
An Approach for Implementing Efficient Superscalar CISC Processors

 Shiliang Hu † Ilhyun Kim ‡ * Mikko H. Lipasti ‡ James E. Smith ‡

shiliang@cs.wisc.edu, ilhyun.kim@intel.com, mikko@engr.wisc.edu, jes@ece.wisc.edu
 Departments of †Computer Sciences & ‡Electrical and Computer Engineering
 University of Wisconsin - Madison

Abstract
An integrated, hardware / software co-designed CISC

processor is proposed and analyzed. The objectives are
high performance and reduced complexity. Although the
x86 ISA is targeted, the overall approach is applicable to
other CISC ISAs. To provide high performance on fre-
quently executed code sequences, fully transparent dy-
namic translation software decomposes CISC superblocks
into RISC-style micro-ops. Then, pairs of dependent
micro-ops are reordered and fused into macro-ops held in
a large, concealed code cache. The macro-ops are fetched
from the code cache and processed throughout the pipe-
line as single units. Consequently, instruction level com-
munication and management are reduced, and processor
resources such as the issue buffer and register file ports
are better utilized. Moreover, fused instructions lead
naturally to pipelined instruction scheduling (issue) logic,
and collapsed 3-1 ALUs can be used, resulting in much
simplified result forwarding logic. Steady state perform-
ance is evaluated for the SPEC2000 benchmarks,, and a
proposed x86 implementation with complexity similar to a
two-wide superscalar processor is shown to provide per-
formance (instructions per cycle) that is equivalent to a
conventional four-wide superscalar processor.

1. Introduction
The most widely used ISA for general purpose com-

puting is a CISC – the x86. It is used in portable, desktop,
and server systems. Furthermore, it is likely to be the
dominant ISA for the next decade, probably longer. There
are many challenging issues in implementing a CISC ISA
such as the x86, however. These include the implementa-
tion of complex, multi-operation instructions, implicitly
set condition codes, and the trap architecture. *

A major issue with implementing the x86 (and CISC
ISAs in general) is suboptimal internal code sequences.
Even if the original x86 binary is optimized, the many
micro-ops produced by decomposing (“cracking”) the
CISC instructions are not optimized [39]. Furthermore,

* Currently: Intel Corporation, Hillsboro, OR

performing runtime optimization of the micro-ops is non-
trivial. In this paper, we propose and study an overall
paradigm for the efficient and high performance imple-
mentation of an x86 processor. The design employs a
special implementation instruction set based on micro-
ops, a simplified but enhanced superscalar microarchitec-
ture, and a layer of concealed dynamic binary translation
software that is co-designed with the hardware.

A major optimization performed by the co-designed
software is the combination of dependent micro-op pairs
into fused “macro-ops” that are managed throughout the
pipeline as single entities. Although a CISC ISA already
has instructions that are essentially fused micro-ops,
higher efficiency and performance can be achieved by
first cracking the CISC instructions and then re-arranging
and fusing them into different combinations than in the
original code. The fused pairs increase effective instruc-
tion level parallelism (ILP) for a given issue width and
reduce inter-instruction communication. For example,
collapsed 3-1 ALUs can be employed to reduce the size of
the result forwarding network dramatically.

Because implementing high quality optimizations
such as macro-op fusing is a relatively complex task, we
rely on dynamic translation software that is concealed
from all conventional software. In fact, the translation
software becomes part of the processor design; collec-
tively the hardware and software become a co-designed
virtual machine (VM) [10, 11, 29, 42] implementing the
x86 ISA.

We consider an overall x86 implementation, and
make a number of contributions; three of the more impor-
tant are the following.

1) The co-designed VM approach is applied to an en-
hanced out-of-order superscalar implementation of a
CISC ISA, the x86 ISA in particular.

2) The macro-op execution pipeline combines collapsed
3-1 ALU functional units with a pipelined 2-cycle
macro-op scheduler. This execution engine achieves
high performance, while also significantly reducing
the pipeline backend complexity; for example, in the
result forwarding network.

mailto:shiliang@cs.wisc.edu
mailto:ilhyun.kim@intel.com
mailto:mikko@engr.wisc.edu
mailto:jes@ece.wisc.edu

3) The advanced macro-op fusing algorithm both priori-
tizes critical dependences and ALU ops, and also
fuses more dynamic instructions (55+ %) than re-
ported in other work [5, 8, 27, 38] (40% or less on
average) for the common SPEC2000int benchmarks.
The paper is organized as follows. Section 2 dis-

cusses related work. The co-designed x86 processor is
outlined in section 3 from an architectural perspective.
Section 4 elaborates key microarchitecture details. Sec-
tion 5 presents design evaluation and analysis. Section 6
concludes the paper.

2. Related Work
2.1 x86 Processor Implementations

Decoder logic in a typical high performance x86 im-
plementation decomposes instructions into one or more
RISC-like micro-ops. Some recent x86 implementations
have gone in the direction of more complex internal op-
erations in certain pipeline stages, however. The AMD
K7/K8 microarchitecture [9, 23] maps x86 instructions to
internal Macro-Operations that are designed to reduce the
dynamic operation count in the pipeline front-end. The
front-end pipeline of the Intel Pentium M microarchitec-
ture [16] fuses ALU operations with memory stores, and
memory loads with ALU operations as specified in the
original x86 instructions. However, the operations in each
pair are still individually scheduled and executed in the
pipeline backend.

The fundamental difference between our fused
macro-ops and the AMD/Intel coarse-grain internal opera-
tions is that our macro-ops combine pairs of operations
that (1) are suitable for processing as single entities for
the entire pipeline, and (2) can be taken from different
x86 instructions -- as our data shows, 70+% of the fused
macro-ops combine operations from different x86 instruc-
tions. In contrast, AMD K7/K8 and Intel Pentium M
group only micro-operations already contained in a single
x86 instruction. In a sense, one could argue that rather
than “fusing”, these implementations actually employ
“reduced splitting.” In addition, these existing x86 im-
plementations maintain fused operations for only part of
the pipeline, e.g. individual micro-operations are sched-
uled separately by single-cycle issue logic.

2.2 Macro-op Execution

The proposed microarchitecture evolved from prior
work on coarse-grained instruction scheduling and execu-
tion [27, 28] and a dynamic binary translation approach
for fusing dependent instruction pairs [20]. The work on
coarse-grained scheduling [27] proposed hardware-based
grouping of pairs of dependent RISC (Alpha) instructions
into macro-ops to achieve pipelined instruction schedul-
ing. Compared with the hardware approach in [27, 28],
we remove considerable complexity from the hardware

and enable more sophisticated fusing heuristics, resulting
in a larger number of fused macro-ops. Furthermore, we
propose a new microarchitecture in which the front-end
features dual-mode x86 decoders and the backend execu-
tion engine uniquely couples collapsed 3-1 ALUs with a
2-cycle pipelined macro-op scheduler and simplified
operand forwarding network. The software fusing algo-
rithm presented here is more advanced than that reported
in [20]; it is based on the observations that it is easier to
determine dependence criticality of ALU-ops, and fused
ALU-ops better match the capabilities of a collapsed
ALU. Finally, a major contribution over prior work is that
we extend macro-op processing to the entire processor
pipeline, realizing 4-wide superscalar performance with a
2-wide macro-op pipeline.

There are a number of related research projects. In-
struction-level distributed processing (ILDP)[25] carries
the principle of combining dependent operations (strands)
further than instruction pairs. However, instructions are
not fused, and the highly clustered microarchitecture is
considerably different from the one proposed here. Dy-
namic Strands [38] uses intensive hardware to form
strands and involves major changes to superscalar pipe-
line stages, e.g. issue queue slots need more register tags
for potentially (n+1) source registers of an n-ops strand.
The Dataflow Mini-Graph [5] collapses multiple instruc-
tions in a small dataflow graph and evaluates performance
with Alpha binaries. However, this approach needs static
compiler support. Such a static approach is very difficult
for x86 binaries because variable length instructions and
embedded data lead to extremely complex code “discov-
ery” problems [19]. CCA, proposed in [8] either needs a
very complex hardware fill unit to discover instruction
groups or needs to generate new binaries, and thus will
have difficulties in maintaining x86 binary compatibility.
The fill unit in [15] also collapses some instruction pat-
terns. Continuous Optimization [12] and RENO [34]
present novel dynamic optimizations at the rename stage.
By completely removing some dynamic instructions (also
performed in [39] by a hardware-based frame optimizer),
they achieve some of the performance effects as fused
macro-ops. Some of their optimizations are compatible
with macro-op fusing. PARROT [1] is a hardware-based
x86 dynamic optimization system capable of various
optimizations. Compared with these hardware-intensive
optimizing schemes, our software-based solution reduces
hardware complexity and provides more flexibility for
optimizations and implementation of subtle compatibility
issues, especially involving traps [30].

2.3 Co-designed Virtual Machines

The Transmeta Crusoe and Efficeon processors [29,
42] and IBM DAISY and BOA [10, 11] are examples of
co-designed VMs. They contain translation/optimization
software and a code cache, which resides in a region of

physical memory that is completely hidden from all con-
ventional software. In effect, the code cache [10, 11, 29]
is a very large trace cache. The software is implementa-
tion-specific and is developed along with the hardware
design. The co-designed VM systems from Transmeta and
IBM use in-order VLIW hardware engines. As such,
considerably heavier software optimization is required for
translation and reordering instructions than our supersca-
lar implementation, which is capable of dynamic instruc-
tion scheduling and dataflow graph collapsing.

3. Processor Overview
There are two major components in a co-designed

VM implementation -- the software binary translator/
optimizer and the supporting hardware microarchitecture.
The interface between the two is the x86-specific imple-
mentation instruction set.

A new feature of the proposed architecture, targeted
specifically at CISC ISAs, is a two-level decoder, similar
in some respects to the microcode engine in the Motorola
68000 [40]. In the proposed implementation (Figure 1),
the decoder first translates x86 instructions into “vertical”
micro-ops -- the same fixed-format micro-ops we use as
the implementation ISA (refer to the next subsection).
Then, a second level decoder generates the decoded
“horizontal” control signals used by the pipeline. A two-
level decoder is especially suited to the x86 ISA because
complex x86 instructions need to be cracked into micro-
ops and then decoded into pipeline control signals. Com-
pared with a single-level monolithic decode control table,
the two-level decoder is smaller [40] by breaking the
single monolithic decode table into two much smaller
decode tables. It also yields decode logic that is not only
more regular and flexible, but also more amenable to a
fast clock.

With the two-level decoder, the pipeline can process
both x86 instructions (x86-mode) and fused macro-ops
(macro-op mode). When in x86-mode, instructions pass
through both decode levels; this would be done when a
program starts up, for example. In x86-mode, perform-
ance will be similar to a conventional x86 implementation
(there is no dynamic optimization). Profiling hardware
such as that proposed by Merten et al. [32] detects fre-
quently-used code regions (“hotspots”). As hotspots are
discovered, control is transferred to the VM software
which organizes them into superblocks [21], translates
and optimizes them as fused macro-ops, and places them
in the concealed code cache. When executing this hotspot
code in macro-op mode, the first level of decode in Figure
1 is bypassed, and only the second (horizontal) decode
level is used. Then, the full benefits of the fused instruc-
tion set are realized. While optimized instructions are
executed from the code cache, the first-level decode logic
can be powered off.

I-$
Code $

(Macro-op)

Memory
Hierarchy

vertical
x86

decoder

horizontal
micro / Macro-op

decoder

Rename/
Dispatch

pipeline
execution
backend

issue
buffer

VM
translation /
optimization

software

x86 code

 Figure 1. Overview of the proposed x86 design

As the processor runs, it will switch back and forth
between x86 mode and macro-op mode, under the control
of co-designed VM software. In this paper, we focus on
the macro-op mode of execution; our goal is to demon-
strate the steady-state performance benefits of the pro-
posed x86 design. The x86 mode is intended to provide
very good startup performance to address program startup
concerns regarding dynamic translation. The full dual
mode implementation and performance tradeoffs are the
subject of research currently underway; this is being done
in conjunction with our migration to a 64-bit x86 research
infrastructure.

3.1 The Implementation ISA

21-bit Immediate / Displacement10b opcode

11b Immediate / Disp10b opcode 5b Rds5b Rsrc

16-bit opcode 5b Rds5b Rsrc5b Rsrc 5b op

10b Immd / Disp

F

16-bit immediate / Displacement10b opcode 5b Rds

F

F F

F

FF

5b Rds5b Rsrc

5b op

5b op

5b Rds5b Rsrc

Core 32-bit instruction formats Add-on 16-bit instruction
formats for code density

 Figure 2. Formats for fusible micro-ops

The implementation instruction set (the fusible ISA)
is shown in Figure 2 and contains RISC-style micro-ops
that target the x86 instruction set.

The fusible micro-ops are encoded in 16-bit and 32-
bit formats. Using a 16/32-bit instruction format is not
essential, but provides a denser encoding of translated
instructions (and better I-cache performance) than a 32-bit
only format as in most RISCs (the Cray Research and
CDC machines [4, 36, 41] are notable exceptions). The
32-bit formats encode three register operands and/or an
immediate value. The 16-bit formats use an x86-like 2-
operand encoding in which one of the operands is both a
source and a destination. This ISA is extended from an
earlier version [20] by supporting 5-bit register designa-
tors in the 16-bit formats. This is done in anticipation of
implementing the 64-bit x86 ISA, although results pre-
sented here are for the 32-bit version.

The first bit of each micro-op indicates whether it
should be fused with the immediately following micro-op
to form a single macro-op. The head of a fused macro-op
is the first micro-op in the pair, and the tail is the second,
dependent micro-op which consumes the value produced
by the head. To reduce pipeline complexity, e.g., in the
rename and scheduling stages, fusing is performed only

for dependent micro-op pairs that have a combined total
of two or fewer unique input register operands. This as-
sures that the fused macro-ops can be easily handled by
conventional instruction rename/issue logic and an execu-
tion engine with a collapsed 3-1 ALU.

3.2 Dynamic Binary Translator

The major task of the co-designed dynamic binary
translation software is to translate and optimize hotspot
x86 instructions via macro-op fusing. Clearly, as exem-
plified by existing designs, finding x86 instruction
boundaries and then cracking individual x86 instructions
into micro-ops is lightweight enough that it can be per-
formed with hardware alone. However, our software
translation algorithm not only translates, but also finds
critical micro-op pairs for fusing and potentially performs
other dynamic optimizations. This requires an overall
analysis of the micro-ops, reordering of micro-ops, and
fusing of pairs of operation taken from different x86 in-
structions.

Many other runtime optimizations could also be per-
formed by the dynamic translation software, e.g. perform-
ing common sub-expression elimination and the Pentium
M’s “stack engine” [16] cost-effectively in software, or
even conducting “SIMDification” [1] to exploit SIMD
functional units. However, in this work we do not per-
form such optimizations.

3.3 Microarchitecture

The co-designed microarchitecture has the same ba-
sic stages as a conventional x86 superscalar pipeline.
Consequently, it inherits most of the proven benefits of
such designs. A key difference is that the proposed mi-
croarchitecture can process instructions at the coarser
macro-op granularity throughout the entire pipeline.

Because of the two-level decoders, there are two
slightly different pipeline flows – one for executing x86
code and the other for executing optimized, macro-op
code (see Figure 3). For x86 code, the pipeline operates
just as a conventional dynamic superscalar processor
except that the instruction scheduler is pipelined for a
faster clock cycle. After the decode stage, some adjacent
micro-ops cracked from x86 instructions are re-fused as in
some current x86 implementations, but no reordering or
optimizations are done. Note that even without optimized
fusing of macro-ops, the pipeline is still a high perform-
ance superscalar processor for x86 instructions.

Re-
name

Dis-
patch

Wake
upFetch Align Pay-

load
RF Exe WB RetireSe-

lect1

Macro-op
Pipeline

x86-mode Pipeline

2 3
x86 Decode

2-cycle Issue

Re-
name

Dis-
patch

Wake
upFetch Align Pay-

load
RF Exe WB RetireSe-

lect
De-
code

 Figure 3. x86-mode and macro-op mode pipelines

Decode
Rename
Dispatch

Wake-
up RFSelect EXEFetch MEM

cache
ports

Align
Fuse

Fuse
bit

3-1 ALUs

WB
Retire

Payload
 RAM

Figure 4. Macro-op execution overview

For the optimized macro-op code, paired dependent
micro-ops are placed in adjacent memory locations in the
code cache and are identified via a special “fuse” bit.
After they are fetched the two fused micro-ops are imme-
diately aligned and fused. From then on, macro-ops are
processed throughout the pipeline as single units (Figure
4). Macro-ops contain dependent micro-ops at a granular-
ity comparable to the original x86 CISC instructions;
however, fused macro-ops are streamlined and appear as
RISC-like operations to the pipeline. By processing fused
micro-op pairs as a unit, processor resources such as reg-
ister ports and instruction dispatch/tracking logic are
reduced or better utilized. Perhaps more importantly, the
dependent micro-ops in a fused pair share a single issue
queue slot and are awakened and selected for issue as a
single entity. The number of issue buffer slots and issue
width can then be reduced without affecting performance.

After fusing, there are very few isolated single-cycle
micro-ops that generate register results. Consequently,
key pipeline stages can be designed as if the minimum
instruction latency is two cycles. The instruction issue
stage is one of the more difficult pipeline stages in a con-
ventional design, because of the need to execute single
cycle back-to-back instructions. In the proposed x86
processor design, instruction issue can be pipelined in two
stages, simply and without performance loss.

Another critical stage in a conventional design is the
ALU and result forwarding logic. In our design, these
two operations can be performed in two cycles. In the
first cycle, two dependent ALU micro-ops in a macro-op
are executed by using a combination of a collapsed three-
input ALU [31, 35, 37] and a conventional two-input
ALU. There is no need for an expensive and time-
consuming ALU-to-ALU operand forwarding network
during the same cycle. Rather, the results only need to be
sent to the register file (or ROB) at the end of the ALU
execution cycle, and register file (or ROB) hardware can
take care of providing results to dependent instructions
during the next cycle as in a conventional design.

The co-designed VM CISC implementation has other
advantages. For example, unused legacy features in the
architected ISA can be largely (or entirely) emulated by
software. A simple microarchitecture reduces design risks
and cost and yields a shorter time-to-market. Although it
is true that the translation software must be validated for
correctness, this translation software does not require

physical design checking, does not require circuit timing
verification, and if a bug is discovered late in the design
process, it does not require re-spinning the silicon.

4. Microarchitecture Details
The major features to support our efficient x86 proc-

essor are the software runtime macro-op fusing algorithm,
and macro-op processing in the co-designed superscalar
pipeline. We elaborate on technical details regarding
hotspot x86 code optimization and generated macro-op
code execution.

4.1 The Dynamic Translator: Macro-op Fusing

Once a hot superblock is detected, the dynamic bi-
nary translator performs translation and fusing steps. We
use registers R0-R15 to map the x86 state (R0-R7 for 32-
bit code), registers R16- R31 are used mainly for tempo-
rary/scratch values, x86 hotspot optimization, code cache
management, precise state recovery, etc. The fusing algo-
rithm substantially improves on the algorithm in [20]; the
critical improvements will be summarized following the
description of the algorithm.

Two main heuristics are used for fusing. (1) Single-
cycle micro-ops are given higher priority as the head of a
pair. It is easier to determine dependence criticality
among ALU-ops. Furthermore, a non-fused multi-cycle
micro-op will cause no IPC loss due to pipelined schedul-
ing logic, so there is reduced value in prioritizing it. (2)
Higher priority is given to pairing micro-ops that are close
together in the original x86 code sequence. The rationale
is that these pairs are more likely to be on the program’s
critical path and should be scheduled for fused execution
in order to reduce the critical path latency. Consecutive
(or close) pairs also tend to be less problematic with re-
gard to other issues, e.g., extending register live ranges to
provide precise x86 state recovery [30] when there is a
trap. An additional constraint is maintaining the original
ordering of all memory operations. This avoids complicat-
ing memory ordering hardware (beyond that used in a
conventional superscalar design).

A forward two-pass scan algorithm creates fused
macro-ops quickly and effectively (Figure 5). After con-
structing the data dependence graph, the first forward
scan considers single-cycle micro-ops one-by-one as tail
candidates. For each tail candidate, the algorithm looks
backwards in the micro-op stream to find a head. This is
done by scanning from the second micro-op to the last in
the superblock, attempting to fuse each not-yet-fused
single-cycle micro-op with the nearest preceding, not-yet-
fused single-cycle micro-op that produces one of its input
operands. The fusing rules favor dependent pairs with
condition code dependence. And the fusing tests make
sure that no fused macro-ops can have more than two
distinct source operands, break any dependence in the
original code, or break memory ordering.

1. for(int pass = 1; pass <=2; pass++){
2. for(each micro-op from 2nd to last) {
3. if(micro-op already fused)continue;
4. if (pass == 1 and micro-op multi-cycle,
 e.g. mem-ops) continue;
5. look backward via dependence edges for
 its head candidate;
6. if (heuristic fusing tests pass)
 mark as a new fused pair;
7. }
8. }

 Figure 5. Two-pass fusing algorithm

After the first scan, a second scan is performed; the
second scan allows multi-cycle micro-ops as fusing can-
didate tails. The lines of pseudo-code specific to the two-
pass fusing algorithm are highlighted in Figure 5.
1. lea eax, DS:[edi + 01]
2. mov [DS:080b8658], eax
3. movzx ebx, SS:[ebp + ecx << 1]
4. and eax, 0000007f
5. mov edx, DS:[eax + esi << 0 + 0x7c]
(a) x86 assembly
1. ADD Reax, Redi, 1
2. ST Reax, mem[R18]
3. LDzx Rebx, mem[Rebp + Recx << 1]
4. AND Reax, 0000007f
5. ADD R21, Reax, Resi
6. LD Redx, mem[R21 + 0x7c]
(b) micro-operations
1. ADD R20, Redi, 1 ::AND Reax,R20, 7f
2. ST R20, mem[R18]
3. LDzx Rebx, mem[Rebp + Recx << 1]
4. ADD R21, Reax,Resi::LD Redx, mem[R21 + 0x7c]
(c) Fused macro-ops

Figure 6. Two-pass fusing algorithm example

Figure 6 illustrates fusing of dependent pairs into
macro-ops. Figure 6a is a hot x86 code snippet taken from
164.gzip in SPEC2000. The translator first cracks the x86
binary into the micro-ops, as shown in Figure 6b. Reax
denotes the native register to which the x86 eax register
is mapped. The long immediate 080b8658 is allocated
to register R18 due to its frequent usage. After building
the dependence graph, the two-pass fusing algorithm
looks for pairs of dependent single-cycle ALU micro-ops
during the first scan. In the example, the AND and the first
ADD are fused. (Fused pairs are marked with double co-
lon, :: in Figure 6c). Reordering, as is done here, compli-
cates precise traps because the AND overwrites the value
in register eax earlier than in the original code. Register
assignment resolves this issue [30]; i.e., R20 is assigned
to hold the result of the first ADD, retaining the original
value of eax. During the second scan, the fusing algo-
rithm considers multi-cycle micro-ops (e.g., memory ops)
as candidate tails. In this pass, the last two dependent
micro-ops are fused as an ALU-head, LD-tail macro-op.

The key to fusing macro-ops is to fuse more depend-
ent pairs on or near the critical path. The two-pass fusing
algorithm fuses more single-cycle ALU pairs on the criti-

cal path than the single-pass method in [20] by observing
that the criticality for ALU-ops is easier to model and that
fused ALU-ops better match the collapsed ALU units.
The single-pass algorithm [20] would fuse the first ADD
aggressively with the following store, which typically
would not be on the critical path. Also, using memory
instructions (especially stores) as tails may sometimes
slow down the wakeup of the entire pair, thus losing cy-
cles when the head micro-op is critical for another de-
pendent micro-op. Although this fusing algorithm im-
provement comes with slightly higher translation over-
head and slightly fewer fused macro-ops overall, the
generated code runs significantly faster with pipelined
issue logic.

Fused macro-ops serve as a means for re-organizing
the operations in a CISC binary to better match state-of-
the-art pipelines, e.g. most x86 conditional branches are
fused with the condition test instructions to dynamically
form concise branches and reduce much of the x86 condi-
tion code communication. The x86 ISA also has limited
general purpose registers (especially for the 32-bit x86)
and the ISA is accumulator-based, i.e. one register oper-
and is both a source and destination. The consequent
dependence graphs for micro-ops tend to be narrow and
deep. This leads to good opportunities for fusing and most
candidate dependent pairs have no more than two distinct
source registers. Additionally, micro-ops cracked from
x86 code tend to have more memory operations than a
typical RISC binary; fusing some memory operations can
effectively improve machine bandwidth.

4.2 The Pipeline Front-End: Macro-op Formation

The front-end of the pipeline (Figure 7) is responsible
for fetching, decoding instructions, and renaming source
and target register identifiers. To support processing
macro-ops, the front-end fuses adjacent micro-ops based
on the fuse bits marked by the dynamic binary translator.
Fetch, Align and Fuse

Each cycle, the fetch stage brings in a 16-byte chunk
of instruction bytes from the L1 instruction cache. After
fetch, an align operation recognizes instruction bounda-
ries. x86-mode instructions are routed directly to the first
level of the dual-mode decoders.

The handling of optimized macro-op code is similar,
but the complexity is lower due to dual-length 16-bit
granularity micro-ops as opposed to arbitrary multi-length,
byte-granularity x86 instructions. The effective fetch
bandwidth, four to eight micro-ops per cycle, is a good
match for the pipeline backend. Micro-ops bypass the
first level of the decoders and go to the second level di-
rectly. The first bit of each micro-op, the fuse bit, indi-
cates that it should be fused with the immediately follow-
ing micro-op. When a fused pair is indicated, the two
micro-ops are aligned to a single pipeline lane, and they
flow through the pipeline as a single entity.

Fetch

1 2
3

4
5

slot 0 slot 1 slot 2

16 Bytes

1 2 3 4 5 6A lign /

1 2
3

4
5

Fuse

Decode

Dispatch

Renam e

 Figure 7. Front-end of macro-op execution

Instruction Decode
The x86 instructions pass through both decode levels

and take three or more cycles (similar to conventional x86
processors [9, 17, 23]) for x86 cracking and decoding.
RISC-style micro-ops only pass through the second level
and take one cycle to decode. For each pipeline lane,
decoders for micro-ops have two simple level-two micro-
op decoders that can handle pairs of micro-ops (a fused
macro-op pair in macro-op mode or two micro-ops in x86
mode). These micro-op decoders decode the head and tail
of a macro-op pair independently of each other. Bypass-
ing the level-one decoders results in an overall pipeline
structure with fewer front-end stages when in macro-op
mode than in x86 mode. The biggest performance advan-
tage of a shorter pipeline for macro-ops is reduced branch
misprediction penalties.

Rename and Macro-op Dependence Translation
Fused macro-ops do not affect register value commu-

nication. Dependence checking and map table access for
renaming are performed at the individual micro-op level.
Two micro-ops per lane are renamed. Using macro-ops
simplifies the rename process (especially source operand
renaming) because (1) the known dependence between
macro-op head and tail does not require intra-group de-
pendence checking or a map table access, and (2) there
are two source operands per macro-op, which is the same
for a single micro-op in a conventional pipeline.

Macro-op dependence translation converts register
names into macro-op names so that issue logic can keep
track of dependences in a separate macro-op level name
space. In fact, the hardware structure required for this
translation is identical to that required for register renam-
ing, except that a single name is allocated to two fused
micro-ops. This type of dependence translation is already
required for wired-OR-style wakeup logic that specifies
register dependences in terms of issue queue entry num-
bers rather than physical register names. This process is
performed in parallel with register renaming and hence
does not require an additional pipeline stage. Fused
macro-ops need fewer macro-op names, thus reducing the
power-intensive wakeup broadcasts in the scheduler.

Dispatch
Macro-ops check the most recent ready status of

source operands and are inserted into available issue
buffer and ROB entries at the dispatch stage. Because the
two micro-ops in a fused pair have at most two source
operands and occupy a single issue buffer slot, complex-
ity of the dispatch unit can be significantly reduced; i.e.
fewer dispatch paths are required versus a conventional
design. In parallel with dispatch, the physical register
identifiers, immediate values, opcodes as well as other
information are stored in the payload RAM [6].

4.3 The Pipeline Back End: Macro-op Execution

The back-end of the pipeline performs out-of-order
execution by scheduling and executing macro-ops as soon
as their source values become available.
Instruction (Macro--op) Scheduler

The macro-op scheduler (issue logic) is pipelined and
can issue back-to-back dependent macro-ops every two
cycles. However, because each macro-op contains two
dependent micro-ops, the net effect is the same as a con-
ventional scheduler issuing back-to-back micro-ops every
cycle. Moreover, the issue logic wakes up and selects at
the macro-op granularity, so the number of wakeup tag
broadcasts is reduced for energy efficiency.

Because the macro-op execution pipeline processes
macro-ops throughout the entire pipeline, the scheduler
achieves an extra benefit of higher issue bandwidth.
(Macro-op execution eliminates the sequencing point at
the payload RAM stage [27] that blocks the select logic
for macro-op tail micro-ops).
Operand fetch: Payload RAM Access & Register File

An issued macro-op accesses the payload RAM to
acquire the physical register identifiers, opcodes and other
information needed for execution. Each payload RAM
line has two entries for the two micro-ops fused into a
macro-op. Although this configuration increases the num-
ber of bits to be accessed by a single request, the two
operations in a macro-op use only a single port for both
reads (the payload stage) and writes (the dispatch stage),
increasing the effective bandwidth. For example, a 3-wide
dispatch machine configuration has three read and three
write ports that support up to six micro-ops in parallel.

A macro-op accesses the physical register file for the
source values of the two fused operations. Because the
maximum number of distinct source registers in a macro-
op is limited to two by the dynamic binary translator, the
read bandwidth is the same as for a single micro-op in a
conventional implementation. Fused macro-ops better
utilize register read ports by fetching an operand only
once if it appears in both head and tail, and increasing the
probability that both register identifiers of a macro-op are
actually used. Furthermore, because we employ collapsed
3-1 ALU units at the execution stage the tail micro-op
does not need the result value produced by the macro-op

head to be passed through either the register file or an
operand forwarding network.

Macro-op mode does not improve register write port
utilization, however, and requires the same number of
write ports as a conventional machine with an equivalent
number of functional units. However, macro-op execution
can be extended to reduce write port requirements by
analyzing the liveness of register values at translation
time. We leave this to future work.

W a k e u p

S e le c t

P a ylo a d

R F

E X E

W B /M e m

2 -c yc le M a c ro -o p S c h e d u le r

la n e 0
d ua l e n tr y

is s u e s lo t
0

la n e 0
2 re a d p o r ts

la n e 0
d ua l e n tr y

is s u e s lo t
0

la n e 0
2 re a d p o r ts

la ne 1
d u a l e n tr y

is s ue s lo t
1

la ne 1
2 re a d p o rts

la ne 1
d u a l e n tr y

is s ue s lo t
1

la ne 1
2 re a d p o rts

M e m P o rt 0

A L U 0 3 - 1 A L U 0

la n e 2
d u a l e n tr y

i s s u e s lo t
2

la n e 2
2 re a d p o r ts

la n e 2
d u a l e n tr y

i s s u e s lo t
2

la n e 2
2 re a d p o r ts

M e m P o rt 1

A L U 1 A L U 2 3 -1 A L U 23 - 1 A L U 1

Figure 8. Datapath for macro-op execution

Execution and Forwarding Network
Figure 8 illustrates the datapath of a 3-wide macro-op

pipeline. When a macro-op reaches the execution stage,
the macro-op head is executed in a normal ALU. In paral-
lel, the source operands for both head and tail micro-ops
are routed to a collapsed 3-1 ALU [31, 35, 37] to generate
the tail value in a single cycle. Although it finishes execu-
tion of two dependent ALU operations in one step, a
collapsed 3-1 ALU increases the number of gate levels by
at most one compared with a normal 2-1 ALU [31, 35].
On the other hand, modern processors consume a signifi-
cant fraction of the ALU execution cycle for operand
forwarding [14, 33]. As we have already observed, the
macro-op execution engine removes same-cycle ALU-
ALU forwarding logic, which should more than compen-
sate for the extra gate level for the collapsed 3-1 ALUs.
Thus, the overall cycle time should not be affected by the
collapsed 3-1 ALU.

To better appreciate the advantages of forwarding
logic simplification, first observe that for a conventional
superscalar execution engine with n ALUs, the ALU-to-
ALU forwarding network needs to connect all n ALU
outputs to 2*n ALU inputs. Each forwarding path there-
fore needs to drive at least 2*n loads. Typically there are
other forwarding paths from other functional units such as
memory ports. The implications are two-fold. (1) The
many input sources at each input of the ALUs necessitate
a complex MUX network and control logic. (2) The big
fan-out at each ALU output means large load capacitance
and wire routing that leads to long wire delays and extra
power consumption. To make matters worse, when oper-
ands are extended to 64-bits, the areas and wires also
increase significantly. In fact, wire issues related to for-
warding led the designers of the Alpha EV6 [24] to adopt

a clustered microarchitecture. There is also a substantial
body of related work (e.g. [13, 26, 33]) that attempts to
address such wiring issues.

Functional units that have multiple cycle latencies,
e.g. cache ports, still need a forwarding network as illus-
trated in Figure 8. However, the complexity of the for-
warding paths for macro-op execution is much less than a
conventional processor. In macro-op execution, the for-
warding network only connects multi-cycle functional
unit outputs to ALU inputs. In contrast, a conventional
superscalar design having a full forwarding network
needs to connect all input and output ports across all func-
tional units.

S L S-S Macro-op S-L Macro-op

ALU ALU

MEM

ALU 3-1 ALU ALU 3-1 ALU

MEM

micro-op /
Macro-op types

Resources &
Execution

Timing

Others

Dedicated
functional

unitsHead
result

Tail
result

Head
result

Tail result
 Figure 9. Resource demands and execution timing

Figure 9 illustrates resources and effective execution
timings for different types of micro-ops and macro-ops; S
represents a single-cycle micro-op; L represents a multi-
cycle micro-op, e.g., a load, which is composed of an
address generation and a cache port access. Macro-ops
combining the test with the branch resolve the branch one
cycle earlier than a conventional design. Macro-ops with
fused address calculation ALU-ops finish address genera-
tion one cycle earlier for the LD/ST queues. These are
especially effective for the x86 where complex addressing
modes exist and conditional branches need separate test or
compare operations to set condition codes.

Instruction Retirement
The reorder buffer performs retirement at macro-op

granularity, which reduces the overhead of tracking the
status of individual instructions. This retirement policy
does not complicate branch misprediction recovery be-
cause a branch cannot be fused as a macro-op head. In the
event of a trap, the virtual machine software is invoked to
assist precise exception handling for any aggressive op-
timizations by reconstructing the precise x86 state (using
side tables or de-optimization) [30]. Therefore, the VM
runtime software enables aggressive optimization without
losing intrinsic binary compatibility.

5. Evaluation
5.1 Evaluation Methodology

The proposed x86 processor is evaluated for per-
formance via timing simulation models. The dynamic
binary translator/optimizer is implemented as part of the
concealed co-designed virtual machine software. The co-
designed processor pipeline as described is modeled with
a much modified version of SimpleScalar [7, 26] that

incorporates a macro-op execution pipeline. A number of
alternative x86 microarchitecture models were also simu-
lated for comparison and performance analysis. Details
regarding the microarchitecture parameters are given in
Section 5.2, along with the performance results.

SPEC2000 integer benchmarks are simulated.
Benchmark binaries are generated by the Intel C/C++
v7.1 compiler with SPEC2000 –O3 base optimization.
Except for 253.perlbmk, which uses a small reference
input data set, all benchmarks use the test input data set to
reduce simulation time. All programs are simulated from
start to finish. The entire benchmark suite executes more
than 35 billion x86 instructions.

As stated earlier, in this work we focus on evaluating
the performance of optimized macro-op code. The de-
tailed evaluation of mixed mode x86/macro-op operation
is the subject of our on-going research. Startup IPC per-
formance in x86-mode will likely be slightly degraded
with respect to conventional designs because the design is
slanted toward optimized macro-op execution; results
given below support this observation. The hotspot optimi-
zation overhead is negligible for most codes (including
the SPEC benchmarks). With a straightforward translator
/ optimizer written in C++, we measure slightly more than
1000 translator instructions per single translated instruc-
tion. The SPEC benchmarks typically have hot code re-
gions of at most a few thousand static instructions;
benchmark gcc has the most hot code with almost 29,000
static instructions. The total translation overhead is thus
measured in the few millions of instructions; about 30
million in the case of gcc. Most of the benchmarks con-
tain over a billion instructions even for the relatively
small test input set. Hence, the overhead is a fraction of
one percent for all but two of the benchmarks. Overhead
is largest for gcc, where it is two percent. With the larger
reference input data, we estimate the overhead to be much
smaller than one percent (.2 percent for gcc). This obser-
vation regarding translation overheads of under one per-
cent is qualitatively supported by other related works in
dynamic translation for SPEC2000 [3] and dynamic opti-
mization at the x86 binary level for a set of Windows
applications [32].

5.2 Performance

Pipeline models
To analyze and compare our design with conven-

tional x86 superscalar designs, we simulated two primary
microarchitecture models. The first, baseline, models a
conventional dynamic superscalar design with single-
cycle issue logic. The second model, macro-op, is the co-
designed x86 microarchitecture we propose. Simulation
results were also collected for a version of the baseline
model with pipelined, two-cycle issue logic; this model is
very similar to the proposed pipeline when in x86-mode.
Figure 3 also serves to compare the pipeline models.

Table 1. Microarchitecture configuration

 BASELINE BASELINE
PIPELINED MACRO-OP

ROB Size 128 128 128
Retire width 3,4 3,4 2,3,4 MOP
Scheduler
Pipeline Stages 1 2 2

Fuse RISCops ? No No Yes
Issue Width 3,4 3,4 2,3,4 MOP
Issue Buffer
Size

Variable. Sample points: from 16 up to 64 Effec-
tively larger for Macro-op execution.

Register File 128 entries, 8,10 Read ports,
5,6 Write ports

128 entries,
6,8,10 Read &

Write ports
Functional
Units 4,6,8 INT ALU, 2 MEM R/W ports, 2 FP ALU

CacheHierarchy 4-way 32KB L1-I, 32KB L1-D, 8-way 1 MB L2
Cache/Memory
Latency

L1 : 2 cycles + 1 cycle AGU, L2 : 8 cycles, Mem:
200 cycles for the 1st chunk, 6 cycles b/w chunks

Fetch width 16-Bytes x86 instructions 16B fusible
RISC-ops

The baseline design is intended to capture the per-
formance characteristics of a Pentium-M-like implemen-
tation although it only approximates the Pentium-M ap-
proach. First, it uses our cracked micro-ops instead of
Pentium-M micro-ops (which are not available to us for
obvious reasons). Second, it does not fuse the micro-ops,
but has significantly wider front-end resources to provide
a performance effect similar to Pentium-M micro-op
fusion. In the baseline design, an “n-wide” baseline front-
end can crack up to n x86 instructions per cycle, produc-
ing up to 1.5 * n micro-ops which are then passed up a
width 1.5n pipeline. For example, the four-wide baseline
can crack four x86 instructions into up to six micro-ops,
which are then passed through a six-wide front-end pipe-
line. The micro-ops in the baseline are scheduled and
issued separately as in current x86 processors.

Resources for the three microarchitectures are listed
in Table 1. Two register read ports are reserved for stores
and two write ports are reserved for loads We simulated
two pipeline widths (3,4) for the baseline models and
three widths (2,3,4) for the co-designed x86 processor
model featuring macro-op execution.

Performance
Figure 10 shows the relative IPC performance for is-

sue buffer sizes ranging from 16 to 64. Performance is
normalized with respect to a 4-wide baseline x86 proces-
sor with a size 32 issue buffer1. Five bars are presented
for configurations of 2-, 3-, and 4-wide macro-op execu-
tion model; 3- and 4-wide baseline superscalar.

1 The normalized values are very close to the absolute values;

the harmonic mean of absolute x86 IPC is 0.95 for the four-
wide baseline with issue buffer size 32.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

16 32 48 64
issue buffer size

Re
lat

ive
 IP

C
pe

rfo
rm

an
ce

4-wide Macro-op 3-wide Macro-op 2-wide Macro-op 4-wide Base 3-wide Base

Figure 10. IPC performance comparison

If we first focus on complexity effectiveness, we ob-
serve that the two-wide co-designed x86 implementation
performs at approximately the same IPC level as the four-
wide baseline processor. However, the two-wide macro-
op model has approximately same level of complexity as
a conventional two-wide machine. The only exceptions
are stages where individual micro-ops require independ-
ent parallel processing elements, i.e. ALUs. Furthermore,
the co-designed x86 processor has a pipelined issue stage.
Hence, we argue that the macro-op model should be able
to support either a significantly higher clock frequency or
a larger issue buffer for a given frequency, thus giving the
same or better performance as a conventional four-wide
processor. It assumes a pipeline no deeper than the base-
line model, and in fact it reduces pipeline depth for hot
code by removing the complex first-level x86 decoding
and cracking stages from the critical branch misprediction
path. On the other hand, if we pipeline the issue logic in
the baseline design for a faster clock, there is an IPC
performance loss of about 6~9%.

If we consider the performance data in terms of IPC
alone, a four-wide co-designed x86 processor performs
nearly 20% better than the baseline four-wide superscalar
primarily due to its runtime binary optimization and the
macro-op execution engine that has an effectively larger
issue buffer and issue width. As will be illustrated in
subsection 5.3, macro-op fusing increases operation
granularity by 1.4. We also observe that the four-wide co-
designed x86 pipeline performs no more than 4% better
than the three-wide co-designed x86 pipeline and the
extra complexity involved, for example, in renaming and
register ports, may make the three-wide configuration
more desirable for high performance.

5.3 Performance Analysis: Software Fusing

In the proposed co-designed x86 processor, the major
performance-boosting feature is macro-op fusing per-
formed by the dynamic translator. The degree of fusing,
i.e., the percentage of micro-ops that are fused into pairs
determines how effectively the macro-op mode can utilize
the pipeline bandwidth. Furthermore, the profile of non-

fused operations implies how the pipelined scheduler may
affect IPC performance. Figure 11 shows that on average,
more than 56% of all dynamic micro-ops are fused into
macro-ops, more than the sub-40% coverage reported in
the related work [5, 8, 27, 38]. Most of the non-fused
operations are loads, stores, branches, floating point, and
NOPs. Non-fused single-cycle integer ALU micro-ops are
only 6% of the total, thus greatly reducing the penalty due
to pipelining the issue logic.

The nearly 60% fused micro-op pairs lead to an ef-
fect

haracterization data are also col-
lect

uniq

ive 30% bandwidth reduction throughout the pipeline.
This number is lower than the ~65% reported in [20]
because the improved fusing algorithm prioritizes critical
single-cycle ALU-ops for fusing. Previous experiments
with the single-pass fusing algorithm [20] actually show
average IPC slowdowns because the greedy fusing algo-
rithm does not prioritize critical dependences and single-
cycle ALU operations.

Additional fusing c
ed on the SPEC 2000 integer benchmarks to evaluate

the fusing algorithm and its implications on the co-
designed pipeline. About 70% of the fused macro-ops are
composed of micro-ops cracked from two different origi-
nal x86 instructions, suggesting that inter-x86 instruction
optimization is important. Among the fused macro-ops,
more than 50% are composed of two single-cycle ALU
micro-ops, about 18% are composed of an ALU operation
head and a memory operation tail, about 30% are dynami-
cally synthesized powerful branches, i.e. either a fused
condition test with a conditional branch (mostly), or a
fused ALU operation with an indirect jump in some cases.

After fusing, 46% of the fused macro-ops access two
ue source registers for operands, and only 15% of

fused macro-ops (about 6% among all instruction entities)
write two unique destination registers. Therefore, there
exist opportunities to reduce register file write ports, and
further reduce pipeline complexity. Other experimental
data indicate that fused micro-ops are usually close to-
gether in the micro-op sequence cracked from x86 binary.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlb

mk
ga

p

vo
rte

x
bz

ip2

tw
olf

Ave
rag

e

Pe
rc

en
ta

ge
 o

f D
yn

am
ic

In
st

ru
ct

io
ns

ALU
FP or NOPs
BR
ST
LD
Fused

Figure 11. Macro-op fusing profile

Profil indicates
that

croarchitecture

of f

rger ef-
fect

s
lead

s lead naturally to collapsed ALUs
havi

has to
deal

ultiple sources, we
simu

superblock formation and code

ps; the pipeline length is

ith a shortened front-end pipeline to re-

ing the dynamic binary translator code
, because the fusing scans are not the dominant part of

the translation overhead, the two-pass fusing algorithm
increases binary translation overhead slightly (<10%)
over a single-pass fusing algorithm.

5.4 Performance Analysis: HW Mi

In the co-designed x86 microarchitecture, a number
eatures all combine to improve performance. The

major reasons for performance improvement are:
1) Fusing of dependent operations allows a la

ive window size and issue width, as has been noted.
2) Re-laying out code in profile-based superblock
s to more efficient instruction delivery due to better

cache locality and increased straight-line fetching. Super-
blocks are an indirect benefit of the co-designed VM
approach. The advantages of superblocks may be some-
what offset by the code replication that occurs when su-
perblocks are formed.

3) Fused operation
ng a single cycle latency for dependent instruction

pairs. Due to pipelined (two cycle) instruction issue, the
primary benefit is simplified result forwarding logic, not
performance. However, there are performance advantages
because the latency for resolving conditional branch out-
comes and the latency of address calculation for load /
store instructions is sometimes reduced by a cycle.

4) Because the macro-op mode pipeline only
 with RISC-like operations, the pipelined front-end is

shorter due to fewer decoding stages.
Because speedups come from m
lated a variety of microarchitectures in order to sepa-

rate the performance gains from each of the sources.

o Baseline: as before
o M0: Baseline plus

caching (but no translation)
o M1: M0 plus fused macro-o

unchanged.
o M2: M1 w

flect the simplified decoders for the macro-op mode.
o Macro-op: as before – M2 plus collapsed 3-1 ALU.

-10

0

10

20

30

40

50

60

70

gz
ip vp
r

gc
c

mcf
cra

fty

pa
rse

r eo
n

pe
rlb

mk ga
p

vo
rte

x
bz

ip2

two
lf

Ha
rm

on
ic

No
ma

rliz
ed

 IP
C

sp
ee

du
p (

%)

M0: Base + Code $ M1:= M0 + fusing M2:= M1 + shorter pipe Macro-op:= M2 + 3-1 ALU

Figure 12. IPC improvement factors

All for the
four-wi

cuit implementation of the proposed x86
process

gh performance x86 processors can be

age
com

ngine improves x86
IPC

n
enha

l Shebanow and anonymous re-
ck. We appreciate Dr. Ho-Seop

Kim

1. Y. Almog et al. “Specialized Dynamic Optimizations for
high-performance Energy-Efficient Microarchitecture”, 2nd
Int’l Symp. on Code Generation and Optimization, 2004.

of these configurations were simulated
de co-designed x86 processor configuration fea-

turing the macro-op execution engine, and results are
normalized with respect the four-wide baseline (Figure
12). The M0 configuration shows that a hotspot code
cache helps improve performance via code re-layout. The
improvement is nearly 4% on average. Of course, one
could get similar improvement by static feedback directed
re-compilation, but this is not commonly done in practice,
and with the co-designed VM approach, it happens auto-
matically for all binaries.

The performance of M1 (when compared with M0)
illustrates the gain due to macro-op fusion. This is the
major contributor to IPC improvements and is more than
10% on average. The gain due to a shortened decode
pipeline is nearly 1% on average. However, this gain is
projected to be higher for applications where branches are
less predictable. Finally, the benefit due to a collapsed
ALU is about 2.5%; as noted earlier these gains are from
reduced latencies for some branches and loads because
the ALU result feeding these operations is sometimes
available a cycle sooner than in a conventional design.

Fused macro-ops generally increase ILP by collaps-
ing the dataflow graph. However, fusing may also cause
extra cycles in some cases, e.g. when the head result feeds
some other operation besides the tail, and the head is
delayed because an input operand to the tail is not ready.
Additionally, the pipelined scheduler may sometimes
introduce an extra cycle for the 6% non-fused single-cycle
ALU-ops. Figure 12 shows that our simple and fast run-
time fusing heuristics may still cause slowdowns for
benchmarks such as crafty and parser. The speedup for a
benchmark is determined by its runtime characteristics
and by how well the fusing heuristics work for it.

5.5 Discussion

Without a cir
or, some characteristics are hard to evaluate. One

example is the faster clock potential that results from
pipelined issue logic, removed ALU-to-ALU forwarding
network, and two-level x86 decoders.

At the same pipeline width, the proposed pipeline
needs more transistors for some stages, for example,
ALUs, the Payload RAM and some profiling support.
However, we reduce some critical implementation issues
(e.g. forwarding, issue queue). Fused macro-ops reduce
instruction traffic throughout the pipeline and can reduce
pipeline width, leading to better complexity effectiveness
and power efficiency.

6. Conclusion
Efficient and hi

implemented in a co-designed virtual machine paradigm.
With cost-effective hardware support and co-designed
runtime software optimizers, the VM approach achieves

higher performance for macro-op mode with minimal
performance loss in x86-mode (during startup). This is
important for the x86 (and CISC in general) where crack-
ing generates many micro-ops that are not optimized.

The proposed co-designed x86 processor design im-
proves processor efficiency by reducing pipeline st

plexity for a given level of IPC performance. For
complexity effective processor designs, the two-wide co-
designed x86 processor significantly reduces pipeline
complexity without losing IPC performance when com-
pared with a four-wide conventional x86 superscalar
pipeline. The biggest complexity savings are in the re-
duced pipeline width, pipelined instruction issue logic,
and the removal of ALU-to-ALU forwarding paths. This
reduced complexity will lead to a higher frequency clock
(and higher performance), reduced power consumption,
and shorter hardware design cycles.

Alternatively, with similar design complexity, the co-
designed x86 macro-op execution e

 performance by 20% on average over a comparable
conventional superscalar design on integer benchmarks.
From the IPC perspective, the largest performance gains
come from macro-op fusing which treats fused micro-ops
as single entities throughout the pipeline to improve ILP
and reduce communication and management overhead.
Our data shows that there is a high degree of macro-op
fusing in typical x86 binaries after cracking, and this
improves throughput for a given macro-op pipeline
“width” and issue buffer size. Other features also add
performance improvements of 1% to 4% each. These
include superblock code re-layout (byproduct of dynamic
translation), a shorter decode pipeline for optimized hot-
spot code, and the use of a collapsed 3-1 ALU which
results in reduced latency for some branches and loads.

This study explores a CISC ISA implementation that
couples the co-designed virtual machine approach with a

nced superscalar microarchitecture. It demonstrates
that this is a promising approach that addresses many of
the thorny and challenging issues that are present in a
CISC ISA such as the x86. The co-designed x86 proces-
sor enables efficient new microarchitecture designs while
maintaining intrinsic binary compatibility.

Acknowledgements
We thank Dr. Michae

viewers for helpful feedba
’s help with the microarchitecture timing model. This

work was supported by NSF grants CCF-0429854, CCR-
0133437, CCR-0311361 and the Intel Corporation.

References

2. Vasanth Ba
Optimizatio

la, et al. “Dynamo: A Transparent Dynamic
n System”, Int’l Symp. on Programming Lan-

3.
s

er Sys-

5.

ec. 2004.

n Mi-

7.
Set”, Univer-

8. Processing on a

9.

patibility”, 24th Int’l

12.
, 2005.

2 microprocessor”,

15.
ache microproc-

16.
y

17.

 Int’l

21.
lar Compilation”, The Jour-

24. ocessor”, IEEE

25. d

002.

29. e Processors”,

30. e for

nguages and Operating

31.

MICRO Newsletter Vol.

32.

e, pp. 206-218, Jun, 1997

Vol. 37. No. 1, 1993.

37. ance

e, Dec. 2004

op, Nov. 1978.

42. sor.

guage Design and Implementation, pp. 1-12, 2000.
Leonid Baraz, et al. “IA-32 Execution Layer: a two phase
dynamic translator designed to support IA-32 application
on Itanium®-based systems” 36th Int’l Symp. on Microar-
chitecture pp 191-202 Dec. 2003.
P. Bonseigneur, "Description of the 7600 Comput4.
tem", Computer Group News, May 1969, pp. 11-15.
A. Bracy, P. Prahlad, A. Roth, “Dataflow Mini-Graph:
Amplifying Superscalar Capacity and Bandwidth”, 37th
Int’l Symp. on Microarchitecture, D

6. Mary D. Brown, Jared Stark, and Yale N. Patt, “Select-Free
Instruction Scheduling Logic”, 34th Int’l Symp. o
croarchitecture, pp. 204-213, Dec. 2001.
D. Burger, T. M. Austin, and S. Bennett, “Evaluating Fu-
ture Microprocessors: The SimpleScalar Tool
sity of Wisconsin – Madison, Computer Sciences Depart-
ment, Technical Report CS-TR-1308, 1996.
N. Clark, et al. “Application-Specific
General-Purpose Core via Transparent Instruction Set Cus-
tomization”, 37th Int’l Symp. on Microarchitecture, 2004.
Keith Diefendorff “K7 Challenges Intel” Microprocessor
Report. Vol.12, No. 14, Oct. 25, 1998

10. Kemal Ebcioglu et al. “Dynamic Binary Translation and
Optimization”, IEEE Transactions on Computers, Vol. 50,
No. 6, pp. 529-548. June 2001.

11. Kemal Ebcioglu, Eric R. Altman, “DAISY: Dynamic Com-
pilation for 100% Architectural Com
Symp. on Computer Architecture, 1997.
Brian Fahs, et al. “Continuous Optimization”, 32nd Int’l
Symp. on Computer Architecture

13. K. I. Farkas, et al. "The Multicluster Architecture: Reduc-
ing cycle time through partitioning." 30th Symp. on Mi-
croarchitecture (MICRO-30), Dec. 1997

14. E. Fetzer, J. Orton, “A fully bypassed 6-issue integer
datapath and register file on an Itanium-
Int’l Solid State Circuits Conference, Nov. 2002.
D. H. Friendly, S. J. Patel, Y. N. Patt, “Putting the fill unit
to work: Dynamic optimizations for trace c
essors”, 31st Int’l Symp. on Microarchitecture, Dec. 1998.
Simcha Gochamn et al. “The Intel Pentium M Processor:
Microarchitecture and Performance”, Intel Technolog
Journal, vol7, issue 2, 2003.
L. Gwennap, “Intel P6 Uses Decoupled Superscalar De-
sign”, Microprocessor Report, Vol. 9 No. 2, Feb. 1995

18. Glenn Hinton et al. “The Microarchitecture of the Pentium
4 Processor”, Intel Technology Journal. Q1, 2001.
R. N. Horspool and N. Ma19. rovac. “An Approach to the
Problem of Detranslation of Computer Programs”, Com-
puter Journal, August, 1980.

20. Shiliang Hu and James E. Smith, “Using Dynamic Binary
Translation to Fuse Dependent Instructions”, 2nd

Symp. on Code Generation and Optimization, March 2004.
Wen-Mei Hwu, et al. “The Superblock: An Effective Tech-
nique for VLIW and Supersca
nal of Supercomputing, 7(1-2) pp. 229-248, 1993.

22. Quinn Jacobson and James E. Smith, “Instruction Pre-
Processing in Trace Processors”, 5th Int’l Symp. on High
Performance Computer Architecture. 1999

23. C. N. Keltcher, et al., “The AMD Opteron Processor for
Multiprocessor Servers“, IEEE MICRO, Mar.-Apr. 2003.
R. E. Kessler, “The Alpha 21264 Micropr
Micro Vol 19, No. 2. pp 24-36, March/April, 1999.
Ho-Seop Kim and James E. Smith, “An Instruction Set an
Microarchitecture for Instruction Level Distributed Proc-
essing”, 29th Int’l Symp. on Computer Architecture, 2

26. Ho-Seop Kim, “A Co-Designed Virtual Machine for In-
struction Level Distributed Processing”, Ph.D. Thesis,
http://www.cs.wisc.edu/arch/uwarch/theses

27. Ilhyun Kim and Mikko H. Lipasti, “Macro-op Scheduling:
Relaxing Scheduling Loop Constraints”, 36th Int’l Symp. on
Microarchitecture, pp. 277-288, Dec. 2003.

28. Ilhyun Kim “Macro-op Scheduling & Execution”, Ph.D.
Thesis, http://www.ece.wisc.edu/~pharm. May, 2004
A. Klaiber, “The Technology Behind Cruso
Transmeta Technical Brief, 2000.
Bich C. Le, “An Out-of-Order Execution Techniqu
Runtime Binary Translators”, 8th Int’l Symp. on Architec-
ture Support for Programming La
System, pp. 151-158, Oct. 1998.
Nadeem Malik, Richard J. Elchemeyer, Stamatis Vassil-
ladis, “Interlock collapsing ALU for increased instruction-
level parallelism”, ACM SIG
23, pp: 149 – 157, Dec. 1992
Matthew Merten, et al. “An Architectural Framework for
Runtime Optimization”. IEEE Trans. Computers 50(6):
567-589 (2001)

33. S. Palacharla, N. P. Jouppi, J. E. Smith, “Complexity-
Effective Superscalar Processors”, 24th Int. Symp. on Com-
puter Architectur

34. Vlad Petric et al. Tingting Sha, Amir Roth, “RENO – A
Rename-based Instruction Optimizer”, 32nd Int’l Symp. on
Computer Architecture, 2005.

35. J. E. Phillips, S. Vassiliadis, “Proof of correctness of high-
performance 3-1 interlock collapsing ALUs”, IBM Journal
of Research and Development,

36. R. M. Russell, "The CRAY-1 Computer System" Commu-
nications of the ACM, Vol.21, No.1, Jan. 1978, pp.63--72.
Y. Sazeides, S. Vassiliadis, J. E. Smith, “The perform
potential of data dependence speculation and collapsing”,
29th Int’l Symp. on Microarchitecture, 1996

38. P. Sassone, S. Wills, “Dynamic Strands: Collapsing Specu-
lative Dependence Chains for Reducing Pipeline Commu-
nication”, 37th Int’l Symp. on Microarchitectur

39. Brian Sletchta, et al. “Dynamic Optimization of Micro-
Operations”, 9th Int’l Symp. on High Performance Com-
puter Architecture. Feb. 2003.

40. E. P. Stritter, H. L. Tredennick, “Microprogrammed Im-
plementation of a Single chip Microprocessor ”, 11th An-
nual Microprogramming Worksh

41. J. E. Thornton, “The Design of a Computer: the Control
Data 6600”, Scott, Foresman, and Co., Chicago, 1970
Transmeta Corp. website. Transmeta Efficeon Proces

	Introduction
	Related Work
	x86 Processor Implementations
	Macro-op Execution
	Co-designed Virtual Machines

	Processor Overview
	The Implementation ISA
	Dynamic Binary Translator
	Microarchitecture

	Microarchitecture Details
	The Dynamic Translator: Macro-op Fusing
	The Pipeline Front-End: Macro-op Formation
	The Pipeline Back End: Macro-op Execution

	Evaluation
	Evaluation Methodology
	Performance
	Performance Analysis: Software Fusing
	Performance Analysis: HW Microarchitecture
	Discussion

	Conclusion
	Acknowledgements
	References

