-
nal x86 instructions, suggesting that inter-x86 instruction 
optimization is important. Among the fused macro-ops, 
more than 50% are composed of two single-cycle ALU 
micro-ops, about 18% are composed of an ALU operation 
head and a memory operation tail, about 30% are dynami-
cally synthesized powerful branches, i.e. either a fused 
condition test with a conditional branch (mostly), or a 
fused ALU operation with an indirect jump in some cases. 

After fusing, 46% of the fused macro-ops access two 
ue source registers for operands, and only 15% of 

fused macro-ops (about 6% among all instruction entities) 
write two unique destination registers. Therefore, there 
exist opportunities to reduce register file write ports, and 
further reduce pipeline complexity. Other experimental 
data indicate that fused micro-ops are usually close to-
gether in the micro-op sequence cracked from x86 binary. 
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Figure 11.  Macro-op fusing profile 
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ing the dynamic binary translator code
, because the fusing scans are not the dominant part of 

the translation overhead, the two-pass fusing algorithm 
increases binary translation overhead slightly (<10%) 
over a single-pass fusing algorithm.  

5.4 Performance Analysis: HW Mi

In the co-designed x86 microarchitecture, a number 
eatures all combine to improve performance. The 

major reasons for performance improvement are: 
1) Fusing of dependent operations allows a la

ive window size and issue width, as has been noted. 
2) Re-laying out code in profile-based superblock
s to more efficient instruction delivery due to better 

cache locality and increased straight-line fetching. Super-
blocks are an indirect benefit of the co-designed VM 
approach.  The advantages of superblocks may be some-
what offset by the code replication that occurs when su-
perblocks are formed. 

3) Fused operation
ng a single cycle latency for dependent instruction 

pairs.  Due to pipelined (two cycle) instruction issue, the 
primary benefit is simplified result forwarding logic, not 
performance. However, there are performance advantages 
because the latency for resolving conditional branch out-
comes and the latency of address calculation for load / 
store instructions is sometimes reduced by a cycle. 

4) Because the macro-op mode pipeline only 
 with RISC-like operations, the pipelined front-end is 

shorter due to fewer decoding stages. 
Because speedups come from m
lated a variety of microarchitectures in order to sepa-

rate the performance gains from each of the sources. 

o Baseline: as before 
o M0:  Baseline plus 

caching (but no translation) 
o M1:   M0 plus fused macro-o

unchanged. 
o M2:  M1 w

flect the simplified decoders for the macro-op mode.  
o Macro-op: as before – M2 plus collapsed 3-1 ALU. 
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Figure 12.   IPC improvement factors 
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1. Y. Almog et al. “Specialized Dynamic Optimizations for 
high-performance Energy-Efficient Microarchitecture”, 2nd 
Int’l Symp. on Code Generation and Optimization, 2004.  

of these configurations were simulated
de co-designed x86 processor configuration fea-

turing the macro-op execution engine, and results are 
normalized with respect the four-wide baseline (Figure 
12).  The M0 configuration shows that a hotspot code 
cache helps improve performance via code re-layout. The 
improvement is nearly 4% on average. Of course, one 
could get similar improvement by static feedback directed 
re-compilation, but this is not commonly done in practice, 
and with the co-designed VM approach, it happens auto-
matically for all binaries.  

The performance of M1 (when compared with M0) 
illustrates the gain due to macro-op fusion. This is the 
major contributor to IPC improvements and is more than 
10% on average. The gain due to a shortened decode 
pipeline is nearly 1% on average. However, this gain is 
projected to be higher for applications where branches are 
less predictable. Finally, the benefit due to a collapsed 
ALU is about 2.5%; as noted earlier these gains are from 
reduced latencies for some branches and loads because 
the ALU result feeding these operations is sometimes 
available a cycle sooner than in a conventional design.  

Fused macro-ops generally increase ILP by collaps-
ing the dataflow graph. However, fusing may also cause 
extra cycles in some cases, e.g. when the head result feeds 
some other operation besides the tail, and the head is 
delayed because an input operand to the tail is not ready. 
Additionally, the pipelined scheduler may sometimes 
introduce an extra cycle for the 6% non-fused single-cycle 
ALU-ops.  Figure 12 shows that our simple and fast run-
time fusing heuristics may still cause slowdowns for 
benchmarks such as crafty and parser. The speedup for a 
benchmark is determined by its runtime characteristics 
and by how well the fusing heuristics work for it.  

5.5 Discussion  

Without a cir
or, some characteristics are hard to evaluate. One 

example is the faster clock potential that results from 
pipelined issue logic, removed ALU-to-ALU forwarding 
network, and two-level x86 decoders.  

At the same pipeline width, the proposed pipeline 
needs more transistors for some stages, for example, 
ALUs, the Payload RAM and some profiling support. 
However, we reduce some critical implementation issues 
(e.g. forwarding, issue queue). Fused macro-ops reduce 
instruction traffic throughout the pipeline and can reduce 
pipeline width, leading to better complexity effectiveness 
and power efficiency.  

6. Conclusion 
Efficient and hi

implemented in a co-designed virtual machine paradigm. 
With cost-effective hardware support and co-designed 
runtime software optimizers, the VM approach achieves 

higher performance for macro-op mode with minimal 
performance loss in x86-mode (during startup). This is 
important for the x86 (and CISC in general) where crack-
ing generates many micro-ops that are not optimized.  

The proposed co-designed x86 processor design im-
proves processor efficiency by reducing pipeline st

plexity for a given level of IPC performance. For 
complexity effective processor designs, the two-wide co-
designed x86 processor significantly reduces pipeline 
complexity without losing IPC performance when com-
pared with a four-wide conventional x86 superscalar 
pipeline. The biggest complexity savings are in the re-
duced pipeline width, pipelined instruction issue logic, 
and the removal of ALU-to-ALU forwarding paths. This 
reduced complexity will lead to a higher frequency clock 
(and higher performance), reduced power consumption, 
and shorter hardware design cycles.  

Alternatively, with similar design complexity, the co-
designed x86 macro-op execution e

 performance by 20% on average over a comparable 
conventional superscalar design on integer benchmarks. 
From the IPC perspective, the largest performance gains 
come from macro-op fusing which treats fused micro-ops 
as single entities throughout the pipeline to improve ILP 
and reduce communication and management overhead. 
Our data shows that there is a high degree of macro-op 
fusing in typical x86 binaries after cracking, and this 
improves throughput for a given macro-op pipeline 
“width” and issue buffer size.  Other features also add 
performance improvements of 1% to 4% each. These 
include superblock code re-layout (byproduct of dynamic 
translation), a shorter decode pipeline for optimized hot-
spot code, and the use of a collapsed 3-1 ALU which 
results in reduced latency for some branches and loads. 

This study explores a CISC ISA implementation that 
couples the co-designed virtual machine approach with a

nced superscalar microarchitecture. It demonstrates 
that this is a promising approach that addresses many of 
the thorny and challenging issues that are present in a 
CISC ISA such as the x86. The co-designed x86 proces-
sor enables efficient new microarchitecture designs while 
maintaining intrinsic binary compatibility.  
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